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A B S T R A C T   

Pathophysiological models are urgently needed for personalized treatments of mental disorders. However, most 
potential neural markers for psychopathology are limited by low interpretability, prohibiting reverse inference 
from brain measures to clinical symptoms and traits. Neural signatures—i.e. multivariate brain-patterns trained 
to be both sensitive and specific to a construct of interest—might alleviate this problem, but are rarely applied to 
mental disorders. We tested whether previously developed neural signatures for negative affect and discrete 
emotions distinguish between healthy individuals and those with mental disorders characterized by emotion 
dysregulation, i.e. Borderline Personality Disorder (BPD) and complex Post-traumatic Stress Disorder (cPTSD). In 
three different fMRI studies, a total sample of 192 women (49 BPD, 62 cPTSD, 81 healthy controls) were shown 
pictures of scenes with negative or neutral content. Based on pathophysiological models, we hypothesized higher 
negative and lower positive reactivity of neural emotion signatures in participants with emotion dysregulation. 
The expression of neural signatures differed strongly between neutral and negative pictures (average Cohen’s d 
= 1.17). Nevertheless, a mega-analysis on individual participant data showed no differences in the reactivity of 
neural signatures between participants with and without emotion dysregulation. Confidence intervals ruled out 
even small effect sizes in the hypothesized direction and were further supported by Bayes factors. Overall, these 
results support the validity of neural signatures for emotional states during fMRI tasks, but raise important 
questions concerning their link to individual differences in emotion dysregulation.   

1. Introduction 

1.1. Background 

About 30% of the global population are estimated to suffer from a 
mental disorder during their lifetime, accompanied by significant 
human and societal costs (Steel et al., 2014; Whiteford et al., 2013). As 
for most physical maladies, biological explanations have a long history 

in this realm (Barondes, 1990). In the last 20 years, functional neuro-
imaging in particular has become a fundamental research strategy to 
improve our understanding of mental disorders. Most commonly, clin-
ical researchers, practitioners, and patients are interested in features of 
the brain to infer clinical traits on a psychological level. For such reverse 
inference, neurobiological features must be both sensitive and specific, i. 
e. highly predictive of the psychological concept of interest, but not 
other distinct concepts (Poldrack, 2011). Unfortunately, with few 

* Corresponding author. Clinic for Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health, J5, 68159, Mannheim, Germany. 
E-mail address: Maurizio.sicorello@zi-mannheim.de (M. Sicorello).   

1 Equally contributing authors. 

Contents lists available at ScienceDirect 

Neuroimage: Reports 

journal homepage: www.sciencedirect.com/journal/neuroimage-reports 

https://doi.org/10.1016/j.ynirp.2021.100019 
Received 4 February 2021; Received in revised form 7 May 2021; Accepted 22 May 2021   

mailto:Maurizio.sicorello@zi-mannheim.de
www.sciencedirect.com/science/journal/26669560
https://www.sciencedirect.com/journal/neuroimage-reports
https://doi.org/10.1016/j.ynirp.2021.100019
https://doi.org/10.1016/j.ynirp.2021.100019
https://doi.org/10.1016/j.ynirp.2021.100019
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ynirp.2021.100019&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Neuroimage: Reports 1 (2021) 100019

2

exceptions, classic neural measures like average regional activity are not 
task-specific (Yarkoni et al., 2011) and have low test-retest reliability 
(Elliott et al., 2020), precluding reverse inference from brain activity to 
complex psychological constructs. 

Neural signatures have been proposed as a solution to this problem 
(Woo et al., 2017). They can be defined as statistical models, which 
predict a psychological concept from brain data with great precision, but 
also distinguish it from similar but meaningfully different concepts 
(Kragel et al., 2018). For example, a machine learning-based multivar-
iate neural signature of physical pain can be highly predictive of 
self-reported pain ratings, but distinguishes it from the concept of 
socio-emotional ‘pain’ following social rejection and vice versa (Woo 
et al., 2014). Hence, neural signatures ensure interpretability regarding 
psychological states above other brain-based approaches. Moreover, 
they might remedy the very low test-retest reliability of non-pattern 
brain measures (Gianaros et al., 2020; Kragel et al., 2020) as well as 
increase statistical power by limiting the number of statistical compar-
isons to a single neural indicator for the process of interest. Despite these 
advantages, validated neural signatures have rarely been applied to 
explain individual differences, particularly regarding clinical research 
questions on mental disorders. 

Some mental disorders such as Borderline Personality Disorder 
(BPD) and complex Post-traumatic Stress Disorder (cPTSD) are charac-
terized by pervasive emotion dysregulation (i.e. aberrations in the 
generation and/or regulation of emotions), comprising both increased 
emotional reactivity and deficits in emotion regulation (American Psy-
chiatric Association, 2013; Brewin et al., 2017; Carpenter and Trull, 
2013; Linehan, 1993). For the reactivity component, dominant patho-
physiological models of BPD and cPTSD posit that presumably 
emotion-generating brain regions are hyperactive in response to nega-
tive (or even neutral) stimuli (Brendel et al., 2005; Sicorello and 
Schmahl, 2020; Swartz et al., 2015). Especially for the amygdala, there 
is compelling evidence of hyperactivity in these disorders (Bryant et al., 
2020; Schulze et al., 2019). Still, amygdala hyperactivity does not 
warrant reverse inference to heightened emotional reactivity, as it is not 
specific to negative emotions, but rather involved in a large spectrum of 
both valence-independent emotional and non-emotional processes 
(Cunningham and Brosch, 2012; Lindquist et al., 2016; Ousdal et al., 
2008; Sander et al., 2003; Todorov, 2012; Wager et al., 2015). Hence, 
there is still no clear evidence demonstrating emotional hyperreactivity 
on a brain basis in these disorders. 

Several neural signatures of emotions have been developed which 
are suitable to address this issue. These emotion signatures consist of 
regression weights for the prediction of emotions from brain data, 
drawing on information distributed across the whole brain (i.e. cutting 
across boundaries of regions or canonical networks; see figure S1). The 
picture induced negative emotion signature (PINES; Chang et al., 2015) 
predicted one-item self-ratings of negative affect following negative 
pictures with a product-moment correlation above 0.90, outperforming 
single resting-state networks and regions, demonstrated dissociability 
from neural patterns of physical pain, and maintained its cross-validated 
accuracy in a hold-out sample. Complementary to this pattern for global 
negative affect, Kragel and LaBar (2015) developed seven patterns 
which distinguish discrete video-induced emotions from each other at 
an accuracy close to 40% (chance is ≈ 14%), including the emotions of 
fear, anger, sadness, surprise, amusement, contentment and a neutral 
reference state. Classification accuracy was also above chance when 
tested on music clips, supporting cross-modal validity. Moreover, in a 
large resting state fMRI sample of young healthy university students, 
spontaneous activity of the sadness pattern was associated with an 
epidemiological depression scale, while the fear pattern was associated 
with trait anxiety (Kragel et al., 2016). This study provides first evidence 
that individual differences in the expression of neural emotion networks 
might map on traits related to the differential experience of emotions on 
a self-report level. 

Expanding this approach to a clinical setting, we tested herein 

whether the activity of these previously developed neural signatures for 
general negative affect (i.e. PINES; Chang et al., 2015) and discrete 
emotions (Kragel and LaBar, 2015) in response to pictures of negative 
(versus neutral) scenes distinguished women with emotion dysregula-
tion from healthy controls. Negative scenes are among the most common 
stimuli to study negative emotional reactivity in mental disorders 
(McDermott et al., 2018). Analyses were conducted across three data-
sets, each including a clinical group characterized by emotion dysre-
gulation (2 BPD, 1 cPTSD), aggregating results with a mega-analytic 
approach based on individual participant data. We argue that aggre-
gating cPTSD and BPD data is warranted for our purpose because of their 
clear overlap concerning the phenomenon of emotion dysregulation, 
which has been demonstrated using both latent class and principal 
component analysis (Cloitre et al., 2014; Hyland et al., 2019; Saraiya 
et al., 2021). 

First, we tested whether neural signatures were differentially 
expressed in the two experimental conditions. When viewing negative 
pictures, we expected the pattern expression of negative affect (PINES 
signature) as well as fear, anger, and sadness (discrete emotion signa-
tures) to be increased (hypothesis 1). Second, for the main research 
question, common models of the disorders predict heightened reactivity 
of negative emotions. Here, this translates to increased reactivity of the 
patterns for negative affect as well as fear, anger, and sadness in par-
ticipants with emotion dysregulation (hypothesis 2). 

Previously, we observed that naturalistic everyday life stressors are 
associated not only with higher negative affect, but also lower positive 
affect (Sicorello, Dieckmann, et al., 2020). Therefore, we included 
additional analyses on neural signatures for positive emotions as well. 
We predicted the pattern expression of amusement and contentment to 
be decreased in the negative condition. We predicted stronger deacti-
vation of these patterns in the emotion dysregulation groups. For the 
surprise pattern, we expected a higher expression in the negative con-
dition, but had no directional between-group hypothesis. Last, the 
neutral pattern indicates the presence (or absence) of any discrete 
emotional state. As the paradigm is designed to elicit negative emotions, 
we expected neutral states to be decreased in the negative condition and 
more strongly so in the emotion dysregulation group. 

There is some evidence that people with emotion dysregulation have 
a higher propensity to interpret neutral stimuli as negative (Daros et al., 
2013; Mitchell et al., 2014), accompanied by heightened amygdala re-
sponses (Donegan et al., 2003; Lischke et al., 2017; Niedtfeld et al., 
2010). As this might diminish group differences in the negative-neutral 
contrast, we included exploratory analyses on the neutral baseline. 

2. Methods and materials 

2.1. Samples and procedure 

Three studies comprising a total of 192 women were included in the 
analyses of which 111 had a diagnosis of BPD or cPTSD. All participants 
were presented negative and neutral pictures during fMRI. 

Study 1 comprised 57 women (29 with BPD, 28 healthy controls) 
who participated in a randomized controlled trial on BPD psychotherapy 
(German Clinical Trials Register: DRKS00000778). Only results from 
cross-sectional data collected before the intervention are reported here. 
Participants completed a fMRI experiment with three event-related runs, 
all with the same structure and number of trials. Each run involved a 
negative and a neutral condition presented after a “view” instruction. 
Either negative pictures or pictures of objects where shown, respec-
tively. The experiment also involved regulate-conditions that were not 
analyzed here, where participants had to regulate their emotional 
response. Pictures were presented for 6s. Longitudinal results on 
therapy-effects in this sample have been published previously (Niedtfeld 
et al., 2017; Schmitt et al., 2016; Winter et al., 2017). 

Study 2 comprised 40 women (20 with BPD, 20 healthy controls), 
who completed three runs of a picture viewing task with different 
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designs: block-design (one picture per block, 18s), mixed-design (three 
pictures per block, 6s each), and event-related design (6s per picture). 
Participants viewed negative pictures (negative condition) and scram-
bled images (neutral condition). Data on the healthy group have been 
published previously (Paret et al., 2014). 

Study 3 comprised 95 women (62 with cPTSD, 33 healthy controls), 
who were recruited from a larger randomized controlled psychothera-
peutic trial (German Clinical Trials Register:DRKS00005578), and 
therapy-effects were recently published (Bohus et al., 2020). Only re-
sults from cross-sectional data collected before the intervention are re-
ported here. Additionally to the DSM-5 criteria for PTSD, participants 
met at least three out of nine DSM-IV criteria for BPD, including criterion 
six for emotional instability. Negative pictures and neutral pictures were 
presented as distractors within a Sternberg working memory task for 
1.5s and entered the analysis as negative condition and neutral condi-
tion, respectively. Neutral pictures matched with the negative pictures 
for complexity and content were used in the neutral baseline condition. 
FMRI data from 34 women of the cPTSD group have been published 
previously to test a different hypothesis against a trauma-exposed 
healthy control group (Sicorello, Thome, et al., 2020). The 
trauma-exposed control group was not included in the analyses here. 

Comprehensive descriptions of sample characteristics, designs, pro-
cedures, scanning parameters, and preprocessing for all three studies 
can be found in the supplemental material. Relevant to the commen-
surability of BPD and cPTSD samples, note the very similar scores on 
trait anxiety across samples in both the clinical and the control group, 
respectively, as well as the high trauma exposure in the BPD sample of 
study 2 (study 1 did not include measures of childhood trauma). 

2.2. Pattern expression 

We downloaded the pattern-masks of each neural signature (PINES 
and the seven discrete emotion signatures) from the CANlab github re-
pository: https://github.com/canlab. These pattern masks are freely 
available and consist of a brain image with a regression weight for each 
brain voxel. Pattern expression was calculated as the dot product be-
tween the pattern mask and an image containing beta weights from the 
first-level analysis for the respective regressor of interest (negative or 
neutral condition), separately for each picture condition, run, and 
participant. For the PINES, pattern expression reflects the predicted 
negative affect rating. For discrete emotions, pattern expression is a 
continuous indicator to what degree a given emotion category is more 
likely than the remaining categories. Notably, expression values cannot 
be directly compared between studies, as their scale depends on scan-
ning parameters, scanner-specific gain and signal characteristics, and 
analysis choices. Expression values can, however, be compared across 
task conditions and participants if these values can be assumed to be 
constant across participants. As an index of reactivity, pattern expres-
sion during the neutral condition was subtracted from pattern expres-
sion during the negative condition. 

As an indicator of internal consistency, we calculated the reliability 
for the pattern responses as Cronbach’s alpha between experimental 
runs when more than one run was available (studies 1 and 2). All runs 
occurred in the same fMRI session. For study 1, pattern responses had a 
mean reliability of α = .58, ranging from α = .48 for anger to α = .66 for 
the PINES and fear. As could be expected from previous reports (Gia-
naros et al., 2020; Kragel et al., 2020), the reliability was higher for 
pattern expression than for the mean response in an 
amygdala-hippocampal region-of-interest (ROI; α = .14), which was 
defined from the thresholded mask of a previous functional 
meta-analysis on emotion processing in BPD (Schulze et al., 2019; 
https://identifiers.org/neurovault.collection:3751). For study 2, pattern 
responses had a mean reliability of α = .64, ranging from α = .56 for 
amused to α = .72 for fear. Again, reliability of the 
amygdala-hippocampal ROI was substantially lower at α = .31. The 
correlation between pattern expressions in the event-related design and 

the two block designs was lower than between the two block designs, but 
not in a range indicating conclusive differences, given the sample size: r 
(event-related, block) = .26, r(event-related, mixed-block) = .37, r 
(block, mixed-block) = .57. 

2.3. Statistical analyses 

2.3.1. Negative versus neutral condition 
To test whether the expression of neural signatures differed between 

the negative and the neutral condition in studies 1–3, reflecting pattern 
reactivity, one-sample t-tests were conducted on the difference scores. 
Cohen’s d was calculated as the mean difference score divided by the 
standard deviation of difference scores. The three runs of study 1 were 
averaged for this analysis, as the runs showed good compatibility in 
terms of sufficient internal consistency and only small differences in 
mean effects. Runs of study 2 were analyzed separately, to allow the 
inspection of design-dependent effects and as the three runs had large 
differences in mean activations, due to the different stimulus presenta-
tion parameters. 

The corresponding within-person mega-analysis was conducted 
using a two-level multilevel analysis framework, with difference scores 
nested within participants (because of the multiple runs in studies 1 and 
2). The difference score Δijk of run i within participant j of study k was 
regressed on a fixed intercept ɣ000, including random intercepts for 
study-participants ζ0jk. as well as a residual term εijk: Δijk = ɣ000 + ζ0jk +

εijk. Due to the low number of studies, the study-wise random intercept 
ζ00k was not included. Moreover, Δijk was scaled on the run-specific 
standard deviation SDi•k. With this scaling, ɣ000 is in the metric of the 
Cohen’s d used for single study analyses and on a compatible scale be-
tween studies and runs, regardless of e.g. design effects. All frequentist 
multilevel analyses were conducted using the lmer function of the lme4 
package in R version 4.0.3 (Bates et al., 2015) and restricted maximum 
likelihood estimation. 

2.3.2. Group effects 
For single studies, differences between the clinical and the healthy 

groups were tested with two-sample t-tests for unequal variances and 
pattern reactivity (Δ) as the dependent variable. Cohen’s d was calcu-
lated as the difference in group means divided by the pooled standard 
deviation. 

The mega-analysis was specified as Δijk = ɣ100(group) + ζ0jk + εijk, 
where ɣ100 represents the fixed effect of group. As for within-analysis, 
the corresponding random effect for group ζ10k(group) was not 
included due to the low number of studies. The group variable was 
recoded within runs, so that all intercepts (and their variance) are zero. 
Therefore, the fixed intercept ɣ000 and its variance between studies ζ00k 
can be omitted from the model. For balanced group sizes (study 2), this 
can be achieved by coding groups as − 0.5 and 0.5, with the regression 
weight representing the mean difference between groups. For unbal-
anced group sizes (studies 1 and 3), weighted effect coding was used 
(Grotenhuis et al., 2017). Moreover, Δijk was standardized within runs 
by subtracting the run-specific mean and dividing by the run-specific 
pooled standard deviation. With this standardization, ɣ100 is in the 
metric of Cohen’s d, as used for single study analyses. 

2.3.3. Bayes factors 
Bayes factors were calculated for all models to quantify the relative 

evidence of the H0 over the H1 (e.g. effect = 0 versus effect ∕= 0), using 
the low information cauchy prior with a scale factor of 0.707, which is 
the default of the R package used here and was previously suggested for 
psychological applications (Wagenmakers et al., 2018). Bayes factors 
are a ratio between p(Data|H1) and p(Data|H0), with values above 3 (or 
below 1/3) often used as a minimum cutoff for claims of evidence in 
favor of one hypothesis over the other, although continuous in-
terpretations are recommended as well (Jarosz and Wiley, 2014). BF10 
denotes evidence for the H1, divided by the evidence for H0; BF01 
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denotes evidence for the H0, divided by the evidence for H1. BF10 equals 
1/BF01 and vice versa. 

To compute Bayes factor for tests in singles studies, the function 
ttestBF() of the Bayes factor package was used in R (Morey and Rouder, 
2018). For mega-analyses, the multilevel models were refitted using the 
brms package (Bürkner, 2017), comparing models with (H1) and models 
without (H0) the effect of interest using the function bayes_factor(). 

In accordance with our hypotheses stated in the introduction, all 
Bayes factors reflected directional one-sided tests, except for the 
between-group effect of surprise. This was achieved by modelling a half- 
cauchy for the H1 in the hypothesized direction. We argue this is 
appropriate here, as the Bayes factor should reflect evidence for/against 
the alternative hypothesis of interest, e.g. neural expression of fear is 
higher when viewing pictures with negative content (and neither zero 
nor lower). 

2.3.4. Reproducible analyses 
Supplements, data and annotated R scripts to reproduce the main 

analyses can be found on: https://github.com/MaurizioSicorello/MVPA 
emoDys_Analyses.git. 

Demographic information used for sample description and fMRI 
images are not openly provided. Requests for primary data should be 
addressed directly to the corresponding author. 

3. Results 

3.1. Comparison between negative and neutral pictures 

In line with our hypothesis, both mega-analyses and single-study 
analyses indicated that neural signatures of negative affect and nega-
tive emotions were expressed more strongly while viewing negative 
pictures, except for the sadness pattern (Fig. 1, Table 1). Likewise, 
neural signatures of positive emotions were expressed more strongly in 
the neutral conditions. Effect sizes were overall large, ranging between 
d = 0.81 (anger) and d = 2.07 (PINES/negative affect). Only the 
signature for sadness had a small effect of d = − 0.23, which went in the 
opposite direction than expected, i.e. sadness was expressed more 
strongly in the neutral condition. The null hypothesis that the condition 
effect for sadness is zero or negative was 60 times more likely than the 

hypothesized positive effect, i.e. increased neural expression in the 
negative condition. Study 2 indicated that mixed-block design elicited 
the largest effects and the event-related design the smallest effects, as 
has been previously reported for the mass univariate ROI approach 
(Paret et al., 2014). 

In the original validation study, the PINES distinguished the highest 
and the lowest negative affect ratings at an accuracy of 93.5% (Chang 
et al., 2015). Using the same forced choice accuracy measure per 
study-run indicated accuracies between 87% and 100%. For compari-
son, forced choice accuracies for the amygdala ROI ranged between 53% 
for study 3 and 88% for the mixed run of study 2. 

In sum, these results overall support our first hypothesis that neural 
signatures of emotions are differentially expressed when viewing 
negative and neutral pictures in the hypothesized directions, except for 
the sadness pattern. The estimated effect sizes were very large, but also 
appeared to depend on design aspects of the studies. 

3.2. Comparison between clinical groups and healthy controls 

Most mega-analytic group effects were very small (all |d| ≤ 0.17; 
Fig. 2, Table 2). Contrary to hypothesis 2—i.e. higher neural pattern 
reactivity of negative emotions in participants with emotion dysregu-
lation compared to healthy controls—the former actually showed lower 
reactivity of neural signatures for negative affect, fear, and anger. The 
upper confidence limit for these three emotions did not include values 
higher than d = 0.12 and Bayes factors favored the null hypothesis of 
equal or smaller neural signature reactivity in the emotion dysregulation 
groups. While the emotion dysregulation group did show the expected 
tendency of higher expression for sadness, the effect was very small (d =
0.06), confidence intervals covered zero and had an upper limit at a 
small effect size of d = 0.31, and the Bayes factor favored the null (BF01 
= 9.54). Moreover, the condition-wise analyses indicated this emotion 
signature might not be a valid measure given the stimulus material. 
Group effects for neutral states, amusement, contentment, and surprise 
did not differ considerably from zero. These results were supported by 
Bayes factors, except for surprise, whose Bayes factor was relatively 
inconclusive (BF01 = 2.15). On a single study-basis, this pattern was 
overall present in studies 1 and 2. The descriptive effect directions in 
study 3 were more compatible with the theoretical predictions, albeit 

Fig. 1. Differences in the expression of neural emotion signatures between the negative and the neutral condition. Error bars show 95% confidence intervals.  
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with miniscule effect sizes and inconclusive Bayes factors. These results 
were stable when a binary indicator for psychotropic medication was 
included as a covariate (figure S2). 

3.3. Exploratory analyses: group effects on the neutral baseline 

We repeated the between-group analyses of section 3.2 with acti-
vation in the neutral condition as the dependent variable, instead of the 
difference between negative and neutral conditions. 

In these analyses, all confidence intervals contained zero by a 
considerable margin (figure S3). Still, even statistically non-significant 
group effects on the neutral baseline might diminish group effects on 
the difference scores used to indicate neural reactivity. In the neutral 
condition, participants with emotion dysregulation had slightly 

increased responses for the fear pattern (d = 0.17, 95% CI = [-0.08, 
0.43]) and decreased responses for the contentment pattern (d = − 0.10, 
95% CI = [-0.35, 0.15]). Hence, the hypothesized effects for these two 
patterns might be diminished by group differences in response to the 
neutral condition. All other effects were in the opposite direction of what 
would be expected if an increased responsiveness to neutral stimuli 
accounts for the null effects reported in section 3.2 (e.g. participants 
with emotion dysregulation had a lower expression of the PINES 
signature and a higher expression of the neutral signature). 

To follow up on the potential attenuation effect for fear and 
contentment, we repeated the mega-analytic procedure on pattern 
expression in the negative condition against the implicit baseline (figure 
S4). The estimates for the fear and contentment patterns were almost 
perfectly zero, although confidence intervals of the fear pattern still 

Table 1 
Differences in neural pattern expression between negative and neutral condition.   

Negative emotions Positive emotions Other emotions  

Negative Affect Fear Anger Sadness Amusement Contentment Surprise Neutral 

Study 1 3.86 [3.13, 
4.66] 
BF10 > 100 

1.84 [1.42, 
2.28] 
BF10 > 100 

1.60 [1.22, 
2.01] 
BF10 > 100 

− 0.17 [-0.43, 0.1] 
BF10 = 0.07 

− 1.39 [-1.76, 
− 1.03] 
BF10 > 100 

− 2.85 [-3.46, 
− 2.28] 
BF10 > 100 

1.88 [1.45, 
2.33] 
BF10 > 100 

− 1.76 [-2.19, 
− 1.35] 
BF10 > 100 

Study 2         
Event- 

related 
1.45 [1.01, 
1.91] 
BF10 > 100 

1.26 [0.85, 
1.69] 
BF10 > 100 

0.49 [0.16, 
0.83] 
BF10 = 20.57 

− 0.16 [-0.48, 
0.16] 
BF10 = 0.09 

− 0.62 [-0.97, 
− 0.28] 
BF10 > 100 

− 0.80 [-1.17, 
− 0.44] 
BF10 > 100 

1.10 [0.71, 
1.51] 
BF10 > 100 

− 1.21 [-1.63, 
− 0.80] 
BF10 > 100 

Block 1.87 [1.36, 
2.41] 
BF10 > 100 

2.49 [1.88, 
3.16] 
BF10 > 100 

0.96 [0.59, 
1.35] 
BF10 > 100 

− 0.32 [-0.65, 
0.00] 
BF10 = 0.06 

− 2.28 [-2.91, 
− 1.71] 
BF10 > 100 

− 0.82 [-1.19, 
− 0.46] 
BF10 > 100 

1.99 [1.47, 
2.56] 
BF10 > 100 

− 1.47 [-1.94, 
− 1.03] 
BF10 > 100 

Mixed-Block 2.76 [2.10, 
3.48] 
BF10 > 100 

2.90 [2.21, 
3.65] 
BF10 > 100 

1.23 [0.82, 
1.65] 
BF10 > 100 

− 0.32 [-0.65, 
0.00] 
BF10 = 0.06 

− 2.84 [-3.58, 
− 2.16] 
BF10 > 100 

− 1.19 [-1.61, 
− 0.78] 
BF10 > 100 

3.11 [2.38, 
3.91] 
BF10 > 100 

− 2.66 [-3.36, 
− 2.02] 
BF10 > 100 

Study 3 1.23 [0.96, 
1.5] 
BF10 > 100 

0.77 [0.54, 
1.00] 
BF10 > 100 

0.37 [0.16, 
0.58] 
BF10 = 79.45 

− 0.34 [-0.55, 
− 0.13] 
BF10 = 0.03 

− 0.86 [-1.10, 
− 0.62] 
BF10 > 100 

− 0.23 [-0.44, 
− 0.03] 
2.59 

0.87 [0.63, 
1.30] 
BF10 > 100 

− 0.51 [-0.73, 
− 0.30] 
BF10 > 100 

Mega- 
Analysis 

2.07 [1.90, 
2.23] 
BF10 > 100 

1.38 [1.23, 
1.53] 
BF10 > 100 

0.81 [0.68, 
0.94] 
BF10 > 100 

− 0.23 [-0.35, 
− 0.11] 
BF10 = 0.02 

− 1.24 [-1.38, 
− 1.10] 
BF10 > 100 

− 1.03 [-1.20, 
− 0.86] 
BF10 > 100 

1.42 [1.27, 
1.56] 
BF10 > 100 

− 1.15 [-1.29, 
− 1.00] 
BF10 > 100 

Note. Estimates are Cohen’s d. Numbers in brackets are 95% confidence intervals. BF10 = Bayes factor of the alternative hypothesis over the null hypothesis. 

Fig. 2. Group differences in the reactivity of neural emotion signatures between participants with emotion dysregulation and healthy controls. Error bars show 95% 
confidence intervals. 
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included small to moderate effect sizes (fear: d = 0.00, 95% CI = [-0.26, 
0.26]; contentment: d = 0.01, 95% CI = [-0.24, 0.26]). 

Coincidentally, we observed that the confidence interval of the effect 
of lower negative affect in the emotion dysregulation group vs. the 
healthy control group no longer contained zero (d = − 0.32, 95% CI =
[-0.57, − 0.07]), which differs from the results for the negative-neutral 
contrast. 

4. Discussion 

To translate neurobiological models of mental disorders into the 
clinical language of traits and symptoms, neural markers have to be both 
sensitive and specific to the psychological concept of interest. This is 
rarely the case for properties of discrete anatomical brain regions like 
the amygdala, which nonetheless has been frequently used as an indi-
cator of negative emotional processes in affect-related disorders, while it 
is also involved in a broad set of psychological phenomena other than 
emotions. Here, we used machine learning-based multivariate neural 
signatures for emotional states to test whether people with emotion 
dysregulation show signs of hyperreactive neuro-emotional systems. 
This assumption of leading psychopathological models was assessed in 
three independent studies from our lab, investigating participants 
diagnosed with either BPD or cPTSD and healthy controls. 

Neural signatures of negative affect (Chang et al., 2015) and discrete 
emotions (Kragel and LaBar, 2015) showed strong differential expres-
sion between the negative and the neutral condition in the expected 
directions (hypothesis 1), supporting their validity and accuracy, even 
when transferred to a different lab, experimental design, and population 
than the initial validation studies. Effect sizes were very large and sup-
ported by very large Bayes factors in each of the three studies. Moreover, 
study 2 indicates that effect sizes might be partly related to stimulus 
presentation parameters such as exposure time. Notably, the effect 
observed with the sadness signature was in the opposite direction than 
expected (neutral > negative condition), an observation for which we do 
not have an explanation. 

Most importantly, the neural signatures did not differentiate be-
tween participants with and without emotion dysregulation, speaking 
against the main hypothesis of the present study (hypothesis 2). Except 
for the sadness and amusement signatures, all effects went in the 
opposite direction from the theoretical predictions, i.e. smaller negative 
emotional reactivity and positive emotional reactivity in the emotion 
dysregulation group vs. the healthy group. The corresponding 

confidence intervals ruled out even small effect sizes in the expected 
direction, below |d| = 0.20 and Bayes factors favored the null hypothesis 
for all signatures, except for surprise, which was inconclusive. Similar 
patterns emerged for separate analyses on studies 1 and 2, while the 
results in study 3 were less conclusive in terms of Bayes factors. These 
results could not be explained by a heightened response to the neutral 
condition in those with BPD and cPTSD, which has been observed pre-
viously for amygdala reactivity. 

These findings are incompatible with the dominant pathological 
model of BPD and provide evidence against either the theoretical, 
experimental, or neurobiological assumptions of the present study, 
which we discuss below. Either way, important implications arise for 
future research. To discuss these potential explanations of the reported 
results, we mainly draw from the BPD literature, as the cPTSD literature 
is still relatively limited and the BPD criterion for emotional instability 
was the cardinal criterion for inclusion in study 3. 

Showing participants pictures of scenes with negative content is 
among the most common tasks to experimentally investigate heightened 
emotional reactivity in mental disorders and affect-related traits. This 
approach rests on three implicit assumptions:(1) the clinical phenome-
non of heightened emotional reactivity is not fully explained by more 
negative environments, a lower threshold for emotional responses, or 
difficulties in emotion regulation, (2) emotional reactivity can be 
observed outside of its naturalistic daily life context, and (3) the 
emotion-inducing effect of experimental stimuli is not limited to stimuli 
personalized according to thematic relevance. If correct, these assump-
tions naturally lead to the conclusion that people with emotion dysre-
gulation must have generally hyperresponsive emotion generating 
biological systems, whose exploration could aid the understanding and 
treatment of such disorders. Further, our aim to investigate these bio-
logical systems with neural signatures was based on the assumption that 
(4) neural signatures represent the best available neural markers for 
such systems, due to their high accuracy for emotional states. 

Apart from qualitative clinical impression of therapeutic practi-
tioners, there is empirical evidence for increased reactivity to discrete 
naturalistic everyday life stressors in BPD (Glaser et al., 2008; Hepp 
et al., 2018). Notably, such studies cannot easily distinguish precisely 
which aspects of emotion processing are aberrant (i.e. reactivity or 
regulation), due to their relatively low temporal resolution (assumption 
1). Experimental settings offer higher control and better temporal res-
olution, but suffer from limited ecological validity, as stressors are 
presented outside of their natural context (assumption 2). A recent 

Table 2 
Differences in neural pattern reactivity (negative – neutral condition) between emotion dysregulation and healthy control group.   

Negative emotions Positive emotions Other emotions  

Negative Affect Fear Anger Sadness Amusement Contentment Surprise Neutral 

Study 1 − 0.09 [-0.61, 
0.43] 
BF01 = 4.76 

0.01 [-0.51, 
0.53] 
BF01 = 3.57 

− 0.45 [-0.97, 
0.08] 
BF01 = 9.09 

0.13 [-0.39, 
0.65] 
BF01 = 2.50 

− 0.45 [-0.97, 
0.08] 
BF01 = 0.06 

0.49 [-0.04, 1.02] 
BF01 = 10.0 

0.16 [-0.37, 
0.68] 
BF01 = 3.23 

0.29 [-0.24, 
0.81] 
BF01 = 7.14 

Study 2         
Event- 

related 
− 0.37 [-0.99, 
0.26] 
BF01 = 6.25 

− 0.36 [-0.98, 
0.27] 
BF01 = 6.25 

− 0.20 [-0.82, 
0.42] 
BF01 = 4.76 

− 0.39 [-1.01, 
0.24] 
BF01 = 6.25 

− 0.08 [-0.70, 
0.54] 
BF01 = 2.70 

0.32 [-0.31, 0.94] 
BF01 = 5.88 

0.15 [-0.47, 
0.77] 
BF01 = 2.94 

0.36 [-0.27, 
0.98] 
BF01 = 6.25 

Block − 0.99 [-1.64, 
− 0.33] 
BF01 = 11.11 

− 0.95 [-1.60, 
− 0.29] 
BF01 = 11.11 

− 0.34 [-0.96, 
0.28] 
BF01 = 5.88 

0.30 [-0.32, 
0.93] 
BF01 = 1.41 

0.68 [0.04, 1.31] 
BF01 = 9.09 

0.20 [-0.43, 0.82] 
BF01 = 4.76 

− 0.23 [-0.85, 
0.39] 
BF01 = 2.63 

0.05 [-0.57, 
0.67] 
BF01 = 3.57 

Mixed-Block − 0.37 [-0.99, 
0.26] 
BF01 = 6.25 

− 1.11 [-1.77, 
− 0.44] 
BF01 = 12.5 

− 0.21 [-0.83, 
0.41] 
BF01 = 5.00 

0.18 [-0.44, 
0.80] 
BF01 = 2.04 

0.51 [-0.12, 
1.14] 
BF01 = 7.14 

0.17 [-0.45, 0.79] 
BF01 = 4.55 

− 0.01 [-0.63, 
0.61] 
BF01 = 3.23 

0.12 [-0.50, 
0.74] 
BF01 = 4.17 

Study 3 0.16 [-0.26, 0.58] 
BF01 = 2.27 

0.21 [-0.21, 
0.63] 
BF01 = 1.79 

0.13 [-0.3, 
0.55] 
BF01 = 2.70 

0.06 [-0.36, 
0.48] 
BF01 = 3.57 

− 0.11 [-0.53, 
0.32] 
BF01 = 2.94 

− 0.10 [-0.52, 
0.33] 
BF01 = 3.12 

0.23 [-0.19, 
0.65] 
BF01 = 2.70 

− 0.36 [-0.79, 
0.06] 
BF01 = 0.69 

Mega- 
Analysis 

− 0.13 [-0.38, 
0.11] 
BF01 = 11.56 

− 0.13 [-0.39, 
0.12] 
BF01 = 7.28 

− 0.16 [-0.39, 
0.08] 
BF01 = 53.01 

0.06 [-0.18, 
0.31] 
BF01 = 9.54 

− 0.07 [-0.32, 
0.17] 
BF01 = 4.79 

0.17 [-0.08, 0.41] 
BF01 = 9.68 

0.12 [-0.13, 
0.37] 
BF01 = 2.15 

0.01 [-0.24, 
0.25] 
BF01 = 21.70 

Note. Estimates are Cohen’s d. Numbers in brackets are 95% confidence intervals. BF01 = Bayes factor of the null hypothesis over the alternative hypothesis. 
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meta-analytic review found that the literature is surprisingly inconclu-
sive concerning experimentally induced emotional reactions in BPD 
(Bortolla et al., 2020). While they did find moderate experimental group 
effects on affective self-ratings in their meta-analysis, many studies did 
not include a pre-measurement, potentially confounding tonic negative 
emotions and emotional reactivity, or only had pre- and post-task rat-
ings, which might capture other processes than stimulus-contingent 
real-time responses. Moreover, peripheral-physiological effects were 
negligibly small and/or statistically not significant. Interestingly, while 
stimulus relevance to BPD might be argued to be a moderating factor, 
there was no statistically significant difference in effect sizes dependent 
on whether stimuli were thematically related to BPD for subjective 
valence, arousal, as well as physiological measures (assumption 3). 

Taken together, it is possible that typical laboratory designs, as used 
in our studies, are not well-suited to probe individual differences in 
emotional reactivity which generalize to everyday life or that clinical 
subgroups with opposing phenomenology cancel each other’s effects. 
Alternatively, it is possible that the neural signatures do not capture the 
psychological concept of interest well (assumption 4). If the concepts of 
interest are emotions as they are measured by self-reports, this seems 
unlikely for the PINES, as it correlated with self-reports above r = .90 in 
both the training and the hold-out sample, which employed a design 
similar to ours. Still, it is possible that when asked for their mood 
directly after seeing a negative picture, participants partly rate the 
picture content, rather than exclusively their emotions, which could 
have impeded the construct validity of the PINES. Nevertheless, this 
argument does not hold for the discrete emotion signatures, which 
distinguish emotion categories and were associated with trait depres-
siveness and anxiety in a well-powered resting-state study. 

Another neurobiological explanation of the null results might be the 
presence of stable physiological between-person noise (e.g. cere-
brovasculature or hematocrit levels; D’Esposito et al., 2003; Yang et al., 
2014). A recent meta-analysis demonstrated that test-retest reliability of 
resting state fMRI diminishes considerably after artefact correction, 
indicating the presence of such stable between-person noise (Noble 
et al., 2019). The neural signatures used here have been developed to 
explain variance without explicit differentiation of the within- or 
between-person level and their high accuracy might be preferentially 
due to variance within individuals. Notably, while machine 
learning-based approaches have been increasingly used to differentiate 
between clinical groups based on fMRI data (Gao et al., 2018; Woo et al., 
2017), these approaches do not necessarily lead to interpretable neural 
markers, as groups might differ on many confounded dimensions. 

4.1. Limitations and future directions 

The mega-analyses did not include random slopes for studies, as the 
low number of studies does not allow a sensible estimate of between- 
study variance. Hence, the generalizability to other experimental in-
vestigations is limited and a wider range of effect sizes should be ex-
pected (Yarkoni, 2020). This limitation on generalizability is especially 
important, as studies included only female participants, due to potential 
gender-differences in symptom presentation (Sansone and Sansone, 
2011). Study 2 indicated that stimulus presentation parameters might be 
one important influence on effect size differences, at least for 
within-person effects. 

Another limitation to consider is the reliability of fMRI-based neural 
markers (Elliott et al., 2020). Testing the internal consistency for 
multi-run studies 1 and 2 indicated that reliability was considerably 
higher for neural signatures than for an amygdala-hippocampal cluster 
from a BPD meta-analysis, but still lower than desirable, ranging from α 
= .48 to α = .72. These estimates could be used in future studies to 
correct expected effect sizes for unreliability in power analyses. 

As in most BPD studies which used fMRI designs with negative 
scenes, there were no affective self-ratings directly following pictures. 
Such ratings would be necessary to closely replicate the core assumption 

of the neural emotion signatures, that is, they predict momentary sub-
jective affect ratings by means of BOLD responses to affective stimuli 
across different populations. More research is urgently needed to 
confirm the strict validity of neural signatures in clinical populations. 
Post-session valence ratings of negative pictures did not differ consid-
erably between participants, as has been previously reported (Koenigs-
berg et al., 2009; Schulze et al., 2011), but are not necessarily a valid 
surrogate of momentary affect, immediately following negative trials. 
While these tasks have been frequently used, there has been to our 
knowledge no thorough psychometric validation to ensure their use-
fulness for research on individual differences on the psychological end. 
Therefore, we suggest a systematic assessment of their test-retest reli-
ability and validity in terms of associations with clinically relevant 
traits, independent of neuroimaging techniques. As stated above, it is 
unclear whether valence ratings following the session should continue to 
replace self-ratings of affect immediately following image-exposure. 

4.2. Conclusion 

Neural signatures of emotions appear to be valid and transferable 
tools to investigate within-person relationships, but their utility to un-
derstand individual differences remains unclear. Contrary to theoretical 
expectations, we did not find differences between people with and 
without emotion dysregulation. We offer to share our analysis pipelines 
with other research groups to reanalyze existing datasets. This could be 
done efficiently and lead to a more comprehensive picture of the rela-
tionship between neural signatures and emotion-related traits. Apart 
from neurobiological approaches, more research is needed concerning 
the psychometric properties and ecological validity of typical experi-
mental tasks used to probe affective traits. 
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