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Brain-wide association studies (BWAS)—which correlate individual
differences in phenotypic traits with measures of brain structure and
function—have become adominant method for linking mind and brain
over the past 30 years. Univariate BWAS typically test tens to hundreds
of thousands of brain voxels individually, whereas multivariate BWAS
integrate signalsacross brainregionsintoapredictive model. Numerous
problems have been raised with univariate BWAS, including a lack
of power and reliability and an inability to account for pattern-level
information embedded in distributed neural circuits' *. Multivariate
predictive models address many of these concerns, and offer substan-
tial promise for delivering brain-based measures of behavioural and
clinical states and traits*.

Intheir recent paper*, Marek et al. evaluated the effects of sample size
onunivariateand multivariate BWAS in three large-scale neuroimaging
datasets and came to the general conclusion that “BWAS reproducibil-
ity requires samples with thousands of individuals”. We applaud their
comprehensive analysis, and we agree that (1) large samples are needed
when conducting univariate BWAS and (2) multivariate BWAS reveal
substantially larger effects and are therefore more highly powered.

Marek et al.*find that multivariate BWAS provide inflated in-sample
associations that often cannot be replicated (that is, are underpow-
ered) unless thousands of participants areincluded. This implies that
effect-size estimates from the discovery sample are necessarily inflated.
However, we distinguish between the effect-size estimation method
(in-sample versus cross-validated) and the sample (discovery versus
replication), and show that, with appropriate cross-validation, the
in-sampleinflation that Marek et al.* reportin the discovery sample can
beentirely eliminated. With additional analyses, we demonstrate that
multivariate BWAS effects in high-quality datasets can be replicable
with substantially smaller sample sizes in some cases. Specifically,
applying a standard multivariate prediction algorithm to functional
connectivity in the Human Connectome Project yielded replicable
effects with sample sizes of 75-500 for 5 of 6 phenotypes tested (Fig.1).

These analyses are limited to a selected number of phenotypesina
relatively high-quality dataset (measuredin ayoungadult population
with a single scanner) and should not be overgeneralized. However,
they highlight that the key determinant of sample size requirements
is the true effect size of the brain-phenotype relationship and that,
with proper internal validation, appropriate effect-size estimates and
sufficiently large effects for moderately sized studies are possible.

Marek et al.* evaluate in-sample effect-size inflation in multivariate
BWAS by training various multivariate models in a ‘discovery sample’

and comparing thein-sample effect sizes (prediction-outcome corre-
lation, r) estimated from the training sample to the performance in
anindependentreplication sample. Onthe basis of abootstrap analy-
sis, with variously sized pairs of samples drawn randomly from the
Adolescent Brain Cognitive Development study, the authors reporta
severe effect-size inflation of Ar=-0.29 (average difference between
thein-sample effect sizesin the discovery sample and the out-of-sample
effectsizesinthereplication sample) and conclude that “[e]venat the
largest sample sizes (n=2,000), multivariate in-sample associations
remained inflated on average”.

The issue with claims of inflation is that the in-sample effect size
estimates of Marek et al.* were based on training multivariate mod-
els on the entire discovery sample, without cross-validation or other
internal validation (as confirmed by inspection of the code and dis-
cussion with the authors). Such in-sample correlations are not valid
effect-size estimates, as they produce a well-known overfitting bias
that increases with model complexity®. Standard practice in machine
learningis to evaluate model accuracy (and other performance metrics)
on dataindependent of those used for training. In line with current
recommendations for multivariate brain-behaviour analyses®’, this
is typically performed using internal cross-validation (for example,
k-fold) to estimate unbiased effect sizes in a discovery sample, and
(lesscommonly) further validating significant cross-validated effects
in held-out or subsequently acquired replication samples®>.

Using cross-validation to estimate discovery-sample effectsimpacts
the pool of studies selected for replication attempts, the degree of
effect-size attenuation in replication samples, and the sample size
needed for effective replication and mitigation of publication bias.
To demonstrate this and provide quantitative estimates of sample size
requirements in multivariate BWAS, we analysed functional connec-
tivity data from the Human Connectome Project® (one of the datasets
in Marek et al.*) using cross-validation to estimate discovery-sample
effect sizes. As shown in Fig. 1a-d, cross-validated discovery effect-
size estimates are unbiased (thatis, notinflated on average), irrespec-
tive of the sample size and the magnitude of the effect. As expected,
evenwith cross-validation, smaller sample sizes resulted in lower power
(Fig. 1e) and increased variability in effect-size estimates across sam-
ples (Fig. 1c). Such variability is undesirable because it reduces the
probability of independent replication (Fig. 1f). Moreover, selection
biases—most notably, publication bias—can capitalize on such variabil-
ity toinflate effect sizesin the literature (Fig.1g). Although these effects
of using small sample sizes are undesirable, they do not invalidate
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Fig.1|Examples of multivariate BWAS providing unbiased effect sizes and
highreplicability with low to moderate sample sizes. a, Discovery sample
effectsin multivariate BWAS are inflated only if estimates are obtained without
cross-validation (CV). b, Cross-validation fully eliminates in-sample effect-size
inflationand, asaconsequence, provides higher replicability. Dataare from
the Human Connectome Project (HCP1200, PTNrelease, n=1,003). Each point
inaandb correspondstoonebootstrap subsample, asin figure 4b of Marek
etal.*. Thedotted lines denote the threshold for P= 0.05with n=495.Mean
multivariate brain-behavioural phenotype associations across 100 bootstrap
samplesatn=200 and for the fullsample are denoted by red and purple dots.
¢, Theinflation of in-sample effect size obtained without cross-validation (red)
isreduced, but does not disappear, at higher sample sizes. Conversely, cross-
validated estimates (blue) are slightly pessimistic with low sample sizes

and become quickly unbiased as samplesizeisincreased. d, Without cross-
validation, in-sample effect-size estimates are non-zero (r= 0.5, red), even when
predicting permuted outcome data. Cross-validation eliminates systematic bias
acrossallsamplessizes (blue). The dashed linesincand d denote 95% parametric
confidenceintervals, and the shaded areas denote bootstrap- and permutation-
based confidenceintervals. e,f, Cross-validated analysis reveals that sufficient
in-sample power (e) and out-of-sample replication probability (P.,) (f) canbe
achieved foravariety of phenotypes atlow or moderate sample sizes.

80% power and P, are achievable in <500 participants for 3 out of 6 phenotypes

the use of multivariate BWAS in small samples, and publication biases
can be mitigated by practices that, like internal cross-validation, are
quickly becoming standards in the field**. These include preregistra-
tion, registered reports, reporting confidence intervals and the use
of hold-out samples tested only once on a single, optimized model to
avoid overfitting.

Given these considerations, we wondered how many participants are
generally required for multivariate BWAS. The answer to this question
depends onthereliability of both phenotypic and brain measures, the

(coloured bars) using the prediction algorithm of Marek et al.* (e and f (top),
the sample size required for 80% power or P, is shown). The remaining three
phenotypesrequire sample sizes of >500 (bars with arrows). Power and P,.,can
besubstantiallyimproved witharidge regression-based model recommended
insome comparisonstudies'®" (eand f (bottom), with 80% power and P, with
samplesizesaslowasn=100and n=75, respectively, when predicting cognitive
ability,and sample sizes between 75 and 375 for other investigated variables
(fluid intelligence, episodic memory and cognitive flexibility), exceptinhibition
assessed with the flanker task, which replicated withn=375but did not reach
80% power withn=500.g, We estimated interactions between sample size and
publicationbias by computing effect size inflation (rgiscovery ~ Freplication) ONIY for
thosebootstrap casesinwhich prediction performance was significant (P> 0.05)
inthereplication sample. Our analysis shows that the effect-size inflation due
to publication biasis modest (<10%) with fewer than 500 participants for half of
the phenotypes using the model from Marek et al.* and all phenotypes but the
flanker using the ridge model. The blue squares show conditional relationships
assessed toderive metricsine,fandgwithreference tob. The topand bottom
squares indicate positive and negative resultsin the discovery sample,
respectively. Theleftand right squaresindicate negative and positive resultsin
thereplicationsample. The blue squares indicate how these conditions were
applied to derive the metrics.

size of the effectslinking them, the algorithm and model-selection steps
used and the use cases for the resulting brain measures. For example,
multivariate models trained on as few as 20 participants’ can have high
reliability (ICC = 0.84)'°, broad external validity and large effect sizes
(Hedgesg=2.3)"inindependent samples (for example, more than 600
participants from 20 independent studies in ref. ') when predicting
behavioural states within-person rather than traits. In this case, the
benefit of large samples is primarily in accurately estimating local brain
weights (model parameters)? rather than increasing out-of-sample
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accuracy. Here we performed functional connectivity-based multi-
variate BWAS with cognitive ability (the phenotype shown in figure 4
of Marek et al.*) and five other cognition-related example phenotypes
selected at random and demonstrate that, even when predicting
trait-level phenotypes, as Marek et al.* did, sample sizes of 75-500
are sufficientin five out of six of cases that we tested (or three out of six
cases using the prediction algorithm of Marek et al.*) to achieve high
statistical power and replicability (for example, 80%) and to mitigate
effect size inflation due to publication bias.

The basis for these estimates is shown in Fig. le-g. Using cross-
validated discovery sample effect-size estimates, the multivariate BWAS
model of Marek et al.*—principal-component-based reduction of bivari-
ate connectivity followed by support vector regression (PCA + SVR)—
showed 80% in-sample power and 80% out-of-sample replication
probability (P,,) atnn < 500 for three out of six phenotypes that we exam-
ined (age, cognitive ability and fluid intelligence). However, this model
hasbeen shown to be disadvantageous in some comparison studies'>.
We therefore performed the same power and sample-size calculations for
amultivariate BWAS using another approach—ridge regression on partial
correlation matrices withadefault shrinkage parameter of 1(PC + ridge;
Supplementary Methods). Although this approachissstill probably sub-
optimal?® (we avoided testing other models to avoid overfitting), it
substantially improved the power (Fig. 1e (bottom)), independent rep-
lication probability ([P,,]; Fig. 1f (bottom)) and resistance to inflation
dueto publicationbias (Fig.1g (bottom)). Eighty per cent powerand P,
were achieved at sample sizes from 75to 150 for age (included as arefer-
ence variable), cognitive ability and fluid intelligence, and sample sizes
<400 for all phenotypes except for inhibition measured by the flanker
task (a measure that is known to have low reliability™).

Our results highlight, that the key determinant of sample size require-
mentsis the true effect size of the brain-phenotype relationship, which
subsumes the amount, quality, homogeneity and reliability of both
brain and phenotypic measures, and the degree to which a particular
brain measure is relevant to a particular phenotype. Effect sizes will
probably vary widely across studies; for example, cortical thickness
can also reliably predict 4 out of the 6 investigated phenotypes with
n <500, althoughwithsmaller effect sizes on average (functional con-
nectivity, meanr=0.2; cortical thickness, meanr=0.1; Supplementary
Fig.2). Althoughour results were derived from arelatively high-quality
dataset and used analgorithm expected toyield larger effect sizes than
thatof Marek et al.*, they are in agreement with analytical calculations
showing that BWAS that explain more than 1% of the phenotype’s vari-
ance canbereplicable withsample sizes below 1,000 (Supplementary
Methods). For example,amodel that explains r* = 0.01 (1% of variance)
achieves 80% power in a prospective replication with n =801, and
r*=0.02 achieves 80% power with n =399 (ref. ).

These quantitative differencesinrequired sample size could translate
into large, qualitative differences in the types of neuroimaging stud-
ies considered viable in future efforts. There is a necessary trade-off
between the innovativeness of a task, measure or method, and the
extentto whichit hasbeen validated. Existing large-scale neuroimag-
ing studies (n>1,000) have selected well-validated tasks and imag-
ing measures over new, exploratory ones, and few have attempted to
characterize rare populations. Requiring sample sizes that are larger
thannecessary for the discovery of new effects could stifleinnovation.

We agree with Marek et al.* that small-sample studies are important
for understanding the brain bases of tasks and mental states® ™, and
for prototyping new tasks and measures. Furthermore, several current
trends may further increase the viability of small-sample multivariate
BWAS, including (1) new phenotypes, (2) feature-learning methods and
algorithmswith larger effect sizes®, (3) models that target within-person
variation in symptoms and behaviour to improve between-person
predictions? and (4) hybrid strategies for improving prediction like
meta-matching'. All of these have the potential to improve reliability
and effect sizes, but whether they do remains to be seen.
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Finally, asboth Marek etal.* and our analyses show, very small effects
will suffer from limited power, replicability and predictive utility even
withsamplesizesinthethousands (Fig.1). We argue that the field should
focus ondiscovering phenotypes and brain measures with large effect
sizes. Efficient discovery entails casting a wide net in smaller studies
using rigorous, unbiased methods and scaling up promising findings
to larger samples?. There are substantial challenges ahead, includ-
ing establishing broad generalizability across contexts, equity across
subpopulations, and models with high neuroscientific validity and
interpretability'®. Addressing these challenges will require innovative
new methods and measures.

Online content

Anymethods, additional references, Nature Portfolio reporting summa-
ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions
and competinginterests; and statements of data and code availability
are available at https://doi.org/10.1038/s41586-023-05745-x.

Reporting summary

Furtherinformation on experimental designis availablein the Nature
Portfolio Reporting Summary linked to this Article.

Data availability

Analysis is based on preprocessed data provided by the Human Con-
nectome Project, WU-Minn Consortium (principal investigators: D. Van
Essen and K. Ugurbil; 1U54MH091657) funded by the 16 NIH institutes
and centres that support the NIH Blueprint for Neuroscience Research;
and by the McDonnell Center for Systems Neuroscience at Washington
University. All data usedin the present study are available for download
from the Human Connectome Project (www.humanconnectome.org).
Users must agree to data use terms for the HCP before being allowed
access to the data and ConnectomeDB; details are provided online
(https://www.humanconnectome.org/study/hcp-young-adult/data-
use-terms).

Code availability

Allanalysis code used inthe current study is available at GitHub (release
v.1.0; https://github.com/spisakt/BWAS_comment).
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Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  Analysis is based on preprocessed data provided by the Human Connectome Project, WU-Minn Consortium (principal investigators: D. Van
Essen and K. Ugurbil; 1U54MH091657) funded by the 16 NIH institutes and centers that support the NIH Blueprint for Neuroscience Research;
and by the McDonnell Center for Systems Neuroscience at Washington University. All data used in the present study are available for
download from the Human Connectome Project (www.humanconnectome.org). Users must agree to data use terms for the HCP before being
allowed access to the data and ConnectomeDB; details are provided at https://www.humanconnectome.org/study/hcp-young-adult/data-use-
terms. Preprocessed data was created software as described in:

Glasser MF, Sotiropoulos SN, Wilson JA, Coalson TS, Fischl B, Andersson JL, Xu J, Jbabdi S, Webster M, Polimeni JR, Van Essen DC. The minimal
preprocessing pipelines for the Human Connectome Project. Neuroimage. 2013 Oct 15;80:105-24.

Data analysis https://github.com/spisakt/BWAS_comment v1.0
Dependencies:
python 3.10.8 numpy 1.23.5 pandas 1.5.2 scikit-learn 1.2.0 joblib 1.2.0 mixtend 0.21.0 seaborn 0.12.1 matplotlib 3.6.2

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
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Analysis is based on preprocessed data provided by the Human Connectome Project, WU-Minn Consortium (principal investigators: D. Van Essen and K. Ugurbil;
1U54MH091657) funded by the 16 NIH institutes and centers that support the NIH Blueprint for Neuroscience Research; and by the McDonnell Center for Systems
Neuroscience at Washington University. All data used in the present study are available for download from the Human Connectome Project
(www.humanconnectome.org). Users must agree to data use terms for the HCP before being allowed access to the data and ConnectomeDB; details are provided at
https://www.humanconnectome.org/study/hcp-young-adult/data-use-terms.

All derivative data, (including raw material for figures) is freely available at https://github.com/spisakt/BWAS_comment

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender The Human Connectome Project involved 656 females and 550 males. Findings apply to both males and females. Sex and
gender differences are out of the scope of the Matters Arising and were not considered in the analysis. For more information,
refer to van Essen et al., 2013.

Population characteristics Refer to van Essen et al., 2013.
Recruitment As described in van Essen et al., 2013.
Ethics oversight As described in van Essen et al., 2013.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Behavioural & social sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description Quantitative analyses of the replicability of functional connectivity-based brain-wise association studies.

Research sample We re-analyzed one of the studies involved in the original publication by Marek, Tervo-Clemmens et al., including open access-data
from the Human Connectome Project (van Essen et al., 2013), based on a non-representative sample of young adults (656 females,
550 males, mean+-sd age: 28.9+-3.57 ).

Sampling strategy We re-analyzed one of the studies involved in the original publication by Marek, Tervo-Clemmens et al., including open access-data
from the Human Connectome Project. For more information, please refer to van Essen et al., 2013 ands Marek, Tervo-Clemmens et
al, 2022.

Data collection See van Essen et al., 2013 ands Marek, Tervo-Clemmens et al, 2022 for details.

Timing See van Essen et al., 2013 ands Marek, Tervo-Clemmens et al, 2022 for details.

Data exclusions We excluded participants with no MRI images available, and for each analysis, participants with missing data about the target
phenotype.

Non-participation 203 out of the 1206 HCP participants didn't have MRI data. Exclusion die to missing phenotype data varied across analyses (less than

20in all cases)
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Magnetic resonance imaging

Experimental design

Design type resting state fMRI, anatomical MRI
Design specifications 4, 15min, eyes open (see van Essen et al., 2013)

Behavioral performance measures  As described in van Essen et al., 2013.

Acquisition
Imaging type(s) functional, anatomical
Field strength 3
Sequence & imaging parameters As described in van Essen et al., 2013.
Area of acquisition brain
Diffusion MRI [ ] used Not used

Preprocessing

Preprocessing software As described in:
Glasser MF, Sotiropoulos SN, Wilson JA, Coalson TS, Fischl B, Andersson JL, Xu J, Jbabdi S, Webster M, Polimeni JR, Van Essen
DC. The minimal preprocessing pipelines for the Human Connectome Project. Neuroimage. 2013 Oct 15;80:105-24.

Normalization As described in: van Essen et al., 2013.
Normalization template As described in: van Essen et al., 2013.
Noise and artifact removal As described in: van Essen et al., 2013.
Volume censoring As described in: van Essen et al., 2013.

Statistical modeling & inference
Model type and settings Multivariate predictive modelling, PCA+SVR and Ridge, cross-validation (see Supplementary Methods for details).
Effect(s) tested Predictive performance (Pearson's r)
Specify type of analysis:  [X] Whole brain [ | ROI-based [ | Both

Statistic type for inference N/A (predictive modelling)
(See Eklund et al. 2016)

Correction N/A (predictive modelling)




Models & analysis

n/a | Involved in the study
|:| & Functional and/or effective connectivity

IZ |:| Graph analysis

|:| & Multivariate modeling or predictive analysis
Functional and/or effective connectivity partial correlation

Multivariate modeling and predictive analysis  Targets: age, cognitive ability, episodic memory, fluid intelligence, cognitive flexibility, inhibition. Model: PCA
+SVR (reproduction of Marek et al.'s model), Ridge regression (with the default hyperparameter value 1). The
PCA+SVR model involved dimensionality reduction.
Features partial correlation values across 100 ICA-based regions, training metric: mean squared error,
evaluation metric, mean squared error and Pearson correlation.
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Matters arising

Reply to: Multivariate BWAS canbe
replicable with moderate sample ssizes
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REPLYING TO: T. Spisak et al. Nature https://doi.org/10.1038/s41586-023-05745-x (2023)

Inour previous study', we documented the effect of sample size on the
reproducibility of brain-wide association studies (BWAS) that aim to
cross-sectionally relate individual differences inhumanbrain structure
(cortical thickness) or function (resting-state functional connectivity
(RSFC)) to cognitive or mental health phenotypes. Applying univariate
and multivariate methods (for example, support vector regression
(SVR)) to three large-scale neuroimaging datasets (total n = 50,000),
we found that overall BWAS reproducibility was low for n <1,000, due
tosmaller thanexpected effect sizes. When samples and true effects are
small, sampling variability, and/or overfitting can generate ‘statistically
significant’ associations that arelikely to be reported due to publication
bias, butare not reproducible?, and we therefore suggested that BWAS
should build on recent precedents®’ and continue to aim for samples
in the thousands. In the accompanying Comment, Spisak et al.® agree
thatlarger BWAS are better®’, but argue that “multivariate BWAS effects
in high-quality datasets can be replicable with substantially smaller
sample sizes in some cases” (n = 75-500); this suggestion is made on
thebasis of analyses of aselected subset of multivariate cognition/RSFC
associations with larger effect sizes, using their preferred method (ridge
regressionwith partial correlations) inademographically more homo-
geneous, single-site/scanner sample (Human Connectome Project
(HCP), n=1,200, aged 22-35 years).

There is no disagreement that a minority of BWAS effects can
replicate in smaller samples, as shown with our original methods").
Using the exact methodology (including cross-validation) and code
of Spisak et al.® to repeat 64 multivariate BWAS in the 21-site, larger
and more diverse Adolescent Brain Cognitive Development Study
(ABCD, n=11,874, aged 9-11 years), we found that 31% replicated at
n=1,000, dropping to 14% at n =500 and none at n =75. Contrary to
the claims of Spisak et al.%, replication failure was the outcome in most
cases when applied to this larger, more diverse dataset. Basing general
BWAS sample size recommendations on the largest effects has at least
two fundamental flaws: (1) failing to detect other true effects (for exam-
ple, reducing the sample size from n=1,000 to n =500 leads to a 55%

false-negativerate), thereforerestricting BWAS scope, and (2) inflation
of reported effects®'°2 Thus, regardless of the method, associations
based onsmallsamples canremaindistorted and lack generalizability
until confirmed in large, diverse, independent samples.

We always test for BWAS replication with null models (using permu-
tation tests) of out-of-sample estimates to ensure that our reported
reproducibility is unaffected by in-sample overfitting. Nonetheless,
Spisak et al.® argue against plotting inflated in-sample estimates'®
on the y axis, and out-of-sample values on the x axis, as we did
(Fig. 1a). Instead, they propose plotting cross-validated associations
from an initial, discovery sample (Fig. 1b (y axis)) against split-half
out-of-sample associations (x axis). However, cross-validation—just
like split-half validation—estimates out-of-sample, and notin-sample,
effect sizes™. The in-sample associations"™ for the method of Spisak
etal.® (Fig. 1b), that is, from data in the sample used to develop the
model, show the same degree of overfitting (Fig. 1a versus Fig.1b). The
plot of Spisak et al.® (Fig. 1c) simply adds an additional out-of-sample
test (cross-validation before split half), and therefore demonstrates
the close correspondence between two different methods for
out-of-sample effect estimation'. Analogously, we can replace the
cross-validationstep in the code of Spisak et al.8 with split-half valida-
tion (our original out-of-sample test), obtaining split-half effects in
thefirst half of the sample, and then comparing them to the split-half
estimates from the full sample (Fig. 1d). The strong correspondences
between cross-validation followed by split-half (Spisak et al. method?;
Fig. 1c) and repeated split-half validation (Fig. 1d) are guaranteed by
plotting out-of-sample estimates (from the same dataset) against one
another. Here, plotting cross-validated discovery sample estimates on
the y axis (Fig. 1c,d) provides no additional information beyond the x
axis out-of-sample values. The criticallyimportant out-of-sample pre-
dictions, required for reporting multivariate results', generated using
the method of Spisak et al.®and our method are nearly identical (Fig. 1e).

AsSpisak et al.® highlight, cross-validation of some type is considered
to be standard practice', and yet the distribution of out-of-sample

'Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA. ?Department of Radiology, Washington University School of Medicine, St Louis, MO,
USA. ®Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA. “Department of Neurology, Washington University School of Medicine, St Louis, MO, USA.
Department of Biomedical Engineering, Washington University in St Louis, St Louis, MO, USA. °Division of Biostatistics, University of California San Diego, La Jolla, CA, USA. ’Oxford Big Data
Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Population Health, University of Oxford, Oxford, UK. ®Department of Electrical and Computer
Engineering, National University of Singapore, Singapore, Singapore. °Centre for Sleep and Cognition, National University of Singapore, Singapore, Singapore. '°Centre for Translational MR
Research, National University of Singapore, Singapore, Singapore. "N.1 Institute for Health, Institute for Digital Medicine, National University of Singapore, Singapore, Singapore. Integrative
Sciences and Engineering Programme, National University of Singapore, Singapore, Singapore. *Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA,
USA. “Department of Psychological and Brain Sciences, Washington University in St Louis, St Louis, MO, USA. ®Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA.
“Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA. "Masonic Institute for the Developing Brain, University of Minnesota Medical School, Minneapolis, MN, USA.
8Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA. ®Institute of Child Development, University of Minnesota Medical School, Minneapolis, MN, USA.
2°program in Occupational Therapy, Washington University School of Medicine, St Louis, MO, USA. #Department of Pediatrics, Washington University School of Medicine, St Louis, MO, USA.
2These authors contributed equally: Brenden Tervo-Clemmens, Scott Marek. 2These authors jointly supervised this work: Damien A. Fair, Nico U. F. Dosenbach. ®e-mail: btervo-clemmens@

mgh.harvard.edu; smarek@wustl.edu; faird@umn.edu; ndosenbach@wustl.edu

E8 | Nature | Vol 615 | 9 March 2023


https://doi.org/10.1038/s41586-023-05745-x
https://doi.org/10.1038/s41586-023-05746-w
http://crossmark.crossref.org/dialog/?doi=10.1038/s41586-023-05746-w&domain=pdf
mailto:btervo-clemmens@mgh.harvard.edu
mailto:btervo-clemmens@mgh.harvard.edu
mailto:smarek@wustl.edu
mailto:faird@umn.edu
mailto:ndosenbach@wustl.edu

a Marek, Tervo-Clemmens b Spisak [ Spisak d Marek, Tervo-Clemmens
0.8 0.8 5
0.6 06 3
g
N 0.4 N 0.4 %
3 02 2 92 <]
o . o U 5
5 £ 2
g 0 g 0 °
c c o
= -0.21 sample size =-0.2 g
-0.41 50 495 -0.4 »2
-0.6 -0.6 5:', ' '
-050 -0.25 0 0.25 -050 -0.25 0 025 -0.50 025 0 0.25 -0.50 025 0 025
Out-of-sample r Out-of-sample r Out-of-sample r Out-of-sample r
e Marek, Tervo-Clemmens vs Spisak f Marek, Tervo-Clemmens g Published h Overlay
0.6
1.0 In-sample 1.0
0.4 0 oy .20 o °
55 L 08 Out-of-sample costet e e,
§o 02 o 2 AR I
SE B o6 Soef o By ols Bl
sy 0 ~ S 8 0 %o 2% @oo%oogjdoso@o
» 5 £ 04 ' Z04f o ¢8%ae @ |
o 9-02 = H gai S S DN §i@
o5 = = % &e@%" ,
53 4, 0.2 02F et PPRlaaites
| | e
-0.6 LR R AR R op HIERNIRRIL: :
-0.6 -0.4 -02 0 02 04 06 30 100 300 1,000 30 100 300 1,000 30 100 300 1,000
Cross-validation Sample size Sample size Sample size

out-of-sample r

Fig.1|In-sample versus out-of-sample effect estimates in multivariate
BWAS. a-e, Methods comparison between our previous study* (split-half) and
Spisak et al.® (cross-validation followed by split-half).‘Marek, Tervo-Clemmens’
and ‘Spisak’ refer to the methodolgies described inref.’and ref. 5, respectively.
Fora-e,HCP 1200 Release (full correlation) data were used to predict age-
adjusted total cognitive ability. Analysis code and visualizations (x,y scaling;
colours) are the same as in Spisak et al.’. The xaxesin a-e always display the
split-half out-of-sample effect estimates from the second (replication) half of
the data (correlationbetween true scores and predicted scores; asin Spisak
etal.®andinour previousstudy’; Supplementary Methods). a, In-sample
(training correlation; y axis) as afunction of out-of-sample associations

(plot conventioninour previous study'). b, Matched comparison of the true
in-sample association (training correlations, mean across folds; y axis) in the
method proposed by Spisak et al.®. ¢, The proposed correction by Spisak et al.®
thatinserts an additional cross-validation step to evaluate the first half

of data, which by definition makes this an out-of-sample association (y axis).

d, Replacing the cross-validation step from Spisak et al.® with a split-half

associations (Fig. 1f (dark blue)) does not match published multivariate
BWAS results (Fig. 1g), which have largely ranged from r=0.25t0 0.9,
decreasing with increasing sample size'®™'. Instead, published effects
more closely follow the distribution of in-sample associations (Fig. 1h).
This observation suggests that, in addition to small samples, struc-
tural problemsinacademicresearch (for example, non-representative
samples, publication bias, misuse of cross-validation and unintended
overfitting) have contributed to the publication of inflated effects'>"'%,
A recent biomarker challenge® showed that cross-validation results
continued toimprove with theamount of time researchers spent with
the data, and the models with the best cross-validation results per-
formed worse on never-seen held-back data. Thus, cross-validation
alone has proven to be insufficient and must be combined with the
increased generalizability of large, diverse datasets and independent
out-of-sample evaluation in new, never before seen data>'°,

The use of additional cross-validation in the discovery sample by
Spisak et al.® does not affect out-of-sample prediction accuracies (Fig. 1e).
However, by using partial correlations and ridge regression on HCP data,
they were able to generate higher out-of-sample prediction accuracies
thanouroriginal resultsin ABCD (Fig.2a). The five variables they selected
arestrongly correlated® cognitive measures from the NIH Toolbox (mean

validation provides a different (compared with c) out-of-sample association
ofthe first half of the total data (thatis, each of the first stage split halves s
one-quarter of the total data; y axis). The appropriate and direct comparison
ofin-sample associations between Spisak et al.® and our previous study' is
comparingbtoa, rather than ctoa. The Spisak et al. method® (cross-validation
followed by split-half validation) does not reduce in-sample overfitting (b) but,
instead, adds an additional out-of-sample evaluation (c), whichis nearly
identical tosplit-half validation twicein arow (d), and makesit clear why the
out-of-sample performance of these two methodsiis likewise nearly identical.
e, Correspondence between out-of-sample associations (to the left-out half)
from the additional cross-validation step proposed by Spisak et al.® (mean
across folds; y axis) and the original split-half validation from our previous
study’ (xaxis). Theidentity lineis showninblack. f, In-sample (r; light blue) and
out-of-sample (r; dark blue) associations as a function of sample size. Dataare
from figure 4a-d of ref.’. g, Published literature review of multivariate r (y axis)
asafunction of sample size (data from ref. ) displayed with permission.
Forfandg, bestfitlinesaredisplayedinlog,,space.h,Overlap offand g.

r=0.37;compare with the correlation strength for height versus weight
r=0.44)* and age (not acomplex behavioural phenotype), unrepresent-
ative of BWAS asawhole (Fig.2b (colour versus grey lines)). Asthe HCP is
the relatively smallest and most homogeneous dataset, we applied the
exactmethod and code of Spisak etal.® to the ABCD data (Fig. 2cand Sup-
plementary Table 2). Atn=1,000 (training; n=2,000 total), only 31% of
BWAS (44%RSFC,19% cortical thickness) were replicable (Fig. 2d; defined
asinSpisak etal.; Supplementary Information). Expanding BWAS scope
beyond broad cogpnitive abilities towards complex mental health out-
comes therefore requires n>1,000 (Fig. 2b—d). The absolute largest
BWAS (cognitive ability: RSFC, green) reached replicability only using
n=400(n=200train; n=200test) withanapproximate 40% decreasein
out-of-sample predictionaccuracies from HCPto ABCD (Fig. 2e (lighter
green, left versus right)). The methods of Spisak et al.® and our previ-
ous study' returned equivalent out-of-sample reproducibility for this
BWAS (cogpnitive ability: RSFC) in the larger, more diverse ABCD data
(Fig. 2e (right, dark versus light green)). Thus, the smaller sample sizes
(Fig. 2b,c) that are required for out-of-sample reproducibility (Fig. 2e)
reported by Spisak etal.®in the HCP data did not generalize to the larger
ABCD dataset. See also our previous study’ for a broader discussion of
convergent evidence across HCP and ABCD datasets.
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Fig.2 | BWAS reproducibility, scope and predictionaccuracy using the
method of Spisak et al. a, Example bootstrapped BWAS of total cognitive
ability (green) and null distribution (black) (y axis), asafunction of sample size
(xaxis) from the suggested method of Spisak et al.® (RSFC by partial correlation;
prediction by ridge regression) inthe HCP dataset (n=1,200, 1site, 1scanner,
60 min RSFC/participant, 76% white). Sample sizes were log,,-transformed for
visualization. b, Out-of-sample correlation (between true scores and predicted
scores) fromridge regression (yaxis; code from Spisak et al.®) as a function of
training sample size (xaxis, log,, scaling) for 33 cognitive and mental health
phenotypes (Supplementary Information) inthe HCP dataset. Each line displays
asmoothed fit estimate (through penalized splines ingeneral additive models)
forabrain (RSFC (partial correlations, as proposed by Spisak et al.?), cortical
thickness) phenotype pair (66 total) that has100 bootstrapped iterations
fromsample sizes of25to0 500 (inclusive) inincrements of 25 (20 total bins).
Samplessizes were log,,-transformed (for visualization) before general additive
modelfitting. ¢, Thesameasinb, butinthe ABCD dataset (n =11,874, 21 sites,
3scanner manufacturers, 20 min RSFC/participant, 56% white) using 32
cognitive and mental health phenotypes at sample sizes 0f 25,50, 75and from
100t01,900 (inclusive) inincrements of 100 (22 total bins). d, The percentage
ofbrain-phenotype pairs (BWAS) fromband c with significant replication on the
basis of the method of Spisak et al.® (Supplementary Information). e, Comparison

Notably, the objections of Spisak et al.® raise additional reasons to
stop the use of smaller samples in BWAS that were not highlighted in
our original article. Multivariate BWAS prediction accuracies—absent
overfitting—are systematically suppressed in smaller samples®*?, as
prediction accuracy scales with increasing sample size'. Thus, the
claim that “cross-validated discovery effect-size estimates are unbi-
ased” does not account for out-of-dataset generalizability and down-
ward bias. In principle, if unintended overfitting and publication bias
could be fully eliminated, meta-analyses of small-sample univariate
BWAS would return the correct association strengths (Fig. 2f (left)).
However, meta-analyses of small multivariate BWAS would always
be downwardly biased (Fig. 2f (right)). If we are interested in maxi-
mizing prediction accuracy, essential for clinical implementation of
BWAS?, large samples and advancements in imaging and phenotypic
measurements' are necessary.

Repeatedly subsampling the same dataset, as Spisak et al.® and we
have done, overestimates reproducibility compared with testingona
truly new, diverse dataset. Just as in genomics?, BWAS generalization
failures have been highlighted>**. For example, BWAS models trained on
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of our original method in our previous study'and the method proposed by
Spisak etal.® at the full split-half sample size of HCP (left) and ABCD (right).
Out-of-sample correlations (RSFC with total cognitive ability, y axis) for the
method used in our previous study’ (dark green; RSFC by correlation, PCA, SVR)
and by Spisak et al.® (light green; RSFC by partial correlation, ridge regression).
Repeating the method proposed by Spisak et al.®in ABCD (right) and comparing
this to the method used in our previous study' results in a very similar out-of-
sampler.f,Simulated individual studies (light green circles; n=1,000 per
samplesize) and meta-analytic estimates (black dot, +1s.d.) using the method
of Spisak etal.® (partial correlationsin the HCP dataset) for the largest univariate
association (left; y axis, bivariate correlation) and multivariate association
(right; y axis, out-of-sample correlation) for total cognitive ability versus RSFC,
asafunction of total sample size (xaxis; bivariate correlation for sample sizes
0f50,200and 1,000, and multivariate sumof trainand test samples, each 25,
100and 500). For univariate approaches, studies of any sample size, when
appropriately aggregated toalarge total sample size, can correctly estimate
the true effect size. However, for multivariate approaches, even when
aggregatingacross 1,000 independent studies, studies with asmall sample
size produce predictionaccuracies thatare downwardly biased relative to
large sample studies, highlighting the need for large samples in multivariate
analyses.

white Americans transferred poorly to African Americans and vice versa
(within dataset)*. Historically, BWAS samples have lacked diversity,
neglecting marginalized and under-represented minorities”. Large
studies with more diverse samples and data aggregation efforts can
improve BWAS generalizability and reduce scientific biases contribut-
ing to massive health inequities?*?.

Spisak et al.® worry that “[r]lequiring sample sizes that are larger
than necessary for the discovery of new effects could stifle innova-
tion”. We appreciate the concern that rarer populations may never
be investigated with BWAS. Yet, there are many non-BWAS brain-
behaviour study designs (fMRI # BWAS) focused on within-patient
effects, repeated-sampling and signal-to-noise-ratio improvements
that have proven fruitful down to n =1(ref. ). By contrast, the strength
of multivariate BWAS lies in leveraging large cross-sectional samples
to investigate population-level questions. Sample size requirements
should be based on expected effect sizes and real-world impact,
and not resource availability. Through large-scale collaboration and
clear standards on datasharing, GWAS has reached sample sizesin the
millions?~*, pushing genomics towards new horizons. Similarly, BWAS



analyses of the future will not be limited to statistical replication of the
same few strongest effects in small homogeneous populations, but
also have broad scope, maximum prediction accuracy and excellent
generalizability.

Online content

Anymethods, additional references, Nature Portfolio reporting summa-
ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions
and competinginterests; and statements of data and code availability
are available at https://doi.org/10.1038/s41586-023-05746-w.

Reporting summary

Furtherinformation on experimental designis availablein the Nature
Portfolio Reporting Summary linked to this Article.

Data availability

Participant-level data from all datasets (ABCD and HCP) are openly
available pursuant toindividual, consortium-level dataaccess rules. The
ABCD datarepository grows and changes over time (https://nda.nih.
gov/abcd). The ABCD data used in thisreport came from ABCD collec-
tion3165and the Annual Release 2.0 (https://doi.org/10.15154/1503209).
Datawere provided, in part, by the HCP, WU-Minn Consortium (princi-
palinvestigators: D. Van Essen and K. Ugurbil; 1US4MH091657) funded
by the 16 NIH Institutes and Centers that support the NIH Blueprint
for Neuroscience Research; and by the McDonnell Center for Systems
Neuroscience at Washington University. Some data used in the present
study are available for download from the HCP (www.humanconnec-
tome.org). Users must agree to data use terms for the HCP before being
allowed access to the data and ConnectomeDB, details are provided
online (https://www.humanconnectome.org/study/hcp-young-adult/
data-use-terms).

Code availability

Manuscript analysis code specific to this study is available at GitHub
(https://gitlab.com/DosenbachGreene/bwas_response). Code for
processing ABCD data is provided at GitHub (https://github.com/
DCAN-Labs/abcd-hcp-pipeline). MRIdata analysis code is provided at
GitHub (https://github.com/ABCD-STUDY/nda-abcd-collection-3165).
FIRMM software is available online (https://firmm.readthedocs.io/en/
latest/release_notes/). The ABCD Study used v.3.0.14.
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

Confirmed
The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
X] A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

XX X

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated
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Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection No software was used for data collection. Neuroimaging and behavioral data were from existing, open-source datasets (ABCD, UKB, HCP)
whose acquisition's are presented in detail in previous work. The ABCD Study data were collected between 2016-2018. The HCP data were
collected between 2010-2016.

Data analysis MRI data analysis code can be found here: https://github.com/ABCD-STUDY/nda-abcd-collection-3165
ABCD and UKB MRI data processing code can be found here https://github.com/DCAN-Labs/abcd-hcp-pipeline
Manuscript analysis code can be found here https://gitlab.com/DosenbachGreene/bwas_response
FIRMM software: https://firmm.readthedocs.io/en/latest/release_notes/. ABCD uses version 3.0.14.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy
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Participant level data from all datasets (ABCD & HCP) is openly available pursuant to individual, consortia-level data access rules. The ABCD data repository grows
and changes over time. The ABCD data used in this report came from ABCD collection 3165 and the Annual Release 2.0, DOI 10.15154/1503209.




Data were provided, in part, by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil;
1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by the McDonnell Center for Systems
Neuroscience at Washington University. Some data used in the present study are available for download from the Human Connectome Project
(www.humanconnectome.org). Users must agree to data use terms for the HCP before being allowed access to the data and ConnectomeDB, details are provided at
https://www.humanconnectome.org/study/hcp-young-adult/data-use-terms.

No new data were collected for this manuscript. Across the ABCD, and HCP we downloaded data between 01/2019 - 10/2021. We did not use any specific software
for downloading the data. For details on data collection in ABCD (baseline data), see Casey et al., 2018; in HCP (1200 release) see Van Essen et al., 2013).
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Behavioural & social sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description Quantitative analyses of the magnitude and reproducibility of cross-sectional associations between neuroimaging measures and
psychological/psychiatric phenotypes.

Research sample Our main focus was to replicate work from Spisak et al in both the dataset used in their paper (HCP) and to further test
generalizability of their models. Therefore, we also tested their models on the larger ABCD dataset.

Sampling strategy All samples were recruited from the community (ABCD & HCP from the USA). Individual samples (ABCD, HCP) used unique sample
size calculations and sampling strategies which are discussed in prior work with these open source datasets (Casey et al., 2018, Van
Essen et al., 2013, respectively).

Data collection All data were from existing data repositories and were downloaded between 01/2019 - 10/2021. Data used in the manuscript were
from existing large consortia datasets (ABCD: see Casey et al., 2018 & Barch et al., 2018; HCP: We used data from the 1200 subjects
data release (van Essen et al., 2013). Because we did not personally collect any of the data used in this manuscript, all data were from
existing data repositories and researchers were therefore not blind to the source of the data.

Timing ABCD: see Casey et al.,, 2018
HCP: see van Essen et al., 2013

Data exclusions In ABCD, we used strict inclusion criteria with regard to head motion. Specifically, inclusion criteria for the current project consisted
of at least 600 frames (8 minutes) of low-motion (filtered FD<0.08) resting state functional connectivity data. Our final dataset
consisted of data from a total of N=3,928 youth across the discovery (N=1,964) and replication (N=1,964) sets. The final discovery
and replication sets did not differ in mean FD (AM=0.002 , t=0.60, p=0.55) or total frames included (AM=6.4 , t =0.94, p=0.35). The
subject lists for ARMS samples and our associated matrices will be released in the ABCD-BIDS Community Collection (ABCD collection
3165) for community use.

For HCP data, we used similar data quantity inclusion, as well as an FD < 0.20 (unfiltered FD). This resulted in the inclusion of N=900
individuals (N=877 across all NIH Toolbox subscales).

Non-participation N/A

Randomization All three samples were observational studies and no randomization was used.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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Materials & experimental systems Methods

Involved in the study n/a | Involved in the study

|:| Antibodies |Z |:| ChiIP-seq

|:| Eukaryotic cell lines |:| Flow cytometry

|:| Palaeontology and archaeology |:| MRI-based neuroimaging

|:| Animals and other organisms
Human research participants
|:| Clinical data
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Population characteristics See above.
Recruitment See above.
Ethics oversight The ABCD Study obtained centralized institutional review board approval from the University of California, San Diego, and

each of the 21 study sites obtained local institutional review board approval. Ethical regulations were followed during data
collection and analysis. Parents or caregivers provided written informed consent, and children gave written assent.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Magnetic resonance imaging

Experimental design

Design type resting-state fMRI, task-based fMRI; structural (cortical thickness) MRI

Design specifications ABCD resting state: 4, 5 min runs, eyes open
HCP resting state: 4, 15 min runs, eyes open

Behavioral performance measures Primary analyses use cognitive assessments from the NIH Toolbox and psychopathology assessment Child Behavior
Checklist (see manuscript for individual subscales, total of 41 ) included in standard data releases and discussed in detail
perviously (Barch et al., 2018)

Acquisition
Imaging type(s) Resting-state fMRI, task-fMRI, structural (cortical thickness) MRI
Field strength 3 Tesla
Sequence & imaging parameters Primary analyses use open-source distributed fMRI and MR data that adhere to consortia guidelines (see Casey et al.,
2018 and Van Essen et al., 2013, for ABCD and HCP, respectively).
Area of acquisition Whole brain
Diffusion MRI [ ] used Not used

Preprocessing

Preprocessing software Preprocessing of ABCD was done using a suite of tools. All code can be found here: https://github.com/ABCD-STUDY/nda-
abcd-collection-3165. Individual datasets (ABCD, HCP) and individual study sites (e.g., ABCD site 1 versus site 2) used unique
sequence and imaging parameters which are discussed in prior work introducing these open-source datasets.

Normalization 1) PreFreesurfer normalizes anatomical data. This normalization entails brain extraction, denoising, and then bias field
correction on anatomical T1 and/or T2 weighted data. The ABCD-HCP pipeline includes two additional modifications to
improve output image quality. ANTs 65 Denoiselmage models scanner noise as a Rician distribution and attempts to remove
such noise from the T1 and T2 anatomical images. Additionally, ANTs N4BiasFieldCorrection attempts to smooth relative
image histograms in different parts of the brain and improves bias field correction. 2) FreeSurfer 1 constructs cortical
surfaces from the normalized anatomical data. This stage performs anatomical segmentation, white/grey and grey/CSF
cortical surface construction, and surface registration to a standard surface template. Surfaces are refined using the T2
weighted anatomical data. Mid-thickness surfaces, which represent the average of white/grey and grey/CSF surfaces, are
generated here. 3) PostFreesurfer converts prior outputs into an HCP-compatible format (i.e. CIFTIs) and transforms the
volumes to a standard volume template space using ANTs nonlinear registration, and the surfaces to the standard surface
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space via spherical registration.

Normalization template The “Vol” stage corrects for functional distortions via reverse-phase encoding spin-echo images. All resting state runs
underwent intensity normalization to a whole brain mode value of 1000, within run correction for head movement, and
functional data registration to the standard template (MNI). Atlas transformation was computed by registering the mean
intensity image from each BOLD session to the high resolution T1 image, and then applying the anatomical registration to the
BOLD image. This atlas transformation, mean field distortion correction, and resampling to 3-mm isotropic atlas space were
combined into a single interpolation using FSL's 66 applywarp tool. The “Surf” stage projects the normalized functional data
onto the template surfaces.

Noise and artifact removal Additional BOLD preprocessing steps were executed to reduce spurious variance unlikely to reflect neuronal activity 46. First,
a respiratory filter was used to improve FD estimates calculated in the volume (“vol”) stage68. Second, temporal masks were
created to flag motion-contaminated frames using the improved FD estimates 63. Frames with a filtered FD>0.3mm were
flagged as motion-contaminated for nuisance regression only. After computing the temporal masks for high motion frame
censoring, the data were processed with the following steps: (i) demeaning and detrending, (ii) interpolation across censored
frames using least squares spectral estimation of the values at censored frames so that continuous data can be (iii) denoised
via a GLM with whole brain, ventricular, and white matter signal regressors, as well as their derivatives. Denoised data were
then passed through (iv) a band-pass filter (0.008 Hz<f<0.10 Hz) without re-introducing nuisance signals 69 or contaminating
frames near high motion frames.
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Volume censoring Yes, ABCD data were censored at a filtered frame-wise displacement of < 0.08mm and HCP data were filtered using a non-
filtered framewise displacement of <0.20mm.

Statistical modeling & inference

Model type and settings Mass univariate and multivariate (support vector regression, canonical correlation analysis). Multiple parameterizations of
each of these models were explored with the stated goal being to determine field-wide reproducibility in brain-phenotype
association studies (see manuscript).

Effect(s) tested As the primary aim of the paper was to determine the general reproducibility of brain-phenotype effects, multiple scales and
combinations of effects were examined. Owing to the cross-sectional, nature of these studies, all effects are between-person
associations.

Specify type of analysis: [ | Whole brain [ | ROI-based Both

Anatomical location(s) Parcel-level and network-level analyses utilized the field-standard Gordon et al., 2016, Cerebral Cortex,
and Seitzman et al., 2020, Neurolmage. Vertex-wise and voxel-wise data were extracted from Ciftis.

Statistic type for inference Multiple levels of neuroanatomical scale were used, including voxels, regions of interest, and networks.
(See Eklund et al. 2016)

Correction As the primary aim of the paper was to determine the general reproducibility of brain-phenotype effects, multiple levels of
significance values and correction were used, ranging from uncorrected to bonferroni (FWER) correction.

Models & analysis

n/a | Involved in the study
D Functional and/or effective connectivity

|:| Graph analysis

D Multivariate modeling or predictive analysis
Functional and/or effective connectivity Pearson correlation

Multivariate modeling and predictive analysis  Two supervised regression models were used: a Ridge Regression model (a = 1.0), as proposed by Spisak et
al. and a combined Principal Component Analysis (PCA) and Support Vector Regression (SVR) model,
whereby half of the principal components (retaining 50% of the variance) generated from the PCA were
passed as features into the SVR, as in the original work by Marek, Tervo-Clemmens et al. Both models were
implemented using scikit-learn 5 in Python 3.

For both HCP and ABCD datasets, both methods (ridge regression; PCA+SVR) and using three different
neuroimaging feature sets (RSFC: full correlation, partial correlation; cortical thickness), the same analyses
were conducted using code directly from Spisak et al. (https://gitlab.com/DosenbachGreene/
bwas_response). For each behavioural phenotype and neuroimaging feature set combination, in each
dataset, a complete cases sub-dataset was compiled, removing participants with missing behavioural
phenotypes or neuroimaging data. For each of these complete cases (per Spisak et al.) neuroimaging feature
set behavioural phenotype sub-datasets, 100 bootstraps were run for each model. Within each bootstrap,
the sub-dataset was equally and randomly split into a discovery and replication set based on a given sample
size. Here, sample size is defined as the size of a sole discovery/training set (identical in size to the replication
set), such that given a sample size n, the total number of participants/samples of the combined discovery
and replication sets is 2n.

Lcoz Yooy

Following Spisak et al. (method and code), the discovery set was divided again into 10 cross-validation folds.
However, unlike the nested cross-validation which was explored in our original manuscript and shown to not
substantively change results (Marek, Tervo-Clemmens et al. 1: Supplemental Fig. S11, S12), this procedure




utilised by Spisak et al., and repeated here, did not use the additional cross-validation step for
hyperparameter tuning. Rather an additional out-of-sample test was applied to the discovery dataset.
TThe analyses and Figures (Fig. 1, 2) in this work use combinations of Spisak et al.’s methodological
suggestions and those from our original work to replicate, expand, and clarify Spisak et al.’s Matters Arising

commentary and to provide a more comprehensive perspective on out-of-sample multivariate BWAS effects.

Rationale and additional details for specific analyses are provided in the relevant “Main Text” and “Figure
Captions”. In all cases, out-of-sample associations were evaluated as the correlation between the predicted
phenotype score and the true score in the out-of-sample data. In-sample (training) associations were
evaluated as the correlation between the true score and the predicted score from the model developed in
the discovery set (that is, the data in the sample used to develop the model (Fig. 1).

Successful out-of-sample replication was defined as in Spisak et al.: 80% of bootstrapped iterations for a
given behavioural phenotype-brain feature set (“BWAS”) that were significant (via permutation test) in the
first cross-validation test are significant in the second, split half test. We note this definition of replication by
Spisak et al. thus does not consider all bootstrap iterations (n = 100) run when determining replication
success/failure. That is, the denominator of a replication percentage is set by the number of bootstrap
iterations that are significant in the first cross-validation test. Therefore, to ensure this measure of 80%
replication represented a true percentage, replication here also required that more than one bootstrap
iteration (out of the total 100) replicated (as defined above). Without this criteria, the impact of sampling
variability and the performance of a single bootstrap iteration ensured that a small number of BWAS would
appear to intermittently have replication successes followed by replication failure for the very smallest
sample sizes. Reproducibility estimates following Spisak et al. guidelines were highly consistent with those
from our original work.
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