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Abstract 

Most cognitive processes are studied using abstract or synthetic stimuli with specific features to 

fully control what is presented to subjects. However, recent studies have revealed enhancements 

of cognitive capacities (such as working memory) when processing naturalistic versus abstract 

stimuli. Using abstract stimuli constructed from distinct visual features (e.g., color and shape), 

we have recently shown that human subjects can learn multidimensional stimulus-reward 

associations via initially estimating reward value of individual features (feature-based learning) 

before gradually switching to learning about reward value of individual stimuli (object-based 

learning). Here, we examined whether similar strategies are adopted during learning about 

naturalistic stimuli that are clearly perceived as objects (instead of a combination of features) and 

contain both task-relevant and irrelevant features. We found that similar to learning about 

abstract stimuli, subjects initially adopted feature-based learning more strongly before 

transitioning to object-based learning. However, there were three key differences between 

learning about naturalistic and abstract stimuli. First, compared with abstract stimuli, the initial 

learning strategy was less feature-based for naturalistic stimuli. Second, subjects transitioned to 

object-based learning faster for naturalistic stimuli. Third, unexpectedly, subjects were more 

likely to adopt feature-based learning for naturalistic stimuli, both at the steady state and overall. 

These results suggest that despite the stronger tendency to perceive naturalistic stimuli as objects, 

which leads to greater likelihood of using object-based learning as the initial strategy and a faster 

transition to object-based learning, the influence of individual features on learning is stronger for 

these stimuli such that ultimately the object-based strategy is adopted less. Overall, our findings 

suggest that feature-based learning is a general initial strategy for learning about reward value of 

all types of multi-dimensional stimuli.  

 

Keywords: value-based learning, curse of dimensionality, naturalistic tasks, reinforcement 

learning. 
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1. Introduction 

A hallmark of human cognition is the ability to attribute reward outcomes to cues or events that 

precede them, or to choices that lead to those reward outcomes. Attributing reward outcomes to 

stimuli and actions allows the brain to learn and compute the so-called stimulus and action 

values, respectively, which we collectively refer to as “reward value” for simplicity. Choices 

faced in the real world, however, are often objects consisting of many different features or 

attribute dimensions (e.g., color, shape, texture, etc.), each of which could potentially take many 

values and carry different information about reward outcomes.  

Learning about multi-dimensional stimuli is not a trivial problem given that humans and other 

animals have limited cognitive abilities in terms of the number of features or objects that can be 

held in working memory or attended at a time. In addition, the set of possible associations grows 

supra-linearly as the dimensionality of attributes increases, which is often referred to as the 

“curse of dimensionality” (Barto & Mahadevan, 2003; Diuk, Tsai, Wallis, Botvinick, & Niv, 

2013; Hastie, Tibshirani, & Friedman, 2001; Sutton & Barto, 1998). It has been proposed that 

humans overcome the curse of dimensionality by constructing a simplified representation of the 

stimuli and learning only a small subset of features (Niv et al., 2015; Wilson & Niv, 2012), or by 

extracting a set of rules to estimate reward value of options based on their features (Braun, 

Mehring, & Wolpert, 2010; Dayan & Berridge, 2014; Gershman & Niv, 2010). We have recently 

shown that during learning about multi-dimensional stimuli, humans initially adopt feature-based 

learning (i.e., learn reward value of individual features shared between different options) to 

tackle the curse of dimensionality before gradually transitioning to learning reward value of 

individual stimuli, which we refer to as object-based learning (Farashahi, Rowe, Aslami, 

Gobbini, & Soltani, 2018; Farashahi, Rowe, Aslami, Lee, & Soltani, 2017b).  

Most studies of reward learning for multi-dimensional stimuli (including ours), however, have 

focused on abstract stimuli, such as fractals, colored shapes, Gabor patches, etc. (Farashahi et al., 

2017b; Niv et al., 2015; Oemisch et al., 2019; Wilson & Niv, 2012; Wunderlich, Beierholm, 

Bossaerts, & O’Doherty, 2011). These simple stimuli have been adapted to avoid the complexity 

related to real-world stimuli and better control what is provided to the subjects in the 

experiments. Although this approach has led to great progress in understanding reward-based 
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learning, it remains unclear whether findings based on abstract stimuli generalize to naturalistic 

stimuli.  

Recent work using naturalistic stimuli has provided evidence that other cognitive abilities such 

as working memory and visual search are enhanced when processing real-world objects rather 

than abstract stimuli (Brady, Störmer, & Alvarez, 2016; Brady et al., 2019; Spachtholz & 

Kuhbandner, 2017). In addition, there is also evidence that naturalistic stimuli can evoke a faster 

response compared to abstract stimuli (Arntzen & Lian, 2010; Battistoni, Kaiser, Hickey, & 

Peelen, 2018). These findings are significant because both working memory and visual search 

can contribute to reward learning. For example, limited capacity of working memory has been 

shown to decrease the speed of learning (Collins, Brown, Gold, Waltz, & Frank, 2014; Collins, 

Ciullo, Frank, & Badre, 2017; Collins & Frank, 2012; Otto, Raio, Chiang, Phelps, & Daw, 

2013). In addition, analyses of visual search between abstract and naturalistic stimuli suggest that 

naturalistic stimuli tend to be processed faster because they are perceived to be more salient 

(Battistoni et al., 2018; Kaiser, Oosterhof, & Peelen, 2016; Thorpe, Fize, & Marlot, 1996). 

Increased saliency of naturalistic stimuli may lead to more object-based learning when tackling 

the curse of dimensionality. Together, these findings suggest that using naturalistic stimuli could 

lead to an overall improvement in learning and/or could bias learning strategy toward object-

based learning.  

To test these alternative hypotheses and further explore learning about reward value of 

naturalistic stimuli, here, we examined learning in a multi-dimensional environment that 

resembles naturalistic settings. Similar to our previous study (Farashahi et al., 2017b), human 

subjects learned reward value of multi-dimensional visual stimuli through feedback. To construct 

naturalistic stimuli, we used photos of athletic shoes with color and shoe type as the two task-

relevant features. We found that similar to abstract stimuli, subjects initially adopted feature-

based learning before systematically transitioning to object-based learning. We also observed 

three key differences in learning about naturalistic versus abstract stimuli. First, subjects initially 

adopted the feature-based strategy less often when learning about naturalistic stimuli. Second, 

the transition from feature-based to object-based learning was faster for naturalistic stimuli. 

Third, subjects were less likely to use the object-based strategy for naturalistic than abstract 

stimuli both at the steady state and overall.  
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2. Materials and Methods 

2.1. Subjects 

All subjects gave written informed consent prior to participating in the experiment in accordance 

with the procedures approved by the Dartmouth College Institutional Review Board. No subject 

had a history of neurological or psychiatric illness. A total of 46 subjects (29 females) were 

recruited from the Dartmouth College student population (ages 18–22 years). Among them, 23 

subjects (15 females) performed two sessions of the experiment that involved learning about 

naturalistic stimuli only (first cohort of subjects). The other 23 subjects performed the 

experiment (four sessions) that involved learning both naturalistic and abstract stimuli: they 

completed two sessions with naturalistic stimuli on one day and two sessions with abstract 

stimuli on another day (second cohort of subjects). Data in the first cohort of subjects was 

obtained to compare learning about naturalistic stimuli with our previous study on abstract 

stimuli (Farashahi et al., 2017b). We then collected data from the second cohort of subjects to 

perform within-subject comparisons and to have identical task design between naturalistic and 

abstract stimuli. 

Due to the learning nature of our experimental paradigm, we used a performance threshold to 

exclude subjects whose performance––defined by the average probability of choosing the more 

rewarding stimulus in each trial––were not distinguishable from chance level. More specifically, 

we excluded subjects whose average performance was below 0.5439 (equal to 2 s.e.m from 

chance level of 0.5 based on the average of 576 trials after excluding the first 30 trials of each 

session). This resulted in the exclusion of 5 out of 23 participants in the first cohort of subjects 

and 3 out of 23 participants in the second cohort of subjects. The data from the remaining 38 

subjects were used for the results presented here. We did not perform data analysis on the 

excluded subjects due to the small sample size (8 subjects). All data used in this manuscript can 

be downloaded from http://ccnl.dartmouth.edu/DataShare/NatStiLer.zip. 

Subjects were compensated with “t-points” (1 t-point/hour), which are extra credit points for 

classes within the Department of Psychological and Brain Sciences at Dartmouth College. Based 

on their performance, subjects were additionally rewarded up to $10 per hour. The experiment 
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was written in MATLAB using the Psychophysics Toolbox Version 3 (Brainard, 1997) and 

presented using an OLED monitor. 

2.2 Stimuli 

We used both naturalistic and abstract stimuli. These stimuli were used in both the choice and 

estimation tasks described below. For naturalistic stimuli, we used pictures of shoes worn for 

different sports and outdoor activities. These stimuli had two task-relevant features for assigning 

reward probabilities: type of shoe (soccer shoe, basketball shoe, etc.) and color (blue, red, etc.; 

Fig. 1c). There were two possible sets of naturalistic stimuli (Fig. 1c left and right panels), each 

containing 9 pictures of shoes (3 shoe types × 3 colors). The order in which these two sets were 

used in the two experimental sessions was randomly determined for each participant.  

For abstract stimuli, we used colored shapes similar to those of our previous study (Farashahi et 

al., 2017b). Specifically, abstract stimuli were drawn from a set of 9 objects that were 

constructed using combinations of three distinct patterns and three distinct shapes. For each 

subject and each session, three patterns and shapes were selected randomly and without 

replacement from a total of eight patterns and eight shapes (Fig. 1e). Importantly, we used the 

same reward probabilities for the task with abstract stimuli and the task with naturalistic stimuli. 

2.3. Experimental procedure  

Overall, the experimental paradigm was identical to Experiment 3 in Farashahi et al. (2017b) 

except that subjects were required to learn a total of 9 (instead of 8) stimuli. Each participant in 

the first cohort of subjects completed two sessions of the task with naturalistic stimuli in one day. 

Participants in the second cohort of subjects completed two sessions of the task with naturalistic 

stimuli one day and two sessions with abstract stimuli on a separate day. The order of stimulus 

type (abstract and naturalistic) was randomly determined for each participant. Each session 

lasted about 30 minutes and consisted of 288 choice trials that were interleaved with 8 estimation 

bouts presented after trials 22, 43, 65, 86, 144, 216, 259, and 288 of the choice task.  

In each trial of the choice task, the subjects were presented with a pair of stimuli and were asked 

to choose the stimulus that they believed would provide the most reward (Fig. 1a). The chosen 

stimulus was rewarded (independently of the other presented object) based on its assigned 
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reward probability (Fig. 1d). Of the two features in each stimulus, one feature was partially 

informative of reward probability associated with the stimuli (e.g., shoe type [T] in the left panel 

and color [C] in the right panel of Fig. 1d), while the other feature was not. Hence, stimulus 

reward probability could not be determined by combining the reward probability assigned to 

individual features, resulting in a moderately non-generalizable environment. For example, while 

stimuli containing T3 feature were overall more rewarding than objects containing T2 feature 

(left panel in Fig. 1d), stimulus C1T3 was less rewarding than stimulus C1T2. In addition, the 

average reward probability of stimuli containing a given non-informative feature (in this case 

C1) was equal to 0.5 (the average reward probability for C1T1, C1T2, and C1T3 objects was 

equal to 0.5). We constructed a non-generalizable reward environment because a fully 

generalizable environment is not realistic and could push subjects to solely adopt feature-based 

learning (Farashahi et al., 2017b). It is worth noting that these reward probabilities were adjusted 

by a small amount due to a limited number of trials for delivering reward with a certain 

probability. However, the general structure of reward assignments stayed the same throughout 

the experiment for the experienced reward. 

During each bout of the estimation task, each consisting of 9 trials, subjects provided their 

estimates of reward probability for each individual stimulus. Possible values for these estimates 

ranged from 5% to 95% (the average value of each interval shown in Fig. 1b) in 10% 

increments.  

2.4. Data analysis and model fitting  

To examine the strategy adopted by subjects to estimate reward probabilities associated with 

different stimuli, we used two methods based on subjects’ responses in the estimation trials. 

First, we fit a Generalized Linear Model (GLM) on subjects’ estimates of reward probabilities 

using the following regressors: the actual reward probability assigned to each stimulus (the 

object-based regressor), the reward probability calculated by combining reward probability of 

individual features using the Bayes’ theorem (the feature-based regressor; see Eq. 1 in Farashahi 

et al., 2017b), and a constant. The constant (bias) term in this model quantifies subjects’ overall 

bias in estimating reward probability, and the other two terms determine the influence of feature-

based and object-based strategies on probability estimation. We used the ratio of the regression 
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coefficient associated with the object-based regressor to the sum of the regression coefficients 

associated with the object-based and feature-based regressors to quantify the relative weight of 

object-based strategy on learning.  

 

Fig. 1. Reward probabilities and stimuli used in the experiment. (a) Timeline of the choice trials. 
In each trial, subjects chose between two options (i.e., shoes that differed in type and color, or two 
shapes that differed in shape and color) and were provided with feedback on the chosen option. 
Reward or no reward is indicated by yellow and grey rings, respectively. (b) A sample estimation 
trial. In each estimation trial, subjects estimated the probability of reward associated with a given 
stimulus by pressing one of ten keys on the keyboard associated with probability ranging from less 
than 10% to more than 90%. (c) Two sets of stimuli used in the experiment comprised of naturalistic 
stimuli with two task-relevant features (C: color; T: type). The order in which each set of stimuli 
were assigned to two experimental sessions was pseudo-randomized across subjects. (d) Stimulus-
reward associations. Two sets of reward probabilities were assigned to the two sets of stimuli shown 
in (b). For each set of stimuli, only one feature was informative. An informative feature indicates that 
the average reward probability would change as a function of that feature. Importantly, reward 
probabilities assigned to the shoes could not be determined by combining the reward probability of 
individual features and thus, the reward environment was non-generalizable. Numbers in parentheses 
show the actual probabilities of reward obtained on each stimulus (by the subjects) due to limited 
resolution for reward assignment. For the set on the left, shoe type was on average informative about 
reward (average probability of reward = {0.36, 0.5, 0.63}), whereas color was not informative of 
reward probability (average probability of reward = {0.5, 0.5, 0.5}). The opposite is true for the set 
on the right. (e) The sets of possible patterns (left set) and shapes (right set) used in building abstract 
stimuli. For each session of the experiment, only three of these shapes were used for a given subject 
(randomly chosen without replacement). Other aspects of the task and reward probabilities were 
similar for abstract stimuli and naturalistic stimuli. 
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Second, to determine whether subjects’ probability estimates were closer to estimates based on 

the feature-based or object-based strategy, we computed the correlation between subjects’ 

estimates and the actual reward probability assigned to each stimulus as well as subjects’ 

estimates and the reward probabilities calculated by combining the reward probability of 

individual features using Bayes’ theorem. We then used the outcome correlation coefficients to 

determine the fractions of subjects whose estimates follow the feature-based or object-based 

learning strategy more strongly in each condition or over time. That is, each subject was assigned 

as a feature-based or object-based learner based on comparing the correlation coefficients 

mentioned above. 

In addition, we fit two GLMs to test the effect of stimulus type (abstract vs. naturalistic), time 

(trial number), and the interaction of stimulus type with time. First, we performed a logistic 

regression analysis to predict the fraction of subjects whose estimates were more correlated with 

actual reward probabilities than reward probabilities calculated based on features and subjects’ 

estimates of reward probabilities, using time and stimulus type as independent variables. Second, 

we fit a GLM on the difference between two correlation coefficients: the correlation between 

subjects’ estimates and object-based predictions, and the correlation between subjects’ estimates 

and feature-based predictions. The regressors in this model were time (trial number) and stimulus 

type (natural or abstract stimulus). For both models, we also considered the interaction of time 

and stimulus type.  

To estimate the time course of performance as well as the time course of relative weight and 

fraction of subjects, we fit data using an exponential function based on the following equation:  

𝑦(𝑡) = 	𝑦!! − (𝑦!! − 𝑦")𝑒𝑥𝑝
(!"# )  (Eq. 1) 

where 𝑦" and 𝑦!!	are the initial and steady-state values of performance, 𝜏 is the time constant for 

approaching steady state, and 𝑡 represents the trial number in a session. 

Finally, we also used six different reinforcement learning (RL) models based on object-based or 

feature-based learning strategies to fit individual subjects’ choice behavior in order to identify 

the learning strategy adopted by each subject (see below for more details). These models were fit 

to experimental data by minimizing the negative log likelihood (LL) of the predicted choice 
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probability given different model parameters using the ‘fminsearch’ function in MATLAB 

(MathWorks, Inc., Natick, MA). To avoid finding local minima for the fit of experimental data, 

we repeated fitting of each dataset with at least 10 different sets of initial parameters and picked 

the best fit. Based on the examination of the fitting results, we found 10 initializations to be 

sufficient to avoid local minima. We performed model comparison using both Akaike 

information criterion (AIC) and Bayesian information criterion (BIC). The smaller value for each 

measure indicates a better fit of choice behavior.  

In addition, to compare the ability of different models in fitting choice behavior over time, we 

also used AIC and BIC per trial (Farashahi et al., 2018), denoted as AICp and BICp: 

𝐴𝐼𝐶%(𝑡) = −2𝐿𝐿(𝑡) 	+ 2𝑘/𝑁&'()*! (Eq. 2) 

𝐵𝐼𝐶%(𝑡) = −2𝐿𝐿(𝑡) 	+ 2𝑘𝑙𝑜𝑔	(𝑁&'()*!)/𝑁&'()*!	 (Eq. 3) 

where k indicates the number of parameters in a given model, t represents the trial number, 𝐿𝐿(𝑡) 

is the log-likelihood in trial t, and 𝑁&'()*! is the number of trials in the experiment. The logic 

behind these definitions is that penalties included in AIC and BIC are based on the sum of the 

log likelihoods over all trials (data), and thus, by dividing the penalty terms by the number of 

trials we ensure that the sum of AICp(t) and BICp(t) over all trials would be equal to AIC and 

BIC, respectively. The smaller values for these measures indicate a better fit of choice behavior. 

As we show here, these measures can be used to detect a transition between feature-based and 

object-based learning. 

Finally, to confirm our results based on AIC and BIC, we applied the variational Bayesian model 

selection (BMS) approach in order to identify the most likely models that could account for our 

data. Specifically, the BMS approach treats different models as random variables and estimates 

the parameters of a Dirichlet distribution, which describes the probabilities from which models 

are sampled across all subjects. These probabilities translate to the probability of one model 

being more likely than any other model (Stephan et al., 2005). To avoid overfitting of data and 

reducing the effect of outliers, we randomly sampled 80% of the data to estimate the likelihoods 

and repeated this procedure 50 times to calculate the average likelihood of all models. All 
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behavioral analyses and model fitting were done using custom codes written in MATLAB 2018a 

(MathWorks, Inc.). 

2.4.1. Object-based RL models  

Using standard RL models (Sutton & Barto, 1998), the reward value of each stimulus was 

estimated based on reward feedback following the subjects’ choice in each trial. In the context of 

this study, reward value is equal to the reward probability associated with each stimulus. We 

fitted two types of models, referred to as uncoupled object-based RL and coupled object-based 

RL. In the uncoupled object-based RL, only the reward value of the chosen object was updated 

in each trial. This update was done via separate learning rates for rewarded or unrewarded trials 

using the following equation: 

𝑉+,-.(𝑡 + 1) = 𝑉+,-.(𝑡) + 𝛼'/0<1 − 𝑉+,-.(𝑡)=	,				𝑖𝑓	𝑟(𝑡) = 1 

𝑉+,-.(𝑡 + 1) = 𝑉+,-.(𝑡) − 𝛼12'<𝑉+,-.(𝑡)=,				𝑖𝑓	𝑟(𝑡) = 0            (Eq. 4) 

where t represents the trial number, 𝑉+,-. is the estimated reward value of the chosen stimulus, 

𝑟(𝑡) is the trial outcome (1 for a rewarded outcome, 0 for an unrewarded outcome), and	𝛼'/0 

and  𝛼12' are the learning rates for rewarded and unrewarded trials. The value of the unchosen 

stimulus is not updated in this model. 

In the coupled object-based RL, reward values of both stimuli presented in a given trial were 

updated, but in opposite directions (if the subject incorrectly assumes that reward assignments on 

the two stimuli are anti-correlated). That is, while the reward value of the chosen object was 

updated based on Eq. (4), the value of the unchosen stimulus was updated based on the following 

equation: 

𝑉12+.(𝑡 + 1) = 𝑉12+.(𝑡) − 𝛼'/0<𝑉12+.(𝑡)=,				𝑖𝑓	𝑟(𝑡) = 1 

𝑉12+.(𝑡 + 1) = 𝑉12+.(𝑡) + 𝛼12'<1 − 𝑉12+.(𝑡)=,			𝑖𝑓	𝑟(𝑡) = 0        (Eq. 5) 

where 𝑉12+.  is the estimated reward value of the unchosen stimulus.  

The estimated value functions were then used to compute the probability of choosing between 

the two stimuli in a given trial based on a logistic function: 



12 

𝑙𝑜𝑔𝑖𝑡	𝑃3(𝑡) = <𝑉3(𝑡) − 𝑉4(𝑡)=/𝜎 + 𝑏𝑖𝑎𝑠         (Eq. 6) 

where PL is the probability of choosing the stimulus presented on the left, VL and VR  are reward 

values of the stimuli presented to the left and right, respectively, bias measures a response bias 

toward the left option to capture the subject’s location bias, and 𝜎 is a parameter measuring the 

level of stochasticity in decision-making processes. 

2.4.2. Feature-based RL models  

In this set of models, reward value of each stimulus is computed by combining reward values of 

the features of that object, which are estimated from reward feedback using a standard RL 

model. The updating rules for the feature-based RL models are identical to the object-based RLs 

described above except that the reward value of the chosen (unchosen) stimulus is replaced by 

reward values of the features of the chosen (unchosen) stimulus.  

As with the object-based RL models, the probability of choosing a stimulus is determined based 

on the logistic function of the difference between the estimated values for the stimuli presented:  

𝑙𝑜𝑔𝑖𝑡	𝑃3(𝑡) = 𝑤!,)%/<𝑉!,)%/3(𝑡) − 𝑉!,)%/4(𝑡)= + 𝑤+-*-'(𝑉+-*-'3(𝑡) − 𝑉+-*-'4(𝑡)) + 𝑏𝑖𝑎𝑠          

(Eq. 7)  

where 𝑉!,)%/3	(𝑉+-*-'3)		and 𝑉!,)%/4 	(𝑉+-*-'4)	are reward values associated with the shape 

(color) of the left and right stimuli, respectively, bias measures a response bias toward the left 

option to capture any location bias, and  𝑤!,)%/ and 𝑤+-*-' determine the influence of the two 

features on the final choice as well as the overall stochasticity in choice (larger values of weights 

correspond to smaller stochasticity in choice). Note that these weights can be assumed to be 

learned over time through reward feedback (as in our models; see RL models with decay below) 

or could reflect differential processing of the two features due to attention.  

2.4.3. RL models with decay  

Additionally, we investigated the effect of “forgetting” reward values of the unchosen (or not-

presented) stimuli or features by introducing a decay in reward values. This feature has been 

shown to capture some aspects of learning (Ito & Doya, 2009), especially in multi-dimensional 
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tasks. More specifically, reward values of the unchosen or not-presented stimuli or features 

decayed to 0.5 with a rate of	𝑑 (0 < 𝑑 < 1) as follows: 

𝑉(𝑡 + 1) = 𝑉(𝑡) − 𝑑 ∗ (𝑉(𝑡) − 0.5)      (Eq. 8) 

where t represents the trial number and 𝑉 is the estimated reward value of an unchosen stimulus 

or feature. 

 2.4.4. Hybrid RL model  

To show that AICp(t) and BICp(t) can be used to detect a transition between feature-based and 

object-based learning, we performed additional simulations using a hybrid RL model. In this 

model, the subjective value of each option is the weighted sums of two sets of values: values 

based on a feature-based RL model with decay and values based on an object-learning RL model 

with decay. As a result, the probability of choosing between the two stimuli is equal to: 

𝑙𝑜𝑔𝑖𝑡	𝑃5(𝑡) = 𝑤(𝑡) NO𝑉!,)%/5(𝑡) − 𝑉!,)%/6(𝑡)P /2 + <𝑉+-*-'5(𝑡) − 𝑉+-*-'6(𝑡)=/2Q 

+(1 − 𝑤(𝑡))<𝑉5(𝑡) − 𝑉6(𝑡)=          (Eq. 9) 

where 𝑤(𝑡) is the relative weight of the object-based to the feature-based component. The 

relative weight of the object-based to feature-based component monotonically increases over 

time as follows: 

𝑤(𝑡) = 	𝑤!! − (𝑤!! −𝑤")𝑒𝑥𝑝
(!"# )  (Eq. 10) 

where 𝑤" and 𝑤!!	are the initial and steady state values, and 𝜏 is the time constant. We set the 

𝑤", 𝑤!!, 𝜏, 𝛼'/0, and 𝛼12' to 0.3, 0.7, 100, 0.2, and 0.1, respectively, to match the observed 

choice behavior of the subjects in our experiments. We used this hybrid model to simulate choice 

behavior in our experiment with the same task parameters used for subjects. 

3. Results  

3.1. Effects of stimulus type on performance  
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We first examined performance (probability of choosing the more rewarding stimuli) to 

determine whether participants were able to perform the choice task correctly. We found that in 

choice trials, the average performance was significantly above chance level (abstract stimuli: 

mean±std = 0.60±0.08; naturalistic stimuli [first subject cohort]: mean±std = 0.61±0.05; 

naturalistic stimuli [second cohort of subjects]: mean±std = 0.62±0.07). Performance in each 

cohort of subjects and across all subjects quickly increased and plateaued after about 100 trials 

(Fig. 2a, d, g). These results demonstrate that participants were engaged in the task and were 

able to select the stimulus with a higher probability of reward in most trials. 

We then compared the dynamics of learning for naturalistic and abstract stimuli by fitting the 

time course of performance with an exponential function (see Materials and Methods). We found 

that for the second cohort of subjects who performed the task with both naturalistic and abstract 

stimuli, the performance reached its steady-state at a faster rate for the naturalistic rather than 

abstract stimuli (naturalistic: τ = 52 trials, CI = [31, 62]; abstract: τ = 85 trials, CI = [76, 94]). 

However, the steady-state performance was not significantly different between the two types of 

stimuli in this cohort of subjects (0.65 and 0.63 for abstract and naturalistic stimuli, respectively; 

Fig. 2a, d).  

We found similar results when considering data from both cohorts of subjects. More specifically, 

the subjects reached the steady-state performance at a faster rate when learning about naturalistic 

stimuli (naturalistic: τ = 60 trials, CI = [49, 71];  abstract:  τ = 85 trials, CI = [75, 95]), whereas 

the steady states were not different between the two types of stimuli (equal to 0.64 and 0.65 for 

naturalistic and abstract stimuli, respectively; Fig. 2g).  

Finally, we also fitted a Generalized Linear Model (GLM) on the overall performance in order to 

test for possible transfer of knowledge between the two sessions of the experiment. However, 

this analysis did not reveal any effect of stimulus type (abstract vs. naturalistic stimuli) or session 

number (first vs. second) on performance.  

3.2. Subjects’ estimates reveal the effects of stimulus type on learning strategy  

Next, we used two GLMs to examine the effects of stimulus type (abstract vs. naturalistic), time 

(trial number), and their interaction on the subjects’ probability estimates throughout the 
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experiments (see Materials and Methods). First, we performed a logistic regression analysis on 

the fractions of subjects whose estimates were more correlated with actual reward probabilities 

than reward probabilities calculated based on features and subjects’ estimates of reward 

probabilities. Second, we used a multiple regression model to predict the difference in the 

correlations of subjects’ estimates and object-based predictions and subjects’ estimates and 

feature-based predictions. Using these analyses, we found significant effects of time and stimulus 

type, suggesting an overall larger value for abstract than naturalistic stimuli and an increase in 

the use of object-based strategy over time (Table 1). Additionally, we found negative but non-

significant regression coefficients for the interaction of time and stimulus type in both models. 

This result suggests that learning about abstract and naturalistic stimuli follow different time 

courses.  

To further investigate the possible interaction between stimulus type and time, we explored the 

adoption of the two learning strategies over the course of the experiment. First, using estimates 

of reward probabilities, we confirmed the previously observed transition from feature-based to 

object-based learning (Fig. 2b, e). More specifically, using a GLM to predict subjects’ estimates, 

we found that for the abstract stimuli, the relative weight of the object-based strategy (i.e., the 

weight of the object-based divided by the sum of the weights for the object-based and feature-

based strategies) was smaller than 0.5 during the initial estimation bouts and gradually increased 

and became larger than 0.5 over time (relative weight for the first two estimation bouts = 0.33, 

95% CI = [0.24, 0.45], p = 0.04, d = 0.29, N = 40; relative weight for the last two estimation 

bouts = 0.80, 95% CI = [0.7, 0.9], p = 0.01, d = 0.38, N = 40; Fig. 2b). We found a similar 

pattern for learning with naturalistic stimuli (relative weight for the first two estimation bouts = 

0.22, 95% CI = [0.15, 0.29], p = 0.02, d = 0.46, N = 40; relative weight for the last two 

estimation bouts = 0.62, 95% CI = [0.55, 0.68], p = 0.03, d = 0.32, N = 40; Fig. 2e). This result 

shows that initially, subjects’ estimates of reward probabilities were more strongly influenced by 

the feature-based strategy but later on, were more affected by the object-based strategy for 

learning and computing reward probabilities of different stimuli.  
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Independent variables for 
predicting fraction of subjects 

stimulus type 
(abstract vs. 
naturalistic) 

time (trial #) stimulus type×time 

Regression coefficients and 
corresponding p-values 

0.37±0.13 
p = 0.016 

0.004±0.001 
p = 0.013 

-0.004±0.0004 
p = 0.09 

 

Independent variables for 
predicting difference in correlation 
of subjects’ estimate with object-
based vs. feature-based learning  

stimulus type 
(abstract vs. 
naturalistic) 

time (trial #) stimulus type×time 

Regression coefficients and 
corresponding p-values 

0.26±0.11 
p = 0.033 

0.003±0.001 
p = 0.025 

-0.004±0.0005 
p = 0.11 

 
Table 1. The effects of time and stimulus type on subjects’ estimates of reward probabilities.  
Reported are the values of regression coefficients (mean±s.e.m.) and corresponding p-values for a 
logistic regression model that predicts the fraction of subjects whose estimates were more strongly 
correlated with object-based than feature-based predictions (top), and a linear regression model that 
predicts the difference between the correlation of subjects’ estimates and object-based predictions 
and the correlation of subjects’ estimates and feature-based predictions. In both models, we used 
stimulus type, time, and the interaction of stimulus type with time as regressors. 
 
 

Consistent with these results, correlation analysis revealed that during the first two estimation 

bouts, the probability estimates of less than half of the subjects were more correlated with the 

actual reward probabilities than the reward probabilities calculated based on feature values, but 

this fraction increased over time for both abstract stimuli (comparison of fractions in first two 

estimation vs. last two estimation bouts: χ2 (1) = 12.25, p = 4.6×10−4, N = 40; Fig. 2c) and 

naturalistic stimuli (comparison of fractions in first two vs. last two estimation bouts: χ2 (1) = 

5.85, p = 0.015, N = 40; Fig. 2f).  

We found similar results when considering data from all subjects who performed the learning 

task with naturalistic stimuli (first and second cohorts of subjects). The relative weight of the 

object-based strategy was smaller than 0.5 during the initial estimation bouts but gradually 

increased and became larger than 0.5 (relative weight for the first two estimation bouts = 0.35, 

95% CI = [0.31, 0.40], p = 0.02, d = 0.41, N = 76; relative weight for the last two estimation 
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bouts = 0.64, 95% CI = [0.62, 0.69], p = 0.01, d = 0.58, N = 76; Fig. 2h). Additionally, the 

probability estimates of less than half of the subjects were more correlated with the actual reward 

probabilities than the reward probabilities calculated based on features, and this fraction 

increased over time (comparison of fractions in first two vs. last two estimation bouts: χ2 (1) = 

47.04, p = 7.0×10−12, N = 76; Fig. 2i).  

To identify the similarities and differences between learning about naturalistic and abstract 

stimuli, we next compared our measures within participants in the second cohort of subjects. 

Comparison between the relative weights of object-based strategy on estimated reward 

probabilities did not reveal any significant difference between the initial estimation bouts 

(difference in the relative weight of object-based strategy between abstract and naturalistic 

stimuli = 0.11, 95% CI = [-0.02, 0.23], p = 0.11, d = 0.12, N = 40). However, we found the 

relative weight of the object-based strategy during the last two estimation bouts to be 

significantly larger for abstract than naturalistic stimuli (difference = 0.18, 95% CI = [0.09, 

0.26], p = 0.03, d = 0.26, N = 40). Comparison between the relative weights of the object-based 

term on probability estimates during the first two estimation bouts revealed that subjects’ initial 

strategy was not different between learning about naturalistic and abstract stimuli (difference in 

the relative weight of the object-based strategy between abstract and naturalistic stimuli = 0.02, 

95% CI = [-0.07, 0.11], p = 0.27, d = 0.09, N = 76). Moreover, the relative weight of the object-

based strategy during the last two estimation bouts was larger for abstract than for naturalistic 

stimuli (difference = 0.15, 95% CI = [0.03, 0.23], p = 0.04, d = 0.13, N = 76).  

By examining the fraction of subjects whose reward-probability estimates were more correlated 

with actual reward probabilities associated with the stimuli than the reward probabilities 

calculated based on features, we found that in the early stages of learning, a larger fraction of 

subjects followed an object-based strategy for naturalistic rather than abstract stimuli (the 

difference in fractions between naturalistic and abstract stimuli during the first two estimation 

bouts = 0.21, χ2 (1) = 6.25, p = 0.01, N = 40). We also found that toward the end of the 

experiment, a slightly larger proportion of subjects provided probability estimates that were more 

strongly correlated with the object-based strategy when learning about abstract stimuli (the 

difference in fraction between naturalistic and abstract stimuli during the last two estimation 

bouts = -0.19, χ2 (1) = 7.34, p = 0.0016, N = 40). 



18 

 
Figure 2. Transition from feature-based to object-based learning occurs faster when learning 
from naturalistic stimuli. (a) The time course of performance for learning abstract stimuli. Plotted 
is the probability of choosing the more rewarding option in each trial (shaded areas indicate s.e.m.). 
The dotted line shows chance performance and the dashed line shows the fit of data based on an 
exponential function. The red and blue solid lines show the maximum performance using the feature-
based and object-based RLs, respectively, assuming that the decision maker selects the more 
rewarding option based on a model approach in every trial. Arrows mark the locations of estimation 
bouts throughout a session. (b) The time course of the strategy used to estimate reward probabilities 
based on fitting subjects’ estimates of reward probabilities. Plotted is the relative weight of object-
based to the sum of the object-based (in red) and feature-based terms and explained variance in 
estimates (𝑅!, black curve) over time. The error bars demonstrate the confidence interval and the 
dashed lines show extrapolation based on an exponential fit. (c) The fraction of subjects who showed 
a stronger correlation of probability estimates with actual reward probabilities than with the 
probabilities estimated using reward probabilities of stimuli’s features. The dashed line shows 
extrapolation based on an exponential fit. (d–f) Similar to panels a–c but for learning from 
naturalistic stimuli in the same cohort of subjects. (g–i) Similar to panels a–c but for learning from 
naturalistic stimuli across all subjects (first and second cohorts of subjects). 
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These results hold when considering data from both cohorts of subjects. That is, in the early 

stages of learning, a larger fraction of subjects followed the object-based strategy for naturalistic 

stimuli (the difference in fraction between naturalistic and abstract stimuli during the first two 

estimation bouts = 0.23, χ2 (1) = 8.65, p = 0.0034, N = 76). We also confirmed that toward the 

end of the experiment, a slightly larger fraction of subjects provided probability estimates that 

were more strongly correlated with the object-based strategy when learning about abstract 

stimuli (difference in fractions between naturalistic and abstract stimuli during the last two 

estimation bouts = -0.16, χ2 (1) = 9.34, p = 0.0029, N = 76).  

Together, the results from the above analyses indicate that subjects transitioned from primarily 

using feature-based learning to object-based learning for both types of stimuli. An interesting 

difference between learning about abstract and naturalistic stimuli was that, even though the 

subjects initially adopted a more object-based strategy when learning about naturalistic stimuli, 

they reached a higher level of object-based learning for abstract stimuli.  

Having these results, we next compared the rate of transition from feature-based to an object-

based strategy for naturalistic and abstract stimuli using our measures. First, we fit the relative 

weight of the object-based term over time (based on an exponential function) and found that 

subjects transitioned to object-based learning at a faster rate when learning about naturalistic 

stimuli (τ = 227, 85 and 65 trials for abstract and naturalistic stimuli in the second cohort of 

subjects and naturalistic stimuli across all subjects, respectively; Fig. 2b, e, h). Moreover, to 

estimate errors related to the reported time constants, we fitted a GLM to individual subjects’ 

estimates of reward probabilities. Consistent with our previous results, we found that subjects 

transitioned to object-based learning at a faster rate when learning about naturalistic stimuli (τ = 

216, 95% CI = [277,  158], 93, 95% CI = [132, 54], and 52, 95% CI = [24, 79] trials for abstract 

and naturalistic stimuli in the second cohort of subjects and naturalistic stimuli across all 

subjects, respectively). However, we note that fitting GLM this way, as opposed to fitting GLM 

to all subjects’ estimates of reward probabilities, is prone to serious overfitting (3 parameters for 

fitting 9 data points). 

Similarly, the fraction of subjects with a stronger correlation between estimated reward 

probabilities and actual reward probabilities reached a plateau faster for naturalistic stimuli (τ = 

207, 80, and 76 trials for the time constant of abstract and naturalistic stimuli in the second 
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cohort of subjects and naturalistic stimuli across all subjects, respectively; Fig. 2c, f, i). Together, 

results based on different types of measures illustrate that subjects learned at a faster rate when 

faced with naturalistic stimuli compared to abstract stimuli. 

Next, to assess if feature identity impacted learning, we compared the subjects’ assignment of 

reward probabilities between the two task-relevant features: color and shoe type. This is because 

color is a low-level visual feature compared to shoe type, which is a high-level concept. 

Therefore, we compared learning between sessions when either color or shoe type was the 

informative feature within individual subjects (each subject performed the task twice, once with 

color and once with shoe type as the informative feature). However, we did not find any 

significant difference in the relative weight of the object-based term between color or shoe type 

as the informative feature (the difference in estimated weights between color and shoe type = 

0.05, CI = [-0.12, 0.15]; Fig. 3a). Moreover, when comparing the fraction of subjects whose 

reward-probability estimates were more correlated with actual reward probabilities than reward 

probabilities calculated based on features, we did not find any evidence for the type of 

informative feature in any of the estimation bouts (the difference in the fraction of subjects for 

color and shoe type = 0.10, χ2 (1) < 2.51, p > 0.11; Fig. 3b).  

 

 
 
Figure 3. Transition from feature-based to object-based learning was not different between the 
sessions with color and shoe type as the informative features. (a) Plotted is the relative weight of 
object-based to the sum of the object-based and feature-based terms for sessions with color and shoe 
type as the informative features. Dashed lines show the fit of data based on an exponential function 
that allows extrapolation over the entire course of the experiment. (b) The fraction of subjects who 
showed a stronger correlation between reward-probability estimates and actual reward probabilities 
than the probabilities estimated using reward values of features for sessions with color and shoe type 
as the informative features.  
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3.3. Choice behavior reveals the effects of stimulus type on learning strategy 

To identify the learning strategy adopted by the subjects during choice trials, we fit the choice 

data using six different RL models that relied on either object-based or feature-based approaches 

for updating reward probabilities. Specifically, in uncoupled feature-based RL models, the 

features associated with the selected stimulus are updated. In coupled feature-based RL models, 

however, the features associated with both the chosen and unchosen stimuli are updated (with the 

assumption of anti-correlated reward assignment). Similarly, in uncoupled object-based models, 

only the reward probability of the selected stimulus is updated, whereas the reward probabilities 

of both chosen and unchosen stimuli are updated in coupled object-based models. In RL models 

with decay, the reward probabilities of unchosen stimuli or features are lost over time (see 

Materials and Methods). For model comparison, we used goodness-of-fit measures in terms of 

AIC and BIC.  

We found the best object-based and feature-based models to be those that incorporate the decay 

in value estimates over time (Table 2). More importantly, the object-based with decay model 

provided a significantly better fit than the feature-based with decay model when learning about 

naturalistic stimuli across all subjects and abstract stimuli in the second cohort of subjects 

(naturalistic stimuli: two-sided sign-rank test; BIC [feature-based with decay] − BIC [object-

based with decay]: mean±s.e.m. = 45.7±18.2, p = 0.02, N =38, d = 0.65; AIC [feature-based with 

decay] − AIC [object-based with decay]: mean±s.e.m. = 44.1±18.1; p = 0.02, N =38, d = 0.62, 

abstract stimuli: BIC [feature-based with decay] − BIC [object-based with decay]: mean±s.e.m. = 

48.4±19.1, p = 0.04, N =20, d = 0.38; AIC [feature-based with decay] − AIC [object-based with 

decay]: mean±s.e.m. = 47.4±19.2; p = 0.04, N =20, d = 0.35).  
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a) 

Naturalistic stimuli 

Model Coupled 
feature-based 

Uncoupled 
feature-based 

Feature-based 
with decay 

Coupled 
object-based 

Uncoupled 
object-based 

Object-based 
with decay 

# pars. 5 5 6 4 4 5 

-LL 363.1±8.5 370.9±9.5 351.5±9.0 359.5±8.9 363.5±9.8 330.4±12.1* 

AIC 736.1±16.9 751.8±19.1 715.0±18.0 727.0±17.8 734.9±18.6 670.9±24.2* 

BIC 744.2±16.9 759.9.0±19.1 724.7±18.0 733.5±17.8 741.4±18.6 679.0±24.2* 

b) 

Abstract stimuli 

Model Coupled 
feature-based 

Uncoupled 
feature-based 

Feature-based 
with decay 

Coupled 
object-based 

Uncoupled 
object-based 

Object-based 
with decay 

# 
pars. 5 5 6 4 4 5 

-LL 365.7±10.1 372.0±10.4 354.8±9.9 361.4±8.9 367.6±11.0 332.1±11.6* 

AIC 741.4±20.2 754.1±20.8 721.7±18.8 730.8±17.8 743.3±22.1 674.3±23.2* 

BIC 746.4±20.2 759.1±20.8 727.7±18.8 734.8±17.8 747.3±22.1 679.3±23.2* 

 
Table 2. Comparison of the goodness-of-fit measures. The object-based model with decay 
provides the best fit to the choice data. Reported are three measures for the goodness-of-fit, negative 
log likelihood (-LL), Akaike information criterion (AIC), and Bayesian information criterion (BIC) 
averaged over subjects (mean±s.e.m.) for three feature-based RLs and their object-based counterparts 
when learning from naturalistic stimuli across all subjects (a) and abstract stimuli in the second 
cohort of subjects (b). A smaller value indicates a better fit. The model providing the best fit in a 
given experiment and its object-based or feature-based counterpart are highlighted in cyan and 
orange, respectively. Each feature-based RL was compared with its object-based counterpart using a 
two-sided, sign-rank test, and (*) indicates the difference is significant at p < 0.05. 
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Additionally, we applied the variational Bayesian model selection (BMS) approach to identify 

the most likely models that could account for our data. We found the most likely object-based 

and feature-based models to explain the data were those incorporating the decay. More 

importantly, the object-based with decay model was more likely than the feature-based with 

decay model (Fig. 4a-b). Therefore, across all models, choice behavior was best accounted for 

by an object-based RL with decay, suggesting that subjects learned the reward probability of the 

chosen stimulus and forgot the reward probability of the unchosen and non-presented stimuli. 

These results illustrate that overall subjects’ choice behavior was more compatible with an 

object-based strategy for learning. 

To capture a potential change in the best model that accounted for choice data over time, we also 

computed the BICp and AICp over time for the best object-based and feature-based models (see 

Materials and Methods). We found that the object-based model provided a better fit mainly in the 

later stage of the experiment (Fig. 4c, d). The difference between the goodness-of-fit for the 

object-based and feature-based models was significantly different between early (1–50) and late 

(50–288) trials (Δ BICp = Δ AICp = Δ (-LL): mean±std = 0.14 ± 0.09; two-sided sign-rank test; p 

= 0.03, d = 0.94, N = 38). We note that the boundary for early versus late trials (at 100) was 

selected based on the time course of performance (Fig. 2a, d, g) but that the reported difference 

was significantly larger than zero (p < 0.05) for any boundary values between 80 and 120 as 

well. However, comparing naturalistic with abstract stimuli (Fig. 4c, d), the difference in 

goodness-of-fit for the object-based and feature-based models between early and late trials was 

not significant (Δ BICp = Δ AICp = Δ (-LL): mean±std = 0.03±0.07; two-sided rank-sum test; p = 

0.28, d = 0.25, N = 58). This observation can be explained by the fact that models are fit to the 

choice data from all trials. Therefore, fitting provides a set of parameters that captures choice 

behavior the best on average, and therefore change in behavior is not captured best in this 

measure. Together, results based on fitting choice behavior illustrate that similar to abstract 

stimuli, subjects transitioned from feature-based to object-based strategy during the time course 

of the experiment. 
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Fig. 4.  Goodness-of-fit based on two best models shows similar transitions from feature-based 
to object-based learning for naturalistic and abstract stimuli. (a–b) Likelihood of different 
strategies adopted by humans when learning about naturalistic stimuli across all subjects (a) and 
abstract stimuli in the second cohort of subjects (b). Fitting choice behavior shows that subjects’ 
choice behavior was more likely to be explained by an object-based learning strategy. (c–d) Plotted 
is the average BIC per trial across all subjects based on the feature-based model with decay, the 
object-based RL model with decay, and the difference between object-based and feature-based 
models when learning from naturalistic stimuli across all subjects (c) and abstract stimuli in the 
second cohort of subjects (d). We did not observe any significant difference between learning about 
naturalistic and abstract stimuli based on the goodness-of-fit measure. 
 

We have previously used LL(t), AICp(t), and BICp(t) to compare competing models in terms of 

their ability to capture choice after a sequence of trials (Farashahi et al., 2017a) and at a given 

point in time during a session (Farashahi et al., 2017b, Farashahi et al., 2018). Nonetheless, we 

performed additional simulations to show that these measures can capture a transition between 

feature-based and object-based learning. More specifically, we simulated 50 instances of choice 

behavior in a hybrid model that includes both feature-based learning with decay and object-based 

learning with decay components and in which the relative weight of these two components 

continuously changes over time (see Materials and Methods for more details). We then fit the 

simulated choice data using an object-based model with decay and a feature-based model with 

decay and computed BICp(t) for fit based on these two models. We found that BICp(t) can detect 

the transition from feature-based to object-based learning at about the same time point (~70 

trials) as when the object-based component became stronger than the feature-based component 

(i.e., when 𝑤(𝑡) > 0.5; Fig. 5). This result shows that BICp (and similarly AICp) can detect a 

transition in the learning strategy over time. 
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Figure 5.  BICp can be used to detect transition from feature-based to object-based learning 
from simulated data. (a) Plot shows the relative weight of the object-based to the feature-based 
component in the hybrid model used to generate the simulated choice data. (b) Plot shows the 
average BICp(t) across all subjects for fit of simulated data based on the feature-based model with 
decay, the object-based model with decay, and the difference between BICp(t) in the two models. At 
the beginning of the session, the feature-based model provides a better fit as reflected in a smaller 
BICp, but later on, the object-based model provides a better fit. Importantly, the difference in BICp 
changes sign around the same time point (~70 trials) as the relative weight of the object-based to the 
feature-based component in the simulated data passes 0.5. This result shows that BICp can be used to 
detect a transition between different learning strategies over time. 

 

4. Discussion 

In this study, we investigated learning about reward value of naturalistic stimuli based on 

feedback in multi-dimensional reward environments. We confirmed our previous observations 

using abstract stimuli (Farashahi et al., 2017b) but also found significant differences between 

learning naturalistic and abstract stimuli. More specifically, our subjects initially adopted a 

feature-based learning strategy more strongly and slowly transitioned to an object-based strategy 

as they gained more experience through reward feedback. However, we found that compared 

with abstract stimuli, subjects initially adopted a less feature-based strategy and transitioned to 

an object-based strategy faster when learning about naturalistic stimuli. These findings validate 

our previous results that feature-based learning is a general initial strategy for both learning 

about reward value of multi-dimensional stimuli and tackling the curse of dimensionality. 

RL theories have been widely adopted as the main framework to understand reward learning in 

human and non-human primates. However, it has been suggested that other cognitive processes 

such as working memory (WM) play a role in learning (O’Reilly & Frank, 2006). For example, 

1 100 200 300
-0.2

0

1.2

1.4

1.6

1 100 200 300
0.3

0.4

0.5

0.6

0.7

trial (within a session)

b

trial (within a session)

//BI
C

p feature-based
object-based
difference

a

w



26 

WM capacity has been shown to be a limiting factor for learning from reward feedback (Collins 

et al., 2017; Collins & Frank, 2012). Moreover, although it is generally accepted that WM 

capacity is discrete and limited (Awh, Barton, & Vogel, 2007; Cowan, 2001; Fukuda, Awh, & 

Vogel, 2010; Miller, 1956; Rouder et al., 2008), a series of recent studies has shown that the 

capacity of WM is continuous (Alvarez & Cavanagh, 2004; Bays, Catalao, & Husain, 2009; 

Bays & Husain, 2008; Ma, Husain, & Bays, 2014) and can be almost unlimited for naturalistic 

objects (Brady et al., 2016). Based on the aforementioned findings, our observed faster rate of 

learning for naturalistic stimuli could be attributed to an increase in WM capacity for these 

stimuli.  

Studies of interactions between WM and learning have also pointed to the influence of individual 

differences in WM capacity on the balance between model-free and model-based learning (Etkin, 

Büchel, & Gross, 2016; Otto et al., 2013; Schad et al., 2014; Wills, Graham, Koh, McLaren, & 

Rolland, 2011). Although these suggest that WM capacity might affect the speed of alternation 

between learning strategies, it is still unclear how WM capacity influences learning strategies. 

Here, we find that naturalistic stimuli bias the initial learning strategy toward object-based 

learning and result in a faster transition to object-based learning.  

Additionally, naturalistic stimuli are more familiar and could be perceived as more salient than 

abstract stimuli (Battistoni et al., 2018; Kaiser et al., 2016; Thorpe et al., 1996), and thus, could 

result in a strong bias toward object-based learning. Nonetheless, we find that the heuristic 

feature-based strategy, which provides an approximation for reward value based on features, is 

still adopted as the initial learning strategy when learning about naturalistic stimuli. Learning 

about features has been shown to enhance learning speed (Gigerenzer & Goldstein, 1996; 

Jocham et al., 2016) and allows for generalization of values (Kahnt, Park, Burke, & Tobler, 

2012; Kahnt & Tobler, 2016). Together, these findings suggest that, when adopting learning 

strategies, the demand for adaptability (Farashahi et al., 2017b; Farashahi et al., 2017a; Farashahi 

et al., 2019; Soltani & Izquierdo, 2019) and tackling the curse of dimensionality could be the 

more important factors than the saliency of naturalistic stimuli.  

Our experimental design has a few limitations that can be addressed in future experiments. First, 

only a specific type of object (i.e., shoe) was used as naturalistic stimuli, which might have been 
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more familiar to some subjects than others. Familiarity (e.g., repeated exposure to the same 

stimuli) has been shown to enhance the WM performance (Olson, Jiang, & Moore, 2005; Olsson 

& Poom, 2005). Measuring subjects’ degree of familiarity to establish a baseline measure with 

given stimuli can be used in future studies to understand the effect of familiarity on learning 

from reward feedback. Another limitation of our study is the difference between the two task-

relevant features: color is a low-level visual feature whereas shoe type is more high-level and 

conceptual. Although we did not find any difference between learning depending on the 

informative feature, the difference between our two task-relevant features could potentially bias 

learning toward a feature-based strategy because of recent studies suggesting that existing 

semantic knowledge impacts WM capacity (Bower, Karlin, & Dueck, 1975; Brady et al., 2019; 

Konkle, Brady, Alvarez, & Oliva, 2010; McWeeny, Young, Hay, & Ellis, 1987). 

Finally, a novel aspect of our work is the use of naturalistic stimuli to study learning because so 

far only a limited number of studies have investigated cognitive processes using such stimuli 

instead of abstract stimuli (Battistoni et al., 2018; Boorman, Rajendran, O’Reilly, & Behrens, 

2016; Brady et al., 2016; Hickey & Peelen, 2015; Kaiser et al., 2016; Leong, Radulescu, Daniel, 

DeWoskin, & Niv, 2017). The lack of experiments exploring learning using naturalistic stimuli 

calls for reconsideration of existing findings based on abstract stimuli.  

5. Conclusion 

Here, we aimed to investigate learning about multi-dimensional naturalistic stimuli based on 

reward feedback. Crucially, our study is the first to compare response to multi-dimensional 

naturalistic stimuli and abstract stimuli in the context of learning. We demonstrate that learning 

about both types of stimuli involves transition from a feature-based to an object-based strategy, 

however, this transition is faster for naturalistic compared to abstract stimuli. Moreover, object-

based learning is initially adopted more strongly for naturalistic than abstract stimuli, whereas 

the object-based strategy is adopted less for naturistic stimuli both overall and at the steady state. 

Overall, our results suggest that although naturalistic stimuli could be perceived as objects more 

strongly, leading participants to use the feature-based strategy less often initially and transition 

faster to object-based learning, the overall influence of individual features on learning was 

stronger for naturalistic stimuli.  
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http://ccnl.dartmouth.edu/DataShare/NatStiLer.zip.  

Conflict of interest 

The authors declare no competing interests. 

Acknowledgements 

We would like to thank Vivian Lee and Chanc VanWinkle Orzell for their helpful comments on 

the manuscript. This work is supported by the National Science Foundation (CAREER Award 

BCS1943767 to A.S.) 

  

 
References 

Alvarez, G. A., & Cavanagh, P. (2004). The capacity of visual short-term memory is set both by 

visual information load and by number of objects. Psychological Science, 15(2), 106–

111. 

Arntzen, E., & Lian, T. (2010). Trained and derived relations with pictures versus abstract 

stimuli as nodes. The Psychological Record, 60(4), 659–678. 

Awh, E., Barton, B., & Vogel, E. K. (2007). Visual working memory represents a fixed number 

of items regardless of complexity. Psychological Science, 18(7), 622–628. 

Barto, A. G., & Mahadevan, S. (2003). Recent advances in hierarchical reinforcement learning. 

Discrete Event Dynamic Systems, 13(4), 341–379. 



29 

Battistoni, E., Kaiser, D., Hickey, C., & Peelen, M. V. (2018). The time course of spatial 

attention during naturalistic visual search. Cortex. 

Bays, P. M., Catalao, R. F., & Husain, M. (2009). The precision of visual working memory is set 

by allocation of a shared resource. Journal of Vision, 9(10), 7–7. 

Bays, P. M., & Husain, M. (2008). Dynamic shifts of limited working memory resources in 

human vision. Science, 321(5890), 851–854. 

Boorman, E. D., Rajendran, V. G., O’Reilly, J. X., & Behrens, T. E. (2016). Two anatomically 

and computationally distinct learning signals predict changes to stimulus-outcome 

associations in hippocampus. Neuron, 89(6), 1343–1354. 

Bower, G. H., Karlin, M. B., & Dueck, A. (1975). Comprehension and memory for pictures. 

Memory & Cognition, 3(2), 216–220. 

Brady, T. F., Störmer, V. S., & Alvarez, G. A. (2016). Working memory is not fixed-capacity: 

More active storage capacity for real-world objects than for simple stimuli. Proceedings 

of the National Academy of Sciences, 113(27), 7459–7464. 

Brady, T. F., Störmer, V. S., Shafer-Skelton, A., Williams, J. R., Chapman, A. F., & Schill, H. 

M. (2019). Scaling up visual attention and visual working memory to the real world. 

Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10, 433–436. 

Braun, D. A., Mehring, C., & Wolpert, D. M. (2010). Structure learning in action. Behavioural 

Brain Research, 206(2), 157–165. 

Collins, A. G., Brown, J. K., Gold, J. M., Waltz, J. A., & Frank, M. J. (2014). Working memory 

contributions to reinforcement learning impairments in schizophrenia. Journal of 

Neuroscience, 34(41), 13747–13756. 



30 

Collins, A. G., Ciullo, B., Frank, M. J., & Badre, D. (2017). Working memory load strengthens 

reward prediction errors. Journal of Neuroscience, 37(16), 4332–4342. 

Collins, A. G., & Frank, M. J. (2012). How much of reinforcement learning is working memory, 

not reinforcement learning? A behavioral, computational, and neurogenetic analysis. 

European Journal of Neuroscience, 35(7), 1024–1035. 

Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental 

storage capacity. Behavioral and Brain Sciences, 24(1), 87–114. 

Dayan, P., & Berridge, K. C. (2014). Model-based and model-free Pavlovian reward learning: 

revaluation, revision, and revelation. Cognitive, Affective, & Behavioral Neuroscience, 

14(2), 473–492. 

Diuk, C., Tsai, K., Wallis, J., Botvinick, M., & Niv, Y. (2013). Hierarchical learning induces two 

simultaneous, but separable, prediction errors in human basal ganglia. The Journal of 

Neuroscience, 33(13), 5797–5805. 

Etkin, A., Büchel, C., & Gross, J. J. (2016). Emotion regulation involves both model-based and 

model-free processes. Nature Reviews Neuroscience, 17(8), 532. 

Farashahi, S., Rowe, K., Aslami, Z., Gobbini, M. I., & Soltani, A. (2018). Influence of learning 

strategy on response time during complex value-based learning and choice. PloS One, 

13(5), e0197263. 

Farashahi, S., Donahue, C. H., Khorsand, P., Seo, H., Lee, D., & Soltani, A. (2017a). 

Metaplasticity as a neural substrate for adaptive learning and choice under 

uncertainty. Neuron, 94(2), 401-414. 

Farashahi, S., Rowe, K., Aslami, Z., Lee, D., & Soltani, A. (2017b). Feature-based learning 

improves adaptability without compromising precision. Nature Communications, 8, 1768. 



31 

Farashahi, S., Donahue, C. H., Hayden, B. Y., Lee, D. & Soltani, A. (2019). Flexible 

combination of reward information across primates. Nature Human Behaviour, 3(11), 

1215-1224 

Fukuda, K., Awh, E., & Vogel, E. K. (2010). Discrete capacity limits in visual working memory. 

Current Opinion in Neurobiology, 20(2), 177–182. 

Gershman, S. J., & Niv, Y. (2010). Learning latent structure: carving nature at its joints. Current 

Opinion in Neurobiology, 20(2), 251–256. 

Gigerenzer, G., & Goldstein, D. G. (1996). Reasoning the fast and frugal way: models of 

bounded rationality. Psychological Review, 103(4), 650–669. 

Hastie, T., Tibshirani, R., & Friedman, J. (2001). The elements of statistical learning: data 

mining, inference and prediction. Springer-Verlag, 1(8), 371–406. 

Hickey, C., & Peelen, M. V. (2015). Neural mechanisms of incentive salience in naturalistic 

human vision. Neuron, 85(3), 512–518. 

Ito, M., & Doya, K. (2009). Validation of decision-making models and analysis of decision 

variables in the rat basal ganglia. Journal of Neuroscience, 29(31), 9861–9874. 

Jocham, G., Brodersen, K. H., Constantinescu, A. O., Kahn, M. C., Ianni, A. M., Walton, M. E., 

… Behrens, T. E. (2016). Reward-guided learning with and without causal attribution. 

Neuron, 90(1), 177–190. 

Kahnt, T., Park, S. Q., Burke, C. J., & Tobler, P. N. (2012). How glitter relates to gold: 

similarity-dependent reward prediction errors in the human striatum. Journal of 

Neuroscience, 32(46), 16521–16529. 

Kahnt, T., & Tobler, P. N. (2016). Dopamine regulates stimulus generalization in the human 

hippocampus. ELife, 5, e12678. 



32 

Kaiser, D., Oosterhof, N. N., & Peelen, M. V. (2016). The neural dynamics of attentional 

selection in natural scenes. Journal of Neuroscience, 36(41), 10522–10528. 

Konkle, T., Brady, T. F., Alvarez, G. A., & Oliva, A. (2010). Scene memory is more detailed 

than you think: The role of categories in visual long-term memory. Psychological 

Science, 21(11), 1551–1556. 

Leong, Y. C., Radulescu, A., Daniel, R., DeWoskin, V., & Niv, Y. (2017). Dynamic interaction 

between reinforcement learning and attention in multidimensional environments. Neuron, 

93(2), 451–463. 

Ma, W. J., Husain, M., & Bays, P. M. (2014). Changing concepts of working memory. Nature 

Neuroscience, 17(3), 347. 

McWeeny, K. H., Young, A. W., Hay, D. C., & Ellis, A. W. (1987). Putting names to faces. 

British Journal of Psychology, 78(2), 143–149. 

Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity 

for processing information. Psychological Review, 63(2), 81. 

Niv, Y., Daniel, R., Geana, A., Gershman, S. J., Leong, Y. C., Radulescu, A., & Wilson, R. C. 

(2015). Reinforcement learning in multidimensional environments relies on attention 

mechanisms. The Journal of Neuroscience, 35(21), 8145–8157. 

Oemisch, M., Westendorff, S., Azimi, M., Hassani, S. A., Ardid, S., Tiesinga, P., & Womelsdorf, 

T. (2019). Feature-specific prediction errors and surprise across macaque fronto-striatal 

circuits. Nature Communications, 10(1), 176. 

Olson, I. R., Jiang, Y., & Moore, K. S. (2005). Associative learning improves visual working 

memory performance. Journal of Experimental Psychology: Human Perception and 

Performance, 31(5), 889. 



33 

Olsson, H., & Poom, L. (2005). Visual memory needs categories. Proceedings of the National 

Academy of Sciences, 102(24), 8776–8780. 

O’Reilly, R. C., & Frank, M. J. (2006). Making working memory work: a computational model 

of learning in the prefrontal cortex and basal ganglia. Neural Computation, 18(2), 283–

328. 

Otto, A. R., Raio, C. M., Chiang, A., Phelps, E. A., & Daw, N. D. (2013). Working-memory 

capacity protects model-based learning from stress. Proceedings of the National Academy 

of Sciences, 110(52), 20941–20946. 

Rouder, J. N., Morey, R. D., Cowan, N., Zwilling, C. E., Morey, C. C., & Pratte, M. S. (2008). 

An assessment of fixed-capacity models of visual working memory. Proceedings of the 

National Academy of Sciences, 105(16), 5975–5979. 

Schad, D. J., Jünger, E., Sebold, M., Garbusow, M., Bernhardt, N., Javadi, A.-H., … others. 

(2014). Processing speed enhances model-based over model-free reinforcement learning 

in the presence of high working memory functioning. Frontiers in Psychology, 5, 1450. 

Soltani, A., & Izquierdo, A. (2019). Adaptive learning under expected and unexpected 

uncertainty. Nature Reviews Neuroscience, 20(10), 635-644. 

Spachtholz, P., & Kuhbandner, C. (2017). Visual long-term memory is not unitary: flexible 

storage of visual information as features or objects as a function of affect. Cognitive, 

Affective, & Behavioral Neuroscience, 17(6), 1141–1150. 

Stephan, K. E., Penny, W. D., Daunizeau, J., Moran, R. J. & Friston, K. J. (2009). Bayesian 

model selection for group studies. NeuroImage, 46, 311–311. 

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: an introduction. Cambridge, MA: 

MIT Press. 



34 

Thorpe, S., Fize, D., & Marlot, C. (1996). Speed of processing in the human visual system. 

Nature, 381(6582), 520. 

Wills, A. J., Graham, S., Koh, Z., McLaren, I. P., & Rolland, M. D. (2011). Effects of concurrent 

load on feature-and rule-based generalization in human contingency learning. Journal of 

Experimental Psychology: Animal Behavior Processes, 37(3), 308. 

Wilson, R. C., & Niv, Y. (2012). Inferring relevance in a changing world. Frontiers in Human 

Neuroscience, 5, 189. 

Wunderlich, K., Beierholm, U. R., Bossaerts, P., & O’Doherty, J. P. (2011). The human 

prefrontal cortex mediates integration of potential causes behind observed outcomes. 

Journal of Neurophysiology, 106(3), 1558–1569. 

 

 


