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Abstract

Despite groundbreaking progress, currently we still know
preciously little about the biophysical and circuit mechanisms
of valuation and reward-dependent plasticity underlying
adaptive choice behavior. For instance, whereas phasic firing
of dopamine neurons has long been ascribed to represent
reward-prediction error (RPE), only recently has research
begun to uncover the mechanism of how such a signal is
computed at the circuit level. In this chapter, we will briefly
review neuroscience experiments and mathematical models
on reward-dependent adaptive choice behavior and then
focus on a biologically plausible, reward-modulated Hebbian
synaptic plasticity rule. We will show that a decision-making
neural circuit endowed with this learning rule is capable of
accounting for behavioral and neurophysiological observa-
tions in a variety of value-based decision-making tasks,
including foraging, competitive games, and probabilistic
inference. Looking forward, an outstanding challenge is to
elucidate the distributed nature of reward-dependent pro-
cesses across a large-scale brain system.

INTRODUCTION

Animals survive in complex environments by
learning to make decisions that avoid punishments
and lead to rewards. In machine learning, a number of
reinforcement learning (RL) algorithms have been
developed to accomplish various tasks in terms of
reward-optimization problems, ranging from sequential
decision-making to strategic games to training multi-
agent systems [1]. In neuroscience, models inspired by
RL have been used both as normative descriptions of an-
imals” behaviors and as mechanistic explanations of
value-based learning processes (see also Chapters 2
and 4). Physiologically, such learning processes are
thought to be implemented by changes in synaptic con-
nections between pairs of neurons, which are regulated
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by reward-related signals. Over the course of learning,
this synaptic mechanism results in reconfiguration of
the neural network to increase the likelihood of making
a rewarding choice based on sensory stimuli. The algo-
rithmic computations of certain reinforcement models
have often been translated to synaptic plasticity rules
that rely on the reward-signaling neurotransmitter
dopamine (DA).

There are two main theoretical approaches to derive
plasticity rules that foster rewarding behaviors. The first
utilizes gradient-descent methods to directly maximize
expected reward—an idea known as policy gradient
methods in machine learning [2,3]. Because neurons
possess stochastic behaviors, many of these learning
rules exploit the covariation between neural activity
fluctuation and reward to approximate the gradient of
reward with respect to synaptic weights. This class of
learning rules has been implemented in both spiking
models [4—7] and firing rate models [8—10] and has
been shown to replicate operant-matching behavior in
a foraging task [9], learn temporal spiking patterns [7],
and generate an associative representation that facili-
tates perceptual decision [8,10]. The second approach
is prediction-based, in which the agent estimates the
values of encountered environmental states and learns
decision policy that maximizes reward [1]. This idea en-
compasses several related algorithms, such as actor—
critic models, which issue separate updates for value
and policy, and temporal difference (TD) models that
use a continuous prediction error signal over time
[1,11]. Early work using prediction-based models aimed
to explain the patterns of firing in DA neurons [12,13],
whereas later work has expanded the framework to
explain complex animal behaviors with more realistic
spiking models [14,15].

Copyright © 2017 Elsevier Inc. All rights reserved.
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In both gradient-based and prediction-based ap-
proaches, an essential element of successful learning is
the reward-prediction error (RPE) signal—the difference
between expected and actual reward that the agent re-
ceives. Such “teaching” signal, which derives from the
Rescorla—Wagner model [16], is thought to be encoded
by midbrain DA neurons. Different modeling studies
interpret the DA modulatory signal differently, but the
dominant idea is that DA signal dynamics mirror that
of the TD error. In a series of classic experiments, Schultz
et al. have shown that the firing patterns of DA neurons
resembled TD error in a classical conditioning paradigm
[17]. More recent experimental findings successfully
used the TD framework to model DA neuron behaviors
in more complex dynamic value-based choice tasks
[18—21]. Experiments using optogenetics have begun
to uncover the circuit logic in the ventral tegmental
area that gives rise to the computation of an RPE signal
[22,23] (see Chapter 5). On the other hand, some investi-
gations into the response of DA neurons have revealed
aspects of DA neural activity that do not match the theo-
retically defined RPE [24,25], leading others to provide
alternative explanations for the observed patterns of
DA response [26].

To examine the link between adaptive, value-based
choice behavior and DA-dependent plasticity
(Fig. 13.1), we first review various aspects of reward
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value representations in the brain and then discuss
how such representations could be acquired through
DA-dependent plasticity. The chapter will focus on a
framework for reward-dependent learning in which
the reinforcement signal is binary (DA release or no
release) and learning does not involve any explicit opti-
mization process. We show how this model can explain
observed patterns of value representation and can ac-
count for some of the observations previously attrib-
uted to learning based on an error-driven signal and
the RPE [27].

REPRESENTATIONS OF REWARD VALUE

To make good decisions, organisms must be able to
assess environmental states and choose actions that are
likely to yield reward. Accumulating evidence indicates
that the primate brain achieves this goal by engaging
multiple interconnected networks, especially in prefron-
tal cortex and basal ganglia, for computing and storing
value estimates for sensory and motor events already
experienced [28—30] (see Chapters 10, 14, and 16). In
RL models, the notions of state value and action value
are well distinguished. State value refers to the average
reward that can be obtained in the future from the envi-
ronmental state that the animal encounters at the present
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FIGURE 13.1 Modulation of synaptic plasticity by dopamine. (A) Triad configuration of dopamine (DA) and other synaptic inputs to py-
ramidal cells. Putative DA afferents terminate on the spine of a prefrontal pyramidal cell in the vicinity of an unidentified axon (UA). Inset shows
an enlargement of axospinous synapses illustrated on the left. (Adapted with permission from Goldman-Rakic PS. Cellular basis of working memory.
Neuron 1995;14:477—85 with data published in Goldman-Rakic PS, Leranth C, Williams SM, Mons N, Geffard M. Dopamine synaptic complex with pyramidal
neurons in primate cerebral cortex. Proc Natl Acad Sci USA 1989;86:9015—19.) (B) Alteration of the spike-timing-dependent plasticity (STDP) window
in hippocampal neurons with DA. Black circles show the STDP window under control (Ctrl) conditions and red circles show the same window when
dopamine was present. In the presence of DA, positive spike timing includes a wider window for potentiation. With negative spike timing,
dopamine reversed the direction of plasticity from depression to potentiation. (Adapted with permission from Zhang JC, Lau PM, Bi GQ. Gain in
sensitivity and loss in temporal contrast of STDP by dopaminergic modulation at hippocampal synapses. Proc Natl Acad Sci USA 2009;106(31):13028—33.) (C)
Dependence of the direction of plasticity on dopamine for cortical synapses on D1 receptor-expressing striatal, medium spiny neurons. During the
STDP paradigm, when presynaptic spikes precede postsynaptic spikes (positive spike timing) long-term potentiation occurs (red). On the other
hand, when presynaptic spikes follow postsynaptic spikes (negative spike timing) no changes in plasticity occur (black). When D1 receptors are
blocked by SCH23390, negative timing results in long-term depression (blue). (Adapted with permission from Surmeier D], Plotkin |, Shen W. Dopamine
and synaptic plasticity in dorsal striatal circuits controlling action selection. Curr Opin Neurobiol 2009;19(6):621—8 with data published in Shen W, Flajolet M,
Greengard P, Surmeier D]. Dichotomous dopaminergic control of striatal synaptic plasticity. Science 2008;321(5890):848—51.) D, dendrite; EPSP, excitatory
postsynaptic potential; S, synapse.
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time, whereas action value refers to the future reward
expected from an action taken at a specific environ-
mental state. Neurophysiological studies have shown
that both state and action values are represented in a
distributed fashion across the brain.

Signals related to reward expectancy have been abun-
dantly found in striatum [31,32] and many subregions of
prefrontal cortex [33]. More specifically, neurons in
several areas of the brain encode the expected reward
of the state environment, independent of actions, in
accordance with the theoretical definition of state
values. For example, the activity of some neurons in
ventral striatum [34], dorsal anterior cingulate cortex
[35], and amygdala [36] is correlated with the sum of
values associated with different upcoming choice alter-
natives. Another type of action-independent reward
expectation is termed “good-based value,” meaning
that the agent assigns different prices to different goods
based on subjective preferences (e.g., one orange is
worth more than two apples if the agent prefers orange).
A series of neurophysiological studies in primates and
rodents found that neurons in the orbitofrontal cortex
play a prominent role in encoding the economic value
of a chosen option in the unit of common currency
[37,38]. The orbitofrontal cortex is known to be a part
of the interconnected network that guides reward-
related behaviors [39]. The network encompasses other
areas that demonstrate similar chosen value encoding,
such as striatum [40,41], medial prefrontal cortex [38],
and ventromedial prefrontal cortex [42].

Signals related to values of specific actions are also
prevalently observed across different brain areas. To
name a few, the representation of action values was
found in striatum [34,40,41,43,44] and posterior parietal
cortex [45,46] (see also Chapter 14). These action-value
neurons may exhibit correlations between firing activity
and magnitude or probability of reward associated with
different choices before the action is executed. The sig-
nals related to choice values were detected even in areas
that directly regulate execution of movements, such as
frontal eye field [47] and superior colliculus [48].
Furthermore, subsets of neurons in these areas are
shown to encode the difference in values between two
competing choice alternatives, which might reflect the
underlying decision mechanism [34,38,46].

Overall, there is a diverse and heterogeneous repre-
sentation of reward value throughout the brain. The im-
plications of such diverse representation remain to be
delineated. It is conceivable, for instance, that neurons
in one brain area display value-related signal simply
as a result of inputs from another area where such signal
is computed. However, it is unclear what reward signal
and DA-dependent learning mechanisms result in the
formation of such diverse representation.
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The prevalence of value representation across the
brain begs the question of how the neurons learn to
encode such properties in the first place. In RL models,
a subnetwork responsible for value estimation is often
referred to as the “critic” (Fig. 13.2A). An adaptive critic
can be implemented simply as a single neuron (or a sin-
gle pool of neurons) that receives synaptic connections
from the sensory circuits, which represent environ-
mental states [49]. The synapses are updated by a
learning rule so that the activity of the critic neuron ap-
proximates the expected reward in each environmental
state. The derivation of such learning rules can be
accomplished by either an error-driven learning method
[49] or a gradient-descent method [50]. The learning rule
minimizes the difference between the actual reward and
the system’s reward prediction; hence, the error term is
equivalent to the RPE. The idea of an adaptive critic
forms the basis for TD learning, in which the expected
reinforcement signal is defined by temporally dis-
counted reward from all future time steps [49].

Early attempts in converting the TD learning algo-
rithm into biophysical models aimed to understand
the patterns of dopaminergic neuron firing
[12,13,51,52]. Despite the partial success of these models
in explanation of these patterns based on TD learning,
there is experimental evidence indicating that other
mechanisms are required to capture the exact pattern
of experimental data. For example, a 2005 experiment
suggested that the use of a long-lasting eligibility trace
is necessary to replicate the dynamic behaviors of DA
neurons as the agent is learning [53]. Interestingly,
such memory traces are required to model human deci-
sions in a sequential economic decision game [54]. These
results indicate that in the neural circuits, RL may take
place on a slower timescale (in the order of trial events),
which is inconsistent with the rapid timescale proposed
in previous theoretical studies [28,55].

Recent models have integrated more refined knowl-
edge in machine learning to tackle difficult learning
tasks, such as spatial navigation to solve a water maze
[15,56] by expanding the actor—critic model for the
case of continuous space and time [57]. In one spiking
model, a population of critic neurons was trained by a
reward-dependent Hebbian rule, which is a product of
TD error and filtered pre- and postsynaptic spike trains.
The synaptic kernel acts as an eligibility trace with a
timescale of hundreds of milliseconds. As a result, the
average firing rate of the critic population approximates
the dynamic value function as the animal moves toward
the target platform [15]. This is one example of many
successful models that implement reward-dependent
learning in spiking networks [4,6,14].
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FIGURE 13.2 Comparison of two alternative models for value-based decision-making. (A) The actor—critic architecture of the temporal
difference learning and use of the reward-prediction error (RPE). In this model, the critic circuit learns the reward value associated with different
states of the environment, V(s,,), and the actor circuit learns reward value associated with taking different actions (e.g., A; and A,) in a given state,
Q(s,a,,). The critic circuit combines the reward signal and the output of state-value neurons (V pool) via a direct and indirect pathways (Ind pool)
to compute the RPE. The RPE is then used to update value functions in the critic circuit and the action value functions in the actor circuit. (B) The
architecture of our proposed network model with three distinct circuits: the cue-encoding, value-encoding, and decision-making circuits. The cue-
encoding circuit represents sensory information pertinent for valuation and contains pools of sensory neurons that are selective for individual cues
(shapes S; to Sy). They project to the value-encoding circuit, where neurons learn to encode reward values of the two alternative responses (action
values Va1 and V,a») through plastic synapses. At the end of the trial, only plastic synapses from sensory neurons selective for the presented cues
onto action value-coding neurons selective for the chosen alternative are updated. The direction of update (long-term potentiation or depression,
LTP and LTD) depends on the choice and a binary reward signal. If the choice of the model is rewarded, synapses in the depressed state transition
to the potentiated state with a probability 4. ; otherwise, the transition in the reverse direction occurs with a probability q_. The decision-making
circuit uses the output of the value-encoding circuit and, therefore, combines evidence from different sources to determine the model’s choice on
each trial. This circuit has two competing neural pools that are selective for two alternative choices (A; and A,). Importantly, the finite number of
synaptic states and the stochastic nature of plasticity allow synapses to transform reward signal into quantities important for value-based choice,
but this transformation depends on the state of the synapses encoding reward and, therefore, on the existing representation of reward value in a

given neuron. DA, dopamine; VTA, ventral tegmental area.

Nevertheless, there are a few serious caveats when
applying an RPE framework in learning value-based
decision-making. First, although much effort has been
devoted to modeling the dynamics of DA neurons, little
is understood about the temporal properties of DA
release and the resulting intracellular signaling that

determines synaptic plasticity in target neurons. One
study suggests that the dynamics of DA release and re-
uptake are slow and imprecise relative to the time reso-
lution required for RPE signals in TD learning [58].
Second, RPE signals can be both positive and negative
values, whereas the neural response of DA neurons
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can be only positive. Although depression in the base-
line activity of DA neurons could act as a negative value,
the baseline activity of DA is very low (about 2 Hz),
which, in turn, limits the representation of negative er-
rors. Therefore, the decreased activity might not result
in a reversal in the direction of DA-dependent plasticity
(Fig. 13.1) required by TD learning unless other assump-
tions are included [59]. Finally, the machinery required
for the computation of RPE is expensive, as it requires
representation of all possible actions at all time
points (with relatively high time resolution) during a
given trial [12].

One could ask whether the diverse representations of
reward value described in the previous section could
arise only from an RPE-based mechanism or whether
other types of reward signal suffice to develop such rep-
resentations. One possibility would be that reward
signal is not sensitive to states and actions per se, and
the recipient brain areas have a crucial role in translating
a more general reward signal to diverse representation
of reward value.

STOCHASTIC DOPAMINE-DEPENDENT
PLASTICITY FOR LEARNING
REWARD VALUES

To explain various aspects of reward-based choice
behavior, we have proposed an alternative learning
rule based on DA-dependent synaptic plasticity. In this
model, we assume plastic synapses to be bounded,
such that there are a limited number of synaptic states,
each with a finite value of synaptic efficacy. There are
three main assumptions underlying our learning rule
[60]. First, learning is reward-dependent and Hebbian,
meaning that it depends on the firing rates of presynap-
tic and postsynaptic neurons, but is modulated by the
reward signal according to the experimental data on
DA-dependent synaptic plasticity [61]. Second, the
reward signal mediated by DA is binary, such that
presence/absence of reward is signaled by release or
no release of DA. This assumption can be extended to
a graded reward signal reflecting size or uncertainty of
reward. Third, DA-dependent plasticity is stochastic,
such that synaptic modifications occur probabilistically
when conditions for plasticity are met [62—64].

In a specific formulation of our model, plastic synap-
ses are assumed to be binary [65,66] with two discrete
states: potentiated (“strong”) and depressed (“weak”)
(Fig. 13.2B). The Hebbian characteristic of learning im-
plies that learning depends on the firing rates of pre-
and postsynaptic neurons. The presynaptic neurons
encode visual targets or, more generally, stimuli that pre-
cede or predict alternative responses. On the other hand,
the postsynaptic neurons represent the value of
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alternative actions and could be the selective neurons
in a putative decision-making network. Moreover, the
presence of reward is signaled by a global DA release
and results in long-term potentiation, whereas the
absence of reward is signaled by the lack of DA release,
which reverses the direction of synaptic plasticity from
potentiation to depression. Because synaptic plasticity
is stochastic, in potentiation instances, each synapse in
the weak state has a probability g, to transition to the
strong state. Similarly, in depression instances, each syn-
apse in the strong state has a transition probability q_ to
move to the weak state.

The information stored at a specific set of synapses
between neurons encoding stimulus s and neurons
encoding action A on trial # can be quantified as the frac-
tion of these synapses in the strong state, csa(n) (or
equivalently, the remaining fraction, 1 — c;a(n), in the
weak state). Based on the aforementioned assumptions,
at the end of each trial when reward feedback is
received, the fraction of synapses in the strong state is
updated as follows:

Csz‘\(”Z + 1) = CSA(n) + ‘1+(7’; Vs, VA)[l_ CSA(n)]

in case of LTP
(13.1)

CsA(n + 1) = CsA(n) —q- (1’, Vs, VA)CSA(n)
in case of LTD

where potentiation (7.) and depression (q_) rates, collec-
tively called learning rates, are assumed to depend on
the firing rates of pre- and postsynaptic neurons (vs
and v4, respectively) and on the reward outcome (r =0
or 1). More generally, the learning rates could also
depend on the concentration of DA at the site of plas-
ticity, allowing modifications of plasticity based on
more graded response of DA neurons.

In a series of works, we have shown that a learning
rule based on these assumptions enables the neural
network to compute and estimate quantities that are
crucial for performing various value-based decision-
making tasks that require learning from reward feed-
back [55,60,67—69]. Importantly, in some cases, reward
value computed by plastic synapses in our model using
a binary reward signal resembles those computed by RL
models using the RPE [55]. However, in our model,
changes in reward value mainly depend on the state of
plastic synapses receiving the reward signal, rather
than the reward signal itself as in RL models.

FORAGING WITH PLASTIC SYNAPSES

In the first application of our learning rule described
in Eq. (13.1), we show how reward-dependent and
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stochastic modifications in binary synapses allow these
synapses to estimate reward value for possible choice
alternatives in a value-based, decision-making task
known as the “matching” task. In this task, which has
been extensively used to study animals’ response to
reinforcement [70—73], the subject chooses between
two options (color targets A and B), which are assigned
different reward probabilities. Specifically, each target
is baited with reward stochastically and independently
of the other target, but if a reward is assigned to a
target, it stays until harvested [46]. Moreover, the prob-
ability of baiting rewards on the two targets (i.e.,
reward schedule) changes between blocks of trials
without any signal to the subject. The baiting probabil-
ity ratios are randomly chosen from a set of ratios,
whereas the overall baiting probability is fixed. There-
fore, performing this task requires continuous estima-
tion of reward value of the two choice options and
dynamic shift of choice toward the better option.

We assumed that the neural circuit for solving this
task should have a few components: sensory representa-
tion of choice options (color targets), plastic synapses
that learn reward expected from choosing each target
(action values), a set of neural populations for color to
location remapping (because the color targets could
appear on either side), and a decision-making (DM)
network for choosing between the two options [60]
(Fig. 13.2B). Because the two targets are identical except
for the reward values, which have to be learned through
reward feedback, it is reasonable to assume that target
presentation leads to identical activation of presynaptic
sensory neurons that project to the DM network. There-
fore, the only difference in the inputs to the two
competing neural populations (A and B) in the DM
network is due to the efficacies of the plastic synapses.
The average currents through plastic synapses selective
for option A depend on the states of synapses, ca (i.e.,
fraction of these synapses in the strong state), the num-
ber of plastic synapses (N,), the presynaptic firing rate
(7st), and the peak conductance of the strong and weak
states (¢4 and g_) and their corresponding decay (tsyx):

I Nprsi(cags + (1—ca)g—)Tsyn (13.2)

Therefore, the difference in the average currents into
neurons selective for the two options is equal to

In —Ipoc(ca— c)Nprst(g+— &) Tsyn (13.3)

Importantly, the choice behavior of the DM network
is mainly a sigmoid function of the difference in the
average input currents; therefore, the probability of
choosing option A can be written as

1

PA = T oo
1_’_6_(/\05)

(13.4)
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where ¢ determines the inverse sensitivity to the differ-
ential current. As a result, any of the factors in the right
side of Eq. (13.3) can affect the difference in the overall
synaptic currents and consequently change ¢ and, there-
fore, the choice behavior. Although ¢ in this model is
equivalent to the temperature in RL models, it can be
related to biophysical properties of the neural circuit
involved in value-based DM.

Based on the learning rule defined in Eq. (13.1), the
level of activity (high or low) in pre- and postsynaptic
neurons determines the condition for synaptic plasticity,
whereas the presence or absence of reward determines
its direction. However, because both targets are present
on each trial of the matching task, the presynaptic neu-
rons are always active and therefore learning becomes
independent of presynaptic activity. Moreover, we as-
sume that the postsynaptic firing rate is low (respec-
tively, high) for the neurons selective for the unchosen
(respectively, chosen) target. Finally, assuming that
learning happens only if the postsynaptic neurons are
highly active, the learning rule in Eq. (13.1) can be
simplified as

ca(n+1) =ca(n) +q[1—ca(m)],

A selected and rewarded
(13.5)

ca(n+1) =ca(n) —g-ca(n),
A selected but not rewarded

whereas synapses onto neurons selective for the
unchosen target (B in this case) are not modified. We
found that such a reward-dependent learning rule en-
ables plastic synapses to estimate quantities crucial for
matching behavior. More specifically, the steady state
of synaptic strengths of the two sets of plastic synapses
is a monotonic function of the returns from the two
choices:

oS — q+RA
A7 gy —q )Ra+q-

where Ry is the return (i.e., average reward harvested
per choice of A). In the special case in which g, =¢q_,
the steady state of c4 is equal to R4. The steady state in-
dicates what can be computed by plastic synapses over a
long period of time. However, because these synapses
have a limited number of states and bounded efficacy,
the information stored in them is constantly rewritten
[28]. Therefore, plastic synapses provide a local (in
time) estimate of return (or a monotonic function of it).
In other words, plastic synapses integrate reward feed-
back over time, but in a leaky fashion.

In order to see how the proposed learning rule en-
ables the model to perform matching behavior we
need to consider the interplay between learning and

(13.6)
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FIGURE 13.3 Behavioral and neural response of the model during the matching task. (A) The overall choice behavior of the model. Each point
shows the fraction of trials within a given block on which a choice alternative is selected as a function of the fraction of reward on that choice.
Matching law corresponds to the diagonal line, when the choice fraction matches the reward fraction. (B) Changes in synaptic strengths and the
outcome choice behavior. Continuous update of plastic synapses selective to choices A and B, measured by synaptic strengths c4 and cp, allows the
model to track the reward fraction. P, is the probability of choosing A and the black line shows the reward fraction in each block of the experiment.
(C) The graded activity in the DM network during the matching task. Plotted is the average response of neurons in the two decision-making
populations selective for the two targets. Activity is aligned on target onset and is shown separately for the choice that is the preferred (red)
or nonpreferred (blue) target of the neurons. Moreover, trials are subdivided into four groups according to the difference between the strength of
synapses onto the two pools of neurons selective to choices A and B: [(c4 — cp) = —0.05 to —0.14 (dashed), 0 to —0.05 (thin), 0 to 0.05 (normal), 0.05 to
0.14 (thick)]. ((A)—(C) are adapted from Soltani A, Wang X-]. A biophysically-based neural model of matching law behavior: melioration by stochastic synapses.
J Neurosci 2006;26:3731—44.) (D) Average peak-normalized firing rates of lateral intraparietal area neurons over time. Activity is aligned on target
onset and different colors correspond to trials when choice was into (blue) and out of (green) the neuron’s receptive field. Trials are subdivided
into four groups according to the local fractional income of the chosen target: solid thick lines, 0.75 to 1.0; solid medium lines, 0.5 to 0.75; solid thin lines,
0.25 to 0.5; dotted thin lines, 0 to 0.25. (Adapted from Sugrue LP, Corrado GC, Newsome WT. Matching behavior and representation of value in parietal cortex.
Science 2004;304:1782—7.)

decision-making. On one hand, plastic synapses approx-
imate return from each choice option (Eq. (13.6)). On the
other hand, the difference between synaptic strengths,
ca —cp (Eq. (13.4)) determines the choice probability,
which in turn modifies the returns (Fig. 13.3). This inter-
play between the synaptic strengths (or equivalently
returns) and the choice probability gives rise to the dy-
namics underlying matching behavior. At each moment,
the model selects the choice option with a larger return
(say Ra > Rp) with a higher probability (P4 > .5). This
then reduces the return on that option (without chang-
ing the return on the unselected option) because not
every selection of A is accompanied by a reward. This

continues until the return on A falls below the return
on the other options (R4 < Rg), which then causes the
model to select choice B more often.

Because of the probabilistic nature of learning and
DM in our model, there is always a limit for approach-
ing perfect matching. The dynamic bias of choice to-
ward the more rewarding option makes the model
reach a choice probability that is generally smaller but
close to the prediction of matching (i.e., undermatch-
ing). The extent of undermatching depends on the
value of ¢ so that for a smaller value of ¢, the steady
state of the model is closer to the prediction of match-
ing. Moreover, the model’s estimate of reward values
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and ensuing choice behavior always fluctuate around a
steady state due to ongoing learning. Therefore, perfect
matching can be achieved by reducing the learning
rates to zero however, such a solution hinders the
model from adapting to changes in the reward
schedule. Because the model selects the better option
(in terms of return), our model acts according to the
melioration principle [74,75], which states that the
choice behavior should be biased toward the option
with the higher return. However, decision is not deter-
ministic in our model and, therefore, our model
achieves matching through “probabilistic” melioration.

The model’s choice and reward sequences can be
used to quantify the dependence of choice on the history
of reward by employing different methods, such as the
“choice-triggered average of rewards” (CTA) [76]. Such
analysis reveals that similar to experimental data and
RL models based on RPE, the choice behavior of the
model depends on previous reward outcomes in an
exponential fashion or a variant of it (e.g., the sum of
two exponentials). Interestingly, the time constant of
the CTA is a function of the overall baiting probability
(or the maximal reward rate) in the environment, such
that it decreases as the overall baiting probability in-
creases. In other words, the abundance of reward re-
duces the time constant of reward influence on choice.
This happens because more rewarding instances in-
creases the frequency of potentiation of plastic synapses,
reducing the impact of more distant reward. The depen-
dence of the time constant of reward integration on the
overall reward rate in the environment enables the
model to achieve matching over a wide range of learning
rates.

Finally, the pattern of neural activity in the DM circuit
of the model matches the graded neural response
observed in the lateral intraparietal cortex during this
task [46] (Fig. 13.3). This result supports the idea that
DA-dependent learning based on a binary reward signal
could account for the formation of value signal, as well
as the resulting choice behavior.

RANDOM CHOICE AND
COMPETITIVE GAMES

Many social interactions, often studied using games
[77], require learning and predicting the behavior of
other agents while behaving unpredictably to avoid get-
ting exploited by other agents. Because game theory pro-
vides only a normative account of the average behavior
(or equilibrium) in a given game, RL models are often
used to describe the dynamic choice behavior. But how
does the dynamics of choice depend on the underlying
learning? To answer this question and explore the neural
mechanisms of dynamic choice behavior during
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competitive games, we incorporated our DA-
dependent plasticity into a DM network and simulated
the choice behavior during the game of matching
pennies [55].

During the game of matching pennies, monkeys were
required to freely choose between one of two visual tar-
gets (on the left and right sides of the fixation point) and
were rewarded only if their choice matched the
computer opponent’s choice on a given trial (see also
Chapter 21). The optimal strategy during this game
was to choose the two targets randomly with equal
probability [78,79]. However, the strategy or algorithm
used by the computer opponent became more complex
in three successive stages. In the first stage, the computer
selected one of the two targets randomly, each with
p = .5 (algorithm 0). In the second stage, the computer
used the entire history of the animal’s previous choices
in a given session to predict the monkey’s next choice
(algorithm 1). The maximum reward could be obtained
in algorithm 1 if the animal selected the two targets
with equal probability and independently of its previous
choices. In the final stage, the computer used the entire
history of the animal’s choice and reward in a given ses-
sion to predict the monkey’s choice on the next trial (al-
gorithm 2). Therefore, the maximum performance could
be obtained if the animal selected its targets, not only
with equal probability and independently of its previous
choices, but also independently of the combination of its
previous choices and their outcomes.

Interestingly, animals showed specific patterns of
choice during these three stages. During algorithm
0 when the computer opponent selected between two
targets randomly, monkeys displayed a strong bias
(choice bias) toward one of the two targets. These choice
biases quickly diminished when the computer started to
exploit the animal’s preference for one of the targets in
algorithm 1, but a new bias emerged. Specifically, the an-
imal tended to repeat its decision if the choice was
rewarded on the previous trial (win—stay strategy)
and switch to the alternative target if the previous choice
was not rewarded (lose—switch). Interestingly, the use of
the win—stay—lose—switch (WSLS) strategy slowly
increased over the period of many days. However,
following the introduction of algorithm 2, the probabil-
ity of WSLS strategy declined toward .5.

In many competitive games, it is important to select
between choices stochastically to outsmart the oppo-
nent. Our model exhibits such probabilistic behavior
because neural spike discharges are intrinsically sto-
chastic. The network’s choice varies from trial to trial
but is more frequently biased toward the target with a
stronger input determined by the recent reward history
on the two targets. Similar to the matching game, the
choice probability in this task is also a sigmoid function
of the difference between the synaptic strengths as in
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Eq. (13.4), where the value of ¢ determines the random-
ness of the choice behavior. Therefore, any of the bio-
physical factors appearing on the right side of Eq.
(13.3) can change the value of ¢ and therefore, the
desired stochastic behavior.

The specific form of the learning rule used for simu-
lating foraging behavior (Eq. (13.5)) can also be applied
to the game of matching pennies. However, for foraging
we assumed that only synapses projecting to neurons se-
lective for the chosen target are modified, making the
learning rule “choice specific.” Such choice-specific
learning rule is equivalent to stateless Q-learning [1].
Alternatively, the general learning rule described by
Eq. (13.1) can be simplified by assuming that synapses
projecting to neurons selective to the unchosen target
are also modified by the same amount as the synapses
projecting to neurons selective for the chosen target,
but in the opposite direction:

Right is selected and rewarded:

cr(t+1) = cr(t) + (1= cr(£))qr

cL(t+1) = cu(t) — cu(bar
(13.7)
Right is selected but not rewarded:

cr(t+1) = cr(t) — cr(t)gn
cL(t+1) = cr(t) + (1= cr(t))qn

where g, and g, are the learning rates in the rewarded
and unrewarded trials, respectively. In game theory,
learning rules that indiscriminately modify the value
functions for chosen and unchosen actions are referred
to as belief learning [80,81]. These results show the flex-
ibility of our general learning rule in producing different
update rules used in the RL, but with the advantage that
our model connects learning rates to transition probabil-
ities at the synaptic level.

The strong choice bias observed during algorithm
0 could be attributed to lack of incentive for the subject
to adopt the equilibrium strategy (i.e., choosing the
two targets with equal probability). An alternative
explanation would be that reward-dependent learning
causes the equilibrium strategy to be unstable and,
therefore, unattainable. Analyzing the steady state of
the model’s choice behavior, we found that for specific
values of learning rates, the equilibrium strategy be-
comes unstable, resulting in a strong bias toward one
of the two choices.

This happens if % < 0.25 when learning rates for

rewarded trials are larger than unrewarded trials [i.e.,
(gr — qn) > 0]. On the other hand, when (g, — g,,) <0, an

72041 < .25,

unstable equilibrium occurs when 2od))
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Therefore, a biased choice behavior does not necessarily
reflect insensitivity to reinforcement or feedback, but
instead may result from a reward-dependent learning
mechanism.

These results were obtained based on the assump-
tion that the choice behavior is not intrinsically biased
toward one of the choices. However, the DM network
may have an intrinsic bias due to differences in path-
ways that drive the two competing pools in the DM
circuit, resulting in preference for one target and shift-
ing the steady state of choice behavior to a point rather
than p = .5. Although we found that choice bias could
emerge from learning when the computer opponent
selects randomly, the question remains as to whether
the same learning can mitigate an intrinsic bias in
the network if the choice bias is penalized by the oppo-
nent (e.g., in algorithm 1). Interestingly, we found that
such an intrinsic bias can be compensated through
DA-dependent learning that modifies the strength of
plastic synapses based on reward feedback during al-
gorithm 1.

Finally, an important aspect of behavioral data
described above was a slow change in the probability
of WSLS over the course of many days [79]. Could
such a change stem from an ongoing learning mecha-
nism that tries to adjust the learning rate over time? To
answer this question, we implemented a modified
version of the metalearning algorithm [82]. The goal of
a metalearning model is to maximize the long-term
average of rewards, by comparing the medium-term
and long-term running averages of the reward rate.
We found that metalearning can account for the gradual
change in the animal’s strategy. Moreover, we found
that, in addition to the initial condition and metalearn-
ing parameters, the probabilistic nature of this task con-
tributes to the time course of the choice behavior.
Therefore, metalearning and its stochastic nature can
provide a mechanism for generating a diverse repertoire
of choice behavior observed in various competitive
games (see also Chapters 16 and 21).

PROBABILISTIC INFERENCE WITH
STOCHASTIC SYNAPSES

In the third application of our DA-dependent plas-
ticity rule (Eq. (13.1)), we show how such a learning
mechanism enables plastic synapses to perform proba-
bilistic inference. Probabilistic inference is the ability to
combine information from multiple sources that are
only partially predictive of alternative outcomes, as
well as making inferences about the predictive power
of individual sources. These tasks are challenging in
naturalistic situations because often only a single action
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FIGURE 13.4 Behavioral and neural response of the model during the weather prediction task. (A) Reward assignment on each trial of the
experiment. Reward is assigned based on the sum of the weight of evidence (WOE) associated with the presented shapes. (B) Difference in the
steady state of the synaptic strengths as a function of the difference in the posteriors (left) and of the log posterior odds (right), for different
learning rate ratios. Dashed lines show linear fits for the values of posterior between 0.2 and 0.8. The inset shows the relationship between

logy, (ﬁ) and x — (1 — x) over the same range, where x = P(A|S;) and P(B|S;) =1 — P(A|S;) = 1 — x. (C) Effect of the log likelihood ratio (LR) on

the firing rate of model neurons in the DM network. Plotted is the average population activity over many trials, computed for five quintiles of the
log LR in each epoch (more red means larger log LR). The response is aligned to the onset of each shape in a given epoch. ((B) and (C) are adapted
from Soltani A, Wang X-]. Synaptic computation underlying probabilistic inference. Nat Neurosci 2010;13:112—9.) (D) Effect of the log LR on the pop-
ulation average firing rate in a monkey’s lateral intraparietal area. Average responses are aligned to the onset of the shapes and extend 100 ms into
the subsequent epoch. The averages were computed for five quintiles of log LR in each epoch (indicated by shading). (Adapted from Yang T, Shadlen

MN. Probabilistic reasoning by neurons. Nature 2007;447:1075—80.)

outcome such as a binary reward feedback follows the
presentation of multiple sources of information (or
cues), and so it is unclear how presented cues should
be associated with the final outcome.

An example of such a naturalistic situation is simu-
lated in the so-called weather prediction task, in which
a categorical choice (rain or sunshine) is predicted based
on a number of given cues [83]. A 2007 study using a
variant of this probabilistic categorization task sug-
gested that even monkeys are capable of some forms
of probabilistic inference and revealed neural correlates
of this ability at the single-cell level [84]. In this task, four
shapes precede a selection between two color targets on
each trial [84] (Fig. 13.4A). These shapes were selected
randomly from a set of 10 distinguishable shapes

(Si,i=1,2,...,10), each of which was allocated a unique
weight of evidence (WOE) about the probability of
reward assignment on one of the two choice alternatives

(WOE = logw];((glg:;). The computer assigned a reward

to one of the two alternatives with a probability that
depended on the sum of the WOEs from all the shapes
presented on a given trial.

We used the three-circuit network model (Fig. 13.2B)
to simulate the choice behavior and neural activity dur-
ing the weather prediction task to test whether our pro-
posed learning rule (Eq. (13.1)) enables probabilistic
inference. First, we found that the specific form of the
learning rule allows plastic synapses to estimate vari-
ants of posteriors depending on the number of shapes
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presented simultaneously. When one shape is presented
alone, the steady state of the synaptic strength for synap-
ses selective for shape i and alternative A is
S5 P (A|Si)

“A T T (r—1)P(A[S) (138)
where P(A|S;) is the probability that A is assigned with
reward, given shape i is presented, and r is the learning
rate ratio (r = q./q_). Thus, when each cue is presented
alone, the steady state is proportional to posteriors.
When several shapes are presented together, the reward
feedback is determined by all presented shapes, and
synapses selective for all these shapes are updated. As
a result, plastic synapses estimate the naive posterior
probability, P(A|S;), or the posterior probability that a
choice alternative is assigned with reward given that a
cue is presented in any combination of cues.

Importantly, the decision circuit stochastically gener-
ates a categorical choice with a probability, which is
a sigmoid function of the difference in the overall inputs
(differential input, Al) to its selective pools [55,60,67,85].
We assume that cue-selective neurons fire at a similar
rate, and, therefore, the differential input is determined
by the sum of the difference in the synaptic strengths
(Ac = ¢ — ¢5) from the action value-coding neurons
onto the decision neurons (Fig. 13.4B). Using Eq. (13.8)
and replacing posteriors for naive posteriors, we can
compute the differential input:

Alocz ACSSOCZ

This formula can be 51mp11f1ed by noting that
> (r —1)*P(A|S;)P P(B|S;)(=k), which happens when
r = 1 and the values of posterior probabilities are in
an intermediate range (2 < (P(A[S))) < .8):

A[ocZ(l——) (AlS;)— P(BIS;))

Using another simplification, x — (1 — x) =log;, (ﬁ)
(true if 0.2 < x < 0.8) we get:
P(AlS;)

k
Al [ 1—-)logg=
Z,( r> "P(BIs))

Note that for smaller or larger values of posteriors, the
choice behavior is deterministic and so our simplification
does not affect the final calculation. Therefore, because of
the convergence of sensory neurons onto action value-
coding neurons, the latter naturally summate the cur-
rents through sets of plastic synapses related to presented
cues. Subsequently, the outputs of action value neurons
drive the decision circuit, and the resulting choice is a
function of the sum of log naive posterior odds. Thus,
summation of currents through plastic synapses

A|s P(B|S))
1)*P(A|S;)P(B]S;)

(13.9)

(13.10)

(13.11)
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provides a natural mechanism for integrating evidence
from different cues in terms of log posterior odds.

Overall, our model provides a solution to probabi-
listic inference based on a mixture of synaptic and neu-
ral mechanisms. On the one hand, modifications of
synapses selective for the presented shapes enables plas-
tic synapses to directly estimate naive posteriors (but not
posteriors). A consequence of such a learning rule is that
the evidence a model assigns to a given cue is smaller
than the WOE assigned to that cue. On the other hand,
summation of currents evoked by presented cues causes
the model to integrate evidence in terms of log posterior
odds. This feature enables the model to perform cue
combination near optimality (i.e., according to Bayes’
rule), but only given equal priors. When priors are un-
equal, plastic synapses carry information about priors
as well, and therefore, our model provides an answer
different from what is expected by adding log prior
odds to the summed log likelihood ratios. More specif-
ically, the model accounts for a cognitive bias known
as base-rate neglect, that is, a cue that is equally predic-
tive of each outcome is perceived to be more predictive
of the less probable outcome [86]. Moreover, it predicts a
bias in making inference about a combination of cues
which depends on the number of cues used for making
inference. Interestingly, a recent study has provided ev-
idence for both predictions of the model [86a].

Finally, neural activity in our model reproduces the
main physiological observations from the lateral intra-
parietal area in the monkey experiment [84] (Fig. 13.4C
and D). Overall, our results demonstrate that empiri-
cally observed neural correlates of probabilistic infer-
ence can rely on synaptic, rather than neuronal,
computations. Despite the complexity of the weather
prediction task, stochastic DA-dependent plasticity en-
ables the model to perform the task using a binary
“teaching” signal.

CONCLUDING REMARKS

Reward is one of the determining factors for choice
behavior, and the neural correlates of reward value are
observed in many brain areas. Consequently, linking
the influence of reward on behavior and the measured
neural response (i.e., representation of reward value) is
one of the critical goals in the study of DM. It is generally
believed that reward is signaled throughout the brain
via DA [87—89], and DA-dependent plasticity provides
the neural substrates for learning reward values; howev-
er, the neural mechanisms underlying these processes
are not fully understood.

There are reasons for why identifying neural mecha-
nisms underlying value-based learning and representa-
tion of reward is challenging. Dopaminergic neurons
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project to many brain areas, where DA influences both
synaptic plasticity and neural excitability; the diverse ef-
fects remain poorly explored (see also Chapter 2).
Furthermore, neural correlates of value-based behavior
are often measured in one area at the time, not allowing
for the exploration of the role of interactions between
different areas in value-based DM. Similarly, computa-
tional models of value-based DM and learning often
are not concerned with the plausibility of the learning
rules, ignore important effects of DA on neuronal pro-
cesses such as short-term synaptic plasticity and
changes in neural excitability [69], overlook different
types of DA receptors involved in dopaminergic modu-
lations, and do not consider interactions between brain
areas.

To move forward, the focus needs to shift to biological
plausibility of proposed learning rules and future
models of value-based DM. Learning should go beyond
a local circuit and include interactions between various
circuits in determining the choice behavior. Understand-
ing the role of interactions between different brain areas
in value-based DM may elucidate the origin and func-
tion of various types of value representation throughout
the brain (see Chapters 10, 14, 16, and 24). The diverse
representation of reward value throughout the brain
also begs the question of investigating DA-dependent
plasticity in those areas, and the role of local circuits in
translating a “global” reward signal into meaningful
information.
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