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In the following sections we provide some additional detailsabout the model as well as some

results which are of interest to the reader.

Supplementary Figures

Two of the shapes used in the weather prediction task are assigned a infinite WOE. That is the

presence of any of these shapes alone (which are called trump shapes) is fully predictive of the

reward outcome on one of the two choice alternatives. Nevertheless, it has been shown that the

presence of these shapes does not completely determine the monkeys choice or in other words,

trump shapes exert finite weights on decision-making processes1. In order to show that this is also

the case in our model, we computed the probability that alternativeA is selected, for all patterns

which contain one of the two trump shapes. We found that the probability of selectingA depends

on the evidence provided by the non-trump shapes in these patterns (Fig.S1). Therefore, even in

the presence of a trump shape in a given pattern the evidence provided by other shapes in that

pattern contributes to decision making.

We also show in the main text that the influence of each shape on decision making can be

extracted from the average choice behavior using a logistic regression fit. In order to test whether

this influence depends on the epoch in which a shape is presented, we performed the same analysis

using a logistic regression fit with a term for each of the 10 shapes in each of four epochs.

PA =
10Q

1 + 10Q
where Q =

10
∑

i=1

4
∑

j=1

qijNij (S1)

wherePA is the probability of choosing alternativeA, Nij is equal to 1 if shapeSi is presented

in epochj (and zero otherwise) for a given pattern, and regression coefficientqij is the subjective
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Figure S1: Influence of trump shapes on choice behavior is finite. Probability of selecting alter-

nativeA is computed for all patterns which contain one repetition of the trump shape which is

predictive of alternativeA (a) or B (b), as a function of the evidence provided by the rest of the

shapes in those patterns (i.e. the sum of the WOE of the non-trump shapes). Although the pres-

ence of a trump shape strongly biases the choice behavior toward one of the two alternatives, the

evidence provided by the rest of shapes influences the choice selection.

3

Nature Neuroscience: doi:10.1038/nn.2450



−Inf −1.0  −0.5 0   0.5 1.0   Inf 
−2

−1.5

−1.0

−0.5

0

0.5

1.0

1.5

2

S
u

b
je

c
ti
v
e

 W
O

E
Assigned weights

Epoch 1

Epoch 2

Epoch 3

Epoch 4

Figure S2: Effect of shapes on decision making is independentof the epoch. The SWOEs are the

coefficients of logistic regression fit of probability of choosingA (equation(S1)). There are four

diamonds for each shape which show the SWOEs for four different epochs.

weight of evidence (SWOE) for shapeSi in epochj. We found that regression with 40 parameters

does not provide a much better fit than regression with only 10 parameters. Moreover, the result of

this fit indicated that the influence of each shape on decision processes is independent of the epoch

in which the shape is presented (Fig.S2).

Also, we argue that the SWOEs are less than the assigned WOEs because of the concur-

rence of different shapes and especially the presence of trump shapes on many trials. In order to

show this, we reduced the assigned WOEs for the trump shapes (from∞ and−∞ to 2 and -2,

respectively) while leaving the assigned WOE for the non-trump shapes intact. We found that the

SWOE as well as the log naive posterior odds of the non-trump shapes are increased due to this

alteration (Fig.S3). This happens because in the case in which the assigned WOEs for the trump

shapes are reduced these shapes have less influence on decision processes and therefore on the
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predictive power of the non-trump shapes through learning process. Note that in both cases, the

SWOE is linearly proportional to the log naive posterior odds.

As we argue in the main text, the stochastic choice behavior of the model is determined by

the overall difference in the synaptic strengths. This is shown inFig.S4 where we plot the proba-

bility of choosingA as a function the overall difference in the synaptic strengths. We found that the

choice probability can be fit as a sigmoid function of the overall difference in the synaptic strengths

and this relationship is not influenced by the prior probability that each alternative is assigned a

reward (Fig.S4a-d).

In the main text we show that the activity of neurons in the decision circuit is modulated by

the logLR provided by presented shapes. Another way to show the influence of the logLR on the

neural activity is to examine the change of the population activity due to the presentation of a new

shape. Here we computed the incremental change of the population firing rate across successive

epochs (for each shape presentation) by subtracting the average activity during the last 200 msec

of the previous epoch from the activity in the current epoch (Fig.S5a). We also computed the aver-

age of this change and we found that the average change of activity is proportional to the average

change of the logLR (∆logLR) caused by the presentation of a new shape (Fig.S5b).

In addition to the effect of the logLR on the neural activity, we also examined how the

choice on a given trial affects the modulation by the logLR. We found that the average population

activity is influenced by both choice and the accumulated logLR over time (Fig.S6, see alsoFig.5c

in the main text).
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Figure S3: Relationship between the subjective weight of evidence (SWOE), the assigned WOE,

and the log naive posterior odds for two cases: normal case (black), the case with a finite WOE

for the trump shapes (gray). (a) The SWOE extracted from the model’s choice behavior as a

function of the assigned WOE in each case. The SWOEs for the trump shapes are reduced while

the SWOEs for nun-trump shapes are increased in the latter case compared to the normal case. (b)

SWOE as a function of the log naive posterior odds (which is equal to the NWOE (equation(S5))

when priors are equal). In both cases the SWOE is a linear function of the log naive posterior

odds. (c) Log naive posterior odds is a linear function of the assigned WOE for non-trump shapes.

When the assigned WOE for the trump shapes are reduced, the log naive posterior odds for the

non-trump shapes are increased. Note that the relationship between the log naive posterior odds

and the assigned WOEs is due to task design and is independent of the model’s choice behavior.

The dashed lines show the linear fits and the black solid line is the diagonal line.
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Figure S 4: The probability of choosingA is a sigmoid function of the overall difference in the

synaptic strengths and this relationship is not influenced by prior probability. For each set of

patterns with a unique WOE, the probability of selectingA is plotted versus the sum of the average

difference in the synaptic strengths for that set of patterns. Panelsa to d correspond to the cases

in which the prior probability that alternativeA is assigned with reward is equal to 0.5, 0.67, 0.75,

and 0.8, respectively. The gray curves are the results of the logistic regression fit (equation(S6)).

The values ofσ obtained from fitting fora to d are equal to 0.16, 0.15, 0.15, 0.14, respectively.
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Figure S5: Change of neural activity as a result of each shape presentation. (a) The average change

in the population activity due to presentation of a new shape is plotted for epoch two, three, and

four (indicated at top of the panels). Different color shades from blue to red correspond to shape

S1 to S10. (b) Average change of the activity in the last 250 msec of each epoch is plotted as a

function of the logLR related to that shape. In this analysis we did not include data related to the

presentation of trump shapes in the fourth epoch. The insets show the slope (with estimated s.e.m.)

of the linear fit of points in each epoch. Note that part of the decrease in slope for later epochs

is because of the fact that change of the logLR due to presentation of any shapes is larger in later

epochs. A better approach would be to fit the data according to the NWOEs (equation(S5)) or the

log naive posterior odds, the only parameters which possibly can be computed by the subject or a

model and do not depend on the epoch.
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Figure S 6: The effect of choice on modulation of neural activity by the logLR. The activity in

each epoch is grouped into five quintiles according to the logLR and choice of the model on each

trial. Color shadings from blue to red corresponds to larger logLR favoring alternativeA. The top

(respectively bottom) panels show traces when choice is the preferred (respectively nonpreferred)

target of the neural population. On the one hand, if the choice is the preferred target the baseline

of activity is higher (specially in later epochs). On the other hand, the modulation of activity by

the logLR is larger when the choice is the nonpreferred target (see alsoFig.5c in the main text).
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Supplementary Results

Supplementary Note 1:

Steady-state of plastic synapses when multiple cues precede an outcome

In the main text we show that plastic synapses encode posterior probability when a single cue is

presented on each trial. Here we show that in the general case in which multiple cues are presented

on each trial, plastic synapses encode a quantity proportional to the naive posterior probability

(i.e. the probability that a choice alternative is assigned a reward, given a cue is presented in any

combination of cues). In order to demonstrate this, we use a weather prediction task in which fours

shapes are presented on each trial1 .

Note that even though there are104 possible patterns (i.e. combination of four shapes) in this

task, the reward is assigned to each choice alternative based on the sum of the weight of evidence

(WOE) for each pattern, independently of the order in which these shapes are presented on each

trial. As a result, there are only 750 unique values for the WOEs of patterns. Lets us refer to all

patterns which contain a shapeSi and have the same WOE (equal tot) with Ct
i . Using the same

argument as in the case where one shape alone is presented on each trial, we can show that if only

this set of patterns is presented, the synaptic strength related to shapeSi and alternativeA would

be proportional to the posterior probability for this set of patterns,P (A|Ct
i ).

However, shapeSi appears in many sets of patterns which have different WOEs. These

different sets of patterns drive the synaptic strengths toward different values, and by analogy with
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equation(1) one can show that the steady-state of the synaptic strength is equal to

css
iA =

∑

t q+P (Ct
i )PA(Ct

i )P (A|Ct
i)

∑

t (q+P (Ct
i )PA(Ct

i )P (A|Ct
i ) + q−P (Ct

i )PA(Ct
i )(1 − P (A|Ct

i)))
(S2)

where the sum is over all unique values of the WOE. If the learning rates are equal we get

css
iA =

∑

t P (Ct
i )PA(Ct

i )P (A|Ct
i)

∑

t P (Ct
i )PA(Ct

i )
(S3)

Note that the denominator in this expression is equal toP̃A(Si) =
∑

t P (Ct
i )PA(Ct

i ), which is the

probability thatA is chosen, given the shapeSi is presented in any pattern. From equation(S3) it

is clear that the steady-state of the synaptic strengths depends on the model’s choice behavior and

cannot be computed analytically. It is worth noting that in the case in which the choice behavior is

not influenced by plastic synapses (so plastic synapses undergo modification but do not influence

decision making processes),PA(Ct
i ) in equation(S3) cancels out and we get

css
iA =

∑

t P (Ct
i )P (A|Ct

i )
∑

t P (Ct
i )

=

∑

t P (A, Ct
i )

∑

t P (Ct
i )

= P̃ (A|Si) (S4)

whereP̃ (A|Si) is the naive posterior probability (i.e. the probability thatA is assigned a reward,

given that shapeSi is presented in any pattern). Therefore, in this case the steady-state of the

synaptic strength is equal to the naive posterior probability.

In general, the steady-state of the synaptic strength for shapeSi and alternativeA is a

weighted sum of the posteriors for different patterns which contain shapeSi. This sum is not

exactly equal to the naive posterior probability and moreover, it depends on the prior probabil-

ity. Nevertheless, as we show in the main text, the difference in the steady-state of the synap-

tic strengths is linearly proportional to the log naive posterior odds (Fig. 2) due to the fact that

x − (1 − x) ≃ log10(x/(1 − x)), if 0.2 ≤ x ≤ 0.8 (Fig. 1).
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Finally, assuming conditional independence between shape presentation in each epoch, one

can compute the naive evidence provided by each shape. The naive evidence,P̃ (Si|A), is equal to

the conditional probability that shapeSi is presented in any pattern, given alternativeA is assigned

a reward. From these likelihoods one can compute the naive weight of evidence (NWOE) which

is the log likelihood ratio that a shape is presented in any pattern given an alternative is assigned a

reward

NWOEi = log10

P̃ (Si|A)

P̃ (Si|B)
(S5)

This quantity is independent of the prior probability. Because in the original weather prediction

task the prior probability for two alternatives are equal1, the log naive posterior odds is equal to

the NWOE

log10

P̃ (A|Si)

P̃ (B|Si)
= log10

P̃ (Si|A)

P̃ (Si|B)
.

Supplementary Note 2:

Relationship between choice behavior and the synaptic strengths

In this section we describe the relationship between the choice behavior and the steady-state of the

synaptic strengths. When four shapes are presented on each trial, the choice behavior is determined

by the sum of the inputs to decision neurons. We found that although the choice on each trial is

stochastic due to neural fluctuations, the probability of selectingA is approximately a sigmoid

function of the sum of the difference in synaptic strengths (Fig.S4) and can be written as

PA(Ct) =
1

1 + exp (−
P

i
(css

iA
−css

iB
)

σ
)

(S6)

12

Nature Neuroscience: doi:10.1038/nn.2450



wherePA(Ct) is the probability of selectingA when a set of patternsCt (which consists of all pat-

terns with the WOE equal tot) is presented,1/σ quantifies the sensitivity of the decision network

to the difference in the inputs (with current parameters we foundσ ≈ 0.15), and the sum is over

all shapes presented in such patterns.

Interestingly, the relationship between the probability of selectingA and the sum of the

difference in the synaptic strengths is not influenced by the prior probability that each choice alter-

native is assigned a reward (Fig.S4). In addition, we found that the probability of choosing each

alternative is not influenced by the order in which shapes are presented (Fig.S2). This is because

until the offset of the fixation point the decision network is not in the competition regime and at

that point, the activity in two decision pools is determined by the sum of the inputs.

In order to express the choice behavior in terms of behavioral measures such as the log naive

posterior odds or log posteriors odds, we need to relate the sum of the difference in the synaptic

strengths to these measures. As we show in the main text, the difference in the synaptic strengths

related to each shape is linearly proportional to the log naive posterior odds but is also influenced

by the prior probability

css
iA − css

iB = α log10

(

P̃ (A|Si)

P̃ (B|Si)

)

+ β log10

(

P (A)

P (B)

)

(S7)

whereP̃ (A|Si) is the naive posterior probability andP (A) andP (B) are the prior probabilities

that alternativesA andB are assigned a reward, respectively. The values ofα andβ depend on

the network parameters and on the learning rates (see Supplementary Note 4 for details of these

dependence) but in general we found the value ofβ to be negative and|β| < α (with current pa-

rameters we foundα = 0.48 andβ = −0.31).
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We can assess what is learned in each set of synapses by computing the probability of select-

ing A when one shape alone is presented

PA(Si) =
1

1 + exp

(

−
α log10

P̃ (A|Si)

P̃ (B|Si)
+β log10

P (A)
P (B)

σ

) (S8)

wherePA(Si) is the probability of selectingA when shapeSi is presented alone. As can be seen

from the last equation, the choice behavior depends on the log naive posteriors but is also biased

by the prior information. We define the bias in the choice behavior to be equal to the probability

of selectingA when the log naive posterior odds is equal to zero

Bs = PA(Si)|P̃ (A|Si)=P̃ (B|Si)
=

1

1 + exp
(

−β

σ
log10

P (A)
P (B)

) (S9)

Becauseβ is negative, ifP (A) > P (B) we getBs < 0.5 and therefore, the choice behavior is

biased toward the less probable choice alternative (i.e.B) if one shape alone is presented.

Note that a bias toward the less probable alternative does not mean that plastic synapses

encode prior information in the wrong direction. This can be seen by rewriting equation(S7) in

terms of the NWOE (see equation(S5)), a quantity which is independent of the prior

css
iA − css

iB = αNWOEi + (α + β) log10

(

P (A)

P (B)

)

(S10)

The fact that(α + β) > 0 shows that information encoded by plastic synapses are positively

influenced by prior information, but this influence is not strong enough (i.e.(α + β) < α) and

results in a bias toward the less probable alternative when one shape alone is presented.

When four shapes are presented in a given pattern, the sum of the difference in the synaptic
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strengths is equal to

∑

i

(css
iA − css

iB) = α
∑

i

log10

(

P̃ (A|Si)

P̃ (B|Si)

)

+ 4β log10

(

P (A)

P (B)

)

(S11)

where the sum is over all shapes in that pattern (note that the factor 4 is due to the fact that there

are four shapes in each pattern). Because in this task the WOE for a given pattern is equal to the

sum of the WOE of the shapes in that pattern, the sum of the log naive posterior odds of shapes in

a set of patterns with a unique sum of the WOEs is linearly proportional to the log posterior odds

for that set but is also influenced by log prior odds (Fig.S7a)

∑

i

log10

(

P̃ (A|Si)

P̃ (B|Si)

)

= γ log10

(

P (A|Ct)

P (B|Ct)

)

+ λ log10

(

P (A)

P (B)

)

(S12)

whereP (A|Ct) is the posterior probability thatA is assigned a reward, given that a set of patterns

Ct is presented,γ = 0.36, andλ = 3.64. Note that the relationship between the sum log naive

posterior odds and the log posterior odds is due to task design and it is independent of the model’s

choice behavior. These linear relationships hold true for all sets of patterns with finite log posterior

odds. For sets of patterns with infinite log posterior odds (i.e. those which contain unbalanced

number of trump shapes) the choice behavior is not stochastic and one of the two choice alternatives

is selected all the time. Therefore, these patterns influence parts of the psychometric function

which are close to 0 and 1 and do not contribute to what follows.

Combining the previous equations we can express the choice behavior in terms of the log

posterior and the log prior odds, when a pattern of shapes is presented

PA(Ct) =
1

1 + exp

(

−
αγ log10

P (A|Ct)

P (B|Ct)
+(αλ+4β) log10

P (A)
P (B)

σ

)
(S13)
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Figure S7: Relationship between the log posterior odds, the sum of log naive posterior odds, and

the sum of the NWOEs from all shapes in each set of patterns with a finite WOE. (a) Log posterior

odds for each pattern can be estimated by the sum of the log naive posterior odds of shapes in that

pattern. Plotted is the sum of the log naive posterior odds from shapes in a pattern as a function

of the log posterior odds for that pattern. The solid lines show the linear fit for each set of points

corresponding to different values of prior probability (indicated by the inset). (b) Sum of the

NWOEs from shapes in a pattern as a function of the log posterior odds for that pattern (the same

convention as ina). (c) Sum of the NWOEs from shapes in a pattern plus the log prior odds as a

function of the log posterior odds for that pattern (the same convention as ina). Estimating the log

posterior odds for each pattern by adding the NWOEs and log prior odds is biased toward the more

probable alternative.
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wherePA(Ct) is the probability thatA is selected, given that a set of patternsCt is presented. The

last equation explains why the psychometric function is a sigmoid function of the log posterior

odds (and similarly of the sum WOE). It also shows that the choice behavior is biased by the

prior probability. We define the bias in the psychometric function to be equal to the probability of

selectingA when the log posterior odds is equal to zero

Bp = PA(Ct)|P (A|Ct)=P (B|Ct) =
1

1 + exp
(

− (αλ+4β)
σ

log10
P (A)
P (B)

) (S14)

Because(αλ + 4β) ≈ 0.51 is positive, we getBp > 0.5 if P (A) > P (B) and therefore, the

psychometric function is biased toward the more probable choice alternative (i.e.A). As we show

in Supplementary Note 4, for different values of model parameters we consistently foundβ < 0

and(αλ + 4β) > 0.

Supplementary Note 3:

Performance of Bayesian observers

In the main text, we compare the choice behavior and performance of our model with those of

different ideal Bayesian observers. On each trial of the weather prediction task four shapes (out

of 10 possible shapes) are presented and one of the two alternatives is rewarded if it is assigned

a reward and is selected. Therefore, it is nontrivial how a Bayesian observer learns the evidence

associated with each shape in this task. In order to avoid the issue about learning, we assume that

Bayesian observes are able to learn the evidence associated with each shape in two different ways,

and we evaluate the performance of these observers after learning.

On the one hand, by assuming that the order of shapes in a pattern is irrelevant, the Bayesian
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observer can compute the likelihood for a given pattern (the probability that a pattern is presented

given alternativeA is assigned a reward) and then combines it with prior information to obtain

posteriors for that pattern. The posteriors then can be used to make decision according to different

decision rules; e.g. strict Bayesian (i.e. selecting the alternative with the larger posterior) or ‘prob-

ability matching’ (i.e. selecting each alternative with a probability equal to the posterior). The

performance of these observers is shown in inFig.S8 and inFig.3a of the main text. In the case in

which priors are equal, the SWOEs of the probabilistic Bayesian observer are equal to the assigned

WOEs (Fig.S8a). The SWOEs for the strict Bayesian observer are infinite. Therefore, while the

choice behavior of the probabilistic Bayesian observer may resemble those of monkeys, the SWOE

associated to each shape is different from the experimental data. In the case in which priors are not

equal, these Bayesian observers show no bias (Fig.S8b andFig.6b in the main text). Moreover, the

reward rate (i.e. percent harvested of the assigned rewards) of these Bayesian observers are larger

than those of our model and monkeys (Fig.S8c).

On the other hand, if the Bayesian observer assumes independence between evidence pro-

vided by each shape, then this observer can compute the naive likelihood for each shape,P̃ (Si|A)

(the probability that the shapeSi is presented in any pattern, given alternativeA is assigned a

reward) as well as the prior probability of each alternative being rewarded. Subsequently, he/she

can combine this information to compute the posterior probability that each alternative is assigned

a reward given a combination of shapes is presented. For example, he/she can add the log naive

likelihood ratio (i.e. NWOE) for all shapes in a given pattern to the log prior odds, in order to

estimate the log posterior odds for that pattern.
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We found that the SWOEs of the “alternative” probabilistic Bayesian observer are equal to

the log naive posterior odds, while the SWOEs for the alternative strict Bayesian observer are in-

finite (Fig.S9a). When priors are equal the alternative probabilistic Bayesian observer performs

similar to our model. When priors are not equal this observer shows similar bias in the choice

behavior while its estimate of the evidence associated to each shape is not biased (Fig.S9c). These

alternative Bayesian observes show bias in the psychometric function because they combine the

NWOEs from all shapes in a given pattern with the log prior odds, in order to estimate the log

posterior odds for that pattern. To show this we used equation(S12) to calculate the sum NWOEs

∑

i

NWOEi =
∑

i

log10

(

P̃ (Si|A)

P̃ (Si|B)

)

= γ log10

(

P (A|Ct)

P (B|Ct)

)

+ (λ − 4) log10

(

P (A)

P (B)

)

(S15)

The last equation shows that while combining the NWOE of shapes in a given pattern with

the log prior odds provides an estimate for the log posterior odds for that pattern, this estimate is

biased toward the more probable alternative (λ − 4 > −1, seeFig.S7c). Therefore, the alternative

Bayesian observers show bias in their choice behavior while their estimate of evidence associate

with each shape is not biased. This is due to the fact that evidence in different epochs are not

conditionally independent. Finally, the reward rate of our model is larger than the reward rate for

the alternative probabilistic Bayesian and is less than the alternative strict Bayesian (Fig.S9d).

Supplementary Note 4:

Dependence of choice behavior on model parameters and optimal strategy

In Supplementary Note 2 we show that the probability of selecting alternativeA is approximately

a sigmoid function of the sum of the difference in the synaptic strengths (equation(S6)). The sensi-
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Figure S 8: Choice behavior and performance of Bayesian observers. (a) Subjective weight of

evidence (SWOE) for each shape as a function of the assigned WOE to that shape, for a Bayesian

observer who makes decision according to probability matching. For this observer, the SWOEs are

equal to the assigned WOEs when the priors are equal. SWOEs for the strict Bayesian observer

are plus and minus infinity. (b) Psychometric function for patterns with finite log posterior odds

is plotted for four values of prior probability (indicated by the inset). The data points show the

results for the probabilistic Bayesian observer and gray curves are the logistic function fits for

individual observers. (for clarity, data points for the strict Bayesian observer are not shown).

The psychometric functions are identical for all values of prior and are not biased toward either

alternative. (c) The reward rate for the probabilistic (squares) and strict (diamonds) Bayesian

observers as well as our model (circles), as a function of the log prior odds. Dashed lines are only

to guide the eyes.
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Figure S9: Choice behavior and performance of “alternative”Bayesian observers. (a) SWOE for

each shape as a function of the assigned WOE to that shape, for an alternative Bayesian observer

who makes decision according to probability matching. For this observer, the SWOEs are equal

to the log naive posterior odds (and NWOEs) when the priors are equal. SWOEs for the alterna-

tive strict Bayesian observer are plus and minus infinity. (b) Psychometric function of alternative

Bayesian observers for four values of prior probability. The data points show the results for the

alternative probabilistic Bayesian observer and gray curves are the logistic function fits. The black

curves show the fitting results for the alternative strict Bayesian observer (for clarity, data points

for this observer are not shown). The psychometric function for both observers are equally biased

toward the more probable alternative. (c) Choice bias for the alternative strict (diamonds) and

probabilistic (squares) Bayesian observers as a function of the log prior odds. Open diamond and

squares: bias of the psychometric function. Filled diamonds and squares: bias when one shape is

presented alone. For comparison, the bias of the psychometric function (open circles), and of the

differential synaptic input (learned evidence) about each shape (filled circles) for our model are

also shown. (d) The reward rate for the alternative probabilistic (squares) and strict (diamonds)

Bayesian observers as well as our model (circles), as a function of the log prior odds. Our model’s

performance falls between those of Bayesian observers. Dashed lines are only to guide the eyes.
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tivity of the choice behavior to this quantity is measured by asingle parameter (1/σ) but it depends

on many model parameters such as the input firing rate of cue-selective neurons or the number

of plastic synapses. We exploited this result to facilitate exploring the model choice behavior by

replacing the decision process on each trial by a simple coin tossing with a probability which is

computed according to equation(S6). Using this approach we could explore the dependence of the

choice behavior on model parameters only by investigating this dependence on the values ofσ and

the learning rates,q+ andq−.

Firstly, we examined how biases in the choice behavior and the performance (i.e. rate of

reward harvest per trial) depend on the learning rates. We found that when the learning rates are

small only their ratio strongly influences the choice behavior.Fig.S10a shows that both values of

α and |β|, which quantify how evidence about each shape is stored in plastic synapses, increase

as the learning rate ratio decreases. These happen because whenq− > q+ plastic synapses transit

more often to the depressed than to the potentiated state and as a result, the range of the difference

in the synaptic strengths is larger than the case in whichq+ = q− (the opposite of this happens

whenq+ > q−). As a result of increase in the range that plastic synapses represent the log naive

posterior odds and log prior odds, both values ofα and|β| increases. An increase in the value of|β|

in turn increases the bias in the choice behavior when one shape alone is presented (Fig.S10b, note

that in equation(S9) the value ofBs is farther from 50% as−β/σ increases). At the same time,

the bias in the psychometric function only decreases slightly due to a slight decrease in(αλ + 4β)

(Fig.S10b, note that in equation(S14) the value ofBp is closer to 50% as(αλ + 4β) decreases). It

is worth noting that the bias in the psychometric function goes to zero if(αλ + 4β) = 0. This is
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not possible in our model because the values ofα and β are correlated. Overall, we found that a

decrease in the learning rate ratio increases the reward rate (Fig.S10c).

Secondly, we examined the dependence of the choice behavior on the sensitivity of the

decision network (1/σ). As the sensitivity of the decision network to the difference in the synap-

tic strength increases (i.e. smaller value ofσ, which can occur by increasing the number of

plastic synapses or the input firing rates to these synapses) both values ofα and |β| decrease

(Fig.S10d). This happens because for smallerσ values, a small change in the difference in the

synaptic strengths can strongly bias the choice behavior. As a result, plastic synapses represent

information about the log naive posterior odds and the log prior odds in a smaller range which in

turn results in smaller values ofα and|β|. Because the value of−β/σ determines the bias in the

choice behavior when one shape is presented alone (and this value increases asσ decreases), this

bias increases with a decrease in the value ofσ (Fig.S10e). Overall, decreasingσ results in an

improvement of performance in terms of reward rate (Fig.S10f).

These results point to general biophysical limits for stochastic inference and decision mak-

ing. On the one hand, there is always a bias in the choice behavior toward the less probable choice

alternative if one shape is presented alone (in order to test what is learned about each shape). This

bias can be reduced by making decision circuit less sensitive to evidence (information) in the ex-

ternal world, either by increasing the value ofσ or by adopting learning rate ratio larger than 1

(i.e. q+ > q−). Both of these adjustments result in a poorer performance, because the values ofα

andβ are correlated and the choice behavior is stochastic. The values ofα andβ are correlated in

our model because the prior information and evidence about each shape are learned and encoded
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Figure S10: Dependence of the choice bias and performance on the model parameters: learning

rates (a-c), sensitivity of the decision network (d-f) . (a) Dependence of the relationship between

the difference in the synaptic strengths and the log naive posterior and the log prior odds (quantified

with α andβ, see equation(S7)) on the learning rate ratio. The learning rates are set to (q+ =

0.06, q− = 0.02), (q+ = 0.02, q− = 0.02), (q+ = 0.02, q− = 0.06), and (q+ = 0.01, q− = 0.05)

in four cases. All bars, markers, and lines in the top (respectively bottom) three panels are coded

with different shading corresponding to different values of learning rate ratios (respectivelyσ) as

shown ina ( respectivelyd). (b) The bias in the psychometric function (Bp) and in the choice

behavior when one shape is presented alone (Bs), as a function of the log prior odds for different

values of the learning rate ratio. (c) Reward rate (i.e. percent harvested of the assigned rewards) as

a function of the log prior odds. (d) to (f): similar toa to c but for different values ofσ.
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in the same set of synapses and there is no separate system to learn prior information. As a result,

an increase in the bias of the choice behavior toward the less probable alternative does not reduce

the performance but counterintuitively, increases the performance.

On the other hand, the optimal performance in this task could be achieved if the model was

extremely sensitive to the difference in the log posterior odds and could always select the choice

alternative which has a larger posterior probability. This means that the value of1/σ′ = αγ/σ

should become very large (see equation(S13)). For this to happen,α should increase and/orσ

should decrease (remember thatγ is fixed by the task design). But as we showed inFig.S10d, as

the value ofσ decreases the value ofα also decreases (but not as fast asσ) due to the interaction

between decision and learning processes. Moreover, a very sensitive decision network can be at-

tracted to a state in which it only selects the alternative which is assigned a reward more often.

The same limit also applies to an “alternative” Bayesian observer that employs the naive posterior

odds (as an approximation for the posterior odds) to make decision. The difference between such

a Bayesian observer and our model is that the former obtains the naive posterior odds for a given

pattern by combining the naive likelihood ratios from shapes in that pattern with the prior odds,

while the latter directly summates log naive posterior odds from shapes in that pattern. As a result,

the choice behavior of an alternative Bayesian observer is not biased toward either alternative when

a shape is presented alone, while its psychometric function is biased toward the more probable al-

ternative and its performance is limited by the stochastic nature of the task and decision making

processes, similar to our model (Fig. S9).
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Supplementary Note 5:

Model’s robustness

In the main text we show that our model is able to perform the weather prediction task. This model

is constructed based on certain assumptions and in order to explore the crucial components of the

model, we relaxed some of the assumptions and observed the resulting behavior.

One of the assumptions behind the behavioral analysis in the simulated experiment1 and

in our model is that on each trial all presented shapes are registered by the monkeys (i.e. deci-

sion maker) and so all shapes influence decision making. More naturally, it is perceivable that on

some trials some of the shapes are ignored, especially those which are not very predictive of either

outcome. Therefore, an important test for our model is to see if some shapes are not registered

randomly on some trials, whether the model is still able to learn and perform the task or not.

In order to test this, we simulated the weather prediction task with the following assump-

tions. First, a presented shape is registered with a certain probability. Second, only when a shape

is registered on a given trial, the corresponding shape-selective population becomes active and in-

fluences decision making in that trial. Third, if presentation of a shape is not registered on a given

trial, the plastic synapses related to that shape are not updated at the end of that trial (this is a

natural outcome of our learning rule).

We found that if the probability of registering a shape is similar for all shapes, the model per-

forms the task as good as before and only the overall sensitivity of the choice behavior to evidence

provided by each shape is reduced (i.e.σ′ is increased). Moreover, if the probability of registering

a shape is proportional to its assigned WOE (so less predictive shapes are registered less often such
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that the least predictive shapes were registered only 50% of trials) the model is still able to perform

the task. In general, the main effect of a shape being registered probabilistically is that the choice

behavior is less sensitive to the evidence provided by that shape as expected (proportional to the

probability that the shape is missed). Furthermore, we found that the difference in the synaptic

strengths in this case is larger than in the case in which all shapes are registered on every trial.

This indicates that learning can partially compensate for the effect of shapes not being registered

on every trial.

Another assumption of our model was that the model is homogeneous such that the input

firing rates from cue-selective to value-coding populations are similar and furthermore, the con-

nections between these populations are identical. More realistically, network can be heterogeneous

and these connections can be different. In order to test the robustness against such heterogeneity,

we simulated the task by assuming different weights for connections from cue-selective to value-

coding populations. We found that if these randomly assigned weights differ by less than 10%

for the two value-coding populations, the model performance is not different from the monkey’s

performance in this task. Overall, the effect of heterogeneity reduces the performance slightly and

results in a noisier SWOEs (data not shown).

Finally, we assumed that if a shape is presented more than once on a given trial, the firing

rate of the population of neurons selective for that shape is increased by an amount equal to the

number of times which that shape is repeated. We examined the importance of this assumption

by reducing the effect of shape repetition on the firing rate of cue-selective neurons from1 to

1/16 (i.e. repetition factor). That is the repetition of a shape increases the firing rate of the cor-
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responding cue-selective neurons by1 to 1/16 times the amount of activity increase due to the

first presentation, respectively. We found that even when the repeated shape evokes (1/16)th of

the first response, the reward rate is only reduced by less than5%. Moreover, the model’s choice

behavior is similar to the monkeys’ choice behavior for repetition factors equal to1/4 or larger

(data not shown). Overall, these results indicated that our model can robustly perform the weather

prediction task.

Supplementary Methods

The decision circuit receives three types of inputs. The first are fixed background inputs which

mimic the massive projections from other cortical neurons (spiking at spontaneous rate of 3 Hz).

These inputs bring all decision neurons close to their firing threshold. The second type are the

inputs from value-coding populations that in turn receive their inputs from the sensory neurons

through plastic synapses. The sensory neurons become active due to presentation of a new shape

and stay active till the shapes disappear. These inputs provide reward-dependent information to all

decision populations through plastic synapses (red, green, and blue curves inFig.S11). Moreover,

we assume that during synaptic update at the end of each trial, the sensory neurons are reactivated

by working memory populations (not modeled) which keep track of the presented shapes in that

trial. The third type are purely visual inputs to excitatory populations in the decision circuit which

mimic the visual response of neurons in the visual cortex. These inputs also keep the network from

entering the competition regime during the presentation of the four shapes and before the extinction

of the fixation point. The inputs through value-coding neurons and the purely visual inputs on
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Figure S 11: Inputs to decision neurons. The inputs to neuronsin the decision-making network

consist of fixed background inputs (not shown), a purely visual input (black), and inputs from

intermediate value-coding neurons through plastic synapses. Red and green curves show exam-

ples of such inputs to two excitatory populations and blue curve shows the input to the inhibitory

population.

average constitute about 1.5% and 7% of the total inputs to decision neurons, respectively.

We modeled each of the purely visual inputs as the sum of step functions, starting with an

onset of visual response followed by a decrease and then slow increase upon the presentation of

each shape (black curve inFig.S11). At the end of the trial, when the fixation point goes off, this

visual input is decreased strongly. Consequently, decision network enters the competition regime

similar to what has been shown in different network architectures2–5 . Note that the purely visual

inputs are approximately equal to the visual response generated by all visual targets on the screen

independently of their reward information.
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