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Abstract— We use a hybrid model including asymptotic ex-
pressions of the spheroidal wave functions (SWFs) to obtain a
reliable, broadband solution for the electromagnetic induction
(EMI) response from a conducting and permeable spheroid. We
obtain this broadband response, valid in the magnetoquasistatic
regime from 0 Hz to 100’s of kHz, by combining three different
techniques each applicable over a different frequency range. At
low frequencies, the exact analytical solution is used. At mid-
range frequencies, asymptotic expressions for the angular and
radial SWFs are implemented to maintain a stable solution
for the induced magnetic field. At higher frequencies, a small
penetration approximation (SPA) solution is used when the SPA
solution approaches the asymptotic assisted solution to within
some predefined tolerance. Validation of this combined technique
is accomplished by comparison of the induced magnetic field
predicted by our model to both a finite element/boundary integral
(FE-BI) numerical solution and experimental data from various
spheroids taken by an ultra-wideband EMI instrument.

Index Terms— electromagnetic induction, spheroidal wave
functions, asymptotic expansion, small penetration approxima-
tion

I. INTRODUCTION

ELECTROMAGNETIC induction (EMI) techniques have
long been important in geophysical surveying [1]–[3].

In the past ten years or so, intense interest has focused on
small ultrawide band (UWB) electromagnetic induction (EMI)
(10’s of Hz up to 100’s of kHz) sensors used for shallow
surveying to detect and discriminate metallic objects with one
principal application being the detection and discrimination of
unexploded ordnance (UXO) [4]–[8]. UXO contaminate wide
regions of the globe and render those regions dangerous at
best and uninhabitable at worst [9]–[11]. Typical UXO are
nonspherical, however, thus complicating the detection and
discrimination process.

While the solution for the induced magnetic field and
potential within and around a conducting and permeable
sphere under time harmonic excitation were first proposed by
Wait [12], [13] over fifty years ago, lack of an analytical mag-
netoquasistatic solution for nonspherical shapes has hampered
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Fig. 1. Spheroidal Geometry: 1 ≤ ξ < ∞ (Oblate case: 0 ≤ ξ < ∞),
−1 ≤ η ≤ 1, 0 ≤ φ ≤ 2π, x = d
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development of appropriate signal processing, inversion, and
even instrument calibration. Recently some important progress
has been made in formulating and evaluating spheroidal EMI
solutions [14], [15]. While special approximations resolved
evaluation problems at high EMI frequencies, and the full
analytical formulation worked well at low EMI frequencies,
stability problems persisted in the mid-frequency range, de-
pending on the geometrical and material properties of the
spheroid. To remedy this, we construct a combined solution
for the induced magnetic field from metallic spheroids that
applicable over the entire EMI band, for both oblate and
prolate spheroidal shapes.

Our combined system incorporates asymptotic approxima-
tions of the angular and radial spheroidal wave functions [16]
(ASWFs and RSFWs) into these existing low and high fre-
quency solutions [14] for the induced magnetic field. This
extends the frequency range over which the induced magnetic
field external to the spheroid may be obtained to cover the
problematical mid-frequency range. To be more specific, “low”
frequency generally refers to frequencies ranging from static
to frequencies below the resonant peak of the phase quadra-
ture response of the induced magnetic field. “High” EMI
frequencies are those at which the skin depth of the metallic
object is very small relative to its dimensions. As frequency
increases further into this “high” frequency range, the EMI
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response asymptotically approaches the high frequency limit
of vanishing internal magnetic field and the object acts as a
perfect (EMI) reflector.

Section II contains a brief review of the formulation for
the exact solution for the magnetic field within and around
a conducting and permeable spheroid under time harmonic
excitation, valid at small size parameters (or frequencies). Sec-
tion III-A presents an asymptotic-assisted analytical solution
based on known asymptotic expansions [16] of the spheroidal
wave functions (SWFs). One other approach proposed in the
literature to bridge this frequency gap is to implement a
rational function approximation [15] which is based on the
singular expansion method (SEM) [17]. However, this solution
is neither rigorous nor exact, and can yield incorrect results
for underdetermined systems. Our asymptotic-assisted solution
realizes all higher order terms for mid-frequencies until it
too encounters numerical difficulties for higher frequencies.
A small penetration approximation (SPA) is then used to
find the solution for the external induced magnetic field at
high frequencies for which the exact and asymptotic-assisted
solutions do not converge. This SPA solution is summarized
in Section III-B.

Results for the induced magnetic field from a conducting
and permeable spheroid are compared to both Wait’s solution
(in the particular case of the sphere) as well as to a finite
element/boundary integral (FE-BI) numerical solution [18]
in the case of a spheroid, in Section IV-A. In Section IV-
B, the induced fields predicted by our combined method
are compared to ultrawide band (UWB) data obtained with
the Geophex GEM-3 [19] instrument, for prolate and oblate,
permeable (magnetic) and non-permeable machined spheroids.
Model and data are found it to be in excellent agreement if
the permeability and conductivity of the spheroids are allowed
to vary within acceptable physical ranges. Results illustrate
that solutions are distinct based on spheroid characteristics
and orientation. On this basis, our method could become the
forward problem component on which inversion schemes may
be based.

II. EXACT FORMULATION

The formulation for the exact analytical solution for the
induced magnetic field from a conducting and permeable
spheroid under time harmonic excitation in the magnetoqua-
sistatic regime is given in [14] and will only be summarized
here.

Let a spheroid with high conductivity σ and relative perme-
ability µr (as compared to the background medium) be excited
by a time harmonic primary field H◦(r)e

−iωt (time depen-
dence expression e−iωt is suppressed below). We assume the
background medium is homogeneous, only weakly magnetic,
and poorly conducting so that the wavenumber, k◦, of the host
medium may be approximated by k◦ ≈ 0. As a result of this
magnetoquasistatic approximation [3], the primary magnetic
field, H◦(r), and the induced (or secondary) external magnetic
field, Hs(r), are irrotational and can be described by scalar
potentials, U◦(r) and Us(r) respectively which both satisfy
the Laplace equation in spheroidal coordinates. The known

primary field potential can be expanded in terms of solutions of
the first kind of the Laplace equation in spheroidal coordinates

U◦(r) = H◦

d

2
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∞∑

n=m
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p=0

bpmnPm
n (η)Pm

n (ξ)Tpm(φ), (1)

where P m
n (β) represents the associated Legendre function of

the first kind of degree n and order m [20]. Similarly, the
secondary field potential can be expanded in terms of Laplace
solutions of the second kind as

Us(r) = H◦

d

2
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n=m
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BpmnPm
n (η)Qm
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where Qm
n (β) represents the associated Legendre function of

the second kind of degree n and order m [20] and Bpmn are
unknown secondary induced field expansion coefficients. The
total external magnetic field is the sum of the primary and
secondary fields

H2 = H◦ + Hs = −∇U◦ −∇Us. (3)

Within the highly conducting object, the internal magnetic
field of the spheroid, H1(r), can be found by solving the
vector wave equation in spheroidal coordinates

∇×∇× H1(r) − k2
1 H1(r) = 0 (4)

where k2
1 = iωσ1µ1. Under these assumptions, the Helmholtz

equation above becomes a diffusion equation. H1(r) can
be expressed as an infinite series of vector spheroidal wave
functions (VSWFs) M and N as

H1 = Ho

∞∑

m=0

∞∑

n=m

1∑

p=0[
A(M)

pmnM
r(1)

pmn(c1; η, ξ, φ) + A(N)
pmnN

r(1)

pmn(c1; η, ξ, φ)
]

(5)

where the size parameter, c, of a spheroid is defined as

c =
k1d

2
, (6)

k1 is the wavenumber inside the spheroid, and d is the
interfocal distance.

M
r(1)

pmn(c1; η, ξ, φ) and N
r(1)

pmn(c1; η, ξ, φ) are in turn com-
posed of the angular and radial SWFs, Smn(c, η) and
Rmn(c, ξ) [21] as well as the harmonic functions Tpm(φ)
defined as

Tpm(φ) =

{
cos(mφ) p=0,

sin(mφ) p=1.
(7)

The exact solution for Hs can be obtained by matching
the tangential magnetic fields, Hη and Hφ, and the normal
component of the magnetic flux density, Bξ, at the surface of
the spheroid, i.e.

H1η = H2η (8a)

µrH1ξ = H2ξ (8b)

H1φ = H2φ (8c)

where µr = µ1/µ2 is the relative permeability of the spheroid
compared to the surrounding medium. Substituting (1)–(6)
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into (8) results in an infinite set of equations which must be
massaged, truncated, and then cast into matrix form in order
to be solved [14].

Even though this solution for the induced magnetic field
from a conducting and permeable spheroid is theoretically
applicable for any frequency satisfying the magnetoquasistatic
assumptions, two problems limit the practical applicability of
this solution. The first is that the basis functions used to
express the magnetic field internal to the spheroid, in this
case the angular (ASWF) and radial (RSWF) spheroidal wave
functions, Smn(c, η) and Rmn(c, ξ) respectively, are in general
not orthogonal to each other for different m, n, and c as are
the spherical wave functions. Because of this, the complexity
of the solution is increased due to the infinite sets of equations
arise when matching the boundary conditions at the spheroidal
surface.

The second, more challenging difficulty is that the angu-
lar and radial SWFs, which must be evaluated as part of
M

r(1)

pmn(c1; η, ξ, φ) and N
r(1)

pmn(c1; η, ξ, φ), become unstable at
moderate size parameters (or frequencies) on the order of |c| ≈
30 [14], [21]. This tendency to diverge is shown qualitatively
in Section IV-A Fig. 3 where the frequencies to the left of the
first dashed vertical line indicate the limited region of stability
of the exact method. This numerical difficulty is typically
encountered at frequencies lower than that where the resonant
peak of the response is fully developed. Some other method
is therefore desirable, to extend the range of frequencies over
which solutions for the induced magnetic field are tractable .
In the next section, we implement asymptotic expansions of
the SWFs in order to extend the solution’s range of stability to
higher frequencies. However, the size parameter c for the wave
(in this case, diffusion) equation is complex (see Section II),
and asymptotic expansions of the SWFs for the case of
complex size parameter have not been treated extensively in
the literature (for a summary, see [16]).

III. HIGH FREQUENCY APPROXIMATIONS

A. Asymptotic Expressions for the Spheroidal Wave Functions

We use asymptotic expansions of the spheroidal wave func-
tion for complex size parameter c [16], [22] to extend the range
over which the full analytical solution is stable to larger c than
previously possible. Through the use of these asymptotic ex-
pansions, the maximum c for which the full analytic solutions
is stable is increased closer to the size parameter for which the
small penetration approximation (SPA [14], see Section III-
B) is valid. Accordingly, the accuracy of the induced field
solution for this mid-frequency range is on the same order
as the accuracy of the asymptotic expansions. Unfortunately,
some aspect of this asymptotic-assisted solution also becomes
numerically unstable at a frequency that is a function of the
relative permeability, µr, the overall dimensions a and b of
the spheroid, and the aspect ratio e = b/a.

The original Legendre and Bessel function expansions for
the ASWF and RSWF respectively become unstable in double
precision for size parameters larger than |c| ≈ 30 [14], [21].
Consequently, the full analytic solution outlined in Section II
fails to converge for spheroidal size parameters beyond this

exp. m=0 exp. m=1 exp. m=2
(n − m) type np no type np no type np no

0 Pro. 0 - Pro. 1 - Pro. 2 -
1 Obl. - 0 Pro. 2 - Pro. 3 -
2 Obl. - 1 Obl. - 1 Pro. 4 -
3 Pro. 1 - Obl. - 2 Obl. - 2
4 Pro. 2 - Pro. 3 - Obl. - 3
5 Obl. - 2 Pro. 4 - Pro. 5 -
6 Obl. - 3 Obl. - 3 Pro. 6 -
7 Pro. 3 - Obl. - 4 Obl. - 4
8 Pro. 4 - Pro. 5 - Obl. - 5
...

...
...

...

TABLE I

PATTERN GOVERNING np , no AND WHICH TYPE OF ASYMPTOTIC

EXPANSION, EITHER THE prolate-TYPE (PRO. ABOVE) OR THE oblate-TYPE

(OBL. ABOVE), FOR DIFFERENT COMBINATIONS OF m AND n. c IS OF THE

FORM c = (1 + i) α.

range. For these larger c, asymptotic expansions of the SWFs
do exist which remain stable. However, these established
asymptotic expansions traditionally treat only the cases of
purely real (for the case of the prolate SWFs) or purely
imaginary (oblate SWFs) size parameter [16], [21], [23], [24].

When c is complex, asymptotic representations of the pro-
late SWFs (for prolate spheroids) and the oblate SWFs (for
oblate spheroids) consist of either the prolate-type or oblate-
type asymptotic expansions [16]. The choice of which type
of asymptotic expansion is appropriate is determined by the
spheroidal parameters m, n, and the size parameter c through
a comparison of arg(c) to a look up table containing the
branch points, cmn

◦;r of the spheroidal wave equation. These
branch points are found once through polynomial estimation
techniques followed by a Newton-Raphson multivariable root
finding method and stored for reference [16]. cmn

◦;r for 0 ≤
m ≤ n ≤ 110 have been found, but for the purposes of
this work, only m ≤ 1, n ≤ 60 are used. The diffusion
equation, (4), dictates arg(c) = π/4, for which a simple
pattern, alternating between the prolate and oblate expansion
types soon develops. Beginning at n = m, this pattern consists
of m+1 prolate-type expansions followed by alternating pairs
of oblate then prolate-type expansions.

When computing the prolate-type and oblate-type asymp-
totic expansions of the spheroidal eigenvalues, λmn, (and
Smn(c, η), denoted λ

(a)
mn and S

(a)
mn(c, η) respectively) for com-

plex c, the ordering is different from the ordering, according
to n, of the eigenvalues themselves. While the n indicates
λmn ordering for each m, the λ

(a)
mn are ordered according

to m, but independently, corresponding to the sequential
ordering for each type of expansion separately. Let np be the
number of prolate-type expansions of λmn necessary, up to but
excluding n, and no be the number of oblate-type expansions
of λmn necessary, up to but excluding n. λmn can then be
approximated by prolate-type λ

(a)
mn ordered according to np

beginning at np = m, and oblate-type λ
(a)
mn ordered according

to no beginning at no = m. This behavior can clearly be seen
in Fig. 2, is summarized in Table I, and can be succinctly
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Fig. 2. λmn: Eigenvalues of the spheroidal wave equation. m = 0 and
n = 0(1)18. Each curve tracks an eigenvalue as c ranges from c = (1+i)1.7
(lower end of each curve) to c = (1+i)50 (upper end of each curve). Dashed
curves indicate coalescing oblate eigenvalue pairs.

written as [16]

np =

{
n, (n − m) ≤ m⌊

(n−m)−m
2

⌋
+ m + m, (n − m) > m

(9)

and

no =

⌊
(n − m) − m

2

⌋
+ m, (10)

where b c denotes the floor function.
The prolate-type asymptotic expansion of the angular SWF,

S
(a)
mn(c, η), used in this work is found by expanding Smn(c, η)

in terms of an infinite series of the form,

Smn(c, η) ≈ S(a)
mn(c, η) = (1 − η2)

m
2

∞∑′

r=−∞

CrDnp−m+r(x)

(11)
where Dnp−m+r(x) is the parabolic cylinder function of
order (np −m + r) [20] (note the dependence on np), the
prime indicates summation over even r, and Cr are expansion
coefficients [16], [21], [23]. The eigenvalues in this case are
expanded in an inverse power series as

λmn ≈ λ(a)
mn =

∞∑

k=0

Γk(m,np)c
−k+1 (12)

where the functional dependence of the expansion coefficients
Γk has been made explicit. Cr and Γk(m,np) are found
by substituting (11) and (12) into the spheroidal wave equa-
tion [23].

If a given combination of m, n, and arg(c) requires an
oblate-type asymptotic expansion for Smn(c, η), it is ex-
pressed as an infinite series of associated Laguerre polyno-
mials, L

(m)
ν+r(x) [20], [25],

S(a)
mn(−ic, η) = (1−η2)

m
2

∞∑

r=−ν

Ar

{
e−c(1−η)L

(m)
ν+r [2c(1 − η)]

+(−1)n−me−c(1+η)L
(m)
ν+r [2c(1 + η)]

}
, (13)

where Ar are expansion coefficients and ν =
{

(no−m)/2
(no−m−1)/2

}

when (no −m) is
{even

odd
}

[16], [21], [24]. The inverse power
series representation for λmn now becomes

λmn =

∞∑

k=0

Γk(m,no)(−ic)−k+2. (14)

where Γk(m,no) are expansion coefficients. In a manner
similar to that used in the case of the prolate-type asymptotic
expansion, Ar and Γk(m,no) for the oblate-type asymptotic
expansion can be found by substituting (13) and (14) into the
spheroidal wave equation [24].

The original expansion for radial SWFs in terms of an
infinite series of spherical Bessel functions also becomes
inaccurate for large c [21]. Fortunately, the RSWFs adhere
to the same pattern of asymptotic expansion types as in the
case of the ASWFs. Additionally, Smn(c, η) and Rmn(c, ξ)
are proportional for a given c, i.e.

S(i)
mn(c, η) = κ(i)

mn(c)R(i)
mn(c, η) (15)

where the superscript (i) indicates the kind of the SWF [21].
For the prolate-type asymptotic expansion of Rmn(c, ξ),
we use Equation (3.11) in Miles [26]. For the oblate-type
asymptotic expansion of the RSWF, we use (15) because
S

(a)
mn(−ic, η) is much better behaved and suffers from fewer

numerical problems for |η| > 1.

B. Small Penetration Approximation

For much higher frequencies which approach the limit of
vanishing internal magnetic field, a small penetration approxi-
mation (SPA) for the internal magnetic field, H1(r), has been
developed [14], [27]. According to the SPA, the ξ-dependence
of the azimuthal component of the internal magnetic field,
H1φ, is approximated as a decaying exponential, e−ik1hξξ,
leading to a self-consistent equation relating the internal fields
of the spheroid at the boundary. Using the boundary conditions
of (8), H1 can then be expressed in terms of the components
of H2(r), thus avoiding any reference to the SWFs and the
accompanying computational difficulty. This approach yields
stable solutions for very large c, up into the frequency range
in which the magnetic field inside the spheroid becomes
negligible as it approaches the high frequency limit of zero
field. In this frequency range, and the induced field can be well
modeled as a dipole response from a perfect EMI reflector.

This SPA solution applies at very high frequencies, but has
also been found to be moderately accurate for lower frequen-
cies, especially for highly permeable objects. In anticipation of
the non-convergence of the asymptotic-assisted solution, both
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solutions are calculated over the entire frequency range. If the
asymptotic-assisted solution remains convergent for frequen-
cies at which the SPA solution is sufficiently accurate (arbitrar-
ily set to some predefined tolerance), a seamless switchover
to the SPA solution occurs. If instead the asymptotic-assisted
solution fails to converge before some suitable switchover
criterion is satisfied, the asymptotic-assisted solution is aban-
doned and the SPA solution is adopted regardless. We choose
the switchover frequency to be the frequency at which the
dipole term of the asymptotic-assisted solution of the induced
field is within some small error, Bδ

0m1, of the dipole term of
the corresponding SPA solution in the asymptotic regime,

Bδ
0m1 =

∣∣∣∣
B0m1 − Bspa

0m1

Bspa
0m1

∣∣∣∣ (16)

where m = 0 for axial excitation, and m = 1 for transverse
excitation. For spheroids with 1 ≤ µr ≤ ∞ and 1

8 ≤ µr ≤
8, the asymptotic-assisted solution switches over to the SPA
solution when Bδ

0m1 is less than 5%. In the vast majority of
cases, Bδ

0m1 is less than 2% with only more extreme aspect
ratios and slightly magnetic objects posing the most difficulty.

IV. VALIDATION AND RESULTS

A. Comparison with Simulation

The induced magnetic field potential and hence the magnetic
field can be calculated anywhere external to the spheroid
through (2) after the induced potential expansion coefficients
Bpmn are found from the combined solution outlined in the
previous sections. In this section, we compare this solution
with results from both Wait’s solution for a conducting and
permeable sphere [12] and to results obtained from a hybrid
solution based on a finite element/boundary integral method
(FE-BI) combined with a thin skin approximation [18]. We
compare both the axial (m = 0) and transverse (m = 1) exci-
tations of prolate and oblate spheroids. For axial excitation, the
primary field is aligned with the laboratory z-axis H◦(r) = ẑ,
the axis of rotation of the spheroid is aligned with the z-
axis, and b001 = −1 in (1) with all other b00n = 0. In the
case of transverse excitation, we choose to rotate the spheroid
(as opposed to the laboratory reference frame) so that the
spheroid is aligned with the x-axis while the primary magnetic
field is still H◦(r) = ẑ mandating b011 = 1 with all other
b01n = 0. Following this convention, the Cartesian coordinates
refer to the laboratory reference frame. The spheroid’s location
is then expressed in terms of this Cartesian system, while its
orientation relative to the laboratory is referenced using the
three Euler angles {α, β, γ} [28].

In all cases considered here, even at the “high” frequencies,
we assume that electromagnetic phenomena are magnetoqua-
sistatic in the sense that displacement currents are negligible.
Within the metallic object, the ratio of conduction to displace-
ment currents is σ/(ωε). Even at a frequency of 100 MHz
(as shown in Figs. 3–5), this is ≈ 107/(10810−11), so that
conduction currents dominate by orders of magnitude [29],
[30]. Accordingly, even at EMI frequencies above 1 MHZ,
there is essentially no phase difference between one obser-
vation point and another within the length scale of interest

(meters). External fields appear static, being time dependent
only as they follow imposed boundary conditions.

When the asymptotic representations of the SWFs outlined
in Section III are utilized to find H2(r), the solution is indeed
stable for higher frequencies, as can be seen in Fig. 3, which
shows combined results calculated by all three techniques
outlined in this paper, viz. original exact solution, asymptotic-
assisted solution, and the SPA solution. This combined so-
lution is capable of finding the induced secondary magnetic
field over a broad EMI frequency range from static to very
high frequencies.

Important characteristics of the broadband EMI response
are illustrated in Figs. 3–5. For these comparisons, the center
of all of the spheroids were 30cm below the measurement
point and under uniform excitation H◦ = ẑ. For all the results
reported in this work, our choice of sign convention follows
the convention common in the geophysics field in that the
conjugate of the magnetic field is shown.

In Fig. 3, as the aspect ratio decreases from e = 6 (prolate)
to e = 1/6 (oblate), the resonant peak of the induced field
shifts to higher frequencies under axial excitation. Simultane-
ously, the frequency at which |<{Hsz}| = |={Hsz}| shifts
from higher to lower frequencies. Figure 4 shows H2(r)
for the same five spheroids considered in Fig. 3 except that
they are under transverse excitation, i.e. the spheroids’ axes
of revolution are aligned with the x-axis, with the same
primary field, H◦(r) = ẑ. Both Wait’s solution (e = 1)
and the numerical solution are included for reference. The
resonant peak of |={Hsz}| is essentially equal for the sphere
and two oblate spheroids. This is because the dimension
of these objects that is aligned with the primary field (ẑ
in this case) is the same. This dependence of the induced
field on object orientation could aid in object discimination,
especially if multiple measurements from different locations
are considered.

Figure 5 compares the combined analytical solution to
solutions from the same numerical method for spheroids with
aspect ratio e = 3 and µr = [1, 5, 10, 50, 100]. Note that with
the spheroids’ dimensions equal, the high frequency limits of
all the spheroids in Fig. 5 are identical because the spheroids
act as identical EMI reflectors. However, the static limit,
which limit depends principally on the object’s volume, and
the peak and crossover frequencies are characteristic of each
spheroid. The distinct progression of the crossover point to
lower frequencies as the permeability decreases is noteworthy.

For the spherical cases shown, the aspect ratio used for the
combined method is slightly different from 1.0 (in this case
1.005) because Rmn(c, ξ) possesses a singularity at e = 1
(ξ = ∞). Wait’s solution is obscured by our analytical model.
Results from our combined model, Wait’s solution, and the
FE-BI numerical method are essentially equal.

B. Comparison with Measurements

In this section we compare our results from the combined
broadband method to measurements taken in the frequency
domain using the UWB GEM-3 instrument [19]. For nonuni-
form primary fields such as those produced by the GEM-3 that
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still satisfy the magnetoquasistatic assumptions, b0mn 6= 0 for
n 6= 1. In order to find the induced external magnetic field
from (2) and (3), the primary field from the GEM-3 must
be expressed in terms of excitation coefficients b0mn. The
b0mn are dependent upon the particular spheroidal coordinate
system, (η, ξ, φ, d), and its orientation with respect to H◦(r).

One way to find these excitation coefficients is to utilize
the orthogonality of the associated Legendre and harmonic
functions in (1) in order to find an expression for bpmn [20],
i.e.

bpmn =

∫ 2π

0
Tpm(φ)

∫ 1

−1
Pm

n (η) U◦(r) dη dφ

`πH◦

d
2

P m
n (ξ)

(n+ 1

2
)

(n+m)!
(n−m)!

, (17)

where

` =

{
2πp̃ m=0,
π otherwise

(18)

with p̃ = 1 for p = 0 and vice versa. This assumes that
the potential for the primary field is known at the surface
of the spheroid. If U◦(r) is unknown, H◦(r) may be used
instead by taking −∇ of both sides of (1) and performing the
same procedure as shown in (17). These expressions involve
multiple integrals which must be performed numerically unless
some convenient analytical representation of U◦(r) or H◦(r)
is known.
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A simpler method, which avoids time consuming numerical
integrations, for obtaining bpmn is to use point matching in (1)
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Fig. 6. Primary field potential from the GEM-3, U◦(r) (magnitudes
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(magnitudes marked in center) in the x − z plane for the S2 spheroid (see
Table II), at high frequency, under axial excitation, and choosing µr = 100
and σ = 107. Color of induced response has been adjusted for clarity. Axes
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at Np > 2(max(m) + 1)(max(n) + 1) points on the surface
of the spheroid defined by ξ = ξ◦. The resulting system of
equations resolves up to N ≤ Np expansion coefficients again
assuming some convenient expression for U◦(r) or H◦(r) is
known. This system of equations can be expressed as



U◦(r1)
U◦(r2)

...
U◦(rNp

)


 =




Φ1(r1) Φ2(r1) · · · ΦN (r1)
Φ1(r2) Φ2(r2) · · · ΦN (r2)

...
. . .

. . .
...

Φ1(rNp
) Φ2(rNp

) · · · ΦN (rNp
)







b1

b2

...
bN




(19)
where the potential at the ith point on the surface is

Φj(ri) = Pm
n (ηi)P

m
n (ξ◦)Tpm(φi) (20)

given some suitable mapping of [p,m, n] → j. Equation (19)
can easily be solved via (pseudo-) inversion or conjugate
gradient techniques, yielding bpmn in terms of the object’s
coordinates system. We adopt this approach, using an approx-
imate representation of the GEM-3 primary field modeled as
rings of magnetic sources [27]. Figure 6 depicts the primary
and secondary induced potentials in the x−z plane which
includes both the center of the GEM-3 (assigned to be the
origin) and a spheroid located at r = [0.0, 0.0,−0.25] meters.
The spheroid’s axis of symmetry is aligned with the z-axis
in this case. Figures 6 and 7 illustrate the dramatic falloff in
magnitude of the induced field as compared to the primary
field. For these realistic cases, the induced field at the sensor
is five orders of magnitude smaller than the primary field even
though the object is at a relatively shallow depth.

For high but still magnetoquasistatic frequencies (see

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05
0.3567

−0.358

−0.1779

−0.09478

−0.05814

−0.03856

2.317e−05

7.835e−05

0.0002193

0.00639

PSfrag replacements

x (meters)
z (meters)

Fig. 7. Primary field potential from the GEM-3, U◦(r) (magnitudes
marked on left), and the secondary potential induced by the spheroid, Us(r)
(magnitudes marked in center) in the x − z plane for the S2 spheroid (see
Table II), at low frequency, under transverse excitation, offcenter, and choosing
µr = 100 and σ = 107. Color of induced response has been adjusted for
clarity. Axes are in meters. The white rectangle encompasses the GEM-3
instrument.

Fig. 6), the induced magnetic field will be out of phase with
the primary field due to Lenz’s law. Figure 7 shows U◦(r) and
Us(r) for a low (near static) frequency case with the spheroid
removed from the z-axis. In this case, the induced response
in phase with the primary field.

We now compare the theoretical induced external magnetic
field predicted by our combined broadband technique with
the induced field measured by the GEM-3 instrument. The
primary field and potential, H◦(r) and U◦(r) respectively, at
the surface of the spheroid are described by 12 rings of dipoles
whose location and magnitudes are given by the method found
in [27]. The primary field potential expansion coefficients,
bpmn, are then found via (19).

We machined a set of 17 spheroids for test objects: three
spheres, six prolate spheroids, and eight oblate spheroids
machined from aluminum and mild steel. Table II summarizes
the spheroids’ designations and characteristics, and they are
pictured in Fig. 8. The induced magnetic fields for prolate
steel spheroid S2 for both axial and transverse orientations
are shown in Fig. 9. Figure 10 shows similar results for the
aluminum spheroid A1 and Figs. 11 and 12 show similar
comparisons for oblate spheroids S8 and A7 respectively. The
measurements were taken from a position directly above each
object.

The distance from the center of the receiver to the closest
edge of each object was 25cm in the case of the steel objects,
and 15cm in the case of the aluminum objects. Therefore,
the distance to the center of S2 under axial orientation was
z = −34cm, while the depth to the center under transverse



TRANSACTIONS ON GEOSCIENCE & REMOTE SENSING, VOL. XX, NO. Y, SEPTEMBER 2003 8

Fig. 8. Spheroid collection used for testing. Specifications are listed in
Table II.

orientation was z = −26.5cm, etc.

nominal
comp. type semiaxis (a) semiaxis (b) e = b/a

S1 Iron sphere 90.62mm 90.62mm 1
S2 Steel PS 30.02mm 182.19mm 6
S3 Steel PS 29.94mm 90.28mm 3
S4 Steel PS 14.97mm 90.76mm 6
S5 Steel OS 29.32mm 4.56mm 1/6
S6 Steel OS 29.59mm 9.65mm 1/3
S7 Steel sphere 29.87mm 29.87mm 1
S8 Steel OS 89.85mm 28.39mm 1/3
S9 Steel OS 89.95mm 15.32mm 1/6
A1 Al PS 30.17mm 180.23mm 6
A2 Al PS 29.9mm 91.29mm 3
A3 Al PS 15.04mm 91.14mm 6
A4 Al OS 29.36mm 4.34mm 1/6
A5 Al OS 29.36mm 8.88mm 1/3
A6 Al sphere 29.91mm 29.91mm 1
A7 Al OS 89.92mm 30.38mm 1/3
A8 Al OS 89.98mm 15.94mm 1/6

TABLE II

PHYSICAL DIMENSIONS OF STEEL AND ALUMINUM SPHEROIDS.

PS ⇒ PROLATE SPHEROID. OS ⇒ OBLATE SPHEROID.

Our implementation truncates the infinite sets of equations
resulting from (8) at m = 1. This is partially due to the fact
that at remote points in the “far field”, or farther than one
or two characteristic lengths (i.e. longest dimension of the
object), the lower order, or m = 0, 1, terms of the induced
magnetic field tend to dominate. Consequently, our solution
includes effects for m = 0 and m = 1 only, which correspond
to the axial and transverse excitations respectively [14]. Even
with this limitation, the primary and secondary fields may
be spatially nonuniform, however, because all n in the range
n ≤ 60 are considered. With reference to the GEM-3 primary
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field (see Section IV-B), objects closer than one or two

characteristic lengths from the instrument may have important
interaction with m ≥ 2 orders of the primary field. For objects
this close, our model may not accurately predict the induced
field response unless the response due to higher order terms
are included.

The exact permeability (for the steel) and conductivity
of the spheroids were not known or measured beforehand.
We sidestepped this lack of information by obtaining these
parameters via inversion of the measurements. In other words,
we extracted σ and µr using a simple search routine by fitting
out model to the axial measurements first. We then used these
extracted parameters for the transverse measurements from the
same object and found them to deliver reasonable results. The
resulting conductivity and permeability are within acceptable
ranges for these metals.

The experimental GEM-3 we used for these measurements
records reliable data at frequencies up to about 12kHz [31].
Measurements are not absolutely calibrated with respect to the
primary field. Therefore, the following procedure to normalize
and remove any possible constant offset was adopted. Let
Hsz,d be the z-component of the induced magnetic field
measured with the GEM-3 and let Hz be the z-component of
the induced magnetic field predicted by our model. In order
to compare Hsz,d and Hsz (as in Figs. 9–12), we set

Hsz,d =

[
(
Hsz,d − Hsz,d

)
∑

f

(∣∣Hsz − Hsz

∣∣)
∑

f

(∣∣Hsz,dat − Hsz,dat

∣∣)
]

+ Hsz

(21)
where the overline implies an average over frequency, and the
summation is over all data frequencies used.

Data and model predictions are seen to agree quite well
under all conditions except possibly for high frequencies
where the accuracy of the data may be suspect [31]. The
agreement is not as good for the cases comparing oblate
spheroids. This may be due to not having the globally optimal
σ and/or µr for the these spheroids or due to our truncation
of (1) and (6) at m = 1.

V. CONCLUSION

We have constructed a broadband solution for the induced
magnetic field from conducting and permeable prolate and
oblate spheroids under time harmonic excitation in the mag-
netoquasistatic regime. Our combined method consists of the
exact analytical solution, an asymptotic-assisted analytical
solution, and a small penetration approximation (SPA). This
combined solution is accurate to within 5% error for most
spheroids with aspect ratio 1

8 < e < 8. Results produced
by this combined method were compared to results from a
finite element/boundary integral numerical method and found
to be in excellent agreement. Results were also compared
to induced magnetic field measurements taken by the UWB
GEM-3 instrument from metal prolate and oblate spheroids. If
the permeability and conductivity of the spheroids is allowed
to vary within accepted physical ranges, results were seen to
match very well with measurements. Using this model, one can
calculate the broadband induced magnetic field response from
a flexible set of canonical shapes such as spheres, spheroids,
plates, and needles is now possible. The results indicate that
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solutions from our model display distinct, systematic response
patterns based on the spheroidal characteristics and orientation.
On this basis, our method could become a forward model upon
which inversions schemes may be based.
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