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Matters arising

Multivariate BWAS can be replicable with 
moderate sample sizes

Tamas Spisak1,2 ✉, Ulrike Bingel2 & Tor D. Wager3

arising from: S. Marek et al. Reproducible brain-wide association studies require thousands 
of individuals. Nature https://doi.org/10.1038/s41586-022-04492-9 (2022)

Brain-wide association studies (BWAS)—which correlate individual 
differences in phenotypic traits with measures of brain structure and  
function—have become a dominant method for linking mind and brain 
over the past 30 years. Univariate BWAS typically test tens to hundreds 
of thousands of brain voxels individually, whereas multivariate BWAS 
integrate signals across brain regions into a predictive model. Numerous  
problems have been raised with univariate BWAS, including a lack 
of power and reliability and an inability to account for pattern-level 
information embedded in distributed neural circuits1–4. Multivariate 
predictive models address many of these concerns, and offer substan-
tial promise for delivering brain-based measures of behavioural and 
clinical states and traits2,3.

In their recent paper4, Marek et al. evaluated the effects of sample size 
on univariate and multivariate BWAS in three large-scale neuroimaging 
datasets and came to the general conclusion that “BWAS reproducibil-
ity requires samples with thousands of individuals”. We applaud their 
comprehensive analysis, and we agree that (1) large samples are needed 
when conducting univariate BWAS and (2) multivariate BWAS reveal 
substantially larger effects and are therefore more highly powered.

Marek et al.4 find that multivariate BWAS provide inflated in-sample 
associations that often cannot be replicated (that is, are underpow-
ered) unless thousands of participants are included. This implies that 
effect-size estimates from the discovery sample are necessarily inflated. 
However, we distinguish between the effect-size estimation method 
(in-sample versus cross-validated) and the sample (discovery versus 
replication), and show that, with appropriate cross-validation, the 
in-sample inflation that Marek et al.4 report in the discovery sample can 
be entirely eliminated. With additional analyses, we demonstrate that 
multivariate BWAS effects in high-quality datasets can be replicable 
with substantially smaller sample sizes in some cases. Specifically, 
applying a standard multivariate prediction algorithm to functional 
connectivity in the Human Connectome Project yielded replicable 
effects with sample sizes of 75–500 for 5 of 6 phenotypes tested (Fig. 1).

These analyses are limited to a selected number of phenotypes in a 
relatively high-quality dataset (measured in a young adult population 
with a single scanner) and should not be overgeneralized. However, 
they highlight that the key determinant of sample size requirements 
is the true effect size of the brain–phenotype relationship and that, 
with proper internal validation, appropriate effect-size estimates and 
sufficiently large effects for moderately sized studies are possible.

Marek et al.4 evaluate in-sample effect-size inflation in multivariate 
BWAS by training various multivariate models in a ‘discovery sample’ 

and comparing the in-sample effect sizes (prediction–outcome corre
lation, r) estimated from the training sample to the performance in 
an independent replication sample. On the basis of a bootstrap analy-
sis, with variously sized pairs of samples drawn randomly from the 
Adolescent Brain Cognitive Development study, the authors report a 
severe effect-size inflation of Δr = −0.29 (average difference between 
the in-sample effect sizes in the discovery sample and the out-of-sample 
effect sizes in the replication sample) and conclude that “[e]ven at the 
largest sample sizes (n ≈ 2,000), multivariate in-sample associations 
remained inflated on average”.

The issue with claims of inflation is that the in-sample effect size 
estimates of Marek et al.4 were based on training multivariate mod-
els on the entire discovery sample, without cross-validation or other 
internal validation (as confirmed by inspection of the code and dis-
cussion with the authors). Such in-sample correlations are not valid 
effect-size estimates, as they produce a well-known overfitting bias 
that increases with model complexity5. Standard practice in machine 
learning is to evaluate model accuracy (and other performance metrics) 
on data independent of those used for training. In line with current 
recommendations for multivariate brain–behaviour analyses6,7, this 
is typically performed using internal cross-validation (for example, 
k-fold) to estimate unbiased effect sizes in a discovery sample, and 
(less commonly) further validating significant cross-validated effects 
in held-out or subsequently acquired replication samples2,5.

Using cross-validation to estimate discovery-sample effects impacts 
the pool of studies selected for replication attempts, the degree of 
effect-size attenuation in replication samples, and the sample size 
needed for effective replication and mitigation of publication bias. 
To demonstrate this and provide quantitative estimates of sample size 
requirements in multivariate BWAS, we analysed functional connec-
tivity data from the Human Connectome Project8 (one of the datasets 
in Marek et al.4) using cross-validation to estimate discovery-sample 
effect sizes. As shown in Fig. 1a–d, cross-validated discovery effect- 
size estimates are unbiased (that is, not inflated on average), irrespec-
tive of the sample size and the magnitude of the effect. As expected, 
even with cross-validation, smaller sample sizes resulted in lower power 
(Fig. 1e) and increased variability in effect-size estimates across sam-
ples (Fig. 1c). Such variability is undesirable because it reduces the 
probability of independent replication (Fig. 1f). Moreover, selection 
biases—most notably, publication bias—can capitalize on such variabil-
ity to inflate effect sizes in the literature (Fig. 1g). Although these effects 
of using small sample sizes are undesirable, they do not invalidate 
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size of the effects linking them, the algorithm and model-selection steps 
used and the use cases for the resulting brain measures. For example, 
multivariate models trained on as few as 20 participants9 can have high 
reliability (ICC = 0.84)10, broad external validity and large effect sizes 
(Hedges g = 2.3)11 in independent samples (for example, more than 600 
participants from 20 independent studies in ref. 11) when predicting 
behavioural states within-person rather than traits. In this case, the 
benefit of large samples is primarily in accurately estimating local brain 
weights (model parameters)12 rather than increasing out-of-sample 

the use of multivariate BWAS in small samples, and publication biases 
can be mitigated by practices that, like internal cross-validation, are 
quickly becoming standards in the field2,5. These include preregistra-
tion, registered reports, reporting confidence intervals and the use 
of hold-out samples tested only once on a single, optimized model to 
avoid overfitting.

Given these considerations, we wondered how many participants are 
generally required for multivariate BWAS. The answer to this question 
depends on the reliability of both phenotypic and brain measures, the 
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Fig. 1 | Examples of multivariate BWAS providing unbiased effect sizes and 
high replicability with low to moderate sample sizes. a, Discovery sample 
effects in multivariate BWAS are inflated only if estimates are obtained without 
cross-validation (CV). b, Cross-validation fully eliminates in-sample effect-size 
inflation and, as a consequence, provides higher replicability. Data are from 
the Human Connectome Project (HCP1200, PTN release, n = 1,003). Each point 
in a and b corresponds to one bootstrap subsample, as in figure 4b of Marek 
et al.4. The dotted lines denote the threshold for P = 0.05 with n = 495. Mean 
multivariate brain–behavioural phenotype associations across 100 bootstrap 
samples at n = 200 and for the full sample are denoted by red and purple dots.  
c, The inflation of in-sample effect size obtained without cross-validation (red) 
is reduced, but does not disappear, at higher sample sizes. Conversely, cross- 
validated estimates (blue) are slightly pessimistic with low sample sizes  
and become quickly unbiased as sample size is increased. d, Without cross- 
validation, in-sample effect-size estimates are non-zero (r ≈ 0.5, red), even when 
predicting permuted outcome data. Cross-validation eliminates systematic bias 
across all sample sizes (blue). The dashed lines in c and d denote 95% parametric 
confidence intervals, and the shaded areas denote bootstrap- and permutation- 
based confidence intervals. e,f, Cross-validated analysis reveals that sufficient 
in-sample power (e) and out-of-sample replication probability (Prep) (f) can be 
achieved for a variety of phenotypes at low or moderate sample sizes.  
80% power and Prep are achievable in <500 participants for 3 out of 6 phenotypes 

(coloured bars) using the prediction algorithm of Marek et al.4 (e and f (top),  
the sample size required for 80% power or Prep is shown). The remaining three 
phenotypes require sample sizes of >500 (bars with arrows). Power and Prep can 
be substantially improved with a ridge regression-based model recommended 
in some comparison studies10,11 (e and f (bottom), with 80% power and Prep with 
sample sizes as low as n = 100 and n = 75, respectively, when predicting cognitive 
ability, and sample sizes between 75 and 375 for other investigated variables 
(fluid intelligence, episodic memory and cognitive flexibility), except inhibition 
assessed with the flanker task, which replicated with n = 375 but did not reach 
80% power with n = 500. g, We estimated interactions between sample size and 
publication bias by computing effect size inflation (rdiscovery − rreplication) only for 
those bootstrap cases in which prediction performance was significant (P > 0.05) 
in the replication sample. Our analysis shows that the effect-size inflation due 
to publication bias is modest (<10%) with fewer than 500 participants for half of 
the phenotypes using the model from Marek et al.4 and all phenotypes but the 
flanker using the ridge model. The blue squares show conditional relationships 
assessed to derive metrics in e,f and g with reference to b. The top and bottom 
squares indicate positive and negative results in the discovery sample, 
respectively. The left and right squares indicate negative and positive results in 
the replication sample. The blue squares indicate how these conditions were 
applied to derive the metrics.
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accuracy. Here we performed functional connectivity-based multi-
variate BWAS with cognitive ability (the phenotype shown in figure 4  
of Marek et al.4) and five other cognition-related example phenotypes 
selected at random and demonstrate that, even when predicting 
trait-level phenotypes, as Marek et al.4 did, sample sizes of 75–500 
are sufficient in five out of six of cases that we tested (or three out of six 
cases using the prediction algorithm of Marek et al.4) to achieve high 
statistical power and replicability (for example, 80%) and to mitigate 
effect size inflation due to publication bias.

The basis for these estimates is shown in Fig. 1e–g. Using cross- 
validated discovery sample effect-size estimates, the multivariate BWAS 
model of Marek et al.4—principal-component-based reduction of bivari-
ate connectivity followed by support vector regression (PCA + SVR)—
showed 80% in-sample power and 80% out-of-sample replication 
probability (Prep) at n < 500 for three out of six phenotypes that we exam-
ined (age, cognitive ability and fluid intelligence). However, this model 
has been shown to be disadvantageous in some comparison studies12,13. 
We therefore performed the same power and sample-size calculations for 
a multivariate BWAS using another approach—ridge regression on partial 
correlation matrices with a default shrinkage parameter of 1 (PC + ridge; 
Supplementary Methods). Although this approach is still probably sub-
optimal12,13 (we avoided testing other models to avoid overfitting), it 
substantially improved the power (Fig. 1e (bottom)), independent rep-
lication probability ([Prep]; Fig. 1f (bottom)) and resistance to inflation 
due to publication bias (Fig. 1g (bottom)). Eighty per cent power and Prep 
were achieved at sample sizes from 75 to 150 for age (included as a refer-
ence variable), cognitive ability and fluid intelligence, and sample sizes 
< 400 for all phenotypes except for inhibition measured by the flanker 
task (a measure that is known to have low reliability14).

Our results highlight, that the key determinant of sample size require-
ments is the true effect size of the brain–phenotype relationship, which 
subsumes the amount, quality, homogeneity and reliability of both 
brain and phenotypic measures, and the degree to which a particular 
brain measure is relevant to a particular phenotype. Effect sizes will 
probably vary widely across studies; for example, cortical thickness 
can also reliably predict 4 out of the 6 investigated phenotypes with 
n < 500, although with smaller effect sizes on average (functional con-
nectivity, mean r = 0.2; cortical thickness, mean r = 0.1; Supplementary 
Fig. 2). Although our results were derived from a relatively high-quality 
dataset and used an algorithm expected to yield larger effect sizes than 
that of Marek et al.4, they are in agreement with analytical calculations 
showing that BWAS that explain more than 1% of the phenotype’s vari-
ance can be replicable with sample sizes below 1,000 (Supplementary 
Methods). For example, a model that explains r 2 = 0.01 (1% of variance) 
achieves 80% power in a prospective replication with n = 801, and 
r2 = 0.02 achieves 80% power with n = 399 (ref. 15).

These quantitative differences in required sample size could translate 
into large, qualitative differences in the types of neuroimaging stud-
ies considered viable in future efforts. There is a necessary trade-off 
between the innovativeness of a task, measure or method, and the 
extent to which it has been validated. Existing large-scale neuroimag-
ing studies (n > 1,000) have selected well-validated tasks and imag-
ing measures over new, exploratory ones, and few have attempted to 
characterize rare populations. Requiring sample sizes that are larger 
than necessary for the discovery of new effects could stifle innovation.

We agree with Marek et al.4 that small-sample studies are important 
for understanding the brain bases of tasks and mental states9–11, and 
for prototyping new tasks and measures. Furthermore, several current 
trends may further increase the viability of small-sample multivariate 
BWAS, including (1) new phenotypes, (2) feature-learning methods and 
algorithms with larger effect sizes13, (3) models that target within-person 
variation in symptoms and behaviour to improve between-person 
predictions2 and (4) hybrid strategies for improving prediction like 
meta-matching16. All of these have the potential to improve reliability 
and effect sizes, but whether they do remains to be seen.

Finally, as both Marek et al.4 and our analyses show, very small effects 
will suffer from limited power, replicability and predictive utility even 
with sample sizes in the thousands (Fig. 1). We argue that the field should 
focus on discovering phenotypes and brain measures with large effect 
sizes. Efficient discovery entails casting a wide net in smaller studies 
using rigorous, unbiased methods and scaling up promising findings 
to larger samples2. There are substantial challenges ahead, includ-
ing establishing broad generalizability across contexts, equity across 
subpopulations, and models with high neuroscientific validity and 
interpretability17,18. Addressing these challenges will require innovative 
new methods and measures.
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Reply to: Multivariate BWAS can be 
replicable with moderate sample sizes

Brenden Tervo-Clemmens1,22 ✉, Scott Marek2,3,22 ✉, Roselyne J. Chauvin4, Andrew N. Van4,5, 
Benjamin P. Kay4, Timothy O. Laumann3, Wesley K. Thompson6, Thomas E. Nichols7, 
B. T. Thomas Yeo8,9,10,11,12,13, Deanna M. Barch3,14, Beatriz Luna15,16, Damien A. Fair17,18,19,23 ✉ & 
Nico U. F. Dosenbach2,4,5,14,20,21,23 ✉

replying to: T. Spisak et al. Nature https://doi.org/10.1038/s41586-023-05745-x (2023)

In our previous study1, we documented the effect of sample size on the 
reproducibility of brain-wide association studies (BWAS) that aim to 
cross-sectionally relate individual differences in human brain structure 
(cortical thickness) or function (resting-state functional connectivity 
(RSFC)) to cognitive or mental health phenotypes. Applying univariate 
and multivariate methods (for example, support vector regression 
(SVR)) to three large-scale neuroimaging datasets (total n ≈ 50,000), 
we found that overall BWAS reproducibility was low for n < 1,000, due 
to smaller than expected effect sizes. When samples and true effects are 
small, sampling variability, and/or overfitting can generate ‘statistically 
significant’ associations that are likely to be reported due to publication 
bias, but are not reproducible2–5, and we therefore suggested that BWAS 
should build on recent precedents6,7 and continue to aim for samples 
in the thousands. In the accompanying Comment, Spisak et al.8 agree 
that larger BWAS are better5,9, but argue that “multivariate BWAS effects 
in high-quality datasets can be replicable with substantially smaller 
sample sizes in some cases” (n = 75–500); this suggestion is made on 
the basis of analyses of a selected subset of multivariate cognition/RSFC 
associations with larger effect sizes, using their preferred method (ridge 
regression with partial correlations) in a demographically more homo-
geneous, single-site/scanner sample (Human Connectome Project 
(HCP), n = 1,200, aged 22–35 years).

There is no disagreement that a minority of BWAS effects can 
replicate in smaller samples, as shown with our original methods1). 
Using the exact methodology (including cross-validation) and code 
of Spisak et al.8 to repeat 64 multivariate BWAS in the 21-site, larger 
and more diverse Adolescent Brain Cognitive Development Study 
(ABCD, n = 11,874, aged 9–11 years), we found that 31% replicated at 
n = 1,000, dropping to 14% at n = 500 and none at n = 75. Contrary to 
the claims of Spisak et al.8, replication failure was the outcome in most 
cases when applied to this larger, more diverse dataset. Basing general 
BWAS sample size recommendations on the largest effects has at least 
two fundamental flaws: (1) failing to detect other true effects (for exam-
ple, reducing the sample size from n = 1,000 to n = 500 leads to a 55% 

false-negative rate), therefore restricting BWAS scope, and (2) inflation 
of reported effects3,10–12. Thus, regardless of the method, associations 
based on small samples can remain distorted and lack generalizability 
until confirmed in large, diverse, independent samples.

We always test for BWAS replication with null models (using permu-
tation tests) of out-of-sample estimates to ensure that our reported 
reproducibility is unaffected by in-sample overfitting. Nonetheless, 
Spisak et al.8 argue against plotting inflated in-sample estimates1,10 
on the y axis, and out-of-sample values on the x axis, as we did 
(Fig. 1a). Instead, they propose plotting cross-validated associations 
from an initial, discovery sample (Fig. 1b ( y axis)) against split-half 
out-of-sample associations (x axis). However, cross-validation—just 
like split-half validation—estimates out-of-sample, and not in-sample, 
effect sizes13. The in-sample associations1,10 for the method of Spisak 
et al.8 (Fig. 1b), that is, from data in the sample used to develop the 
model, show the same degree of overfitting (Fig. 1a versus Fig. 1b). The 
plot of Spisak et al.8 (Fig. 1c) simply adds an additional out-of-sample 
test (cross-validation before split half), and therefore demonstrates 
the close correspondence between two different methods for 
out-of-sample effect estimation14. Analogously, we can replace the 
cross-validation step in the code of Spisak et al.8 with split-half valida-
tion (our original out-of-sample test), obtaining split-half effects in 
the first half of the sample, and then comparing them to the split-half 
estimates from the full sample (Fig. 1d). The strong correspondences 
between cross-validation followed by split-half (Spisak et al. method8; 
Fig. 1c) and repeated split-half validation (Fig. 1d) are guaranteed by 
plotting out-of-sample estimates (from the same dataset) against one 
another. Here, plotting cross-validated discovery sample estimates on 
the y axis (Fig. 1c,d) provides no additional information beyond the x 
axis out-of-sample values. The critically important out-of-sample pre-
dictions, required for reporting multivariate results1, generated using 
the method of Spisak et al.8 and our method are nearly identical (Fig. 1e).

As Spisak et al.8 highlight, cross-validation of some type is considered 
to be standard practice10, and yet the distribution of out-of-sample 
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associations (Fig. 1f (dark blue)) does not match published multivariate 
BWAS results (Fig. 1g), which have largely ranged from r = 0.25 to 0.9, 
decreasing with increasing sample size10,15,16. Instead, published effects 
more closely follow the distribution of in-sample associations (Fig. 1h). 
This observation suggests that, in addition to small samples, struc-
tural problems in academic research (for example, non-representative 
samples, publication bias, misuse of cross-validation and unintended 
overfitting) have contributed to the publication of inflated effects12,17,18. 
A recent biomarker challenge5 showed that cross-validation results 
continued to improve with the amount of time researchers spent with 
the data, and the models with the best cross-validation results per-
formed worse on never-seen held-back data. Thus, cross-validation 
alone has proven to be insufficient and must be combined with the 
increased generalizability of large, diverse datasets and independent 
out-of-sample evaluation in new, never before seen data5,10.

The use of additional cross-validation in the discovery sample by 
Spisak et al.8 does not affect out-of-sample prediction accuracies (Fig. 1e). 
However, by using partial correlations and ridge regression on HCP data, 
they were able to generate higher out-of-sample prediction accuracies 
than our original results in ABCD (Fig. 2a). The five variables they selected 
are strongly correlated19 cognitive measures from the NIH Toolbox (mean 

r = 0.37; compare with the correlation strength for height versus weight 
r = 0.44)20 and age (not a complex behavioural phenotype), unrepresent-
ative of BWAS as a whole (Fig. 2b (colour versus grey lines)). As the HCP is 
the relatively smallest and most homogeneous dataset, we applied the 
exact method and code of Spisak et al.8 to the ABCD data (Fig. 2c and Sup-
plementary Table 2). At n = 1,000 (training; n = 2,000 total), only 31% of 
BWAS (44% RSFC, 19% cortical thickness) were replicable (Fig. 2d; defined 
as in Spisak et al.8; Supplementary Information). Expanding BWAS scope 
beyond broad cognitive abilities towards complex mental health out-
comes therefore requires n > 1,000 (Fig. 2b–d). The absolute largest 
BWAS (cognitive ability: RSFC, green) reached replicability only using 
n = 400 (n = 200 train; n = 200 test) with an approximate 40% decrease in 
out-of-sample prediction accuracies from HCP to ABCD (Fig. 2e (lighter 
green, left versus right)). The methods of Spisak et al.8 and our previ-
ous study1 returned equivalent out-of-sample reproducibility for this 
BWAS (cognitive ability: RSFC) in the larger, more diverse ABCD data 
(Fig. 2e (right, dark versus light green)). Thus, the smaller sample sizes 
(Fig. 2b,c) that are required for out-of-sample reproducibility (Fig. 2e) 
reported by Spisak et al.8 in the HCP data did not generalize to the larger 
ABCD dataset. See also our previous study1 for a broader discussion of 
convergent evidence across HCP and ABCD datasets.
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Fig. 1 | In-sample versus out-of-sample effect estimates in multivariate 
BWAS. a–e, Methods comparison between our previous study1 (split-half) and 
Spisak et al.8 (cross-validation followed by split-half). ‘Marek, Tervo-Clemmens’ 
and ‘Spisak’ refer to the methodolgies described in ref. 1 and ref. 8, respectively. 
For a–e, HCP 1200 Release (full correlation) data were used to predict age- 
adjusted total cognitive ability. Analysis code and visualizations (x,y scaling; 
colours) are the same as in Spisak et al.8. The x axes in a–e always display the 
split-half out-of-sample effect estimates from the second (replication) half of 
the data (correlation between true scores and predicted scores; as in Spisak 
et al.8 and in our previous study1; Supplementary Methods). a, In-sample 
(training correlation; y axis) as a function of out-of-sample associations  
(plot convention in our previous study1). b, Matched comparison of the true 
in-sample association (training correlations, mean across folds; y axis) in the 
method proposed by Spisak et al.8. c, The proposed correction by Spisak et al.8 
that inserts an additional cross-validation step to evaluate the first half  
of data, which by definition makes this an out-of-sample association (y axis).  
d, Replacing the cross-validation step from Spisak et al.8 with a split-half 

validation provides a different (compared with c) out-of-sample association  
of the first half of the total data (that is, each of the first stage split halves is 
one-quarter of the total data; y axis). The appropriate and direct comparison  
of in-sample associations between Spisak et al.8 and our previous study1 is 
comparing b to a, rather than c to a. The Spisak et al. method8 (cross-validation 
followed by split-half validation) does not reduce in-sample overfitting (b) but, 
instead, adds an additional out-of-sample evaluation (c), which is nearly 
identical to split-half validation twice in a row (d), and makes it clear why the 
out-of-sample performance of these two methods is likewise nearly identical.  
e, Correspondence between out-of-sample associations (to the left-out half) 
from the additional cross-validation step proposed by Spisak et al.8 (mean 
across folds; y axis) and the original split-half validation from our previous 
study1 (x axis). The identity line is shown in black. f, In-sample (r; light blue) and 
out-of-sample (r; dark blue) associations as a function of sample size. Data are 
from figure 4a–d of ref. 1. g, Published literature review of multivariate r (y axis) 
as a function of sample size (data from ref. 15) displayed with permission.  
For f and g, best fit lines are displayed in log10 space. h, Overlap of f and g.
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Matters arising

Notably, the objections of Spisak et al.8 raise additional reasons to 
stop the use of smaller samples in BWAS that were not highlighted in 
our original article. Multivariate BWAS prediction accuracies—absent 
overfitting—are systematically suppressed in smaller samples5,9,21, as 
prediction accuracy scales with increasing sample size1,9. Thus, the 
claim that “cross-validated discovery effect-size estimates are unbi-
ased” does not account for out-of-dataset generalizability and down-
ward bias. In principle, if unintended overfitting and publication bias 
could be fully eliminated, meta-analyses of small-sample univariate 
BWAS would return the correct association strengths (Fig. 2f (left)). 
However, meta-analyses of small multivariate BWAS would always 
be downwardly biased (Fig. 2f (right)). If we are interested in maxi-
mizing prediction accuracy, essential for clinical implementation of 
BWAS22, large samples and advancements in imaging and phenotypic 
measurements1 are necessary.

Repeatedly subsampling the same dataset, as Spisak et al.8 and we 
have done, overestimates reproducibility compared with testing on a 
truly new, diverse dataset. Just as in genomics23, BWAS generalization 
failures have been highlighted5,24. For example, BWAS models trained on 

white Americans transferred poorly to African Americans and vice versa 
(within dataset)24. Historically, BWAS samples have lacked diversity, 
neglecting marginalized and under-represented minorities25. Large 
studies with more diverse samples and data aggregation efforts can 
improve BWAS generalizability and reduce scientific biases contribut-
ing to massive health inequities26,27.

Spisak et al.8 worry that “[r]equiring sample sizes that are larger 
than necessary for the discovery of new effects could stifle innova-
tion”. We appreciate the concern that rarer populations may never 
be investigated with BWAS. Yet, there are many non-BWAS brain–
behaviour study designs (fMRI ≠ BWAS) focused on within-patient 
effects, repeated-sampling and signal-to-noise-ratio improvements 
that have proven fruitful down to n = 1 (ref. 28). By contrast, the strength 
of multivariate BWAS lies in leveraging large cross-sectional samples 
to investigate population-level questions. Sample size requirements 
should be based on expected effect sizes and real-world impact, 
and not resource availability. Through large-scale collaboration and 
clear standards on data sharing, GWAS has reached sample sizes in the 
millions29–31, pushing genomics towards new horizons. Similarly, BWAS 
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Fig. 2 | BWAS reproducibility, scope and prediction accuracy using the 
method of Spisak et al. a, Example bootstrapped BWAS of total cognitive 
ability (green) and null distribution (black) ( y axis), as a function of sample size 
(x axis) from the suggested method of Spisak et al.8 (RSFC by partial correlation; 
prediction by ridge regression) in the HCP dataset (n = 1,200, 1 site, 1 scanner, 
60 min RSFC/participant, 76% white). Sample sizes were log10-transformed for 
visualization. b, Out-of-sample correlation (between true scores and predicted 
scores) from ridge regression ( y axis; code from Spisak et al.8) as a function of 
training sample size (x axis, log10 scaling) for 33 cognitive and mental health 
phenotypes (Supplementary Information) in the HCP dataset. Each line displays 
a smoothed fit estimate (through penalized splines in general additive models) 
for a brain (RSFC (partial correlations, as proposed by Spisak et al.8), cortical 
thickness) phenotype pair (66 total) that has 100 bootstrapped iterations  
from sample sizes of 25 to 500 (inclusive) in increments of 25 (20 total bins). 
Sample sizes were log10-transformed (for visualization) before general additive 
model fitting. c, The same as in b, but in the ABCD dataset (n = 11,874, 21 sites,  
3 scanner manufacturers, 20 min RSFC/participant, 56% white) using 32 
cognitive and mental health phenotypes at sample sizes of 25, 50, 75 and from 
100 to 1,900 (inclusive) in increments of 100 (22 total bins). d, The percentage 
of brain–phenotype pairs (BWAS) from b and c with significant replication on the 
basis of the method of Spisak et al.8 (Supplementary Information). e, Comparison 

of our original method in our previous study1 and the method proposed by 
Spisak et al.8 at the full split-half sample size of HCP (left) and ABCD (right). 
Out-of-sample correlations (RSFC with total cognitive ability, y axis) for the 
method used in our previous study1 (dark green; RSFC by correlation, PCA, SVR) 
and by Spisak et al.8 (light green; RSFC by partial correlation, ridge regression). 
Repeating the method proposed by Spisak et al.8 in ABCD (right) and comparing 
this to the method used in our previous study1 results in a very similar out-of- 
sample r. f, Simulated individual studies (light green circles; n = 1,000 per 
sample size) and meta-analytic estimates (black dot, ±1 s.d.) using the method 
of Spisak et al.8 (partial correlations in the HCP dataset) for the largest univariate 
association (left; y axis, bivariate correlation) and multivariate association 
(right; y axis, out-of-sample correlation) for total cognitive ability versus RSFC, 
as a function of total sample size (x axis; bivariate correlation for sample sizes 
of 50, 200 and 1,000, and multivariate sum of train and test samples, each 25, 
100 and 500). For univariate approaches, studies of any sample size, when 
appropriately aggregated to a large total sample size, can correctly estimate 
the true effect size. However, for multivariate approaches, even when 
aggregating across 1,000 independent studies, studies with a small sample  
size produce prediction accuracies that are downwardly biased relative to  
large sample studies, highlighting the need for large samples in multivariate 
analyses.
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analyses of the future will not be limited to statistical replication of the 
same few strongest effects in small homogeneous populations, but 
also have broad scope, maximum prediction accuracy and excellent 
generalizability.
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