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Abstract
Depression and anxiety co-occur with chronic pain, and all three are thought to be caused by dysregulation of shared brain systems
related to emotional processing associated with body sensations. Understanding the connection between emotional states, pain, and
bodily sensations may help understand chronic pain conditions. We developed a mobile platform for measuring pain, emotions, and
associated bodily feelings in chronic pain patients in their daily life conditions. Sixty-five chronic back pain patients reported the
intensity of their pain, 11 emotional states, and the corresponding body locations. These variables were used to predict pain 2 weeks
later. Applying machine learning, we developed two predictive models of future pain, emphasizing interpretability. One model
excluded pain-related features as predictors of future pain, and the other included pain-related predictors. The best predictors of future
pain were interactive effects of (a) body maps of fatigue with negative affect and (b) positive affect with past pain. Our findings
emphasize the contribution of emotions, especially emotional experience felt in the body, to understanding chronic pain above and
beyond themere tracking of pain levels. The results may contribute to the generation of a novel artificial intelligence framework to help
in the development of better diagnostic and therapeutic approaches to chronic pain.
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Introduction

The USA is in the midst of dual epidemics of chronic pain and
opioid abuse, with approximately 20% of the population in
persistent pain, and over 40,000 lives lost each year to opioid
misuse. Chronic back pain (CBP) is the most common pain
disorder and one of the main reasons for prescribing opioids. It
is, therefore, urgent to develop strategies to help reduce CBP
without opioids.

A critical challenge in pain management emerges from the
fact that pain cannot be directly measured. Although several
multidimensional pain assessments have been proposed, the
current gold standard for the assessment of pain is self-report,
often assessed with a single-item visual analogue scale (VAS)
or numeric pain scale (NPS) [1–3]. Yet, this one-dimensional
pain estimate does not capture the multiple aspects of chronic
pain and shows low consistency with patients’ judgment
about the severity of ongoing clinical pain and its effect on
daily life [1]. Therefore, multidimensional measures of pain
are needed to better inform pain management.

Recent research highlighted the significant role of psycho-
logical health for pain patients’ wellbeing. Chronic pain is
associated with vulnerability to life stressors, resulting in co-
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occurring depression, anxiety, and emotional disorders, which
may, in turn, amplify pain [4–7]. Chronic pain patients also
have impaired emotional awareness [8]. For example,
alexithymia, a deficit in one’s ability to identify emotions, is
elevated in a range of disorders, particularly in central sensi-
tization conditions such as lower back pain (LBP), fibromyal-
gia, and temporomandibular disorder [9].

Emotion can be defined as “a psychic and physical reaction
subjectively experienced as strong feeling and physiologically
involving changes that prepare the body for immediate vigor-
ous action” [10]. The introspective emphasis on the “feeling”
aspect of emotions has played a prominent role in the devel-
opment of many theories of emotion. Multiple approaches
attempting to conceptualize emotion processing agree that
people have affective information about their current relation-
ship with the world, at a sensory level, either by homeostatic
feedback from the body or by neural representations of prior
instances when an object or event predicted some allostatic
change [11]. Classic [12] and more recent [11, 13] models of
emotional processing propose that subjective emotional feel-
ings are triggered by the perception of emotion-related body
states, reflecting changes in the skeletomuscular, neuroendo-
crine, and autonomic nervous systems [14]. Such conscious
feelings help individuals to voluntarily adapt their behavior to
the challenges of the environment [15]. For example, fatigue,
a response to stressors, can be managed by rest and sleep [16].

Recent research has shown that the bodily changes associ-
ated with different emotions are specific enough to serve as
the basis for discrete emotional feelings, demonstrating that
topographic body representation of emotions (or a bodily sen-
sation map, BSM) is an important correlate of emotion that
varies across emotion categories [17, 18]. Some physiological
bases of this phenomenon have also been characterized. For
example, recent studies have found that bidirectional brain–
gut communication affects our emotions [19], and that these
pathways may be useful for treating depression and anxiety
[20].

Our body sensations affect emotional states. Persistent sen-
sations, such as those experienced in the chronic pain state,
may have a particularly high impact. Early detection of dys-
regulated emotions and their associated patterns of reference
to body locations may be an important way of understanding
mental illness and chronic pain conditions. Thus, assessments
of pain, negative emotion, and positive emotion, together with
their corresponding BSMs, may provide us with a better un-
derstanding of chronic pain conditions. Several studies have
demonstrated spatial (i.e., body site) diversity of pain patterns
in nonspecific CBP patients. One study found that only 39.4%
have constant local pain, the rest reporting widespread pain,
mostly constant in time [21]. The two subgroups differ in
conditioned pain modulation [22], and widespread pain pa-
tients are at increased risk of death from cardiovascular causes
[23].

It is, therefore, common to construct pain-focused BSMs,
in which chronic pain patients indicate where the pain is in
their body. Recent literature on embodied emotion has used
BSMs to map the body locations in which emotions such as
anger and fear are experienced in healthy populations. These
maps of somatic referents of feelings (BSMs) are a rich source
of potential information for understanding emotions in ways
that go beyond the categories of words used and may provide
new information about the emotional antecedents of chronic
pain symptoms.

Smartphone-based ecological momentary assessments of-
fer a simple and effective way of collecting patient data. As of
2020, 62% of the world population owned a mobile phone,
which is an increase from 35% in 2011 [24]. We have devel-
oped a mobile platform for tracking pain patients’ emotions,
cliexa-EASE, which allows patients to self-report BSMs of
emotional states, pain, stress and fatigue in a user-friendly
and engaging way (Fig. 1). In the current study, we used
cliexa-EASE to collect the data of 84 CBP patients and ap-
plied a machine learning (ML) approach to predict patients’
pain levels in 2 weeks, based on the reported ratings of feeling
and the corresponding BSM.

Methods

Participants

The study was conducted at the University of Colorado,
Boulder, and approved by the University of Colorado
Institutional Review Board. The data were collected as part
of a randomized controlled trial testing two psychological
treatments for chronic back pain (trial registered at
clinicaltrials.gov, NCT #03294148). Treatment results from
the trial are in preparation. The data presented here come
from two baseline, pre-randomization (pre-treatment) study
timepoints on a subset of participants who completed
smartphone assessments.

Eighty-four LBP patients were recruited for the
smartphone-based portion of the study. Patients were
recruited from the community using electronic bulletin
boards, advertisements on social media and in local newspa-
pers, and physician referrals. Of these, 13% were excluded
based on eligibility criteria, leaving 65 LBP patients whose
data were used in the analysis. Assessment sessions included a
battery of patient-reported outcomes, functional magnetic res-
onance imaging (fMRI), and a bodymapping assessment. The
body mapping assessment, described below, is the focus of
this manuscript.

Inclusion criteria were age between 21 and 70 years
and reported average back pain intensity of at least 4 on
a scale of 1–10 over the past week, in keeping with in-
clusion criteria of previous CBP trials [25–27] and
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meeting the CBP definition established by a recent NIH
task force, requiring a pain duration of at least 3 months,
with back pain being an ongoing problem for at least half
the days of the preceding 6 months [28]. Exclusion
criteria were back pain associated with compensation or
litigation issues within the past year, as determined by
self-report; leg pain that is worse than back pain, indicat-
ing a greater likelihood of neuropathic pain; self-reported
history of metastasizing cancers, to exclude cancer-related
pain; self-reported diagnosis of an inflammatory disorder,
to exclude inflammatory pain; unexplained, unintended
weight loss of 20 lb or more in the preceding year; cauda
equina syndrome, based on self-reported inability to con-
trol bowel or bladder function; self-reported diagnoses of
schizophrenia, multiple personality disorder, or dissocia-
tive identity disorder; and self-reported use of intravenous
drugs.

Of the participants included in the study, 82% were
white, 9% black, 3% American Indian or Alaskan Native,
3% Asian or Pacific Islander, and 3% other; 42% were
women, 75% had at least some college education, 60%
had a full-time job, 57% were married, and 46% had 7 or
more hours of exercise per week. The average age of par-
ticipants was 43.23 years (SD = 15.68).

Procedure

First, CBP participants completed a study eligibility assess-
ment session, reporting experienced feelings and their spatial
(body) locations (Fig. 1). Patients reported the following feel-
ings: “tired,” “ashamed,” “afraid,” “sad,” “angry,” “stress,”
“disgust,” “surprise,” “happy,” “relieved,” “relaxed,” and
“pain.” The feelings could be reported multiple times for dif-
ferent body locations, in the front and back sides of the body.
Next, 2 weeks later, participants were asked to report their
current level of pain. All participants provided written in-
formed consent in accord with the Declaration of Helsinki
and as approved by the Institutional Review Board.

Measures

We initiated the development of the mobile platform based on
the wheel of emotions model suggested by Plutchik [29]. The
development included an iterative process of an expert panel
(T.D.W. and P.G.) and pilot study with LBP patients.

In the present study, LBP patients reported the feelings they
experienced and the spatial (body) locations where they expe-
rienced them, using our mobile platform cliexa-EASE, devel-
oped by cliexa. The drawing tool was designed using scalable

Fig. 1 Interface of the cliexa-EASEmobile platform. CBP participants reporting the following feelings and their corresponding spatial (body) locations:
“tired,” “ashamed,” “afraid,” “sad,” “angry,” “stress,” “disgust,” “surprise,” “happy,” “relieved,” “relaxed,” and “pain.”
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vector graphics (SVG) paths capable of creating complex
shapes by combining multiple lines (Fig. 2). During a rating
session, participants engaged in one or more rating episodes,
which were defined as (1) selecting an emotion category, pain,
or fatigue; (2) rating the overall intensity of the feeling on a
visual analogue scale (VAS); and (3) drawingwith the finger on
a body map to report where the feeling was experienced in the
body. Participants could complete as many rating episodes for
the same or different categories as they liked during the session.
For each BSM, they could draw on both the front and back of
the body. Based on the BSMs, we calculated the areas covered

by each drawing and the total length of the line path connecting
the sequence of data points. Following the correlational pat-
terns, we reduced the redundancy in the space of feeling repre-
sentations. “Tired” was defined as a separate category, and all
other negative feelings (ashamed, afraid, sad, angry, stress, dis-
gust) were clustered together as “negative feelings.” Positive
feelings (happy, relieved, relaxed) were also clustered together,
and pain was treated separately. For each category of feelings
(happy, pain, negative, tired), we calculated the following fea-
tures: minimum, maximum, mean, and standard deviation
across all rating episodes in the cluster for (a) VAS feeling

Fig. 2 Bodily sensation maps
(BSMs) for pain and 11 feelings:
tired, ashamed, afraid, sad, angry,
stress, disgust, happy, relieved,
relaxed, pain. The heatmap rep-
resents the density of the reported
BSMs over the entire sample for
LBP patients. Minimum densities
are colored blue and maximum
densities red
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ratings; (b) path length and area covered by the drawing. We
also considered the overall number of reported feelings. All the
features were standardized before the statistical analysis.

We also collected demographic information and used the
four-item PROMIS depression questionnaire, with high reli-
ability (Cronbach’s alpha = 0.93) and strong convergent va-
lidity, to estimate depression comorbidity [30].

Statistical Analysis

We applied two analyses on the features extracted from the
feeling ratings and the BSMs to assess patients’ momentary
pain levels 2 weeks later. In the first analysis, all the features
based on the feeling-based ratings and BSMs (combining in-
dividual emotion categories as specified above), except pain-
related features, were used to assess pain ratings 2 weeks later.
The second analysis was similar, but this time, pain-related
features were also included. We used an ML approach to
develop models for pain assessment, applying a linear regres-
sion framework with leave-one-participant-out cross-
validation (LOOCV) that outperforms k-fold cross-validation
for small sample sizes [31]. Despite a current trend for more
complicated MLmodels, their benefit is questionable in many
cases, and at times, simple models perform as well as highly
sophisticated ones but are more interpretable [32]. We tested
all possible models with up to 2 main effects and one interac-
tion term. For Model 1, main effects (possible features) in-
cluded three categories (negative emotion, positive emotion,
and fatigue) with 6 measures for each (minimum, maximum,
mean, and SD of intensity ratings over rating episodes, BSM
line length, and BSM area), for a total of 24 possible predic-
tors. The space of possible models with one or two predictors
was 171 possible models. For Model 2, four categories (the
three above plus pain ratings) with the same features were
included, for a total of 300 possible models. Because of
the sample size restriction, we defined the search space for
the model parameters only for the main effects and pairwise
interactions between the defined features. We used the
Bayesian Information Criterion for model selection and eval-
uation, choosing the best overall model in each category.

Results

Analysis Without the Pain-Related Features

Table 1 presents the final model for predicting patients’ CBP
levels 2 weeks later, based on feeling ratings and BSM-related
features not related to pain. The final model included main
effects of negative feelings and fatigue, and their interaction
(statistics are shown in Table 1). Figure 3A shows the model
fit, and Fig. 3C presents the interaction effect and length of
“tired” line × maximum area covered by negative feelings
about pain 2 weeks later (B = 0.78, 95% CI [0.29–1.28],
T(61) = 3.10, p = 0.003, R2LOOCV = 0.25). When participants
used long lines to describe tiredness in their bodies, the in-
creased maximum area used to express their negative feelings
was associated with higher pain levels 2 weeks later (simple
effect at 1 SD above the mean: B = 1.91, 95% CI [1.05–2.75],
T(61) = 4.49, p < 0.001). By contrast, when patients used
shorter lines to describe tiredness in their bodies, the increased
maximum area used to express their negative feelings was not
related to their pain levels 2 weeks later (simple effect at 1 SD
below the mean: B = 0.33, 95% CI [− 0.18 to 0.85],
T(61) = 1.30, p = 0.20). Classifying predicted and observed
values of pain intensity with a threshold of 4 (pain > 4), the
model produced a predictive accuracy of 65% in discriminat-
ing between low and high levels of pain. In sum, pain was
predicted by a combination of fatigue and negative emotion
expressed in BSMs two weeks earlier.

Table 2 presents the second model for predicting patients’
CBP levels 2 weeks later, using feeling intensity ratings, BSM
features, and pain intensity ratings and BSMs. Figure 3B
shows the model fit, and Fig. 3D presents the interaction be-
tween the minimum pain reported and the mean positive feel-
ing (B = − 1.01, 95% CI [− 1.63 to − 0.39], T(61) = 3.18, p =
0.002, R2

LOOCV = 0.35). For participants who reported low
mean positive feelings, the minimum reported pain level was
associated with higher levels of pain 2 weeks later (simple
effect 1 SD below the mean: B = 2.00, 95% CI [1.23–2.76],
T(61) = 5.21, p < 0.001). By contrast, for participants who
reported increased mean positive feelings, there was no

Table 1 Model 1, based on
feelings excluding pain Predictors Pain 2 weeks later

Estimates CI T p

(Intercept) 3.63 3.21–4.06 16.61 < 0.001

Max area of neg. feelings 1.12 0.64–1.60 4.59 < 0.001

Length of “tired” line − 0.35 − 0.81 to 0.12 − 1.45 0.151

Max area of neg. feelings × length of “tired” line 0.78 0.29–1.28 3.10 0.003

R2 training/R2 LOOCV 0.276/0.249

Themodel assesses pain 2 weeks later, based on the features extracted from LBP patients’ reports on their feelings
and associated body representations excluding pain
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Fig. 3 Pain-predictive models. (A) Predictive feeling-based model with-
out pain-related features for pain 2 weeks later. The filled area around the
regression line and the dotted red lines represent confidence and predic-
tion intervals, respectively. (B) Predictive feeling-based model including
pain-related features for pain 2 weeks later. The filled area around the
regression line and red dotted lines represent confidence and prediction
intervals, respectively. (C) Interpretation of the predictive pain model
excluding pain-related features (A). The figure presents the interaction
effect between the maximum area covered by negative feelings and the
total length of the line associated with the “tired” feeling. Low/high levels
of the length of the “tired” feeling line are represented by 1 SD deviation
below/above the average length of the line, respectively. For participants
who used a long line to describe tiredness in their bodies, the increased
maximum area used to express their negative feelings was associated with

higher levels of pain 2 weeks later. For participants who used a shorter
line to describe tiredness in their bodies, there was no relationship be-
tween the maximum area used to express their negative feelings and pain
levels 2 weeks later. (D) Interpretation of the predictive pain model in-
cluding pain-related features (B). The figure presents the interaction effect
between the minimum pain reported and the mean positive feeling. Low/
high levels of mean positive feelings are represented by 1 SD deviation
below/above the average of positive feelings, respectively. For partici-
pants who reported low mean positive feelings, the minimum reported
level of pain was associated with higher levels of pain 2 weeks later. For
participants who reported increased mean positive feelings, there was no
relationship between the minimum pain reported and levels of pain
2 weeks later.
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relationship between the minimum pain reported and pain
levels 2 weeks later (B = − 0.02, 95% CI [− 0.75 to 0.70],
T(61) = − 0.07, p = 0.95). Classifying predicted and observed
values of pain intensity with a threshold of 4 (pain > 4), the
model produced a predictive accuracy of 72% in discriminat-
ing between low and high levels of pain. In sum, pain was
predicted by a combination of low positive emotion and con-
sistently high previous pain two weeks earlier.

Finally, we tested whether self-reported depression symp-
toms explain the findings in both models (including/excluding
pain-related features) by adding depression to the reported
models. Depression symptoms did not contribute to the first
model, without pain-related features (F(1, 60) = 1.09, p =
0.28), or to the model that included pain-related features
(F(1, 60) = 1.91, p = 0.06).

Discussion

Unidimensional pain intensity represents the primary outcome
in most chronic pain conditions, and it is nearly universally
assessed in chronic pain research. Clinical pain, however, is a
complex experience that relies at least partially on emotional
experience, and the correspondence between the subjective
experience of pain and objective bodily damage varies.
Although these two points are widely acknowledged by ex-
perts in pain research and practice, they are still not fully
appreciated in more general practice settings, where pain is
often treated as a purely sensory experience reflecting under-
lying tissue damage. As a result, wide gaps remain between
our understanding of chronic pain and the ways in which
many patients are assessed and treated.

In this study, we developed and validated a novel approach
for tracking pain and emotional wellbeing in LBP patients,
predicting future pain levels. We developed a mobile platform
to record patients’ feelings and their corresponding bodily
expressions (BSMs). Our validation study showed a promis-
ing ability to predict LBP patients’ levels of pain 2 weeks
later, using two sets of predictive features: (a) BSMs and

feeling ratings excluding pain-related features and (b) BSMs
and feeling ratings including pain-related features.

Both models rely on the interaction effect between two
features. According to the first model, increased bodily ex-
pression of negative feelings is associated with higher pain
levels only for CBP patients who demonstrate increased fa-
tigue (“tired”) through their BSMs. Fatigue is a product of
physical and mental overload, and it results in a reduction of
our attention and stress resilience [33]. Consistent with this,
chronic pain patients previously demonstrated a positive asso-
ciation between negative affect and pain levels in cases of low
pain acceptance [34], low pain resilience [35], and cannabis
use with high frequency [36]. Moreover, fatigue, negative
affect, and pain have shared brain correlates [33]. Thus, it
may be suggested that experienced fatigue serves as a gate
for the brain representations of pain and negative affect, with
high levels of fatigue opening the gate, after which the expe-
rienced negative affect results in more pain. Fatigue seems to
play a key role in generalized chronic primary pain conditions
such as fibromyalgia [37]; therefore, there is a strong associ-
ation between the spatial extent of pain and fatigue.

The second model concerns the required conditions for the
pain to be predictable by the minimum pain experienced in the
past. According to the model, experienced positive affect (PA)
moderates this effect, so that current pain is positively associat-
ed with the future level of pain only for patients with a low level
of PA. A previous study including 2715 LBP patients showed
that past pain predicts future pain [38]. Others confirmed this
association [39, 40]. Here, we suggest a qualification of the
initial model, emphasizing PA as a moderating factor in the
association between past and future pain. PA may indeed serve
as a resilience factor for patients with fibromyalgia [41] and
other types of chronic pain [42, 43]. Others demonstrated a
weaker relationship between pain and negative affect in patients
with rheumatoid arthritis in the case of increased PA [44].

Perhaps at its most basic level in humans, the influence of
evoked PA on evoked or clinical pain can be demonstrated in
controlled experimental studies. Numerous studies have experi-
mentally demonstrated the benefits of induced PA on acute pain,

Table 2 Model 2, based on
feelings including pain Predictors Pain 2 weeks later

Estimates CI T p

(Intercept) 3.92 3.55–4.30 20.29 < 0.001

Min. pain reported* 0.99 0.60–1.37 5.06 < 0.001

Mean positive feeling 0.20 − 0.21 to 0.60 0.95 0.348

Min. pain reported × mean positive feeling − 1.01 − 1.63 to − 0.39 − 3.18 0.002

R2 training/R2 LOOCV 0.356/0.352

The model assesses pain 2 weeks later, based on the features extracted from LBP patients’ reports of their feelings
and associated body representations including pain

*Minimum pain across several reported locations
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with the general finding that PA inductions reduce pain sensitiv-
ity [45, 46]. Recent work using the nociceptive flexion reflex
suggests that the effects of induced PA on pain may be spinally
mediated [45, 47, 48]. Neuroimaging studies have demonstrated
that increased PA on pain is associated with activity in the ante-
rior cingulate cortex, bilateral insula, right secondary somatosen-
sory cortex, and left orbital frontal cortex [49]. Together, these
findings suggest that PA is integrated within a central pain mod-
ulatory network. As we show here, collecting the associated
BSMs may also contribute to the accuracy of the models, sug-
gesting that interoception plays a significant role.

Interoception, the sense of the internal state of the body, has
received extensive attention in recent years [50]. Some funda-
mental questions concerning the mechanisms underlying the
relation between emotion and interoception remain unclear,
however. Interoceptive warning is connected primarily with
homeostasis and threatened tissue damage, which is an impor-
tant feature of subjective feelings such as pain [13]. Although
previous research suggested that bodily sensations have a
unique spatial representation [17] that is culturally universal
[51] in healthy populations, we still lack basic understanding
about bodily expressions of emotion in clinical populations,
such as chronic pain patients.

The present study relies on data collected at two time
points, but chronic pain often manifests as a continuous ebb
and flow of periods of elevated, normal and attenuated pain.
Thus, affective states are likely to be dynamically influenced
by changes in environmental and physiological demands, as
well as by random, unpredictable fluctuations. Chronic pain
patients show an abnormal and maladaptive response to life
stressors resulting in depression, anxiety and emotional disor-
ders, which, in turn, may amplify pain and affect the patients’
wellbeing [4–7]. Future studies should track fluctuations of
emotional states and pain continuously to develop predictive
pain models based on appropriate tracking tools, as, for exam-
ple, ecological momentary assessments (EMAs).

Studies typically assess behaviors and emotions based on
retrospective data collection tools or synthetic manipulations,
an approach that misses the concrete situations that precipitate
behavior changes. EMA assesses individuals’ current experi-
ences, behaviors, and moods as they occur in real time and in
their real-world settings [52]. Previous studies have used
EMA to research emotions in chronic pain patients. These
studies, however, mostly (a) used small sample sizes, (b) fo-
cused on between-groups comparisons, (c) used cross-
sectional analyses that do not consider temporal dynamics
(e.g., lagged effects), and (d) did not investigate the spatial
distribution of pain and emotion across body sites. It is in-
creasingly appreciated that EMA is uniquely positioned to
assess a patient’s pain [53] and emotional experience [54]
with high precision. EMA involves just-in-time tracking in
participants’ natural environments at multiple time points,
with three main benefits: (a) momentary measurement

decreases recall biases by capturing present pain and emotion-
al experiences rather than pain beliefs or summary ratings
based on memory; (b) the tracking takes place in the patients’
natural environments and social contexts, increasing the eco-
logical validity of the tool; and (c) data collection at multiple
time points provides potentially fine-grained information
about pain experiences [53]. Thus, investigating temporal
lagged dynamics between emotions and developing a novel
classification of chronic pain patients based on temporal and
spatial fluctuations of emotions and pain with real-life data
may improve our understanding of chronic pain phenomena.

EMA-based tracking tools, such as cliexa-EASE, used
here, together with established predictive models may be
translated into artificial intelligence systems. A monitoring
platform may be established by combining clinical levels of
research with continuous follow-up, computer vision ap-
proaches, and by deploying online machine learning tech-
niques. Such a platform may serve as a just-in-time feedback
tool for clinicians, providing in-depth multidimensional per-
sonalized understanding of chronic pain patients.

Such insights could accelerate further development of chronic
pain models, resulting in more efficient treatment approaches. For
example, a tool that delivers information about patients’ experi-
ences to clinicians, including feedback about the patients’ status
and health trajectories, can help personalize prevention and treat-
ment. A similar tool may be used by patients for self-monitoring
and self-insight. Such feedback may also have a therapeutic side
effect, serving as mindfulness intervention. Indeed, recent studies
have demonstrated the effectiveness of mind–body therapy that
concentrates on body sensations for treating chronic pain [55–57].

The proposed direction is especially relevant today, when
many patients and their clinicians try to find a way out of the
opioid crisis. Current pain drugs are inadequate, and patients
and physicians are often unaware of relationships between
patterns of medication use and pain, fatigue, and emotional
outcomes. This is particularly true for opioids, which do not
effectively relieve pain for many individuals, but rather result
in a vicious cycle of escalating drug use, increased pain due to
opioid-induced hyperalgesia, and depression. Opioid use has
negative effects on multiple cognitive functions [58], includ-
ing memory, information processing, sleep quality (25% of
opioid users), constipation (40%), loss of appetite (23%), sex-
ual dysfunction (18%) [59], and emotional states [60],
resulting in decreased wellbeing and life quality. There is a
complex set of interactions between pain, medication use, and
emotion [61–64], which varies with individual patients. If
patients and physicians could see the relationships between
medication use, pain, and emotion over time, it would be
easier to identify the causes and triggers of negative outcomes
and optimize treatment for individual patients. Based on this
understanding, we could develop artificial intelligence tech-
nologies to support chronic pain patients and their clinicians
on a large scale.
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These results should be interpreted in light of several lim-
itations. First, studies with larger samples are needed to make
the present findings generalizable, in light of the machine
learning approach we used. Second, the first and second visits
were conducted at different times of day, without any control.
It is possible that time of day affects the associations between
emotional states and pain levels. Third, because of the corre-
lated nature of some features, other models with reduced fit
may be considered in addition to the models reported here.
Finally, because our findings are not specific to LBP, the
findings reported here may be generalizable to other chronic
pain conditions, but non-LBP patients may vary on the asso-
ciation between feelings and future levels of pain.

In conclusion, using our mobile platform, we developed
and validated a predictive model of future pain, emphasizing
both the reliability and interpretability of the model. These
findings increase our understanding of the role that feelings
and their bodily reflections may play in chronic pain. Our
findings may result in the creation of a novel artificial intelli-
gence framework, which will help in the development of bet-
ter therapeutic approaches to chronic pain, integrating psycho-
logical and traditional biomedical approaches.

Required Author Forms Disclosure forms provided by the au-
thors are available with the online version of this article.
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