A MAXENT MODEL OF TONE-TUNE ASSOCIATION IN TOMMO SO SONGS

Laura McPherson, UCLA
88th Annual Meeting of the LSA, January 2-5, Minneapolis

TONE-TUNE ASSOCIATION

- Do speakers of a tone language map musical melody to linguistic tone (or vice versa) when singing?
- Recent surveys (e.g. Schellenberg 2012) show varying degrees of adherence across languages and styles.
 - Cantonese (Wong and Diehl 2002) stricter than Shona (Schellenberg 2009).
 - Traditional songs and recitations stricter than popular music.

TODAY’S TALK

- Novel test case: Tommo So (Dogon, Mali) folk music
- Tommo So has a high degree of tone-tune association, but higher within words than across word boundaries.
- Research question: Is this correlation deliberate (=artistic) or an accidental property of the linguistic and musical structure?
- Using the language sample method (Tarlinskaja 1976, Hall 2006), I developed three corpora of fake songs to test this question.

THREE TEST CORPORAS

1. Real melodies matched with randomly selected prose
 - Tests whether melodies are biased to match Tommo So linguistic structure.
2. Real lyrics matched with randomly generated melodies
 - Tests whether Tommo So lyrics are biased to match the pentatonic scale
3. Real melodies and lyrics, scrambled
 - Tests whether Tommo So lyrics and melodies are biased to match each other
ASSESSING ASSOCIATION

- Logistic regression/maximum entropy grammar (Goldwater and Johnson 2003, Hayes and Wilson 2008):
 - Constraints on tone-tune association are able to distinguish between lines from the real corpus and the three artificial corpora.
 - Word-bounded: Constraints on two note sequences within words sequences are stronger than constraints on sequences across word boundaries.

LANGUAGE AND DATA

- Tommo So

 - Dogon (Niger-Congo) language spoken in Mali by ~60,000 people (McPherson 2013).
 - Original data based on fieldwork from 2008-2012.

TONE SYSTEM

- Two phonemic tones, H and L, plus surface underspecified syllables (Ø, McPherson 2011).
- Three main lexical melodies:
 - /H/, as in dàmmá ‘village’
 - /LH/, as in dàmmá ‘hoe’
 - (/HL/, as in pǎllă ‘cloth strip’)
- Tone also used grammatically (replacive overlays in verb conjugation and between words in an NP, Heath and McPherson 2013, McPherson in prep).
 - {L} in possession, as in Sǎndà dàmmá ‘Sana’s village / hoe’
ABOUT THE SONGS

- Preliminary data from four women’s folk songs recorded in Tédié, Mali in 2012.
- Songs consist of call and response.
 - Basic melody and lyrics are set, but are subject to improvisation in performance.
- Major pentatonic scale, with the following intervals:
 - Eb F (G) Ab Bb C (1 2 (3) 4 5 6)
- Polyrhythmic: singing and percussion are in different time signatures.

“AN ELEPHANT GAVE BIRTH”
Right to left: Tepama Ouologuem, Roukiatou Djebukile, Kunjay Ouologuem
Chorus lyrics: An elephant gave birth, there was so much colostrum, an elephant gave birth. Come here, whoever is thirsty for milk, come and suckle.

METHODOLOGY

- Musically transcribed four songs totaling about 6 minutes of singing from a total of an hour and a half.
- Lyrics transcribed and translated with the help of Sana ‘M. le Maire’ Ouologuem.
- Coded these 96 musical lines (ranging from 3 to 24 syllables) in Excel, noting the tone, note of the scale, and boundary strength for each syllable.

TRANSCRIPTION AND EVALUATION
EXAMPLE

Text: L-H H=0 H-L-L (L-H)
 kùwⁿá náy=le píyè-d "(kùwⁿá)
 crane cousin=ASSOC cry-IMPF (crane)
 ‘Crane is crying with her cousin’

PRELIMINARY CHECKING

- I hand-checked words with lexical tone (/H/, /LH/, /HL/) to see how they were mapped to musical melody (level, rising, falling).

<table>
<thead>
<tr>
<th></th>
<th>Level</th>
<th>Rising</th>
<th>Falling</th>
</tr>
</thead>
<tbody>
<tr>
<td>/H/</td>
<td>37 (23%)</td>
<td>2 (3%)</td>
<td>22 (54%)</td>
</tr>
<tr>
<td>/LH/</td>
<td>122 (74%)</td>
<td>71 (96%)</td>
<td>2 (5%)</td>
</tr>
<tr>
<td>/HL/</td>
<td>5 (3%)</td>
<td>1 (1%)</td>
<td>17 (41%)</td>
</tr>
</tbody>
</table>

(Percentages summed across melodies/columns)

- Chi-squared test on this table yields $p < .001$

TESTING THE HYPOTHESIS

- Question: Are these findings significant?
- Method: Language sample (“Russian”) method of metrics (Tarlinskaja 1976, Hall 2006) compares the real corpus to a randomly generated corpus based on actual musical/linguistic forms.
- The input for the model consists of the set of real lines of music and a corresponding fake set:
 1. Prose (paired with real melodies) (288 tokens)
 2. Random melodies (paired with real lyrics) (192 tokens)
 3. Scrambled (melodies and lyrics) (192 tokens)

CONSTRAINTS

- Coded the data for a series of tone-tune association constraints, of the format: [Tonal movement, tune movement].

 - **Association** constraints and **anti-association** constraints.

 - E.g. $+$ToneRise,$+$TuneRise, $+$ToneRise,$-$TuneFall; $+$ToneFall,$-$TuneFall, $+$ToneRise,$+$TuneFall, etc.

 - Two basic versions: word-bounded and boundary.

 - Third version: Blind constraint (combines word-bounded and boundary violations)
Maxent/Logistic Regression

- I use these constraints to predict whether a line in the corpus is real (0) or fake (1).
- In a case with binary outputs (as in 0/1), the math of a maximum entropy model is formally identical to the math of logistic regression.
- I first ran logistic regression models in R to find the best constraints.
- Weights shown here are all positive, as in maxent (association constraints penalize fake candidate; anti-association constraints penalize real candidate)

Significant Constraints

- Out of 12 constraints for each version, 3 proved highly significant.
 - +ToneRise,+ToneRise ; +ToneRise,+TuneFall ; +ToneFall,-TuneFall

- One general constraint was also significant:
 - X0,TuneRise: Assess a violation if any sequence X0 (0-0, L-0, H-0) is realized on a rising melody.
 - Phonetically grounded: rising interpolation avoided on underspecified syllables.

Results
BASIC FINDINGS

- For all corpora, no significant difference between a model with word-bounded vs. blind constraints (looking at the AIC).
- Both significantly better than a model with only word boundary constraints.
- However, word-bounded + boundary is marginally better.
- Allows the model to weight violations for each condition differently.

+ToneRise,+TuneRise

- An association constraint, whose structural description is met when a L-H sequence is sung on a rising sequence of notes.
- Penalizes fake lines.
- Example: kùwáá/L-H/3-4 ‘crane’ (from Line 74)

<table>
<thead>
<tr>
<th>Model</th>
<th>Word-bounded weight</th>
<th>Boundary weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prose</td>
<td>0.97 ***</td>
<td>0.9 *</td>
</tr>
<tr>
<td>Scrambled</td>
<td>1.13 ***</td>
<td>1.72 **</td>
</tr>
</tbody>
</table>

+ToneRise,+TuneFall

- An anti-association constraint, whose structural description is met when a L-H sequence is sung on a falling sequence of notes.
- Penalizes real lines.
- Example: ìmbáá/L-H/3-2 ‘here’

<table>
<thead>
<tr>
<th>Model</th>
<th>Word-bounded weight</th>
<th>Boundary weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prose</td>
<td>1.67 ***</td>
<td>0.63</td>
</tr>
<tr>
<td>Scrambled</td>
<td>1.78 ***</td>
<td>0.03</td>
</tr>
</tbody>
</table>

+ToneFall,-TuneFall

- An anti-association constraint, whose structural description is met when a H-L sequence is sung on a falling sequence of notes (sung on either level or rising).
- Penalizes real lines.
- Example: píyè-de/H-L-L/3-3 ‘she cries’

<table>
<thead>
<tr>
<th>Model</th>
<th>Word-bounded weight</th>
<th>Boundary weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prose</td>
<td>1.07 ***</td>
<td>0.20</td>
</tr>
<tr>
<td>Scrambled</td>
<td>0.98 **</td>
<td>0.16</td>
</tr>
</tbody>
</table>
x0,+TuneRise

- An anti-association constraint, whose structural description is met when an X-0 sequence is sung on a rising sequence of notes.
- Penalizes real lines.
- Example: ámb=m = gL-H=0/3-4 ‘the men’

<table>
<thead>
<tr>
<th>Model</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prose</td>
<td>2.12***</td>
</tr>
<tr>
<td>Scrambled</td>
<td>1.03</td>
</tr>
</tbody>
</table>

PREDICTIONS

- For each model, we can look at the average predicted probability of being fake.
- A perfect model would predict 0 for real and 1 for fake.

<table>
<thead>
<tr>
<th></th>
<th>Real</th>
<th>Fake</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prose</td>
<td>0.36</td>
<td>0.75</td>
</tr>
<tr>
<td>Scrambled</td>
<td>0.29</td>
<td>0.72</td>
</tr>
</tbody>
</table>

RANDOM MELODIES

- A different set of constraints does a better job for the random melody corpus.
- Constraints and weights:

<table>
<thead>
<tr>
<th>Word-bounded weights</th>
<th>Boundary weights</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ToR,+TuR</td>
<td>+ToR,+TuR</td>
</tr>
<tr>
<td>1.60</td>
<td>1.60</td>
</tr>
<tr>
<td>+ToR,-TuR</td>
<td>+ToR,-TuR</td>
</tr>
<tr>
<td>0.77</td>
<td>2.44</td>
</tr>
<tr>
<td>-ToR,+TuR</td>
<td>-ToR,+TuR</td>
</tr>
<tr>
<td>3.7</td>
<td>2.46</td>
</tr>
<tr>
<td>X0Rising</td>
<td></td>
</tr>
<tr>
<td>3.49</td>
<td></td>
</tr>
</tbody>
</table>

- Average predicted probability for real lines: .19
- Average predicted probability for fake lines: .87

DISCUSSION

- Model makes the strongest predictions with the randomly generated melodies.
- All constraints focus on +/-Rise for melodic movement.
- Natural Tommo So melodies follow a downward progression; randomly generated melodies include more rising sequences.
- Tone-tune association restricts rising melodies to occurring with rising tones; more instances in the database allow more cases of mismatch to be found.
CONCLUSIONS

MAIN FINDINGS

- Three different test cases support the hypothesis that musical melody is constrained by lexical tone in Tommo So folk music, beyond an accidental baseline.
- Effect is word-bounded:
 - Strong within words, weak across word boundaries.
- Tommo So shows aspects of both “parallel” and “not opposing” (Schellenberg 2012) tone-tune association:
 - Rising tone sequences should be sung on non-opposing melodies.
 - Falling tone sequences should be sung on parallel (=falling) melodies.

FUTURE DIRECTIONS

- Transcribe and annotate more songs.
- Develop a solid model of tone-tune association, that predicts not just directionality but also interval size.
- Check whether tone-tune association is stronger for lexical tone than grammatical tone.
- Explore tone-tune association in non-native speakers singing in Tommo So.
- Tommo So is the language of song for most of the Dogon area, so this is a natural question.

THANK YOU!

Many thanks to audiences at the UCLA Phonology Seminar and the UCSD Linguistic Fieldwork Working Group for feedback on earlier versions. Thanks to Bruce Hayes, Kie Zuraw, Stephanie Shih, Russell Schuh, and Will Leben for helpful discussions of modeling and data. My deepest gratitude to my Tommo So consultants for sharing their language and music with me. I gratefully acknowledge the financial support of the NSF GRFP and the Fulbright Foundation.
REFERENCES

Heath, Jeffrey and Laura McPherson. Tonal syntax and reference restriction in Dogon NPs. Language 89.2: 265-296.
An elephant gave birth
There was so much colostrum
Tommo So folk song

Bass

ha koy gwén nà-lèe èmt ké-mìn-jé sàm-è - è gwén nà-lèe

B.

nàt yàat ndó gi-né ú-wà\textsubscript{m} ne gwén nà-lèe èmt ké-mìn-jé sà-mèe

B.

á-mí-ru ge gi-nèè ge ne gwén nà-lèè mo èmù ké-mìn-jé sà-mèè

B.

nòm-báá yèl-èé i-rùù gi-yè ñ-dèè á-wí-nè nò-nú yèl-èé á-rá-má ye

B.

gwén nà-lèè ké-mìn-jé sà-mèè gwén nà-lèè á-mè-ru gi-nààù

B.

gwén nà-lèè èmù ké-mìn-jé sà-mèè nòm-báá yèl-èé i-rùù gi-yè á-

B.

wèè yo nòm-báá yèl-èé á-rá-má ye gwén nà-lèè èmù ké-mìn-jé sà-

B.

mèù gwén nà-lèè tò-gòù bí lu dá-má é-wò gwén nà-
An Elephant Gave Birth
(Tepama)
1. Hakoy gwēⁿ nàl¹-è, ém¹ kémínjé sàm¹-è, okay elephant give.birth-PFV.L milk colostrum be.a.lot-PFV.L
 gwēⁿ nàl¹-è
elephant give.birth-PFV.L
‘Okay, an elephant gave birth, there was so much colostrum, an elephant gave birth.’
2. nàà Yààndó giné úwɔ=ỳ = ge, gwēⁿ nàl¹-è,
mother Yaandó house 2SG.POSS = OBJ = COP elephant give.birth-PFV.L
 kémínjé sàm¹-è
colostrum be.a.lot-PFV.L
‘Mother Yaandó (= LM), it was your house, an elephant gave birth, there was so much
colostrum.’
3. Ámèru ginè¹ = ge = ne gwēⁿ nàl¹-è mɔ, èm¹ chief house = DEF = OBL elephant give.birth-PFV.L EMPH milk
 kémínjé sàm¹-è
colostrum be.a.lot-PFV.L
‘An elephant gave birth in the chief’s house! There was so much colostrum.’
suckle-CAUS? oh
‘Come there, whoever is thirsty for milk, oh come here and suckle.’

(Chorus)
5. gwēⁿ nàl¹-è kémínjé sàm¹-è
elephant give.birth-PFV.L colostrum be.a.lot-PFV.L
‘An elephant gave birth, there was so much colostrum.’
6. Àmèru ginè¹ = ne gwēⁿ nàl¹-è, kémínjé sàm¹-è.
 chief house = OBL elephant give.birth-PFV.L colostrum be.a.lot-PFV.L
‘An elephant gave birth in the chief’s house, there was so much colostrum.’
7. mbáá yèl-ée iùrú⁴ gíyé àw²-è-w=yo mbáá yèl-ée árá-mɔ⇒ here come-NF breast hunger catch-PFV.L.2SG = if here come-NF suckle-CAUS
‘Come here if you are thirsty for milk, come here and suckle.’

(Tepama)
8. gwēⁿ nàl¹-è, èm¹ kémínjé sàm¹-è, gwēⁿ nàl¹-è
elephant give.birth-PFV.L milk colostrum be.a.lot-PFV.L elephant give.birth-PFV.L
‘An elephant gave birth, there was so much colostrum, an elephant gave birth.’