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Odour-imagery ability is linked to  
food craving, intake, and adiposity  
change in humans

Emily E. Perszyk    1,2 , Xue S. Davis1,2, Jelena Djordjevic3, 
Marilyn Jones-Gotman3, Jessica Trinh    1,2, Zach Hutelin    1,2, 
Maria G. Veldhuizen    4, Leonie Koban    5, Tor D. Wager6,  
Hedy Kober    2,7 & Dana M. Small    1,2,3,7,8 

It is well-known that food-cue reactivity (FCR) is positively associated with 
body mass index (BMI)1 and weight change2, but the mechanisms underlying 
these relationships are incompletely understood. One prominent theory 
of craving posits that the elaboration of a desired substance through 
sensory imagery intensifies cravings, thereby promoting consumption3. 
Olfaction is integral to food perception, yet the ability to imagine odours 
varies widely4. Here we test in a basic observational study whether this large 
variation in olfactory imagery drives FCR strength to promote adiposity in 
45 adults (23 male). We define odour-imagery ability as the extent to which 
imagining an odour interferes with the detection of a weak incongruent 
odour (the ‘interference effect’5). As predicted in our preregistration, the 
interference effect correlates with the neural decoding of imagined, but not 
real, odours. These perceptual and neural measures of odour imagery are 
in turn associated with FCR, defined by the rated craving intensity of liked 
foods and cue-potentiated intake. Finally, odour imagery exerts positive 
indirect effects on changes in BMI and body-fat percentage over one year via 
its influences on FCR. These findings establish odour imagery as a driver of 
FCR that in turn confers risk for weight gain.

Mental imagery has been proposed to play a critical role in the ampli-
fication of cravings3, yet not all sensory modalities are similarly imagi-
nable. On the basis of self-reports, almost everyone has the ability to 
imagine sights and sounds, but the ability to imagine odours varies 
widely4,6,7. We have previously demonstrated that the self-reported 
vividness of imagined olfactory, but not visual, stimuli is positively cor-
related with BMI8. These data raise the possibility that odour-imagery 

ability confers risk for FCR and weight gain; however, evidence for the 
extent to which self-report measures reflect actual odour imagery is 
limited5,9. It is also unknown whether perceptual or neural measures 
of odour-imagery ability are related to FCR, BMI, or susceptibility to 
weight gain (Fig. 1).

Odour-imagery ability has been quantified as the extent to which 
imagining an odour decreases the detectability of a weak incongruent 

Received: 6 February 2023

Accepted: 25 July 2023

Published online: 28 August 2023

 Check for updates

1Modern Diet and Physiology Research Center, New Haven, CT, USA. 2Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA. 
3Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada. 4Department 
of Anatomy, Faculty of Medicine, Mersin University, Ciftlikkoy Campus, Mersin, Turkey. 5Lyon Neuroscience Research Center (CRNL), CNRS, INSERM, 
University Claude Bernard Lyon 1, Bron, France. 6Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA. 7Department of 
Psychology, Yale University, New Haven, CT, USA. 8Department of Medicine, McGill University Health Center, Montreal, Quebec, Canada.  

 e-mail: emily.perszyk@gmail.com; dana.small@mcgill.ca

http://www.nature.com/natmetab
https://doi.org/10.1038/s42255-023-00874-z
http://orcid.org/0000-0002-8902-4644
http://orcid.org/0000-0002-3676-274X
http://orcid.org/0000-0002-6179-5332
http://orcid.org/0000-0001-8375-7719
http://orcid.org/0000-0002-3121-6491
http://orcid.org/0000-0001-9893-1046
http://orcid.org/0000-0001-7363-1100
http://crossmark.crossref.org/dialog/?doi=10.1038/s42255-023-00874-z&domain=pdf
mailto:emily.perszyk@gmail.com
mailto:dana.small@mcgill.ca


Nature Metabolism | Volume 5 | September 2023 | 1483–1493 1484

Letter https://doi.org/10.1038/s42255-023-00874-z

from functional magnetic resonance imagining (fMRI) patterns evoked 
by imagined odours in the piriform cortex (Fig. 1a). Participants  
were instructed to imagine the smell or sight of a rose or cookie (or 
nothing) while trying to determine which of two samples contained 

odour5. In this basic observational study, our first goal was to determine 
whether this interference effect—a performance-based perceptual 
measure of odour-imagery ability5—is associated with self-reported 
imagery ability or with a measure of the decoding of odour quality 
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Fig. 1 | Study overview and the perceptual measure of odour-imagery ability. 
a, Our first goal was to correlate three measures of odour-imagery ability: a 
validated perceptual measure5, a self-report measure (the Vividness of Olfactory 
Imagery Questionnaire, or VOIQ41), and a new neural measure based on the 
piriform decoding of imagined-odour quality. b, Our second goal was to correlate 
odour-imagery ability with three measures of FCR: cue-induced craving from an 
established paradigm15, cue-potentiated intake in a bogus taste test16, and ventral 
striatal reactivity to a food odour versus a nonfood odour or clean air. Our third 
goal was to correlate odour-imagery ability with both current and 1-year changes 
in adiposity. c, We hypothesized that, in response to learned food cues, individuals 
with a better ability to imagine odours would experience stronger cravings that 
compel them to overeat and gain weight. By contrast, individuals with a worse 
ability to imagine odours would experience weaker cravings with a lower impact 
on their eating and weight. d, We predicted that odour-imagery ability would have 
an indirect effect on adiposity change via FCR. e, In the adapted perceptual task5 

to quantify odour-imagery ability, participants were instructed to imagine the 
smell or sight of a rose, cookie, or nothing while trying to detect either the same 
(matched trial) or the other (mismatched trial) odour at their detection threshold 
level (which was determined prior to the test). f, As in previous work5, we found 
that odour imagery impairs mismatched odour detection without improving 
matched detection (that is, the ‘interference effect’). Two-sided tests (t-statistics) 
of fixed effects in linear mixed-effects models were used for statistical analysis. 
See the Supplementary Results for further analyses behind establishing this 
perceptual measure of odour-imagery ability. Box-and-whisker plots represent 
single participants from the minimum to maximum (whiskers) around the 25th 
to 75th percentiles (box limits), along with the median (centre line) and mean 
(+ symbol) of the data. n.s., not significant. *post-hoc pairwise comparisons: 
Pcorrected < 0.05 (2 tests comparing odour or visual matched versus mismatched 
detection); **post-hoc pairwise comparisons: Pcorrected < 0.05 (3 tests comparing 
odour mismatched, visual mismatched, and no imagery detection).
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either the same odour (matched trial) or the other odour (mismatched 
trial) at their detection threshold level (that is, the smallest odourant 
concentration they could reliably detect from previous testing without 
imagery; Fig. 1e). Interference was calculated by subtracting detection 
accuracy (the percentage of correct trials) in mismatched trials from 
that in matched trials in each imagery condition (Fig. 1f). In line with 
prior work5, an interference effect was observed for odour, but not 
visual, imagery (Fig. 1f). This odour interference effect correlated 
positively with self-reported ability to imagine odours and flavours, 
but not visual stimuli (Extended Data Fig. 1). Further, the difference 
in detection accuracy on matched versus mismatched trials of the 
visual imagery condition did not correlate with self-reported odour 
(r33 = 0.306, Pcorrected = 0.2205), flavour (r33 = 0.247, Pcorrected = 0.4557), 
or visual (r33 = 0.155, Pcorrected = 1.000) imagery.

Next, we used fMRI to assess brain responses to rose or cookie 
odours (or to clean air) interspersed with trials in which participants 
were instructed to imagine these same odours while sniffing clean 
air (Fig. 2a). Because odour quality is encoded in the primary olfac-
tory cortex across distributed patterns of activation10, we performed 
multi-voxel pattern analyses (MVPA) in regions of interest (ROIs) that 
included the left and right piriform cortices (Fig. 2b). Specifically, we 
tested whether distinct patterns for the real and/or imagined odours 
could be decoded using two methods: a support vector machine (Fig. 2c)  
and split-half voxel correlations (Fig. 2d). The decoding of actual 
odours in the right piriform cortex (mean accuracy, 63.2%; chance, 
50%) was significantly greater than chance and significantly better 
than decoding in the left piriform cortex (Fig. 2e). This finding aligns 
with the well-documented dominance of the right hemisphere in  
olfaction11,12. We did not observe significant decoding of imagined 
odours or cross-modal decoding between the real and imagined odours 
(Fig. 2e,f). In one-third of the participants, distinct patterns for real 
odours were not detected. This is expected in decoding analyses owing 
to natural anatomical variations13 limiting the detection of well-known 
spatial olfactory codes10,14. Therefore, for the subsequent analyses, we 
tested decoding in the right piriform cortex using voxel correlations 
(decoding method 2) in the limited sample wherein clear, discrimina-
ble patterns for real odours were observed. The results remain largely 
unchanged when including the full sample (Supplementary Table 1).

To determine whether imagined-odour quality codes were associ-
ated with the perceptual measure of odour-imagery ability (Fig. 1a), we 
correlated our measure of piriform decoding against the interference 
effect. A strong positive association was identified (Fig. 2g). By contrast, 
there were no significant correlations between odour imagery and the 
fMRI patterns decoded from actual odours or in the cross-modal data-
sets (Fig. 2h,i). Importantly, when we ran similar analyses for the left and 
right primary visual cortices as control regions, no significant effects 
were observed (Extended Data Fig. 2 and Supplementary Table 1).  
Finally, univariate responses in the piriform cortex evoked by the 
imagined odours (Extended Data Fig. 3) were not associated with the 
odour-imagery measures, including after small-volume correction 
(no suprathreshold clusters). Collectively, these data show a strong 
and specific link between all three measures of odour-imagery ability, 
supporting their validity. They also demonstrate that odour imagery is 
associated with the successful activation of distinct imagined-odour 
quality codes in the right piriform cortex.

We next tested whether our perceptual (that is, the interference  
effect) and neural (that is, right piriform decoding of imagined odours) 
measures of odour-imagery ability were associated with FCR. FCR was 
quantified using validated measures of craving15 and cue-potentiated 
intake16, as well as ventral striatal (VS) responses to the cookie odour 
(Fig. 1b). First, participants rated the strength of their craving in 
response to the presentation of 90 palatable food images15. Food crav-
ing was not significantly related to the perceptual or neural meas-
ures of odour-imagery ability (Fig. 3a,b) or to the decoding of actual 
odours in the right piriform cortex (Supplementary Table 2). However, 

participants’ ratings of how much they liked the foods were variable 
and correlated with craving (Supplementary Table 3). We therefore 
reasoned that odour imagery may intensify cravings specifically for 
foods that are liked and constructed a linear regression model to test 
for the presence of an interaction between odour imagery and food 
liking on the average craving rating. As predicted, there was a signifi-
cant interaction between food liking and the perceptual measure of 
odour-imagery ability (F41 = 8.516, Pcorrected = 0.0114) on craving, but 
the interaction was not significant for the neural measure (F26 = 3.367, 
Pcorrected = 0.1560). Using a tertiary split to separate participants on the 
basis of their average food liking, we found a strong positive association 
between the perceptual measure of odour-imagery ability and food 
craving for highly liked foods (Fig. 3c). A follow-up analysis using a 
linear mixed-effects model with the individual ratings for each of the 
90 foods, rather than participant averages, also revealed a significant 
interaction effect (F1,3996 = 7.571, P = 0.0060) whereby cravings for liked, 
but not disliked, foods were more intense in individuals with vivid 
odour imagery. Collectively, these data suggest that odour imagery 
interacts with liking to invigorate cravings.

To assess cue-potentiated food intake, we performed a validated 
bogus taste test16. Participants were instructed to sample and compare 
the sensory properties of two plates of cookies. The purpose of the 
test (not revealed to participants) was to quantify the amount eaten. 
Separate linear regressions adjusted for sex (males ate more) and 
cookie liking ratings—which were positively correlated with the amount 
consumed (Supplementary Table 3)—revealed that both the perceptual 
(Fig. 3d) and neural (Fig. 3e) measures of odour-imagery ability were 
significant predictors of intake. By contrast, food craving and right 
piriform decoding of actual odours were unrelated to cookie consump-
tion (Supplementary Tables 2 and 3), even after adjusting for sex and 
liking. The latter finding indicates that the association is specific to 
odour quality codes evoked during imagery. Finally, VS reactivity to 
the food odour was not related to any measure of odour imagery or 
perception, or to food craving or intake (all PFWE-SVC (family-wise error, 
small-volume corrected) ≥ 0.247). Thus, odour imagery was associated 
with behavioural measures of FCR, but not with VS reactivity.

Finally, we sought to determine whether odour imagery is associ-
ated with current adiposity or change in adiposity over one year. Current 
adiposity was defined using BMI and sex-adjusted body-fat percentage 
(Fig. 1b); no significant associations were observed (Supplementary 
Table 4). This conflicted with the positive correlation between BMI 
and self-reported odour-imagery ability observed in our prior study8 
(wherein body-fat percentage and the perceptual and neural measures 
of odour imagery were not assessed). However, the variance in BMI dif-
fered significantly across the two studies (two-sample F-test for equality 
of variances: F44,24 = 2.454, P = 0.0208); the current study included class I, 
II, and III obesity (BMI: mean, 26.12; s.d., 6.81; range, 18.32–53.44 kg m–2) 
and the prior study included only class I (BMI: mean, 24.25; s.d., 4.35; 
range, 17.70–34.06 kg m–2). When we excluded the four individuals 
with class II or III obesity (BMI >35 kg m–2) from our current sample, 
consistent with the prior report, a weak positive relationship emerged 
between BMI and the self-report measure of odour imagery (r39 = 0.333, 
Puncorrected = 0.0334), suggesting that the association might be nonlinear. 
However, this effect did not survive correction for multiple comparisons 
(Pcorrected = 0.1002) after further correlating BMI with the perceptual 
(r39 = 0.222, Pcorrected = 0.4872) and neural (r25 = 0.226, Pcorrected = 0.7683) 
measures of odour imagery. Thus, in contrast to our prediction, no 
significant associations were observed between current adiposity and 
odour-imagery ability, although we cannot exclude the possibility of  
a nonlinear relationship with the self-report measure. Lastly, we tested 
for associations between olfactory perception or FCR and current 
adiposity. The only significant effect we observed was a negative cor-
relation between the cookie-odour-detection thresholds and BMI 
(Supplementary Table 5). These data demonstrate that neither odour- 
imagery ability nor FCR is related to current adiposity in our sample.

http://www.nature.com/natmetab
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Fig. 2 | Decoding of imagined, but not actual, odours in the right piriform 
cortex provides a neural measure of odour-imagery ability. a, An overview 
of the fMRI paradigm. After an auditory cue, participants either smelled rose or 
cookie odours (or clean air) or imagined these odours while sniffing clean air. ITI, 
intertrial interval. b, ROIs in which odour patterns were decoded in the left (L) and 
right (R) piriform cortices (Pir). c, For the first decoding method, support vector 
machines (SVMs) were trained and tested on their ability to classify rose versus 
cookie odours over five cross-validated (CV) iterations. In the smell condition and 
the imagine condition, SVMs were trained and tested on voxel patterns from the 
same modality. For cross-modal decoding, the SVM was trained and tested on real 
versus imagined patterns. d, For the second decoding method, split-half Fisher’s 
Z-transformed voxel correlations calculated between odours (for example, 
smelling rose in even runs versus smelling cookie in odd runs) were subtracted 
from those calculated within odours (for example, smelling rose in even versus 
odd runs). e–f, SVM accuracies (e) and voxel correlations (f) for smelling actual 
odours were significant only in the right piriform cortex at the group level 
(t43 = 2.991, Pcorrected = 0.0184; t43 = 3.342, Pcorrected = 0.0056). SVM accuracies were 
also significantly greater in the right than left piriform cortices (t43 = 2.407, 

P = 0.0205). Neither decoding method revealed significant imagined or cross-
modal odour decoding in the ROIs tested. g–i, The perceptual measure of odour 
imagery correlated with right piriform decoding of imagined (g), but not real 
(h) or cross-modal (i), odours using voxel correlations. Right piriform decoding 
of imagined odours was unrelated to any demographics, olfactory function or 
perception, sniff parameters, hunger, or dietary habits (Supplementary Table 4).  
Box-and-whisker plots represent single participants from the minimum to 
maximum (whiskers) around the 25th to 75th percentiles (box limits), along with 
the median (centre line) and mean (+ symbol) of the data. Scatterplots depict 
single participants and the 95% confidence interval (CI) around the line of best 
fit. Linear relationships were tested with two-tailed Pearson’s r correlations. p.p., 
percentage points, referring to the difference in odour detection accuracies 
(percentages) during matched versus mismatched trials of the odour-imagery 
condition from the perceptual task (see Fig. 1e,f). *P < 0.05 test for laterality; 
**Pcorrected < 0.05 (4 tests per condition across the 2 ROIs and 2 control regions; see 
Extended Data Fig. 2); ***Pcorrected < 0.05 (18 tests comparing decoding versus the 
interference effect; see Supplementary Table 1).
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With respect to changes in adiposity (BMI or body-fat percentage), 
no relationships were observed for any measure of odour imagery 
or perception (Extended Data Fig. 4 and Supplementary Table 5). 
However, there were significant associations with FCR. Specifically, 
food intake predicted change in body-fat percentage (Fig. 3f), but  
it was not significantly associated with change in BMI (r39 = 0.263,  
Pcorrected = 0.1928). Food craving predicted change in BMI (Fig. 3g), but 

not change in body-fat percentage (r41 = 0.229, Pcorrected = 0.2804). Given 
the associations between odour-imagery ability and FCR (Fig. 3c–e), 
and between FCR and changes in adiposity (Fig. 3f,g), we reasoned  
that there might be indirect effects17,18 of odour-imagery ability 
on changes in adiposity via FCR. This was in line with our a priori  
hypothesis that odour imagery strengthens FCR to in turn influence 
risk of weight gain (Fig. 1c,d).
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Fig. 3 | Better odour-imagery ability is associated with stronger cravings for 
liked foods and greater intake. a,b, Food craving did not correlate with the 
perceptual (a) or neural (b) measures of odour-imagery ability. c, There was a 
significant interaction between food liking and the perceptual measure of odour-
imagery ability on craving (Pcorrected = 0.0114). Following a tertiary split to separate 
participants by their average food liking, the interference effect was unrelated 
to food craving in the low and moderate food-liking groups. By contrast, there 
was a positive correlation in the high food-liking group. In addition, accounting 
for subjective hunger ratings—which were positively correlated with food 
craving (Supplementary Table 3)—did not impact the results. No other variables 
of interest were associated with food craving (Supplementary Tables 2 and 3). 
Low-liking group: mean LHS rating, –0.17; range, –66.60 to 11.68. Moderate-liking 
group: mean LHS rating, 19.52; range, 11.83 to 27.98. High-liking group: mean LHS 
rating, 37.69; range, 29.85 to 48.98. d,e, Both the perceptual (d) and neural (e) 
measures of odour imagery were significant predictors of cue-potentiated food 
intake, adjusted for sex (males ate more) and cookie liking ratings, which were 
positively correlated with the amount consumed (Supplementary Table 2).  

No other variables of interest were associated with intake (Supplementary 
Tables 2–3). f,g, Food intake was positively correlated with change in body-fat 
percentage (f), whereas food craving was positively correlated with change in 
BMI (g). Accounting for age—which was positively associated with change in BMI 
(Supplementary Table 6)—did not impact these results. Changes in adiposity 
were also unrelated to sex, household income, olfactory function or perception, 
food liking, dietary habits, or changes in physical activity over the year 
(Supplementary Tables 5 and 6). Scatterplots depict single participants and the 
95% CI around the line of best fit. Linear relationships were tested with two-tailed 
Pearson’s r correlations. a.u., arbitrary units, referring to sex-adjusted changes in 
body-fat percentage over 1 year; LHS, Labeled Hedonic Scale40; p.p., percentage 
points, referring to the difference in odour detection accuracies (percentages) 
during matched versus mismatched trials of the odour-imagery condition 
from the perceptual task (see Fig. 1e,f); VAS, visual analogue scale. *post-hoc 
comparison: Pcorrected < 0.05 (3 tests comparing food craving to the interference 
effect after the tertiary split for food liking); **Pcorrected < 0.05 (2 tests per measure 
of FCR or adiposity change).
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Consistent with our planned analyses, both the perceptual  
(Fig. 4a) and neural (Fig. 4b) measures of odour imagery indirectly 
predicted change in body-fat percentage via cue-potentiated intake. 
To assess the indirect effect of odour imagery on change in BMI via 
craving, we used moderated mediation. Specifically, food liking was 
included as a moderator of the association between odour-imagery 
ability and craving (that is, the a-path; Fig. 4c). This was an unplanned 
but data-driven secondary analysis, and therefore is possibly under-
powered. The index of moderated mediation—indicating whether  
the strength of the indirect effect between odour imagery and  
change in BMI via craving depended on the level of liking—was sig-
nificant. This was driven by a significant conditional indirect effect in 
individuals with high, but not low or moderate, food liking (Fig. 4c). In 
other words, having a better odour-imagery ability resulted in greater 

changes in BMI through heightened craving in individuals who liked 
such high-fat and/or high-sugar foods. Taken together, these models 
provide evidence that odour-imagery ability drives variation in FCR 
strength, which in turn influences risk for increased adiposity.

Mental imagery is thought to help optimize adaptive behaviour 
through simulations of future actions on the basis of past experiences19. 
Food choice depends on a complex integration of internal and external 
signals20; imagining what to eat may contribute by enabling simulations 
of the predicted sensory pleasure and eventual nutritive value of eating 
a potential energy source. Recent preclinical work has demonstrated 
that food-odour exposure stimulates lipid metabolism, but only in 
fasted animals with functioning olfactory memory21. Perhaps olfactory 
memory—a key component of imagery—has the same effect in humans, 
preparing the body for anticipated food intake and enhancing motiva-
tion to consume food.

Our study contributes novel insights into the neurobiology of 
olfaction. We demonstrated that odour-imagery ability is reflected in 
the successful activation of imagined-odour quality codes in the right 
piriform cortex. This finding was observed in the subset of individuals  
in whom real odours could be decoded, suggesting that it was not 
attributable to anatomical variation between participants limiting 
the ability to decode fMRI patterns in this region13. We also showed 
that risk for FCR is associated with these odour quality codes evoked 
during imagery, but not during real perception. This specificity raises 
important questions about why and how quality coding differs in real 
and imagined olfaction, as well as why imagery, rather than perceptual 
ability, drives FCR. One possible explanation is that imagined odours 
only reactivate odour identity, whereas real odours reactivate odour 
identity and the coding of the physiochemical odourant properties 
that occur across separate subpopulations of neurons in the piriform 
cortex22. Similar distinctions have been observed between imagined 
and actual coding in other sensory modalities23,24. Therefore, this may 
account for our below-chance cross-modal decoding and lack of associ-
ation between real odourant coding and the odour-imagery measures.

Many conflicting associations have been reported between 
olfaction and current BMI or risk of weight gain in people25–30, includ-
ing abnormal brain responses to taste and odour cues in obesity31,32. 
Here we observed a negative correlation between BMI and the 
cookie-odour-detection thresholds. Although this is a potential limi-
tation of our study, detection thresholds do not necessarily map onto 
suprathreshold perceptions33 (for example, intensity and liking). It 
also is not clear how poorer detection might contribute to the indirect 
link between odour imagery and adiposity change via FCR that we 
observed. Furthermore, olfactory function or perception—defined 
as detection thresholds, piriform decoding of actual odour quality, 
and suprathreshold odour ratings—were unrelated to any measure 
of odour-imagery ability, FCR, or adiposity change (Supplementary 
Tables 2–6). Thus, our results suggest that olfactory imagery and 
its accompanying multivariate activity patterns in the piriform cor-
tex, rather than perception per se, may drive prospective changes in  
adiposity through FCR; however, we cannot rule out univariate  
contributions from brain networks involved in related processes, such 
as decision making, reward, and inhibition32.

We cannot explain why neither FCR nor odour-imagery ability 
were associated with current BMI in our study. However, it is possible 
that there is an unknown factor, such as self-control, in our sample 
counteracting the expected association. Likewise, a similar compen-
satory mechanism may account for the lack of direct effects between 
odour-imagery ability and the changes in adiposity that we observed. 
Future work that includes a more comprehensive assessment of resil-
iency factors is therefore needed. It is also important to determine 
whether the observed effects extend to other imagined-odour or fla-
vour qualities, and whether strategies aimed at intervening with odour 
imagery might prove to be effective targets for weight loss. Neverthe-
less, our findings suggest that, in an environment laden with food cues, 
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Change in body
-fat percentage

(n = 41)

a-path: β = 0.350, s.e. = 0.133
CI = (0.081, 0.620)*

 b-path: β = 0.505, s.e. = 0.182
CI = (0.136, 0.874)*

 

c’ direct path: β = 0.019, s.e. = 0.160
CI = (–0.306, 0.345) 

 

a × b indirect path:
β = 0.177, s.e. = 0.091 

CI = (0.031, 0.382)*
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Neural measure of 
odour-imagery ability

Food
intake

Change in body-
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% (n = 27)

a-path: β = 0.407, s.e. = 0.166
CI = (0.063, 0.751)*

b-path: β = 0.722, s.e. = 0.221
CI = (0.264, 1.181)*

c’ direct path: β = –0.120,
s.e. = 0.198

CI = (–0.530, 0.290)

a × b indirect path: 
β = 0.294, s.e. = 0.160 

CI = (0.022, 0.647)* 
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Change in
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(n = 43)

a-path: β = –0.180, s.e. = 0.133 
CI = (–0.449, 0.090)

b-path: β = 0.439, s.e. = 0.174
CI = (0.087, 0.790)*

c’ direct path: β = –0.082,
s.e. = 0.154

CI = (–0.393, 0.230)

Conditional a × b indirect
path (in high food liking):
β = 0.184, s.e. = 0.109

CI = (0.011, 0.434)*
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measure of odour-
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Moderation of the a-path:
β = 0.368, s.e. = 0.112
CI = (0.141, 0.595)* 

Fig. 4 | Odour-imagery ability indirectly predicts changes in BMI and body-
fat percentage via FCR. a–b, Testing the mediation models for the perceptual 
(a) and neural (b) measures of odour-imagery ability revealed no direct effects 
between odour-imagery ability and change in body-fat percentage. By contrast, 
the indirect effects via intake were significant. These models were controlled for 
sex and cookie liking because these were the only variables of interest correlated 
with food intake (Supplementary Tables 2 and 3). c, Testing the moderated 
mediation model for the perceptual measure of odour-imagery ability again 
revealed no direct effect of odour-imagery ability on change in BMI. However,  
the index of moderated mediation was significant (β = 0.161, s.e. = 0.104,  
CI (0.007, 0.441)). This was driven by a significant conditional a×b indirect effect in 
individuals with high, but not with low (β= –0.079, s.e. = 0.103, CI (–0.347, 0.055)) 
or moderate (β= 0.033, s.e. = 0.103, CI (–0.347, 0.158)), food liking. This model 
was controlled for hunger (with food liking included as a moderator of the a-path) 
because these were the only variables of interest correlated with food craving 
(Supplementary Tables 2 and 3). In each panel, the a, b, and c' paths refer to the 
links between odour-imagery ability and FCR, FCR and adiposity change, and 
odour-imagery ability and adiposity change, respectively. Significant indirect 
effects are highlighted in red. *P < 0.05 according to CIs (lower limit, upper limit) 
excluding zero.
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the ability to vividly imagine their smells drives overeating and craving 
for liked foods, which in turn promotes increased adiposity.

Methods
Participants
The study was classified as basic observational research in humans and 
did not meet the National Institutes of Health definition of a clinical trial. 
A flow diagram depicting the number of individuals at each stage of the 
study (for example, eligibility, recruitment, completion, and analysis) is 
provided in Extended Data Figure 5. Participants were recruited from the 
local community and university population in New Haven, Connecticut, 
using flyers and social-media advertisements. Individuals interested 
in this study or other previous studies in our laboratory filled out an 
online form using Qualtrics software versions October 2020–June 
2022 (Qualtrics) to provide through a self-report initial information 
such as their sex assigned at birth, age, estimated BMI, and drug use. We 
pre-screened individuals in this database to identify those aged 18–45 
without known taste or smell dysfunction, dieting behaviours, food 
restrictions, nicotine or drug use, serious medical conditions including 
metabolic, neurologic, and psychiatric disorders or medications used 
to treat these disorders, cognitive deficits or memory loss that could 
impact mental imagery, and any MRI contraindications (for example, 
being left-handed, pregnant, or having metal in the body). We then 
assessed individuals with follow-up email questions (for example, 
to ensure that these people did not note any new disorders or drug 
use, recent smell loss due to COVID-19, or intent to leave the greater  
New Haven area). To include similar individuals across a range of BMIs, 
we used stratification to minimize differences in sex, race, ethnicity, 
age, and household income among participants recruited into 2 BMI 
groups (low BMI < 25 kg m–2 and high BMI ≥ 25 kg m–2).

For the perceptual measure of odour-imagery ability, 36 partici-
pants completed all imagery conditions; this number was selected on 
the basis of an a priori power analysis performed in G*Power version  
3.1.9.6 (refs. 34,35) to replicate the interference effect (d = 0.722) 
from the prior task validation5 in the low and high BMI groups 
(n = 18 each) at 0.80 power (α = 0.05, two-tailed test, two depend-
ent means). Twelve additional participants were then recruited to 
complete only the odour-imagery condition and all other study meas-
ures (with one participant excluded from scanning owing to their 
extreme claustrophobia). This was sufficient to achieve 0.80 power 
(n = 42, α = 0.05, two-tailed test, bivariate normal model) for the effect 
observed between self-reported odour-imagery ability and obesity 
risk (r = 0.42) in previous work8 and for the ability of FCR measures  
to predict longer-term changes in eating and weight (r = 0.42) from 
a prior meta-analysis2. Data from three participants were removed 
owing to an inability to obtain proper odour thresholds such that  
their detection accuracies fell below chance level (<50% correct 
responses). Participant characteristics of the final sample (n = 45)  
by BMI group are provided in Supplementary Table 7.

Stimuli
Odours included ‘phenylethyl alcohol white extra’ (rose, no. 001059147) 
and ‘cookie dough’ (cookie, no. 10610208) from International Flavors 
and Fragrances (IFF) diluted in food-grade propylene glycol. Rose 
and cookie were selected for us by IFF after we requested odours that 
were highly volatile, discernable, and equally pleasant. We also wanted 
both odours to have a ‘sweet note’, with one being edible and one ined-
ible. Although rose flavour is used in some food cultures, ratings of 
odour edibility were not significantly associated with any measure of 
odour-imagery ability in the current study (Supplementary Table 4). 
Ratings of odour liking also did not significantly differ for the rose and 
cookie odours in our sample (Extended Data Fig. 6d). The bogus taste 
test consisted of eight Grandma’s Homestyle Chocolate Chip Cookies 
broken into bite-sized pieces and presented on two plates (for a total 
of ~280 g or ~1,360 kcal), alongside a 16-fl-oz water bottle.

Experimental procedures
The study consisted of three behavioural sessions and one fMRI scan  
at baseline, along with a follow-up session 1 year later. Full data  
collection from the first (baseline) to last (follow-up) sessions spanned 
6 October 2020–3 June 2022. The fMRI scan was scheduled between 
8.00 a.m. and 1.00 p.m., and all other sessions took place between 
8.00 a.m. and 8.00 p.m. We ensured that food craving and intake  
were assessed between the hours of 11.30 a.m. to 7.00 p.m. Individuals  
were instructed to arrive to all sessions neither hungry nor full,  
but fasted for at least 1 hour. Data collection and analysis were not 
performed blind to the conditions of the experiments.

Behavioural sessions. Training and scales. Participants were first 
trained to make computerized ratings in PsychoPy version 3.0 (ref. 36) 
by practicing with imagined sensations (for example, the taste of their 
favourite chocolate) and real stimuli (for example, the brightness of 
the ceiling light or the pressure of a weight). Intensity and liking were 
rated with the vertical category-ratio general Labeled Magnitude Scale 
(gLMS)37–39 and Labeled Hedonic Scale (LHS)40, respectively. The gLMS 
ratings were log10-transformed prior to any analyses. All other ratings 
were made on horizontal visual analogue scales (VASs). Familiarity 
and edibility were rated from ‘not at all familiar’ to ‘more familiar than 
anything’ and from ‘not at all’ to ‘more than anything’ in response to 
‘How much do you want to eat this?’, respectively. Internal state ratings 
for hunger, fullness, thirst, anxiety, and need to urinate were made 
from ‘not at all (hungry or full)’ to ‘more (hungry or full) than anything’. 
Subjective hunger was calculated as the difference of the VAS rating for 
hunger minus the VAS rating for fullness. Participants also practiced 
one odour run in a mock MRI simulator in the lab.

Adiposity. Body weight was measured with an electronic scale, and 
height was measured with a digital stadiometer to calculate BMI.  
Bioelectric impedance analysis (Seca Medical Body Composition  
Analyzer mBCA 525) was used to obtain body-fat percentage; values 
were divided by 21 for females and by 31 for males to adjust for sex.

Questionnaires. Participants completed the Vividness of Olfactory 
Imagery41 and Vividness of Visual Imagery7 Questionnaires (VOIQ and 
VVIQ), in which they imagined odours or visual objects in 16 scenarios 
and rated the vividness of their mental imagery from one ‘perfectly 
clear and as vivid as normal smell/vision’ to five ‘no image at all—you 
only know you are thinking of an odour/object’. Both inventories were 
reverse-scored such that higher sums reflected larger self-reported 
imagery ability. Participants also did a modified Vividness of Food 
Imagery Questionnaire (VFIQ)8 that was similar to the VOIQ but 
focused on the ability to imagine external food odours (for example, 
of cookies in the oven) and flavours in the mouth (for example, of 
eating cookies, which also rely on olfaction). Total weekly metabolic 
equivalent task-minutes (MET-minutes) from the International Physical 
Activity Questionnaire (IPAQ)42 was used to assess habitual exercise. 
MET-minutes for each type of physical activity represent the total min-
utes dedicated to the activity times the estimated energy expenditure 
during the activity as a multiple of resting energy expenditure (for 
example, vigorous activities count more toward MET score than do 
moderate activities). The total score from an American version of the 
Dietary Fat and Free Sugar Short Questionnaire (DFS)43 was measured 
to quantify high-fat and high-carbohydrate intake.

Perceptual task of odour-imagery ability. Detection thresholds 
for the rose and cookie odours were first determined using a 16-step 
dilution series (4% odour by volume to 1.22 ppm) in a two-alternative 
forced-choice staircase procedure44. In a within-participant and coun-
terbalanced design, blindfolded participants completed three imagery 
conditions (odour, visual, and none) of a validated perceptual task5. 
During odour and visual imagery, they were instructed to imagine 
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the smell or sight of one odour type (for example, rose) while trying 
to determine which of two samples ‘smelled stronger’. In matched 
trials, the two samples contained: (1) the same odour as the imagined 
type—for example, rose, if imagining a rose odour—at their detection 
threshold level, and (2) the odourless propylene glycol diluent. In mis-
matched trials, the two samples were: (1) the incongruent odour—for 
example, cookie, and (2) the odourless diluent. In the no imagery condi-
tion, odour-detection trials were performed in the absence of imagery. 
The odour and visual imagery conditions contained 25 matched and 
25 mismatched trials per odour (100 total), and the no-imagery con-
dition consisted of 25 trials per odour (50 total), all counterbalanced  
for presentation order (that is, sample one contained the odour in  
50% of trials). The interference effect (perceptual measure of odour- 
imagery ability) was calculated by subtracting detection accuracy 
(percentage of correct trials) in mismatched trials from that in 
matched trials of the odour-imagery condition. The potential presence  
of a visual interference effect was also determined by subtracting 
detection accuracy in mismatched trials from that in matched trials of 
the visual imagery condition. As none was observed (Fig. 1f), the ‘inter-
ference effect’ always refers to the odour rather than visual-imagery 
condition.

Food-cue reactivity. Cue-induced craving strength was rated in 
response to 90 palatable food pictures15 on a horizontal VAS from  
‘I do not want it at all’ to ‘I crave it more than anything’, and the average 
was calculated. Items included familiar US snacks and meals, such as 
pizza and doughnuts. For cue-potentiated intake, participants com-
pleted a bogus taste test16 in which they were instructed to eat as much 
as they liked while comparing the sensory properties of two plates of 
cookies (for example, which tastes sweeter or saltier, is fresher, or 
has better-quality chocolate). They were not explicitly told that the 
cookies were identical and that the primary aim was to quantify the 
grams consumed. Data from two participants were excluded from 
this measure after they ate more than 3 s.d. above the group mean. 
Following the food-craving and food-intake paradigms, participants 
also rated their liking on the LHS40 and frequency of consumption in a 
typical month on a VAS (labels: 1 or less per month, 2 per month, 3 per 
month, 1 per week, 2 per week, 3–4 per week, 5–6 per week, 1 per day, 
2 or more per day) for each stimulus.

fMRI session. Participants underwent fMRI scanning while performing 
a task in an event-related design with six trial types: smell rose, cookie, 
or clean air; and imagine rose, cookie, or clean air. Each trial began 
with a 5-s auditory cue of ‘smell’ or ‘imagine’ followed by the name of 
the odour (for example, ‘rose’) and the countdown ‘three, two, one, 
sniff’. We instructed participants in each trial to sniff, prompted by 
the auditory cue to equate attentional demands. Delivery of odour or 
clean air (3 s) was time-locked to sniff onset. Trials were separated by 
intertrial intervals of 7–17 s (mean, 10 s). Participants completed 30 
pseudorandomized trials per run (5 of each type) and 5 runs per scan. 
Runs were ~9 min long and separated by ~2-min breaks to minimize 
olfactory habituation. Stimuli were delivered at concentrations match-
ing individual ratings of moderate intensity on the gLMS with a custom 
MRI-compatible olfactometer that has previously been described in 
detail45 (also see the Supplementary Methods).

fMRI data were acquired with a Siemens 3 Tesla Magnetom Prisma 
scanner using a 32-channel head coil. Images were collected at an 
angle of 30° off the intercommissural line to reduce susceptibility 
artifacts in olfactory regions. Sagittal T1 anatomical images (repeti-
tion time (TR), 1,900 ms; echo time (TE), 2.52 ms; 176 slices; field of 
view (FOV), 250 mm; voxel size, 1×1×1 mm) and functional echo-planar 
images (EPIs) with a multiband blood-oxygen-level dependent 
(BOLD) sequence (TR, 2,100 ms; TE, 40 ms; 72 slices; flip angle, 85°; 
FOV, 192 mm; voxel size, 1.5×1.5×1.5 mm; multiband acceleration fac-
tor, 4) were obtained.

Follow-up session. The primary goal of the follow-up session was to 
assess changes in adiposity. All but one participant returned to the 
lab approximately 1 year later (days elapsed from first to last session: 
mean, 363.17, s.d., 7.33, range, 340–378) and repeated the adiposity, 
questionnaire, and FCR measures, but not the odour-imagery meas-
ures. Follow-up data from one participant were excluded after they 
began a strict diet and lost more than 3 s.d. above the group mean in 
weight change from the baseline to the follow-up sessions.

Data analyses
Behavioural analyses. Pearson correlations, linear regressions, 
linear mixed-effects models, analyses of variance (ANOVAs), and 
Student’s t-tests were performed in MATLAB 2020a (Mathworks). 
For ANOVAs assessing the interaction of two variables, we included 
in the model each of the two variables independently, the interaction 
of the two, and any control variables indicated in the text. Variables 
of interest with outliers >3 s.d. above or below the group mean were 
removed if they changed the nature of the results. Data distribution 
was assumed to be normal, but this was not formally tested. All statis-
tical tests were two-sided. Corrections for multiple comparisons were 
made by adjusting the P value for the number of tests at each step 
using the Bonferroni method. The only exception was in determin-
ing variables that should be included as covariates. In these limited 
cases (for example, the associations between food intake and sex 
or food liking), correction for multiple comparisons was not per-
formed to err on the side of caution. Data were plotted in Prism ver-
sion 9.4.1 (GraphPad Software). For test–retest reliability, intraclass 
correlation coefficient estimates and 95% CIs were calculated in SPSS  
based on single-measure, absolute agreement, two-way mixed  
models. All measures showed moderate to good reliability (Supple-
mentary Table 8). For details of the sniff analyses (reported in Extended  
Data Fig. 7 and Supplementary Table 9), see the Supplementary 
Methods.

Mediation and moderated mediation models were tested with 
bootstrapping (10,000 samples, 95% CIs) using the ‘PROCESS’ macro 
version 4.1 (ref. 46) models 4 and 7 implemented in SPSS Statistics 
version 28 (IBM). Significant effects were supported by CIs excluding 
zero within the lower and upper bounds. The selection of these models 
is described in the Supplementary Methods.

fMRI analyses. Preprocessing. The fMRI data were preprocessed and 
analysed using FSL version 5.0.10 (FMRIB Software Library47) and SPM12 
(Statistical Parametric Mapping) implemented in MATLAB R2019b. 
Functional EPIs were realigned to the mean and were unwarped using 
fieldmaps, slice-time corrected, and motion-corrected with the FSL 
tool MCFLIRT48. The anatomical T1 image was co-registered to the mean 
EPI and spatially normalized to the standard MNI-152 reference with 
unified segmentation in SPM12. Prior to the univariate analyses, the 
resulting nonlinear deformation fields were applied to the EPI images, 
which were then smoothed with a 3-mm full-width-half-maximum 
Gaussian kernel.

First-level models. General linear models (GLMs) were estimated 
for each participant and run, separately for the normalized and 
smoothed EPI data (for univariate analyses) and the non-normalized 
and non-smoothed EPI data (for decoding analyses). In each, the six 
trial types (smell rose, cookie, or clean air and imagine rose, cookie, 
or clean air) were modelled with a canonical hemodynamic response 
function as events of interest with onsets time-locked to the start of 
odour or clean air delivery and durations of 3 s. The following nui-
sance regressors were also included: 24 motion parameters (the 6 SPM 
realignment parameters for the current volume, 6 for the preceding 
volume, and each of these values squared49; the mean signal extracted 
from the ventricular cerebrospinal fluid computed with fslmeants, a 
matrix of motion-outlier volumes identified using fsl_motion_outliers 
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(threshold, 75th percentile plus 2.5 times the interquartile range and/or 
greater than 1 mm of framewise displacement50); and the preprocessed 
sniff trace down-sampled to the scanner temporal resolution with deci-
mation. A 128-s high-pass filter was applied to remove low-frequency 
noise and slow signal drifts.

Univariate analyses. As there was no main effect of odour type (rose 
or cookie) on fMRI activity (PFWE (cluster-level family-wise error cor-
rected across the whole brain) ≥ 0.3214), we collapsed across the odour-
ants in the subsequent univariate analyses (Extended Data Fig. 3 and  
Supplementary Tables 10–13), aside from testing VS reactivity to  
smelling the food odour. The following contrast images were created 
at the single-subject level and averaged across the five runs: smell 
odour (rose + cookie) > smell clean air, imagine odour > imagine clean 
air, imagine odour > smell clean air, smell odour > imagine odour, and 
imagine odour > smell odour. The contrast images of smell cookie > 
smell rose and smell cookie > smell clean air were also created to allow 
us to assess VS reactivity.

Group-level random-effects analyses were conducted with 
one-sample t-tests with a threshold of Puncorrected < 0.001 and a cluster  
size of at least five contiguous voxels. Conjunction analyses were 
performed for the contrasts smell odour > smell clean air and imag-
ine odour > imagine clean air using the conjunction null hypothesis. 
Effects were considered significant at PFWE < 0.05. We also regressed 
the perceptual measure of odour-imagery ability (that is, the inter-
ference effect) against whole-brain BOLD responses to imagining 
odours > imagining clean air, imagining odours > smelling clean air, and 
imagining odours > smelling odours. Here we considered whole-brain 
effects and those significant in the piriform cortex at a peak level of 
PFWE-SVC < 0.05 (family-wise error small-volume corrected for multiple 
comparisons in our two ROIs, see below). The PFWE-SVC values were sub-
sequently Bonferroni corrected for the two SVC searches. Finally, for 
VS reactivity, we regressed variables of interest against whole-brain 
BOLD responses in the contrasts of smelling cookie > smelling rose and 
smelling cookie > smelling clean air. We considered effects significant 
in a bilateral ventral striatum mask derived from Bartra et al. (‘positive 
> negative effects of subjective valuation on BOLD’)51 at PFWE-SVC < 0.05. 
The anatomical labels were determined jointly from the Atlas of  
the Human Brain52, an adult maximum probability atlas prepared  
with SPM12 (www.brain-development.org)53, and the Automated  
Anatomical Labeling Atlas 3 (ref. 54).

Decoding analyses. The ROIs for the decoding analyses included the 
left and right piriform cortices and were independently created from 
the Neurosynth55 meta-analytic functional map for the term ‘olfactory’ 
(74 studies with 2,021 activations, downloaded 15 September 2021). 
Activations from this map were restricted to a threshold of z = 6 to 
ensure separability of the piriform clusters from other nearby regions 
(for example, the insula). Control regions for the decoding analyses 
included the left and right primary visual cortices from the Automated 
Anatomical Labeling Atlas 3 (ref. 54) (‘calcarine fissure and surrounding 
cortex’). The ROIs and control regions were converted from MNI space 
to each participant’s native EPI space (voxel size, 1.5×1.5×1.5 mm). This 
resulted in clusters of 190 and 111 voxels for the left and right piriform 
ROIs, respectively.

MVPA was performed using The Decoding Toolbox56 version 
3.999E implemented in SPM12. For the first decoding method (SVM 
classification), separate voxel-wise patterns were created for smell-
ing and imagining the rose and cookie odours by extracting the 
parameter estimates from the first-level GLMs and subtracting the 
mean activity across the conditions in each run. This resulted in 
one rose and one cookie fMRI pattern per condition and run (for 
example, smell rose and smell cookie) for training or testing in a 
cross-validated approach. Feature selection was used to identify 
the top class-discriminative voxels in each ROI or control region 

with an ANOVA, restricted to the maximum number of voxels in each 
ROI available for all participants. An SVM from the Library for Sup-
port Vector Machines (LIBSVM) package57 was trained to decode 
rose versus cookie using patterns of BOLD activation for smelling 
the odours in four of five scan runs. The SVM was then tested for its 
accuracy in predicting these odour types from the patterns in the 
left-out run. These steps were repeated for training and testing on 
the imagined-odour patterns, and for training on smelled odours 
and testing on imagined odours (and vice versa, averaged for the 
cross-modal condition). SVM accuracies were compared with chance 
(50%) in one-sample t-tests to assess group-level significance. SVM 
accuracies for the decoding of real odours in the left versus right 
piriform cortex were also directly compared with a paired-samples 
t-test to assess the laterality of the effect.

While reliable and a standard approach, this form of run-wise 
MVPA provides a relatively insensitive outcome metric that is not 
well-suited for correlation analyses (see the Supplementary Methods). 
For a more sensitive measure, we used a second decoding method: 
split-half voxel correlations. The first BOLD run was treated as an odour 
localizer, which resulted in an equivalent number of even and odd runs 
remaining for decoding (two each). The voxels for each participant 
and ROI or control region were functionally ranked according to their 
t values in the contrast of smelling odour > smelling clean air from the 
localizer. Again, the maximum number of odour-active voxels avail-
able for all participants was selected. The split-half voxel correlations 
were then analysed for the within-odour (for example, smelling rose in 
even runs versus smelling rose in odd runs) minus the between-odour 
(for example, smelling rose in even runs versus smelling cookie in 
odd runs) fMRI patterns in each ROI or control region. In line with our 
SVM analyses, we performed separate tests for real, imagined, and 
cross-modal odours. The resulting correlation values were Fisher’s 
Z-transformed and compared with zero in one-sample t-tests to assess 
group-level significance. They were also tested in correlations against 
the perceptual measure of odour-imagery ability. The latter analyses 
were performed in all individuals and separately restricted to those with 
discriminable neural patterns for actual odours in each ROI or control 
region, defined as within-odour minus between-odour voxel correla-
tion Z values > 0. See the Supplementary Methods for our reasoning 
behind this restriction.

Inclusion and ethics statement
Where applicable, this research conforms to the recommendations of 
the Global Code of Conduct. All participants provided written informed 
consent and were compensated. The study was conducted in accord-
ance with the standards laid out in the Declaration of Helsinki. The 
study procedures were approved by the Yale Human Investigations 
Committee (Institutional Review Board Protocol no. 0405026766). The 
study was also preregistered on 20 January 2021, to AsPredicted.org 
under access no. 56278, available at: https://aspredicted.org/by3yb.pdf.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The raw MRI data and sniff airflow traces can be downloaded from  
the OpenNEURO repository under accession no. ds004327 at:  
https://doi.org/10.18112/openneuro.ds004327.v1.0.1. Statistical maps 
of the human brain data are available on the NeuroVault repository at: 
https://neurovault.org/collections/14751/. Source data are provided 
with this paper.

Code availability
Custom code used in data collection and analysis is available at:  
https://github.com/eeperszyk/odor-imagery.

http://www.nature.com/natmetab
http://www.brain-development.org
https://aspredicted.org/by3yb.pdf
https://doi.org/10.18112/openneuro.ds004327.v1.0.1
https://neurovault.org/collections/14751/
https://github.com/eeperszyk/odor-imagery


Nature Metabolism | Volume 5 | September 2023 | 1483–1493 1492

Letter https://doi.org/10.1038/s42255-023-00874-z

References
1. Hendrikse, J. J. et al. Attentional biases for food cues in 

overweight and individuals with obesity: a systematic review of 
the literature. Obes. Rev. 16, 424–432 (2015).

2. Boswell, R. G. & Kober, H. Food cue reactivity and craving predict 
eating and weight gain: a meta-analytic review. Obes. Rev. 17, 
159–177 (2016).

3. Kavanagh, D. J., Andrade, J. & May, J. Imaginary relish and 
exquisite torture: the elaborated intrusion theory of desire. 
Psychol. Rev. 112, 446–467 (2005).

4. Schifferstein, H. N. J. Comparing mental imagery across the 
sensory modalities. Imagin. Cogn. Pers. 28, 371–388 (2009).

5. Djordjevic, J., Zatorre, R. J., Petrides, M. & Jones-Gotman, M. The 
mind’s nose: effects of odor and visual imagery on odor detection. 
Psychol. Sci. 15, 143–148 (2004).

6. Bensafi, M. & Rouby, C. Individual differences in odor imaging 
ability reflect differences in olfactory and emotional perception. 
Chem. Senses 32, 237–244 (2007).

7. Marks, D. F. Visual imagery differences in the recall of pictures.  
Br. J. Psychol. 64, 17–24 (1973).

8. Patel, B. P., Aschenbrenner, K., Shamah, D. & Small, D. M. Greater 
perceived ability to form vivid mental images in individuals with 
high compared to low BMI. Appetite 91, 185–189 (2015).

9. Djordjevic, J., Zatorre, R. J., Petrides, M., Boyle, J. A. & 
Jones-Gotman, M. Functional neuroimaging of odor imagery. 
NeuroImage 24, 791–801 (2005).

10. Howard, J. D., Plailly, J., Grueschow, M., Haynes, J.-D. &  
Gottfried, J. A. Odor quality coding and categorization in human 
posterior piriform cortex. Nat. Neurosci. 12, 932–938 (2009).

11. Zatorre, R. J., Jones-Gotman, M., Evans, A. C. & Meyer, E. 
Functional localization and lateralization of human olfactory 
cortex. Nature 360, 339–340 (1992).

12. Zatorre, R. J. & Jones-Gotman, M. Human olfactory discrimination 
after unilateral frontal or temporal lobectomy. Brain 114A, 71–84 
(1991).

13. Wei, C.-S. et al. Editorial: inter- and intra-subject variability in 
brain imaging and decoding. Front. Comput. Neurosci. 15, 791129 
(2021).

14. Stettler, D. D. & Axel, R. Representations of odor in the piriform 
cortex. Neuron 63, 854–864 (2009).

15. Boswell, R. G., Sun, W., Suzuki, S. & Kober, H. Training in cognitive 
strategies reduces eating and improves food choice. Proc. Natl 
Acad. Sci. USA 115, E11238–E11247 (2018).

16. Robinson, E. et al. The bogus taste test: validity as a measure of 
laboratory food intake. Appetite 116, 223–231 (2017).

17. O’Rourke, H. P. & MacKinnon, D. P. Reasons for testing mediation 
in the absence of an intervention effect: a research imperative in 
prevention and intervention research. J. Stud. Alcohol Drugs 79, 
171–181 (2018).

18. Preacher, K. J. & Hayes, A. F. SPSS and SAS procedures for 
estimating indirect effects in simple mediation models.  
Behav. Res. Methods Instrum. Comput. 36, 717–731 (2004).

19. Moulton, S. T. & Kosslyn, S. M. Imagining predictions: mental 
imagery as mental emulation. Philos. Trans. R. Soc. B Biol. Sci. 
364, 1273–1280 (2009).

20. de Araujo, I. E., Schatzker, M. & Small, D. M. Rethinking food 
reward. Annu. Rev. Psychol. 71, 139–164 (2020).

21. Tsuneki, H. et al. Food odor perception promotes systemic lipid 
utilization. Nat. Metab. 4, 1514–1531 (2022).

22. Gottfried, J. A., Winston, J. S. & Dolan, R. J. Dissociable codes of 
odor quality and odorant structure in human piriform cortex. 
Neuron 49, 467–479 (2006).

23. Ganis, G., Thompson, W. L. & Kosslyn, S. M. Brain areas underlying 
visual mental imagery and visual perception: an fMRI study.  
Cogn. Brain Res. 20, 226–241 (2004).

24. Steel, A., Billings, M. M., Silson, E. H. & Robertson, C. E. A network 
linking scene perception and spatial memory systems in posterior 
cerebral cortex. Nat. Commun. 12, 2632 (2021).

25. Perszyk, E. E., Davis, X. S. & Small, D. M. Olfactory decoding is 
positively associated with ad libitum food intake in sated humans. 
Appetite 180, 106351 (2023).

26. Stafford, L. D. & Whittle, A. Obese individuals have higher 
preference and sensitivity to odor of chocolate. Chem. Senses 
40, 279–284 (2015).

27. Han, P., Chen, H. & Hummel, T. Brain responses to food odors 
associated with BMI change at 2-year follow-up. Front. Hum. 
Neurosci. 14, 402 (2020).

28. Patel, Z. M., DelGaudio, J. M. & Wise, S. K. Higher body mass index 
is associated with subjective olfactory dysfunction. Behav. Neurol. 
2015, e675635 (2015).

29. Sun, X. et al. Basolateral amygdala response to food cues in the 
absence of hunger is associated with weight gain susceptibility.  
J. Neurosci. 35, 7964–7976 (2015).

30. Poessel, M. et al. Brain response to food odors is not associated 
with body mass index and obesity-related metabolic health 
measures. Appetite 168, 105774 (2021).

31. Han, P., Roitzsch, C., Horstmann, A., Pössel, M. & Hummel, T. 
Increased brain reward responsivity to food-related odors in 
obesity. Obesity 29, 1138–1145 (2021).

32. Li, G. et al. Brain functional and structural magnetic resonance 
imaging of obesity and weight loss interventions. Mol. Psychiatry 
28, 1466–1479 (2023).

33. Dalton, P. Odor perception and beliefs about risk. Chem. Senses 
21, 447–458 (1996).

34. Faul, F., Erdfelder, E., Lang, A.-G. & Buchner, A. G*Power 3: 
a flexible statistical power analysis program for the social, 
behavioral, and biomedical sciences. Behav. Res. Methods 39, 
175–191 (2007).

35. Faul, F., Erdfelder, E., Buchner, A. & Lang, A.-G. Statistical power 
analyses using G*Power 3.1: tests for correlation and regression 
analyses. Behav. Res. Methods 41, 1149–1160 (2009).

36. Peirce, J. W. PsychoPy—psychophysics software in Python.  
J. Neurosci. Methods 162, 8–13 (2007).

37. Bartoshuk, L. M. et al. Valid across-group comparisons with labeled 
scales: the gLMS versus magnitude matching. Physiol. Behav. 82, 
109–114 (2004).

38. Green, B. G., Shaffer, G. S. & Gilmore, M. M. Derivation and 
evaluation of a semantic scale of oral sensation magnitude  
with apparent ratio properties. Chem. Senses 18, 683–702  
(1993).

39. Green, B. G. et al. Evaluating the ‘labeled magnitude scale’ for 
measuring sensations of taste and smell. Chem. Senses 21, 
323–334 (1996).

40. Lim, J., Wood, A. & Green, B. G. Derivation and evaluation of a 
labeled hedonic scale. Chem. Senses 34, 739–751 (2009).

41. Gilbert, A., Voss, M. & Kroll, J. Vividness of olfactory mental 
imagery: correlations with sensory response and consumer 
behavior. Chem. Senses 22, 686 (1997).

42. Hagströmer, M., Oja, P. & Sjöström, M. The International Physical 
Activity Questionnaire (IPAQ): a study of concurrent and construct 
validity. Public Health Nutr. 9, 755–762 (2006).

43. Francis, H. & Stevenson, R. Validity and test–retest reliability of 
a short dietary questionnaire to assess intake of saturated fat 
and free sugars: a preliminary study. J. Hum. Nutr. Dietetics 26, 
234–242 (2013).

44. Doty, R. L. Office procedures for quantitative assessment of 
olfactory function. Am. J. Rhinol. 21, 460–473 (2007).

45. Small, D. M., Veldhuizen, M. G., Felsted, J., Mak, Y. E. & McGlone, F.  
Separable substrates for anticipatory and consummatory food 
chemosensation. Neuron 57, 786–797 (2008).

http://www.nature.com/natmetab


Nature Metabolism | Volume 5 | September 2023 | 1483–1493 1493

Letter https://doi.org/10.1038/s42255-023-00874-z

46. Hayes, A. F. Introduction to Mediation, Moderation, and Conditional 
Process Analysis: A Regression-Based Approach 2nd edn (Guilford 
Publications, 2017).

47. Jenkinson, M., Beckmann, C. F., Behrens, T. E. J., Woolrich, M. W. & 
Smith, S. M. FSL. NeuroImage 62, 782–790 (2012).

48. Jenkinson, M., Bannister, P., Brady, M. & Smith, S. Improved 
optimization for the robust and accurate linear registration and 
motion correction of brain images. NeuroImage 17, 825–841 
(2002).

49. Friston, K. J., Williams, S., Howard, R., Frackowiak, R. S. J. & Turner, R.  
Movement-related effects in fMRI time-series. Magn. Reson. Med. 
35, 346–355 (1996).

50. Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L. & 
Petersen, S. E. Spurious but systematic correlations in functional 
connectivity MRI networks arise from subject motion. NeuroImage 
59, 2142–2154 (2012).

51. Bartra, O., McGuire, J. T. & Kable, J. W. The valuation system: 
a coordinate-based meta-analysis of BOLD fMRI experiments 
examining neural correlates of subjective value. NeuroImage 76, 
412–427 (2013).

52. Mai, J. K., Majtanik, M. & Paxinos, G. Atlas of the Human Brain  
4th edn (Academic Press, 2015).

53. Hammers, A. et al. Three-dimensional maximum probability atlas 
of the human brain, with particular reference to the temporal 
lobe. Hum. Brain Mapp. 19, 224–247 (2003).

54. Rolls, E. T., Huang, C.-C., Lin, C.-P., Feng, J. & Joliot, M. Automated 
anatomical labelling atlas 3. NeuroImage 206, 116189 (2020).

55. Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C. &  
Wager, T. D. Large-scale automated synthesis of human functional 
neuroimaging data. Nat. Methods 8, 665–670 (2011).

56. Hebart, M. N., Görgen, K. & Haynes, J.-D. The Decoding Toolbox 
(TDT): a versatile software package for multivariate analyses of 
functional imaging data. Front. Neuroinform. 8, 88 (2015).

57. Chang, C.-C. & Lin, C.-J. LIBSVM: a library for support vector 
machines. ACM Trans. Intell. Syst. Technol. 2, 27:1–27:27 (2011).

Acknowledgements
This work was supported by the National Science Foundation 
Graduate Research Fellowship under Grant No. 2139841 (E.E.P.), the 
National Institute of Diabetes and Digestive and Kidney Diseases 
of the National Institutes of Health under Award No. F31DK130556 
(E.E.P.), and the Modern Diet and Physiology Research Center (D.M.S.). 
The content is solely the responsibility of the authors and does 
not necessarily represent the official views of the National Science 
Foundation or the National Institutes of Health. We would like to thank 
J. Avery for advice on the fMRI decoding methods; B. Kuzmanovic for 
guidance on the fMRI preprocessing pipeline; J. Howard for example 
code to perform the sniffing analyses; T. Hummel, J. Lundström, 

J. Mainland, and P. Wise for their thoughts on troubleshooting the 
odour-detection threshold testing; A. Dagher, R. DiLeone, and B. Green 
for their helpful suggestions on project design and analyses; and K. 
Martin for MR technical assistance.

Author contributions
Conceptualization, E.E.P. and D.M.S.; Methodology, E.E.P., X.S.D., J.D., 
M.J.-G., J.T., Z.H., M.G.V., L.K., T.D.W., H.K., and D.M.S.; Formal Analysis, 
E.E.P., L.K., and X.S.D.; Investigation, E.E.P. and J.T.; Resources, X.S.D., 
J.D., M.J.-G., Z.H., M.G.V., L.K., T.D.W., H.K., and D.M.S.; Data Curation, 
E.E.P.; Writing – Original Draft, E.E.P. and D.M.S.; Writing – Review 
& Editing, X.S.D., J.D., M.J.-G., J.T., Z.H., M.G.V., L.K. T.D.W., and H.K.; 
Visualization, E.E.P.; Supervision, X.S.D., H.K., and D.M.S.; Funding 
Acquisition, E.E.P. and D.M.S.

Competing interests
The authors declare no competing interests.

Additional information
Extended data is available for this paper at  
https://doi.org/10.1038/s42255-023-00874-z.

Supplementary information The online version contains supplementary 
material available at https://doi.org/10.1038/s42255-023-00874-z.

Correspondence and requests for materials should be addressed to 
Emily E. Perszyk or Dana M. Small.

Peer review information Nature Metabolism thanks Annette 
Horstmann, Gene-Jack Wang and Nils Kohn for their contribution 
to the peer review of this work. Primary Handling editor: Ashley 
Castellanos-Jankiewicz, in collaboration with the Nature Metabolism 
team.

Reprints and permissions information is available at  
www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with 
the author(s) or other rightsholder(s); author self-archiving of the 
accepted manuscript version of this article is solely governed by the 
terms of such publishing agreement and applicable law.

© The Author(s), under exclusive licence to Springer Nature Limited 
2023

http://www.nature.com/natmetab
https://doi.org/10.1038/s42255-023-00874-z
https://doi.org/10.1038/s42255-023-00874-z
http://www.nature.com/reprints


Nature Metabolism

Letter https://doi.org/10.1038/s42255-023-00874-z

Extended Data Fig. 1 | The perceptual measure of odour-imagery ability 
positively correlates with self-reported odour and flavor, but not visual, 
imagery ability. a–c, The perceptual measure of odour-imagery ability (that is, 
the interference effect) positively correlated with self-reported odour (a) and 
flavor (b), but not visual (c), imagery ability. We note that the self-report and 
perceptual measures of odour-imagery ability did not vary by sex, age, household 
income, olfactory function or perception, sniff parameters, hunger, or dietary 
habits (Supplementary Table 4). Scatterplots depict single participants and the 

95% CI around the line of best fit. Linear relationships were tested with two-tailed 
Pearson’s r correlations. p.p., percentage points, referring to the difference in 
odour detection accuracies (percentages) during matched versus mismatched 
trials of the odour-imagery condition from the perceptual task (see Fig. 1e,f); 
VOIQ, Vividness of Olfactory Imagery Questionnaire41; VFIQ, Vividness of Food 
Imagery Questionnaire8; VVIQ, Vividness of Visual Imagery Questionnaire7; 
*Pcorrected < 0.05 (3 tests comparing the interference effect to self-reported odour, 
flavor, or visual-imagery ability).
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Extended Data Fig. 2 | Decoding is not significant in primary visual cortex 
control regions. a, Control regions for the neural decoding analyses included 
the left and right primary visual cortices. b–c, SVM accuracies (b) and voxel 
correlations (c) were not significant for real, imagined, or cross-modal odours in 
either control region. Box-and-whisker plots represent single participants from 

the minimum to maximum (whiskers) around the 25th to 75th percentiles (box 
limits), along with the median (center line) and mean (+symbol) of the data.  
L, left; R, right; SVM, support vector machine; V1, primary visual cortex. See also 
Fig. 2 for additional details on the two decoding methods and significant effects 
in the piriform cortex regions of interest.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Univariate fMRI activity to smelling and imagining 
odours. a, BOLD responses to smelling odours (rose and cookie) > smelling 
clean air were significant in the bilateral insula, piriform/amygdala, orbitofrontal 
cortices, cerebellum, and middle frontal and cingulate gyri, among other 
regions (Supplementary Table 10). Whole-brain statistical map can be viewed 
at: https://neurovault.org/images/798927/. b, BOLD responses to imagining 
odours > imagining clean air (while sniffing) were significant in the bilateral 
insula, right putamen, and left cerebellum (Supplementary Table 11). Whole-
brain statistical map can be viewed at: https://neurovault.org/images/798926/. 
c, BOLD responses to imagining odours > smelling clean air were significant in 
the bilateral insula, putamen extending into the piriform cortices, pallidum, 
and orbitofrontal, middle frontal, and precentral gyri, among other regions 
(Supplementary Table 12). Whole-brain statistical map can be viewed at: https://
neurovault.org/images/798923/. d, BOLD responses in the conjunction of 
smelling odours > smelling clean air and imagining odours > imagining clean air 
were significant in the bilateral insula and putamen extending into the piriform 

cortices, along with the left precentral gyrus (Supplementary Table 13). Whole-
brain statistical map can be viewed at: https://neurovault.org/images/798917/. 
e, BOLD responses to smelling odours > imagining odours were significant in 
the bilateral insula and amygdala along with the right uncus and orbitofrontal 
cortex, among other regions (Supplementary Table 13). Those to imagining 
odours > smelling odours were significant in the left supplementary motor 
area (Supplementary Table 13). Whole-brain statistical map can be viewed at: 
https://neurovault.org/images/798924/. Brain sections show the SPM t-map 
(Puncorrected < 0.005, clusters of at least 5 voxels) overlaid onto an anatomical 
template in MNI coordinates for illustrative purposes. In each panel, the top row 
depicts 3D coronal sections (18–mm thick) evenly spanning y = 56 to –88 mm 
(for a–c) or y = 56 to –16 mm (for d–e), and the bottom row highlights important 
areas of activation with custom coordinates (see Supplementary Tables 10–13). 
Color bars depict t values. L, left; R, right; Amyg, amygdala; Ins, insula; OFC, 
orbitofrontal cortex; Pir, piriform cortex; Put, putamen; SMA, supplementary 
motor area.
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Extended Data Fig. 4 | Odour-imagery ability is not associated with changes 
in adiposity. a–c, Neither the self-report (a), perceptual (b), nor neural (c) 
measure of odour-imagery ability predicted changes in BMI over one year from 
the baseline to follow-up sessions. d–f, Neither the self-report (d), perceptual (e), 
nor neural (f) measure of odour-imagery ability predicted changes in body-fat 
percentage over one year from the baseline to follow-up sessions. Scatterplots 
depict single participants and the 95% CI around the line of best fit. Linear 

relationships were tested with two-tailed Pearson’s r correlations. As no effects 
were significant, all P-values were left uncorrected. a.u., arbitrary units, referring 
to sex-adjusted changes in body-fat percentage over one year; p.p., percentage 
points, referring to the difference in odour detection accuracies (percentages) 
during matched versus mismatched trials of the odour-imagery condition 
from the perceptual task (see Fig. 1e,f); VOIQ, Vividness of Olfactory Imagery 
Questionnaire41; R, right; Pir, piriform.
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Extended Data Fig. 5 | Participant flow diagram. Flow diagram depicting the number of individuals at each stage of the study.
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Extended Data Fig. 6 | odour rating comparisons for rose versus cookie.  
a–d, The cookie odour was rated to be significantly more intense (a), familiar 
(b), and edible (c) than the rose odour in two-sided paired samples t-tests. 
There was no significant difference in liking (d). However, the cookie minus rose 
odour ratings were not correlated with any measure of odour-imagery ability 

(Supplementary Table 4). Truncated violin plots depict single participants 
(n = 44) with shading to represent the density of the points around the  
median line. R, rose; C, cookie; gLMS, general Labeled Magnitude Scale37–39; 
VAS, visual analogue scale; LHS, Labeled Hedonic Scale40; n.s., not significant. 
*Pcorrected < 0.05 (4 tests).
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Extended Data Fig. 7 | Sniff parameters for smelling and imagining the rose 
and cookie odours. a–d, Normalized sniff traces (mean ± s.e.m.) for smelling 
the rose (a) and cookie (b) odours and imagining the rose (c) and cookie (d) 
odours. e–j, Sniff amplitude (e), latency (f), volume (g), duration (h), peak 
airflow rate (i), and mean airflow rate (j) while smelling and imagining the rose 
and cookie odours. Differences in the sniff parameters for imagining the cookie 
minus rose odour were not correlated with any measure of odour-imagery ability 

(Supplementary Table 4). ANOVAs also revealed no main effects or interactions 
of modality (smell/imagine), odour (rose/cookie), or the perceptual measure 
of odour-imagery ability (the interference effect) on any sniff parameter 
(Supplementary Table 9). Truncated violin plots depict single participants 
(n = 44) with shading to represent the density of the points around the median 
line. S, smell; I, imagine; R, rose; C, cookie; a.u., arbitrary units.
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