1. Develop a proposal for an offering of Biol 152, “Student-organized seminar in ecology and evolution”, that would attract the participation of an enthusiastic cadre of your colleagues during fall, winter, or spring term next year. The proposal should contain: (1) title; (2) one-page exposition on the intellectual motivation for the course; (3) syllabus and schedule, including reading list and example problem sets, if appropriate; (4) an overview of educational tactics, including a plan for constructive use of faculty, to achieve the course objectives; and (5) a listing of potential products of the seminar course, such as a joint paper or a proposal for a work group or research symposium. The baseline format for course structure is one two-hour meeting per week for nine weeks, but this could be adjusted as desired to match course objectives with target students.

2. The intellectual core of the above course proposal will be a cohesive reading list of substantive, high-impact papers. In this section of your response, demonstrate the value of your reading list by efficiently summarizing for each paper in your list what is the most interesting single result (i.e., the result and accompanying conclusions that student discussions of the paper should build to). To help with your explanation, provide a simple sketch (suitable for quickly putting on a whiteboard during the class discussion) that will help students capture the core result from the paper. Your sketch could be a verbal, graphical, or mathematical abstraction. Recall that for research results to be interesting, there generally has to have been more than one way that a study could have turned out. Demonstrate that each of your selected papers is interesting in this way by showing two versions of the same simple whiteboard figure, with one showing actual results and the other showing a different possible result that could have been obtained, and which would have implied different conclusions. [You can produce your sketches however you want. For example, you could sketch them on a white board, take a picture of the pair of sketches, and embed the image in your document.]

Briefly note the technical vocabulary, natural history background,
model properties, etc., that students will need to adequately master each paper. Add some more sentences and paragraphs to your annotated reading list that elegantly develop the connections among papers, including the emergent themes and new questions that arise from consideration of the package of papers. We expect that your answers to these questions will take about 8-12 double-spaced pages. Please be sure to cite appropriate references within the text of your answer, as well as a complete list of works cited at the end. Additional figures supporting your arguments are welcome.