
Imagine while in traffic that we decide 
on the route to our destination on the 
basis of commuting times experienced 
over many days, months or even years. 
Experiencing random small delays 
should not be concerning or prompt us to 
change our route. Yet unexpectedly slow 
traffic can signal important events (such 
as accidents or road closures), and this 
information should be used to update our 
route. Importantly, what we might consider 
to be unexpectedly long delays are very 
different for the dynamic metropolitan 
Los Angeles area versus the unchanging 
small town of Hanover. Nonetheless, 
successful learning requires mechanisms 
to discriminate inconsequential expected 
variability (which may lead to ‘expected 
uncertainty’) from signals of environmental 
volatility (which often leads to ‘unexpected 
uncertainty’), which should instead lead to 
a substantial update of value and/or changes 
in behaviour (such as a change in route). 
Box 1 provides more complete, mathematical 
definitions of expected and unexpected 
uncertainty related to reward outcomes, 
but the definition of expected uncertainty 
can be summarized as the uncertainty (in 
terms of variance or standard deviation) 
attributable to the probabilistic nature of 

way to improve this trade-​off 3,4 and allow 
more adaptability and precision at the same 
time may be to increase the rate of learning 
after unexpected events and decrease it 
when the world is stable.

Understanding learning under 
uncertainty requires an appreciation of how 
expected and unexpected uncertainty are 
computed, interact and, in turn, influence 
learning. In turn, understanding these types 
of uncertainty necessitates an examination of  
their relationship with stimulus or action 
values and whether and how they may 
be generalized across stimuli and actions 
to control an overall rate of learning. In 
this Opinion article, we compare existing 
computational models of different types of 
uncertainty and highlight their strengths 
and limitations. We examine experimental 
findings in the context of the predictions 
and basic principles of the computational 
models and discuss studies that implicate 
a distributed network of brain regions 
in computing expected and unexpected 
uncertainty. We distil testable hypotheses 
about how unexpected and expected 
uncertainty may interact and affect learning, 
and we offer ideas for future directions 
to pinpoint the neural substrates and 
mechanisms of adaptive learning. To make 
the topic more tractable, we do not discuss 
perceptual uncertainty or model-​based 
uncertainty (uncertainty caused by changes 
in the model of the environment), as these 
add further layers of complexity and have 
been reviewed elsewhere5–9.

Expected versus unexpected
Expected uncertainty. Specific definitions 
of expected uncertainty in the laboratory 
typically depend on both the nature of 
the learning or decision-​making task 
and the model used by the organism to 
perform the task. In the case of estimating 
reward expected from a stimulus or action 
associated with different amounts of reward 
(outcome mi) with different probabilities 
(pi), expected uncertainty is equal to the 
variance (or standard deviation) of reward 
outcome in terms of magnitude or delay 
(Box 1). The notion of uncertainty as the 
variance of probabilistic reward outcomes 
can also be applied to the perceived ‘risk’ 
of not getting reward when probabilities 
are known10,11. However, we limit expected 

reward outcomes, even when the probability 
of each outcome is fixed over time. By 
contrast, unexpected uncertainty may be 
defined as the uncertainty that is attributable 
to subjectively perceived volatility in the 
environment, which may differ from 
actual volatility or the rate of change in the 
environment over time.

Computing and updating the expected 
value of an outcome that follows selection 
of a stimulus or performance of an action 
(often referred to as stimulus values and 
action values) require the integration of 
signals across multiple brain areas and 
systems. These include areas involved in 
making decisions, executing actions and 
responding to primary rewards and their 
motivational and hedonic importance1.  
In addition, updating stored information  
about reward could involve neuromodulatory 
systems that support neural plasticity. Some 
of the signals that influence the extent to 
which stimulus or action values are updated 
should be sensitive to uncertainty in the 
environment. However, learning in dynamic 
environments is bounded by a trade-off  
between adaptability (that is, the ability 
to respond quickly to changes in the 
environment) and precision (which requires 
slower update after each feedback)2. One 
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uncertainty to cases in which probabilities 
must be estimated and do not change over 
time — that is, under stable conditions 
or in stable environments. It is deemed 
‘expected’ because it is thought to reflect 
variability or stochasticity that is ubiquitous 
and unavoidable. In theory, encountering 
this kind of uncertainty should neither 
be surprising nor promote learning or 
behavioural adjustment over time; however, 
in practice, it is difficult for the subject to 
verify that probabilities do not change  
over time.

In most error-​driven models of 
learning, the overall update of stimulus 
or action values depends on the product 
of the reward prediction error (RPE; the 
difference between the expected value and 
the outcome) and the so-​called learning 
rate (Box 1). Because RPE is determined 
independently of the environment, the 
continuous adjustment in the overall 
amount of learning required in dynamic 
environments is often described using 
time-​dependent learning rates. However, 
such descriptions are somewhat futile 
conceptually, as they are analogous to 
defining the overall speed for a pendulum, 
which has time-​dependent speed. In 
addition, it is unclear how such learning 
rates are determined at the neuronal level. 
Therefore, instead we refer to the ‘gain’ 
of learning in lieu of the learning rate to 
describe the modulation of the overall 
amount of update in stimulus or action 
values. Nevertheless, expected uncertainty 
has been suggested to scale the learning 
rates to reduce the influence of prediction 
error when reward outcomes are more 
variable12,13. This strategy is useful only if 
the environment is stable enough that the 
variance can be estimated reliably, as a  
large variance could also reflect a real change 
in the environment, which should instead 
enhance learning. One way of computing 
an estimate of expected uncertainty is 
to average the unsigned RPE over time 
(that is, over trials), because the latter can 
approximate the standard deviation of 
reward outcomes. Thus, rather than directly 
scaling down the gain of learning, expected 
uncertainty could indirectly influence 
learning by providing a ‘baseline’ level of 
variability against which surprising events 
that should increase the gain of learning can 
be detected (see below).

Unexpected uncertainty. Unexpected 
uncertainty occurs owing to changes in 
reward probabilities, magnitudes and/or  
delays over time when taking expected 
uncertainty about the variability of 
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Box 1 | Key terms and definitions

Below, we define certain key terms used throughout the main article.

reward environment
we define ‘reward environment’ as a collection of stimuli and actions in which selection of a 
stimulus or execution of an action based on the presented stimuli brings about reward with certain 
magnitudes and probabilities. reward obtained after selection of a stimulus allows a value to be 
assigned to the stimulus (stimulus value). reward obtained after execution of an action can 
promote the formation of a stimulus–action association or the assignment of value to the action 
(action value). reward attributes (such as reward magnitude and probability) can remain fixed or 
change over time, resulting in a stable or volatile environment, respectively.

Learning rate
‘Learning rate’ can be defined as the rate at which stimulus or action values are updated after 
each reward feedback. in error-​driven models, the learning rate is a parameter between 0 and 1 
that is multiplied by the reward prediction error (rPe) to determine the size of update or, 
equivalently, to determine how the observed reward should be weighted relative to previous 
stimulus or action values to update these values. in more mechanistic models, the learning rate 
can be seen as the rate of transition between different synaptic states33,106,107. Dynamic 
environments require learning to be adjusted constantly, rendering the concept of ‘learning rate’ 
futile. instead, we suggest referring to the modulation of the overall amount of update as the 
‘gain’ of learning.

expected uncertainty
‘expected uncertainty’ is the uncertainty in reward outcome attributable to its probabilistic nature, 
even when the probability of different outcomes is fixed over time. For a stimulus or action that 
results in reward mi with probability pi, the expected uncertainty can be defined as the variance 
over n possible outcomes:
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in the simple case of binary reward (reward m with probability pR and zero otherwise), the 
variance in outcomes, or expected uncertainty, is equal to pR × (1−pR) × m2. the corresponding 
standard deviation can also be estimated by the average absolute deviation from the mean:

∑ × −= p m EV
i

n

i i1

importantly, for binary outcome and m = 1, the mean absolute deviation can be computed 
by averaging the unsigned rPe over a large number of trials because the best estimate of EV is the 
expected reward resulting from stimulus or action selection. therefore, the unsigned rPe may 
directly contribute to the computation of expected uncertainty for a given stimulus or action.

Volatility
volatility refers to uncertainty due to ‘actual’ changes in reward magnitude and/or probability 
associated with stimuli or actions over time. in the context of the two-​alternative probabilistic 
reversal learning task in which the probabilities for two possible actions add up to 1, it is 
proportional to
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where L is the block length, capturing the overall rate of change per time. volatility can be local 
(that is, related to one stimulus or action) or global (that is, generalized and shared between sets 
of stimuli or actions or all stimuli or actions in the environment). the computation of local 
volatility is reasonable because unexpected changes about one stimulus or action could be 
independent of those in other stimuli or actions. On the other hand, estimates of the overall level 
of volatility in the environment are beneficial in adjusting learning and decision-​making on a 
global basis.

unexpected uncertainty
unexpected uncertainty is uncertainty due to subjective perceived changes in reward probabilities, 
magnitudes and/or delays that are associated with stimuli or actions over time. unexpected 
uncertainty can be read only from a subject’s responses (choice behaviour, estimation report and  
so on) and thus strongly depends on the assumptions of the computational model used to explain 
their behaviour. unexpected uncertainty can be local or global.



outcomes into account; however, its strict 
definitions differ14–16. For example, it has 
been suggested that only the first violation 
of an expected outcome, such as with the 
first reversal of previously learned reward 
contingencies, constitutes unexpected 
uncertainty, whereas all subsequent 
reversals yield expected uncertainty 
because they could be expected14,17.
This posits that there is no unexpected 
uncertainty if changes are predictable; 
however, this principle does not add 
much practical benefit to the definition 
of unexpected uncertainty because it is 
not clear when the ‘unexpectedness’ of 
changes degrades. Learning can occur in 
a single trial, as in epiphany learning18, 
suggesting that detection or perception of 
drastic changes in the environment that 
lead to such learning can be very fast. Thus, 
some have argued that to capture ‘surprise’ 
correctly, commitment to a belief needs 
to be considered as well16. Unexpected 
uncertainty may therefore be primarily 
subjective rather than following actual 
changes in the environment.

Thus, to reconcile different definitions, 
we equate unexpected uncertainty with the 
‘subjective’ perceived uncertainty due to 
changes in reward probabilities, magnitudes 
or delays over time (Box 1). We assert that 
unexpected uncertainty can be read out 
only from a subject’s responses (for example, 
from their choice behaviour or estimation 
report). By contrast, we refer to volatility 
as uncertainty due to actual changes in 
reward probabilities, magnitudes or delays 
over time, independently of whether 
it is detected by the decision-​maker or 
not. Given that unexpected uncertainty 
strongly depends on the assumptions of 
the computational model used to explain 
subjects’ behaviour (and given that subjects 
adopting such a model could require 
substantial time), whether volatility is 
computed and signalled by neural elements 
in the brain— and, if so, how it influences 
learning — must be tested.

Computational models
Here, we categorize computational 
models of learning under uncertainty 
into normative models, such as Bayesian 
or statistical models, that prescribe how 
learning should adjust to uncertainty 
in the environment; approximations 
to these normative models that aim to 
provide plausible update rules that could 
be implemented in the brain; and last, but 
not least, mechanistic models that aim to 
explain how necessary computations can be 
performed by neural elements.

Normative models. An ideal observer in 
Bayesian and statistical models of learning 
uses the Bayes rule as the update rule to 
estimate the probability of reward or other 
important quantities optimally19–21. However, 
this requires making certain assumptions 
about the environment to determine what 
regularities to expect and to learn from  
in the environment5,6,15,17,19,20,22,23. Therefore, 
the decision-​maker or learner assumes 
a model of the environment and how it 
changes over time and accordingly adjusts 
the parameters of this model on the basis 
of reward feedback. Parameters of the 
Bayesian models could represent different 
properties of the environment such as 
the probability of reward, the width of 
distribution from which reward is drawn 
(expected uncertainty) and the probability 
that any of the underlying parameters 
may change over time (unexpected 
uncertainty)15,17,19,20,22. Therefore, Bayesian 
models estimate not only stimulus or action 
values but also expected and unexpected 
uncertainty associated with those values 
and are therefore very useful for localizing 
corresponding neural correlates.

Many Bayesian models of learning 
under uncertainty assume a hierarchical 
structure for estimating relevant reward 
information (probability, magnitude and so 
on) and how it changes over time15,20,22. This 
assumption is usually made for mathematical 
convenience and may not reflect the type 
of changes that occur in the natural reward 
environment. One hierarchical model20 
posited separate systems for estimating 
reward probability (r), volatility (v) and 
the rate of change in volatility (k). In this 
model, transitions between different values 
of r and v are affected by the parameter in 
the system above it (v and k, respectively). 
In this structure, the Bayes rule can be 
applied to compute posteriors (posterior 
probability distributions) or the belief 
about all three parameters given the data. 
This model successfully explained choice 
behaviour in a probabilistic reversal learning 
task and was used to identify neural 
correlates of unexpected uncertainty in 
humans; moreover, this model sparked the 
development of many models of learning 
under uncertainty. Despite its logical 
simplicity, the actual computations necessary 
for estimating posteriors are very complex; 
therefore, it is unclear precisely how these 
computations are performed in the brain. 
Most relevant to our discussion, it is difficult 
to use Bayesian models to make predictions 
about the exact relationship between 
expected and unexpected uncertainty as their 
update rules are closely interconnected22.

A common normative approach for 
tackling learning under uncertainty is the 
Kalman filter. The Kalman filter utilizes 
series of observations to produce estimates 
or predictions for both the state of the 
system and uncertainty associated with 
the estimated state, and it uses subsequent 
observations to update those estimates. 
As a result, the Kalman filter lends itself 
well to learning under uncertainty because 
it formalizes not only the predictive 
relationship between stimuli or actions and 
reward outcomes (predicted state, such  
as reward probability) but also the variance 
or uncertainty of the estimates (so-​called 
predicted error covariance)5,6. An important 
concept in this model is the optimal Kalman 
gain, which determines the amounts of 
update for both the predicted state and 
the predicted error covariance5. Similar 
to Bayesian models, Kalman filter models 
require an assumption about state transitions 
(more specifically, a state-​transition model), 
and the most common form of state 
transitions follow a hierarchical structure5,6. 
Both Bayesian and Kalman filter models 
have been instrumental in formalizing 
different solutions to tackle uncertainty.

Approximate-​normative models. Although 
optimal and quite generalizable, the 
computations required in the normative 
models are rather complex and cannot easily 
be mapped to neural processes. Moreover, 
because normative models are mainly 
concerned with describing optimal learning, 
these models are sometimes limited 
in accounting for choice and learning 
behaviours2,15. Different approaches have 
been used to overcome these issues. These 
include approaches incorporating additional 
components to the Bayesian models or 
approximations to those models. For 
example, Payzan LeNestour and Bossaerts15 
proposed a ‘forgetting’ Bayesian algorithm, 
enabling the introduction of an explicit 
learning rate. Using this model, the authors 
were able to estimate the effects of different 
types of uncertainty on the learning rate and 
identified multiple brain regions (including 
the anterior and posterior cingulate cortex, 
intraparietal sulcus and locus coeruleus) that 
displayed blood-​oxygen-level-​dependent 
(BOLD) responses that were correlated with 
different types of uncertainty24.

In another example, Dayan et al.5 noted 
that Kalman filter models assume that the 
predictive values of all stimuli are simply 
added to compute ‘net predictions’, although 
the reliability of those stimuli could vary 
owing to abrupt changes in the environment. 
To resolve this issue, they proposed a 
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‘competitive combination’ mechanism that 
uses the inverse of the standard deviation 
of the difference between the predicted 
and actual value of reward associated with 
each stimulus (as a measure of stimulus 
reliability) to optimally combine different 
predictions. To solve a similar problem 
related to differences in reliability,  
Courville et al.6 also suggested that the 
update of Bayesian model parameters 
or beliefs about them should inversely 
depend on uncertainty in the environment. 
However, they also proposed that surprising 
events or outcomes should signal changes 
and the need for faster or new learning.

There are other approximate Bayesian 
models that arguably provide better 
fit to behaviour and links to its neural 
substrates19,22,25. For example, a model 
comprising a mixture of error-​driven ‘delta’ 
rules that generated updates on the basis 
of the differences between estimated and 
actual outcomes explained human behaviour 
on a predictive-​inference task more 
effectively than did the optimal Bayesian 
model25. A related study proposed a delta-​
rule approximation of the ideal observer 
model19; in this model, the influence of 
newly experienced outcomes was adjusted 
according to ongoing estimates of (expected) 
uncertainty and the probability of a 
fundamental change in the environment 
(unexpected uncertainty). These approximate 
models tend to provide a good fit of 
behavioural data (particularly for continuous 
reward feedback, although not binary reward 
feedback) and have been used to identify 
neural correlates of belief updating26. These 
models can be directly tested for their 
predictions about changes in the learning 
rates and how the effect of RPE on learning is 
modulated by environmental factors.

Classic models of learning based on RPE 
(for example, the Rescorla–Wagner model 
and various reinforcement learning (RL) 
models27) assume fixed learning rates and 
thus do not have specific mechanisms for 
adjusting the learning rate according to 
uncertainty in the environment. By contrast, 
the Pearce–Hall (PH) model carries a built-​
in mechanism for adjustment of learning 
for each stimulus based on how surprising 
the last outcome was, such that surprising 
reinforcement (or non-​reinforcement) 
results in increased associability and faster 
learning28. This is why in many hybrid 
models that try to capture changes in 
learning over time, RPE is multiplied by 
a variable that measures surprise, which 
could also signal uncertainty29. In the PH 
model, surprise is computed on the basis of 
the mean value of unsigned RPE whereas in 

other models, this variable could resemble 
the variance of the RPE6,12; nonetheless, all 
these models suggest that RPE can be used 
to control the gain of learning. For example, 
Preuschoff and Bossaerts12 suggested that 
the standard deviation of the RPE, which 
they term the prediction risk, can be used to 
adjust the learning rates by scaling down the 
RPE. Another study proposes a model with a 
dynamic learning rate based on the slope of 
the change in the smoothed, unsigned RPE 
over trials30. Interestingly, a recent model 
that combined these two features (scaling 
of learning with expected uncertainty and 
dynamic learning rates using RPE) was able 
to account for human learning better than 
classic RL models13. Although the notion of 
variable learning rates based on unsigned 
RPE has been adopted in many models to 
deal with uncertainty5,6,31, RPE does not 
tease apart expected from unexpected 
errors per se. Therefore, additional 
computations are necessary for proper 
estimation of surprising outcomes, and 
the neural mechanisms of these additional 
computations are currently unknown.

Mechanistic models. Mechanistic models of 
learning under uncertainty aim to explain 
how necessary computations are performed 
by neural elements; thus, their components 
can be mapped onto brain circuits and 
substrates more easily than the components 
of the models outlined above.

In error-​driven models, the RPE 
modulated by the learning rate is often 
used as the teaching signal, which is 
assumed to be mediated by dopamine32,33. 
Therefore, adjustments of learning in these 
models translate to the adjustment of RPE 
or the learning rates or both. However, a 
wealth of evidence implicates dopamine in 
other processes that also influence choice 
behaviour, including incentive salience or 
desirability34, effort35 and novelty36. Thus, 
whether the computations required for 
adjustments of learning in error-​driven 
models can be mapped uniquely onto the 
modulation of the functionally multifaceted 
dopaminergic system is unclear.

We recently proposed a mechanistic 
model for adaptive learning under 
uncertainty in which synapses are endowed 
with metaplasticity — the ability to change 
synaptic states without measurable changes 
in synaptic efficacy. Through such changes, 
metaplasticity can alter future response 
to events that cause plasticity without 
producing any potentiation or depression37. 
As such, synapses with reward-​dependent 
metaplasticity can self-​adjust in response to 
reward statistics in the environment without 

any optimization or knowledge of the 
environment2,4. In this model, the changes in 
the activity of neurons that encode stimulus or 
action values can be used by another system 
to compute volatility in the environment. 
The volatility signal can subsequently be 
used to increase the gain of learning when 
estimated volatility passes a threshold set by 
expected uncertainty. Therefore, the extended 
model predicts a direct two-​way interaction 
between neurons encoding stimulus or action 
values and neurons computing volatility, 
modulated by input from a circuit that 
computes expected uncertainty. We posit that 
such interactions between value-​encoding 
and uncertainty-​monitoring systems can 
enhance the adaptability required in dynamic 
environments and that metaplasticity 
provides a crucial mechanism for this 
interaction to be beneficial. Metaplastic 
synapses are crucial because they allow 
proper estimation of volatility2. In addition, 
according to this model, expected uncertainty 
may not directly modulate the gain of 
learning but instead may be involved in 
setting a baseline with which to compute 
unexpected uncertainty.

Another proposed model3 for learning 
under uncertainty consists of two networks. 
The first network exploits reward-​based 
metaplasticity to estimate stimulus or action 
values. The second network updates plasticity 
in the first network according to the degree 
of ‘surprise’ it detects. The second network 
computes ‘surprise’ on multiple timescales by 
comparing the current differences in reward 
rates over pairs of timescales (referred to as 
unexpected uncertainty) with the means of 
these differences over time (referred to as 
expected uncertainty). Therefore, unlike our 
model2, this model proposes that completely 
separate systems estimate stimulus or 
action values and compute uncertainty. 
In addition, this model predicts that the 
surprise detection system should have a 
unidirectional influence on the valuation 
system, whereas our model predicts two-​
way interactions between systems encoding 
stimulus or action values and volatility. 
These alternative predictions can be tested 
by pathway-​specific inactivation of brain 
regions involved in computations of different 
types of uncertainty (see below) and 
measuring the effect on learning.

Neural substrates of uncertainty
Here, we examine recent findings from 
studies in the brain to identify evidence 
that may serve to validate or refute 
the predictions of the aforementioned 
computational models. With few 
exceptions38, most experimental paradigms 
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probing the neural substrates of uncertainty 
rarely involve the clear distinctions between 
the different types of uncertainty studied 
here (Boxes 2,3). Therefore, in the discussion 
below, we focus on recent findings that 
provide insights on correlates, circuit 
mechanisms and connections that may 
compute, encode or distinguish between 
the uncertainty-​related variables described 
above. We also consider studies that 
aim to reveal causal roles using different 
interference methods. Overall, these findings 
point to a distributed network that includes 
regions of the prefrontal cortex (PFC), 
striatum, hippocampus, basolateral amygdala 
(BLA) and mediodorsal thalamus (MD) 
(Fig. 1). Owing to space constraints, we focus 
on reward-​based rather than aversion-​based 
learning39 and emphasize corticolimbic 
contributions to this learning rather than 
those of supporting neuromodulatory 
systems. Several studies and reviews have 
already outlined the important contributions 
of dopamine40,41, serotonin1,42 and 
acetylcholine and noradrenaline14 to learning 
and decision-​making under uncertainty.

Prefrontal cortex. Neural correlates of 
uncertainty have been found in various 
regions of the PFC, including the anterior 
cingulate cortex (ACC), of several species43. 
ACC neurons were reported to represent 
unsigned RPE, which was correlated with 
behavioural adjustment in a gambling task44. 
In a more recent study45, ACC neurons 
were shown to signal both expected value 
and expected uncertainty in a valence-​
specific manner. Moreover, of the ACC 
neurons that signalled uncertainty, fewer 
signalled RPEs than variability in reward 
outcomes (expected uncertainty). Thus, 
ACC-​mediated encoding of RPE, previously 
observed by several groups46–48, could 
contribute to uncertainty computations in 
this area. Although encoding of RPE itself 
does not qualify a brain area for uncertainty 
computations, signals of the unsigned 
RPE can provide strong evidence for 
approximation of expected uncertainty.

Unlike the ACC, there is debate on 
whether the orbitofrontal cortex (OFC) 
signals RPEs49–51 and whether and how 
these signals may contribute to different 

forms of uncertainty. Electrophysiological 
recording studies in the rat OFC provided 
convincing evidence that activity in this 
region correlates with both stimulus value 
and expected uncertainty52,53 similar 
to ACC. This ability to encode these 
variables depends on the stability of the 
environment52, suggesting a contribution 
of the OFC to expected uncertainty and 
perhaps even volatility54. Most of the 
functions described above in rats55 have 
been realized in the monkey brain as well: 
representations of expected outcomes can 
also be decoded from monkey OFC during 
value-​based choice56,57, and OFC neurons 
signal both stimulus value and expected 
uncertainty58. In monkeys, the activity of 
OFC neurons rapidly updates in response 
to changes in cued reward magnitude, and 
activity in this region, as in the rat OFC, is 
modulated by reward history59. For example, 
signals relevant to task performance can be 
decoded better in both the OFC and ACC 
in a volatile environment than in a stable 
environment60. Together, the evidence in 
rat and monkey OFC points to conserved 
functions in learning under uncertainty.

Which of these PFC regions are causally 
involved in uncertainty computations? 
Anatomical and functional data support 
the idea that the ACC in various species 
integrates reward, cognitive and action plan 
signals61–65. Similarly, lesions and transient 
or reversible pharmacological inactivation of 
the OFC in rats and monkeys also result in 
deficits in learning and performance under 
conditions of risk and uncertainty55,66–72. 
An important follow-​up question is how 
these regions contribute to uncertainty 
computations. The OFC (and perhaps 
also the ACC) has access to volatility 
signals such that they can construct stable 
representations of stimulus or action values 
under expected uncertainty52,68. However, 
computations of volatility or unexpected 
uncertainty themselves probably occur 
outside the PFC in regions such as the BLA 
that are interconnected with both cortical 
and subcortical regions (Fig. 1).

On the basis of the available evidence, 
we speculate that the OFC and ACC may 
have dissociable and complementary 
roles in learning under uncertainty and in 
mitigating the adaptability–precision trade-​
off. Specifically, the OFC may support slow 
updates of stimulus values and estimation 
of expected uncertainty over multiple 
trials to provide a baseline for computing 
unexpected uncertainty. Plastic synapses 
in the ACC may instead have a spectrum 
of learning rates or rates of transition 
between potentiated and depressed states2,73. 
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Box 2 | Behavioural paradigms used to study expected and unexpected uncertainty

Learning and decision-​making paradigms with probabilistic outcomes that manipulate the 
variance in reward outcome can be used to study expected uncertainty and its influence on 
learning66,108. a popular approach for studying the effects of expected uncertainty on learning and 
choice is to require animals to select between a probabilistic large-​magnitude reward (the 
probability of which must be learned) and a certain small-​magnitude reward67,109–111. a related 
concept is risk, which corresponds to expected uncertainty owing to the probabilistic nature of the 
outcome in cases in which reward probabilities are provided and not to be learned.

another way in which some groups have attempted to study expected uncertainty is to 
introduce variability in reward magnitudes or delays to reward13,19,58,68,112. in such paradigms, 
subjects are typically required to select between stimuli associated with different delay variance or 
to estimate reward magnitudes for stimuli associated with rewards with different probability 
distributions (but with the same mean reward and reward rate over the session). evidence suggests 
that non-​human primates19,58 and rodents68,112 can infer the standard deviation of a reward 
distribution (expected uncertainty).

Most experimental paradigms used to study unexpected uncertainty involve learning of 
frequently changing associations between stimuli or actions and reward outcomes17,21,60,113–115.  
a commonly used paradigm is probabilistic reversal learning (PrL), in which the subject selects 
between two alternative options (for example, visual stimuli) that each result in probabilistic 
delivery of reward. the probabilities of reward on the two options can switch after a certain 
number of trials (L; or block length) that could be fixed20,114 or drawn from a distribution21. 
alternatively, a switch in reward probabilities could be determined on the basis of when 
performance reaches a certain level, but such design is not ideal because it makes volatility 
contingent on choice. in the case of fixed block length L, a combination of reward probability on 
the two options and L collectively defines the reward environment, with a specific value of 
volatility (Box 1). PrL is a challenging task for two main reasons: the probabilistic nature of reward 
assignment (expected uncertainty) and the frequent switches in reward probabilities between 
blocks of trials (reversals), which result in volatility and thus unexpected uncertainty. in more 
general ‘bandit tasks’, the subject selects between two or more options or actions for which reward 
probabilities can independently change over time116–119. although bandit tasks can introduce 
different forms of uncertainty, they are not the most suitable for dissociating them or studying 
their influence on learning for several reasons. First, reward probabilities change on the basis  
of independent, random processes for different options, making it difficult to define volatility  
or unexpected uncertainty. second, outcomes for the unchosen options or actions are 
unobservable; thus, estimating reward probabilities for these options is non-​trivial. Last, owing  
to such unobservable outcomes, bandit tasks involve the use of complex strategies (such as 
exploration–exploitation trade-​off) for selecting recently unchosen options or actions.



This would not only enable the ACC to 
estimate expected uncertainty but also allow 
computation of unexpected uncertainty 
elsewhere in the brain. Thus, the OFC and 
the ACC could provide parallel signals 
necessary for computations of unexpected 
uncertainty elsewhere, where these signals 
can be compared and used for faster updates 
if unexpected events are detected.

Does the functional connectivity support 
this possibility? Anatomical studies in 
rodents and monkeys point to a topographic 
map of connectivity from various subcortical 
and cortical structures to the PFC74. 
Specifically, along the lateral-​to-medial 
gradient in the rat OFC, innervation by 
affective or motivational systems increases 
and innervation by sensory integration areas 

decreases (reviewed in ref.55). In the ACC, 
there is a similar pattern of connectivity  
but along the ventral–dorsal plane, with 
ventral areas connected to the amygdala 
and dorsal areas better connected with 
sensorimotor and association areas75. This 
connectivity results in the transfer of largely 
redundant information to the OFC and 
ACC that could be used to compute different 
quantities, such as stimulus or action 
values, the unsigned RPE and others, that 
are required for uncertainty computations. 
The role of corticocortical connectivity and 
interactions in forming representations 
of value and uncertainty should not be 
neglected. The medial and ventral OFC send 
dense projections to the dorsal and ventral 
ACC76, suggesting that the ACC receives both 

direct and ‘OFC-​filtered’ information about 
rewards and may therefore represent reward 
information differently to the OFC77. Moving 
forward, it will be crucial to discern the 
conditions and timings with which the ACC 
and OFC may be differentially engaged in 
learning about reward and to compare their 
contributions directly on the same tasks.

Striatum. Correlates of expected uncertainty 
(as defined here) and stimulus–outcome 
associations have been found in the 
dorsal striatum in monkeys78. Evidence 
also suggests that the striatum may also 
be causally involved in learning under 
expected uncertainty. Lesion studies support 
a role for the striatum in learning during 
probabilistic, rather than deterministic, 

www.nature.com/nrn

P e r s p e c t i v e s

Box 3 | example experimental paradigm to dissociate expected and unexpected uncertainty

Components of probabilistic reversal learning tasks can be used for  
a new experimental paradigm to dissociate expected and unexpected 
uncertainty and to study their interaction. in this task, the subject 
concurrently learns stimulus–action associations for multiple visual  
stimuli via reward feedback, as in a natural environment. stimuli could 
have similar features and could be associated with similar or different sets 
of actions (see the figure). the reward outcomes for actions associated 
with each stimulus can be probabilistic or deterministic and can reverse on 
a specific timescale (or block length (L), drawn from a normal distribution 
with a specific mean and variance, for example, N(20,6)).

a stimulus with a fixed, probabilistic stimulus–action association  
(no reversal) carries expected uncertainty but not unexpected uncertainty.  
a stimulus with deterministic outcomes and reversal bears only 
unexpected uncertainty. Other stimuli with probabilistic reward outcomes 
and reversal give rise to both types of uncertainty. the neural responses to 
these three types of stimulus can be used to dissociate the neural 
correlates of different types of uncertainty.

Moreover, the subject could construct models of the environment to 
predict reversals, which gives rise to the distinction between ‘objective’ 
volatility and ‘subjective’ unexpected uncertainty (Box 1). in addition to 
stimulus-​specific (or ‘local’) volatility or unexpected uncertainty, global 
volatility or global unexpected uncertainty could be computed across 
stimuli and/or actions to determine the overall gain of learning in the 
environment. to compute global volatility, volatility associated with each 
stimulus or set of actions can be summated with a weight proportional to 
the inverse of the expected uncertainty. these alternatives can be 
dissociated using different levels of similarity between stimuli and 
between sets of actions. Finally, this paradigm allows studying the 
interaction between expected and unexpected uncertainty in terms of 
how expected uncertainty is used to compute volatility (or unexpected 
uncertainty) about each stimulus or sets of actions; whether and how 
expected uncertainty is used to combine volatility across stimuli and/or 
sets of actions; and how expected and unexpected uncertainty influence 
learning.
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reward schedules in both rodents and non-​
human primates79,80. The striatum receives 
inputs about expected and unexpected 
uncertainty from frontocortical regions, 
the hippocampus and the BLA (Fig. 1) and is 
necessary for tasks that require encoding of 
reward rate and delay to reward79,81, thereby 
implicating this region in flexible learning 
(and responding to) changes in individual 
outcomes.

Hippocampus. Expected uncertainty signals 
associated with probabilistic outcomes 
have been reported in the septum82, 
which in turn may aid learning via its 
innervation of GABAergic interneurons in 
the hippocampus83. Conversely, unexpected 
uncertainty correlates have also been found 
in the hippocampus, mostly reported in 
primates. For example, in humans, correlates 
of change detection and ‘mismatch’ 
computations were observed in the 
hippocampus84. In addition, the amplitudes 
of negative event-​related potentials in the 
hippocampus covary with unexpected 
uncertainty in outcome, irrespective of 
valence85. Moreover, the hippocampal BOLD 
signal correlates negatively with unexpected 
uncertainty at the time of outcome24. The 
hippocampus and OFC have both been 
suggested to support cognitive maps that 
could provide predictions about choice 
outcomes86,87. Given this critical overlap 
in function between these two regions, 
the hippocampus may also conceivably 
signal expected uncertainty in addition to 
unexpected uncertainty. To our knowledge, 
there has been no direct test of a causal 
role for the hippocampus in learning under 
the different forms of uncertainty that we 
consider here, in rodents or primates.

Basolateral amygdala. A large body of 
data in rodents and non-​human primates 
points to the BLA in detecting surprising 
changes, leading to quick updating88,89 that 
supports flexible learning79,90. Indeed, BLA 
activity responds to changes in the internal 
(motivational) state of the animal, which is 
typically probed using reinforcer devaluation 
paradigms91. However, the BLA also encodes 
changes in the (external) environment as 
positive or negative RPEs when expectations 
are repeatedly violated91,92. The ability of the 
BLA to encode changes in the environment 
has been modelled in terms of attentional 
salience and ‘associability’ signals (as in the 
PH model)29, both of which could contribute 
to computations of unexpected uncertainty. 
For the BLA to facilitate rapid updating, this 
region must also receive information about 
expected uncertainty (Fig. 1).

More recent evidence indicates that 
the BLA supports learning of actual 
changes (that is, volatility) in the expected 
value of rewards as signalled externally68, 
not necessarily by shifts in (internal) 
motivational state. The BLA may directly 
influence value learning under uncertainty 
via its anatomical projections to or from 
the ACC93,94 and OFC95,96 and/or via the 
dopaminergic circuitry97. These projections 
could allow the BLA to compute unexpected 
uncertainty by comparing changes in 
stimulus or action values to baselines set by 
the expected uncertainty.

Mediodorsal thalamus. The MD is an 
important node for value processing98,99 
but has also been explored for its 
involvement in rapid learning in changing 
environments100–102. For example, monkeys 
with MD lesions exhibit an increased 
tendency to switch response, even after a 
win trial101, suggesting that MD is required 
for maintaining a representation of recent 
reward modulated by choice, which 
could facilitate learning when there are 
multiple stimuli in the environment. In 
support of this, one study103 suggested that 
the architecture of thalamocortical and 
corticothalamic pathways may support the 
maintenance and rapid update of cortical 
representations, making MD a candidate 
region for volatility computations.

A network for computing uncertainty.  
The experimental evidence for neural 
substrates for computations of uncertainty 
raises several important points. First, 
although certain regions of the brain seem 
to show some tendency (although are 
probably not ‘specialized’) for encoding 
and computing different variables related 
to uncertainty in the reward environment, 
computations and perhaps representations of 
uncertainty are distributed. Second, because 
stimulus and action values, the unsigned 
RPE and expected uncertainty are closely 
linked both anatomically and behaviourally, 
computations of uncertainty may not require 
separate estimation of stimulus and action 
values. In other words, the same stimulus 
and action value signals may be used to 
compute both types of uncertainty. Last, 
although there are connections from cortical 
areas involved in valuation and uncertainty 
computations to subcortical areas involved 
in signalling reward and prediction error, 
whether dopaminergic systems receive  
and can integrate different types of 
uncertainty information to modulate the 
learning rates, as has been widely proposed, 
remains unclear.

Future perspectives
To allow effective learning, the brain must 
achieve a balance of ‘scaling down’ learning 
when expected uncertainty is high versus 
‘scaling up’ learning when unexpected 
uncertainty is high. Above, our discussion 
of computational models and experimental 
data suggests that understanding the 
interactions between expected and 
unexpected uncertainty is crucial for 
understanding learning and choice under 
uncertainty.

Nevertheless, several issues remain 
to be addressed (see Box 4 for remaining 
questions and how they can be addressed). 
Although neural correlates of expected 
uncertainty signals have been found in the 
brains of several different species, we still do 
not know how these signals contribute to the 
computations of unexpected uncertainty or 
volatility and subsequent learning. We also 
lack an understanding of how unexpected 
uncertainty is encoded in the brain  
(for example, whether it is encoded at the 
single-​cell level or at the population level)  
or how it is computed, although metaplasticity 
may provide a promising mechanistic 
framework for its computation2,37.
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HippocampusMD Striatum

Action
selection

Local unexpected uncertainty
Global unexpected uncertainty
Stimulus value or action value
Expected uncertainty
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Fig. 1 | Major nodes of expected and unexpec­
ted uncertainty computations. On the basis of 
existing data, these are a few cortical and subcor-
tical areas that could be involved in the compu-
tations (and representations) of expected and 
unexpected uncertainty as well as stimulus or 
action values. We do not include all anatomical 
connections for simplicity. The uncertainty net-
work includes the anterior cingulate cortex 
(ACC), basolateral amygdala (BL A), hippocampus, 
mediodorsal thalamus (MD) and orbitofrontal 
cortex (OFC). Most of these areas are highly 
reciprocally interconnected, which could explain 
the overlap in the information or variables that 
each of these areas represent and compute and 
demonstrates that learning under uncertainty 
involves inherent interactions between expected 
and unexpected uncertainty signals.



The importance of the non-​human 
primate studies, specifically in macaques, 
in this field cannot be overstated; it is the 
crucial link to understanding how the 
human brain copes with and learns under 
uncertainty. We believe that the lack of 
behavioural paradigms and accompanying 
rodent models that are inspired by studies 
in humans and monkeys may have slowed 
progress in understanding the causal, 
systems-​level neural mechanisms that 
support such adaptive learning and choice 
under different forms of uncertainty. Part 
of this is a methodological issue: the circuit 
dissection technology is more advanced 
in rodents, but the behavioural paradigms 
rarely are designed to mimic those used in 
primates. Moreover, custom and novel tasks 

are needed to systematically examine the 
nuances of interactions between expected 
and unexpected uncertainty (Box 3).

Value-​based learning is assumed to 
happen at the synaptic level, whereas 
interactions between expected and 
unexpected uncertainty rely on circuit-​
level mechanisms. Therefore, revealing 
mechanisms of learning under uncertainty 
requires an understanding of the interactions 
between neural elements across multiple 
levels (synaptic and circuit-​level), which is 
not possible without detailed computational 
modelling. Such models are also 
instrumental to computational psychiatry: 
various psychiatric conditions (including 
behavioural and substance addictions and 
anxiety disorders) are associated with either 

failures in generating accurate models of the 
reward environment104 or an inability to use 
those models to flexibly guide behaviour105.

We hope that this Opinion outlines some 
important considerations for identifying 
the basic underlying mechanisms that 
may go awry in several neuropsychiatric 
disorders. Ultimately, a combination of novel 
behavioural paradigms, detailed mechanistic 
models, multi-​area recording and circuit-​
level manipulations is required to answer 
critical lingering questions about learning 
under uncertainty (Box 4).
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Box 4 | outstanding questions

several questions concerning the computation of expected and unexpected uncertainty remain 
unanswered (see below). some of these questions can be tested currently by pathway-​specific 
manipulations in rodents, multi-​area recoding in non-​human primates and behavioural 
manipulations using novel paradigms in humans and other species (Box 3). In vivo imaging in target 
prefrontal cortex regions while specific pathways and cell populations are activated or silenced 
during learning would be especially revealing. in addition, answering these questions requires 
understanding interactions between neural elements across multiple levels (including at the 
synaptic and circuit levels) and will therefore require detailed computational modelling.

How do uncertainty signals interact across brain areas?
exactly how uncertainty computations and corresponding signals in the anterior cingulate cortex 
(aCC) and orbitofrontal cortex (OFC) interact with those in the basolateral amygdala (BLa) and the 
mediodorsal thalamus (MD) to enable adaptive learning is not clear. two related questions arise 
from the review of computational models. First, do uncertainty computations rely on estimates of 
stimulus or action values that are separate from those used to make decisions? second, is expected 
uncertainty used as a baseline against which unexpected outcomes or events can be detected?  
as reviewed here, there is evidence that both the aCC45 and OFC68, and perhaps also the 
hippocampus, encode expected uncertainty. a critical follow-​up question is whether this 
information is used to detect surprise and to update learning in subcortical regions. these 
questions can be addressed by independently estimating stimulus or action values and perceived 
uncertainty via subjective report and by manipulations of activity in brain areas encoding and 
computing those variables.

How does uncertainty affect value updating?
to allow effective learning, the brain must achieve a balance of scaling down learning when 
expected uncertainty is high versus scaling up learning when unexpected uncertainty is high. 
therefore, understanding interactions between expected and unexpected uncertainty is crucial for 
understanding learning in naturalistic settings. However, it is unclear how the updating of stimulus 
or action values in the striatum, aCC and OFC depends on expected and unexpected uncertainty 
signals from the BLa and MD. Do expected and unexpected uncertainty signals directly influence 
the gain of learning, or are they instead read by an intermediate brain area? it is also unclear 
whether and how surprising events and unexpected uncertainty scale up the gain of learning and 
how expected uncertainty scales down the gain of learning. these questions can be investigated 
via manipulations of neuromodulatory systems involved in learning.

Are reward prediction errors signals used to compute uncertainty?
signed and unsigned reward prediction error signals are found in many brain areas, but exactly  
how they are used to compute expected uncertainty is unclear. this can be tested via optogenetic 
manipulations of dopamine signalling and measuring the effects on expected uncertainty signals in 
cortical regions.

is uncertainty generalized across stimuli or actions (and if so, how)?
expected and unexpected uncertainty could be generalized across stimuli and/or sets of actions in 
the reward environment. if so, is expected uncertainty used to weight volatility associated with 
each stimulus or set of actions to compute the global volatility or unexpected uncertainty of an 
environment? these questions can be investigated via behavioural manipulations in more complex 
experimental paradigms (Box 3).
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