
 1 

Contributions of attention to learning in multi-dimensional reward 
environments 
Michael Chong Wang1, Alireza Soltani1* 
1Department of Psychological and Brain Sciences, Dartmouth College, NH, USA  

* Corresponding author (alireza.soltani@dartmouth.edu) 

 

Manuscript information: 7 figures, 3 tables, 4 Supplementary figures, and 1 Supplementary 
table, 45 pages   

Keywords: reinforcement learning, curse of dimensionality, feature-based learning, decision 
making, selective attention 

Acknowledgment: We would like to thank Chanc Orzell for helpful comments on the 
manuscript. This work was supported by National Science Foundation CAREER Award 
(BCS1943767) to A.S.  

  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 18, 2023. ; https://doi.org/10.1101/2023.04.24.538148doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.24.538148


 2 

Abstract  

Real-world choice options have many features or attributes, whereas the reward outcome from 

those options only depends on a few features/attributes. It is currently unclear how humans learn 

and make decisions when multiple features and conjunctions of features are predictive of reward, 

and moreover, how selective attention contributes to these processes. Here, we examined human 

behavior during a three-dimensional learning task in which reward outcomes for different stimuli 

could be predicted based on a combination of an informative feature and conjunction. Using 

multiple approaches, we found that choice behavior and reward probabilities estimated by 

participants were best described by a model that learned the predictive values of both the 

informative feature and the informative conjunction. Moreover, attention was controlled by the 

difference in these values in a cooperative manner such that attention depended on the integrated 

feature and conjunction values, and the resulting attention weights modulated learning by 

increasing the learning rate on attended features and conjunctions. However, there was little 

effect of attention on decision making. These results suggest that in high-dimensional 

environments, humans direct their attention not only to selectively process reward-predictive 

attributes, but also to find parsimonious representations of the reward contingencies to achieve 

more efficient learning.  
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Introduction 

Every day, we face many choice options or actions that have a multitude of features or attributes. 

However, after making a decision, the feedback we receive is often binary (e.g., success or 

failure) or a simple scalar indicating how good or bad the outcome is, but not which feature(s) or 

attribute(s) resulted in the observed outcome (Sutton and Barto, 2018). To guide decisions based 

on reward feedback, an agent could track the reward history associated with the selection of each 

choice option, which can be seen as a unique configuration of multiple feature attributes. 

However, the number of possible combinations grows exponentially as the number of attributes 

grows, a problem referred to as the curse of dimensionality, making this strategy inefficient and 

prohibitively difficult due to memory constraints and insufficient reward feedback. Fortunately, 

in many real-world settings, choice options that have similar perceptual properties also have 

similar reward values. Therefore, learning about features or attributes (i.e., feature-based 

learning) is an efficient way to avoid learning about each choice option or action individually 

and can mitigate the curse of dimensionality without sacrificing much precision (Farashahi, 

Rowe, et al., 2017). 

Unfortunately, feature-based learning becomes imprecise when certain features are predictive of 

reward values only when considered in conjunction with some other features (e.g., not all red or 

crispy fruits are edible but red crispy fruits usually are). Feature-based learning alone will ignore 

these important interactions, leading to incorrect generalizations. In such situations, tracking the 

reward values of certain conjunctions of features becomes necessary. Therefore, imprecision in 

learning due to limited reward feedback can be mitigated by simultaneous learning about 

features and conjunctions of features. However, this solution can become impractical as the 

number of features and conjunctions of features grows too large. Importantly, not all features or 

feature conjunctions of a choice option are equally predictive of its reward value. Therefore, 

animals can achieve an appropriate performance if they use attention to enhance learning about 

the most informative value representations (e.g., informative features and informative 

conjunctions of features) and to prioritize those representations more strongly when making 

decisions. Therefore, mixed feature-based and conjunction-based learning accompanied by 

selective attention that is guided by informative value representations can provide a solution to 

the curse of dimensionality relevant to complex, naturalistic reward environments. 
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Indeed, multiple studies have shown that feature-based attention modulates decision making 

and/or value learning through multiple mechanisms (Dayan, Kakade, and Montague, 2000; 

Mackintosh, 1975; Pearce and Hall, 1980; Niv et al., 2015; Leong et al., 2017; Akaishi et al., 

2016; Soltani et al., 2016; Farashahi, Rowe, et al., 2017; Oemisch et al., 2019). First, attention 

can bias decision making by causing reward values associated with different feature dimensions 

to be weighted differently when they are combined. Second, attention can bias learning by 

attributing the reward outcome to certain feature dimensions, which leads the agent to 

preferentially update the values associated with those dimensions. However, when many features 

and conjunctions of features are potentially informative, as is the case in naturalistic settings, it is 

unclear whether attention affects different types of learning strategies as well as choice behavior 

and how these effects interact with each other. 

Moreover, the presence of reward-predictive conjunctions greatly complicates learning. 

Although healthy individuals are capable of learning the values of conjunctions of features when 

necessary (Pelletier and Fellows, 2019; Duncan et al., 2018; Ballard, Wagner, and McClure, 

2019; Farashahi, Rowe, et al., 2017), the number of potentially informative conjunctions can 

become prohibitively large as the number of attributes increases (Farashahi, Rowe, et al., 2017). 

To perform in these more general environments successfully, individuals are faced with the task 

of representation learning; that is, to identify the most task-relevant representation of choice 

options including which feature is informative and how different feature dimensions interact 

(Niv, 2019; Radulescu, Niv, and Ballard, 2019; Radulescu, Shin, and Niv, 2021). Similar to 

feature-based attention, one approach to this task is to also identify which conjunctions of 

features are relevant, only keep track of their predictive values, and use those values along with 

other reward values to make decisions. But how do humans and other animals identify and learn 

about reward-predictive features and/or their combinations, and how do value representations for 

those features and conjunctions emerge and interact over time? 

Finally, it is not fully understood how learned reward values influence attention. In general, 

attention could be guided by reward value in multiple ways. For example, in some studies on 

simple and multidimensional reinforcement learning, attention has been shown to depend on the 

absolute difference (Soltani et al., 2016; Farashahi, Rowe, et al., 2017; Hunt, Dolan, and 

Behrens, 2014) or sum (Niv et al., 2015; Soltani et al., 2021), or maximum (Anderson, Laurent, 
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and Yantis, 2011; Gluth, Spektor, and Rieskamp, 2018; Daniel, Radulescu, and Niv, 2020; 

Leong et al., 2017) of the feature values of the alternative options. However, in most previous 

studies, the utilized reward schedules were simple (one- or two-dimensional), and these different 

functions on the values may lead to similar attentional weights, making it hard to elucidate the 

mechanisms by which reward value affects attention. Because all of these functions can be 

implemented through canonical neural circuits endowed with reward-dependent plasticity 

(Soltani and Wang, 2006; 2010), elucidating how value is transformed into attention can provide 

insight into the underlying neural mechanisms. 

To answer the above questions and shed light on the role of attention in naturalistic reward 

learning, we examined human learning and choice behavior during a three-dimensional reward 

learning task using various reinforcement learning (RL) models with additional attentional 

components. In this task, reward probabilities associated with different choice options (visual 

stimuli) could be predicted using one feature (the informative feature) and the conjunction of the 

other two features (the informative conjunction) (Farashahi and Soltani, 2021). In the utilized RL 

models, the reward value of each option was predicted using values of its individual features, 

conjunctions of two features, and/or the stimulus (object) as a whole. In addition, the attentional 

component used the learned reward values of features or conjunctions of features to compute 

attentional weights that modulated decision making and/or learning in a multiplicative fashion. 

Through fitting the RL models to choice data and utilizing Bayesian model comparison, we 

found that the model that best fits the choice behavior kept track of the reward values of both 

features and conjunctions. Moreover, attention was controlled by the difference in these values in 

a cooperative manner such that attention depended on the integrated feature and conjunction 

values, and the resulting attention weights modulated the learning of both, but not how they were 

prioritized during decision making. Together, our results suggest that in high-dimensional 

environments where multiple features and their combinations could predict reward, humans learn 

both the reward values of the informative feature and the conjunction of features. Both types of 

values cooperate to dynamically determine attention, which then biases future learning of these 

values. Therefore, attentional biases are not simply determined by competition between features 

or conjunctions of features, but by competition between different sets of representations of 

stimuli in the environment, in this case, how elementary features should be merged into 

conjunctions in a way that best improves reward prediction. 
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Materials and Methods 

Participants 

In total, 92 healthy participants (𝑁 = 66 females) were recruited from the Dartmouth College 

student population (ages 18–22 years). Participants were recruited through the Department of 

Psychological and Brain Sciences experiment scheduling system at Dartmouth College. They 

were compensated with money and T-points, which are extra-credit points for classes within the 

Department of Psychological and Brain Sciences at Dartmouth College. All participants were 

compensated at $10/hour or 1 T-point/hour. They could receive an additional amount of 

monetary reward for their performance of up to $10/hour. Similar to a previous study based on 

the same dataset (Farashahi and Soltani, 2021), we excluded participants whose performances 

(proportion of trials in which the more rewarding option is chosen) after the initial 32 trials were 

lower than 0.53. We also excluded an additional participant who failed to provide any reward 

probability estimates in 3 out of 5 bouts. These criteria resulted in the exclusion of 25 

participants in total. All experimental procedures were approved by the Dartmouth College 

Institutional Review Board, and informed consent was obtained from all participants before the 

experiment. 

Experimental paradigm 

The multi-dimensional reward learning task involved learning about the reward values (reward 

probabilities) associated with multi-dimensional visual stimuli through reward feedback and 

consisted of choice and estimation trials. Stimuli consisted of three feature dimensions (color, 

shape, and texture) where each feature dimension had three possible values (three colors, three 

shapes, and three textures), leading to 27 stimuli (objects) in total. During the choice trials, the 

participants were presented with two stimuli that had distinct features in all three dimensions, 

and they were asked to choose between them to obtain a reward. Reward feedback (whether they 

won a reward point or not) was provided randomly after each choice with a probability 

determined by the reward schedule. In choice trials, the order of the stimuli’s presentation was 

pseudo-randomized such that all pairs that were distinct in all three feature dimensions were 

presented four times in different spatial layouts. During the estimation trials, participants were 

presented with each of the 27 stimuli in random order and were asked to estimate the probability 
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that the selection of each stimulus would lead to a reward. There were 432 choice trials in total. 

The estimation trials were interspersed in five bouts that appeared after choice trial numbers 86, 

173, 259, 346, and 432. 

The reward schedule (𝑝!(𝑂), ∀ stimuli/objects 𝑂) determined the probability that selection of a 

given stimulus/object was followed by a reward. We used a reward schedule with a moderate 

level of generalizability (Farashahi, Rowe, et al., 2017) such that one feature dimension 

(informative feature) and the conjunction of the two other features (the informative conjunction) 

were predictive of reward on average to some extent. For simplicity, we used 𝐹",$ to denote the 

𝑗th instance of the 𝑖th feature, where 𝑖 = {1, . . . , 𝑚}, 𝑗 = {1, . . . , 𝑛}. We also used 𝐹%(𝑂), 𝐶&(𝑂) 

to denote the 𝑘th feature and the 𝑙th conjunction of stimulus/object 𝑂, respectively. Finally, the 

𝑙th conjunction denoted the conjunction of the two features other than feature 𝑙. 

An algorithm analogous to the Naive Bayes algorithm can be used to approximate the reward 

values associated with each stimulus using the average reward probabilities associated with its 

features, as detailed below (Murphy, 2012; Hunt, Dolan, and Behrens, 2014; Farashahi, Rowe, et 

al., 2017), under the simplifying assumption that individual features are conditionally 

independent given the reward outcome. The average reward probability for different instances of 

a given feature can be obtained by marginalizing over other feature dimensions. We use 

𝑝!6𝐹"(𝑂)7 =
'

(!"#∑ 𝑝!)*	:	-$())0-$()*) (𝑂′) to denote the value of the 𝑖th feature of the 

stimulus/object 𝑂. Given these feature values, the reward probability of stimulus/object 𝑂 can be 

estimated as follows: 

𝑝!(𝑂) =
∏ 2%$ 3-$())4

∏ 2%$ 3-$())45∏ 6'72%3-$())48$
                                      (Eq. 1) 

Therefore the log-odd of reward for stimulus/object 𝑂 is a linear combination of the log-odds of 

average reward probabilities for its features, estimated using the marginalization method 

calculated above: logit	𝑝!(𝑂) = ∑ logit" 	𝑝!6𝐹"(𝑂)7 (Hunt, Dolan, and Behrens, 2014; Farashahi, 

Rowe, et al., 2017). A similar process could be defined for estimating stimulus values based on a 

mixture of feature and conjunction values: 

𝑝!(𝑂) =
∏ 2%$ 3-$())4∏ 2%& 69&())8

∏ 2%$ 3-$())4∏ 2%& 69&())85∏ 6'72%3-$())48$ ∏ :'72%69&())8;&
                                  (Eq. 2) 
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where we use 𝑝! ;𝐶$(𝑂)< =
'

(!"'∑ 𝑝!)*	:	9&())09&()*) (𝑂′) to denote the value of the 𝑗th 

conjunction of the stimulus/object 𝑂. Because the conjunctions 𝐶$ should not contain any of the 

features 𝐹", there are different ways of combining features into conjunctions. In the case of three 

features as in the current study, there are three ways of using mixed feature and conjunction 

values to represent the stimulus/object value. Different strategies can lead to different amounts of 

approximation error, which we define as the average KL divergence between 𝑝!(𝑂) and 𝑝!(𝑂) 

for all objects 𝑂. The more features are merged into conjunctions, the more accurate the 

estimation strategy can be with enough data, but the costlier it is to calculate. For the same 

reason as above, logit	𝑝!(𝑂) = ∑ logit" 	𝑝!6𝐹"(𝑂)7 + ∑ logit$ 	𝑝! ;𝐶$(𝑂)< (Farashahi and Soltani, 

2021). The above formulae present the optimal combination of feature values, or feature and 

conjunction values. In reality, however, estimated reward values might be a weighted sum of the 

feature and conjunction values. 

Computational models of value-driven attention 

To capture participants’ trial-by-trial learning and choice behavior, we fit reinforcement learning 

models that estimated different types of reward values (i.e., probability of reward associated with 

features, conjunctions, or stimuli) and included different types of attentional modulation during 

choice and decision making. To test how learned reward values drive attention, we compared 

three possible relationships between the reward values of the two presented options and 

attentional modulation: uniform attention (no relationship), attention based on summed values, 

attention based on the absolute difference in values, and attention based on the maximum value. 

In addition, we assumed that attention could modulate choice, learning, or both, which led to a 

total of ten variations of attentional mechanisms. We also considered five different learning 

strategies (1) 𝐹: feature-based learning, (2) 𝐹 + 𝑂: feature- and object-based learning, (3) 𝐹 +

𝐶<=2>!>?=: feature- and conjunction-based learning with independent attention, where attention 

weights on the features and conjunction are calculated separately, (4) 𝐹 + 𝐶@=>?A!=	>??(: feature- 

and conjunction-based learning where attention only biases features and is uniform over 

conjunctions, and (5) 𝐹 + 𝐶$B"(?: feature- and conjunction-based learning, where attention is 

based on the integrated values of features and conjunctions, and modulates both features and 

conjunctions. We tested the last three variations of learning strategies to investigate possible 
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mechanisms of interaction between attention based on feature values and conjunction values. 

This led to 50 models in total (5 learning strategies × 10 attentional mechanisms). 

We based all our learning models on the RL models with decay, which have been shown to 

capture behavior in similar tasks successfully (Farashahi, Rowe, et al., 2017; Farashahi and 

Soltani, 2021; Niv et al., 2015). This means that while the values associated with features, 

conjunctions, and/or the object identity of the chosen option were updated after each reward 

feedback (𝑟(𝑡) = 0	or	1), all other values decayed towards a baseline (see below). All the values 

were initialized at 0.5, and values associated with the chosen options (𝑉CD) were updated after 

each feedback using the following equations: 

𝑉CD(𝑡 + 1) = D
𝑉CD(𝑡) + 𝛼!=E𝑤FG61 − 𝑉CD(𝑡)7 𝑟(𝑡) = 1
𝑉CD(𝑡) − 𝛼A(!𝑤FG𝑉CD(𝑡) 𝑟(𝑡) = 0

                                       (Eq. 3) 

where 𝑤FG is the attentional weight used to modulate value learning, 𝛼!=E and 𝛼A(! are the 

learning rates for rewarded and unrewarded trials, and 𝑐ℎ stands for the feature, conjunction, and 

object index associated with the chosen option. Based on results from previous studies, we set 

the baseline for the decay of the unchosen (and unavailable options) values (𝑉A(CD) to 0.5 as 

follows: 

𝑉A(CD(𝑡 + 1) = 𝑉A(CD(𝑡) − 𝑑(𝑉A(CD(𝑡) − 0.5)                                           (Eq. 4) 

This decay process was not modulated by attention. 

The log odd for choosing a stimulus on the left was the weighted sum of feature, conjunction, 

and/or object values of that stimulus as follows: 

logit𝑃!(𝑡) = 𝑏𝑖𝑎𝑠 + 𝛽 × -
∑ 𝑤"!

#$
% 𝑉"!(!) 𝐹

𝜔∑ 𝑤"!
#$

% 𝑉"!(!) + (1 − 𝜔)∑ 	( 𝑤)"
#$𝑉)"(!) 𝐹 + 𝐶*+,-.-/+ , 𝐹 + 𝐶0+-/1.+	-//3, 𝐹 + 𝐶(4%3/	

𝜔∑ 𝑤"!
#$

% 𝑉"!(!) + (1 − 𝜔)𝑉! 𝐹 + 𝑂
      (Eq. 5) 

where logit𝑃 = log6𝑃/(1 − 𝑃)7, 𝑤HI are the attentional weights used to modulate decision 

making, 𝜔 is a parameter that interpolates between feature- and conjunction (or object)-based 

learning, 𝛽 is the inverse temperature parameter, and 𝑏𝑖𝑎𝑠 is the bias towards choosing the 

option on the left. The attentional weights were calculated based on the following equations: 
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𝑤"#9 = -
𝐻;𝑉"!(!), 𝑉"!(5)< 𝐹, 𝐹 + 𝐶0+-/1.+	-//3, 𝐹 + 𝑂
𝐻;𝜔𝑉"!(!), 𝜔𝑉"!(5)< 𝐹 + 𝐶*+,-.-/+
𝐻;𝜔𝑉"!(!) + (1 − 𝜔)𝑉)!(!), 𝜔𝑉"!(5) + (1 − 𝜔)𝑉)!(5)< 𝐹 + 𝐶(4%3/

     (Eq. 6) 

𝑤)#9 =

⎩
⎪
⎨

⎪
⎧
𝑁/𝐴, 𝐹, 𝐹 + 𝑂
0 𝐹 + 𝐶0+-/1.+	-//3
𝐻E(1 − 𝜔)𝑉)!(!), (1 − 𝜔)𝑉)!(5)F 𝐹 + 𝐶*+,-.-/+
𝐻;𝜔𝑉"!(!) + (1 − 𝜔)𝑉)!(!), 𝜔𝑉"!(5) + (1 − 𝜔)𝑉)!(5)< 𝐹 + 𝐶(4%3/

    (Eq. 7) 

where the function that combines the reward values of alternative options on each trial could be 

𝐻(𝑥, 𝑦) = 0 for uniform weighting, 𝐻(𝑥, 𝑦) = (𝑥 + 𝑦)/2 for sum or average weighting, 

𝐻(𝑥, 𝑦) = |𝑥 − 𝑦| for absolute difference, or 𝐻(𝑥, 𝑦) = max(𝑥, 𝑦) for maximum value. The 

attention weights for features (and analogously for conjunctions) were normalized through a 

softmax function: 

𝑤-$ =
JKL3ME()N 4

∑ JKL& 6ME(*P8           (Eq. 8) 

This resulted in a maximum of 7 parameters for the tested models: 𝑏𝑖𝑎𝑠, 𝛽, 𝜔, 𝑑, 𝛼!=E, 𝛼A(!, 

and 𝛾. 

Model fitting and model selection 

The RL models were fit using the Bayesian Adaptive Direct Search (BADS) optimization 

algorithm (Acerbi and Ma, 2017). Forty random initial optimization points were sampled to 

avoid local optima. For each model with attention, one set of the initial parameter values was 

chosen as the best parameters for the base model with the same learning strategy but without 

attention. Models were compared using random effects Bayesian Model Selection (BMS) based 

on the Bayesian Information Criterion (BIC) as an approximation for model evidence (Stephan et 

al., 2009; Rigoux et al., 2014). We report the posterior model probability, which is the posterior 

estimate of a model’s frequency as well as the protected exceedance probability (pxp), which 

equals the probability that one model exists more frequently than all other models. Unless 

otherwise specified, the Bayesian omnibus risk (BOR), which measures the probability that the 

observed differences in model frequencies are due to chance, was less than 0.001 for all our 

model comparisons. This suggests that there were significant discrepancies in different models’ 

ability to account for behavioral data. 
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For all mixed-effects modeling, we fit a random slope and intercept for each participant. If the 

model did not converge, we incrementally simplified the random effect structure by first 

removing correlation between random effects, followed by the random slopes. If the model failed 

to converge even with only random intercepts, an ordinary linear regression model was used. 

Model-based analysis of choice behavior 

Using the estimated model parameters from fitting the choice data with the best model, we were 

able to simulate our models and examine the latent variables (Wilson and Collins, 2019), 

including the inferred subjective values and attentional weights. We computed the entropy of the 

attentional weights Entropy(𝑤) = −∑ 𝑤-$/9$" ln6𝑤-$/9$7 to examine how concentrated the 

attentional weights were on each trial. Lower entropy means more concentrated attention and a 

stronger bias towards a single feature or conjunction. We also used the Jensen-Shannon 

divergence (JSD) between the attentional weights at consecutive trials, 

𝐽𝑆𝐷6𝑤(𝑡)||𝑤(𝑡 + 1)7 = '
R
∑ 𝑤-$" (𝑡)ln

E($(?)

E($(?)
+ '

R
∑ 𝑤-$" (𝑡 + 1)ln

E($(?5')

E($(?)   (Eq. 9) 

𝑤-$(𝑡) =
'
R
;𝑤-$(𝑡) + 𝑤-$(𝑡 + 1)<,  (Eq. 10) 

to characterize changes in attention between trials. The higher the JS divergence (JSD), the larger 

the change in attention between trials (JSD is bounded between 0 and 1). We also used 

differences in trial-wise BIC of different models to measure transition between different learning 

strategies (Farashahi, Rowe, et al., 2017; Farashahi and Soltani, 2021), where trial-wise BIC is 

defined as 

𝐵𝐼𝐶2(𝑡) = −2𝐿𝐿(𝑡) + 𝑘	log(𝑁?!">&<)/𝑁?!">&<  (Eq. 11) 

We used linear mixed-effects models to predict these quantities as a function of trial number 

(with trial number normalized between 0 and 1) to characterize their time courses. 

Model-free analysis of choice behavior and value estimation 

To identify biases in reward credit assignment and choice, we fit generalized linear mixed-effect 

models to predict choice based on reward and choice history early in the experiment (first 150 
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trials) and based on objective reward values at the end of the experiment (when reward 

assignments have been materialized) as described below. 

To examine bias in reward credit assignment, we generalized win-stay lose-switch commonly 

used to study learning in simple environments (Lau and Glimcher, 2005; Katahira, 2018; Moran 

et al., 2019; M. Noonan et al., 2010; M. P. Noonan et al., 2017; Walton et al., 2010) to our multi-

dimensional environment. More specifically, we used the following generalized linear mixed 

model (GLMM): 

log $!(Choice(#)%&)
!(Choice(#)%')

% ∼ ∑ 𝐹()
(%* (𝑡 − 1) + ∑ 𝐶()

(%* (𝑡 − 1)

+∑ Reward)
(%* (𝑡 − 1) × 𝐹((𝑡 − 1) + ∑ Reward)

(%* (𝑡 − 1) × 𝐶((𝑡 − 1)
   (Eq. 12) 

where 𝐹"(𝑡 − 1) and 𝐶"(𝑡 − 1) were equal to +1 if the option on the left shared the 𝑖th feature or 

𝑖th conjunction as the previous chosen option, -1 if the option on the right shared the 𝑖th feature 

or 𝑖th conjunction as the previous chosen option, and 0 if neither options shared the feature or 

conjunction with the previously chosen option. Reward (𝑡 − 1) was equal to +1 and -1 if the 

previous choice was rewarded and unrewarded, respectively. The first two terms capture the 

tendency to repeat choosing the same feature or conjunction, regardless of reward feedback, 

whereas the last two terms capture the tendency to repeat or avoid a previously chosen feature or 

conjunction depending on reward feedback (generalization of win-stay and lose-switch). 

We used the first 150 trials to study reward credit assignment because participants’ performances 

reached their steady state at that point, and because participants’ sensitivity to reward history 

should decrease with more learning. Although the GLMMs cannot separate the influence of 

attentional modulations at the time of choice and learning (Katahira, 2018), they can nonetheless 

detect biases in choice behavior. Importantly, attention would lead to some coefficients being 

higher than the other ones, indicating heightened sensitivity to the reward history associated with 

some feature(s) and/or conjunction(s). We note that choice auto-correlation could be due to a 

tendency to choose options that share a feature or conjunction with a past choice, or due to 

biased learning that weighs positive outcomes more heavily than negative outcomes. Although 

both mechanisms may be at play (Palminteri and Lebreton, 2022; Katahira, 2018), this second 

explanation implies that when there is positivity bias in learning, choice auto-correlation could 
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also be biased by attention, leading to increased sensitivity to the choice history associated with 

some feature(s) and/or conjunction(s). 

To examine the participants’ choice strategy at the end of the experiment, we fit GLMMs that 

used the values associated with the informative feature and the informative conjunction to 

predict participants’ choice. If the participants employed a feature- and conjunction-based 

learning strategy, the values associated with both the informative feature and informative 

conjunction should significantly predict choice. 

Finally, to examine participants’ value representations more directly, we also fit their estimations 

of the reward probability associated with each stimulus/object with GLLMs that used reward 

values along different feature or conjunction dimensions as the independent variables. Both the 

reward probability estimates and the marginal probabilities were transformed through a logit 

transformation log 2
'72

. We fit five models using the following independent variables, (1) 𝐹"(@: 

the value of the informative feature, (2) 𝐹"(@ + 𝐶"(@: weighted sum of the values of the 

informative feature dimension and the informative conjunction, (3 and 4) 𝐶(B("(@', 	𝐶(B("(@R: the 

values of the two non-informative conjunctions (the marginal probabilities along the two non-

informative features are either all 0.5 or between 0.48 and 0.52, therefore too close to 0.5 to be 

meaningful), and (5) 𝑂: actual reward probabilities associated with each object/stimulus. Due to 

the high correlation between reward values of the informative feature and reward values of the 

non-informative conjunctions (𝑅 > 0.9), we were not able to include those in the same model. 

Instead, we fit separate models using reward values along different stimulus dimensions and 

compared the different models’ goodness-of-fit. To avoid biases from using predefined marginal 

probabilities and account for any distortions of learned values, we also fit mixed-effects ANOVA 

models using each of the three features as a factor and included all interaction terms. This 

allowed us to investigate how much variance in the value estimations is explained by each 

dimension by looking at the partial eta-squared (𝜂2R) statistic. Because during each trial, each 

participant only gives one estimation for each object, we only include random effects up to two-

way interaction terms. 
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Model recovery and model validation 

Due to the large number of models we used to fit the data, a comprehensive model recovery was 

intractable. Instead, we performed a model recovery of the best-fitting model against other 

models that share the same learning strategy or the same attentional mechanism. To perform 

model recovery, we used the same reward schedule, and sampled 100 stimuli sequences using 

the same rule as for participants in the experiment. For each model type, we sampled parameter 

sets uniformly or log-uniformly from a plausible range of values. Consistent with the 

experiment, we kept only parameters that produced a choice sequence with a performance better 

than our exclusion threshold. We also removed simulated trials that produced highly random 

choice sequences (choice sequences that had an average likelihood per trial of less than 0.525 

given the sampled parameters). Based on these parameters, we simulated choice sequences using 

the actual sequences of stimuli observed by each participant. We then fit all models and compare 

them using random effects Bayesian model selection. We also verified parameter recovery by 

reporting Spearman’s rank correlation between the ground truth parameters and the best fit 

parameters. 

Finally, to qualitatively validate our winning model, we used the estimated parameters based on 

the best model to simulate choice sequences and trial-by-trial attention weights. We then 

examined qualitative match between the experimental and simulated data. 

Results 

To investigate the effects of attention on learning and decision making in high-dimensional 

environments, we re-analyzed choice behavior in a multi-dimensional probabilistic learning 

(MDPL) task (Farashahi and Soltani, 2021) in which human participants selected between pairs 

of visual stimuli (objects), each defined by three visual features (color, pattern, and shape). Each 

feature could take three values, making a total of 27 stimuli or objects to learn about. Each 

choice was followed by a binary reward feedback with the probability of harvesting a reward 

determined by the reward schedule. Participants learned about these reward probabilities through 

trial and error (see Materials and Methods for more details). We also asked participants to 

provide their estimations of reward probabilities for each stimulus at five evenly spaced time 

points throughout the experiment (Fig. 1A). Critically, the reward probability associated with the 
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selection of each stimulus was determined by the combination of its features such that one 

informative feature and the conjunctions of the other two non-informative features (the 

informative conjunction) could accurately predict reward probabilities (Fig. 1C). Nonetheless, 

reward probabilities associated with the 27 stimuli greatly varied according to the presence of the 

informative or non-informative features (Fig. 1D), making it a non-trivial task to find the 

informative feature, unlike previous experiments (Niv et al., 2015; Leong et al., 2017; Oemisch 

et al., 2019). By learning about and combining the predictive values of the informative feature 

and conjunction, participants could achieve a good approximation to the actual reward 

probabilities associated with each stimulus. In contrast, learning about the non-informative 

feature and conjunction dimensions leads to inaccurate approximation while still allowing 

performance that was better than chance (Fig. 1E; see also Experimental Paradigm in the 

Materials and Methods). 

Overall, we found that participants performed better than chance (Fig. 1B), and their 

performances reached steady state after about 150 trials. By examining how well different 

reinforcement learning models account for participants’ choice behavior, a previous study 

verified that participants learned about both the informative feature and the conjunction 

(Farashahi and Soltani, 2021). However, their study did not investigate how participants arrived 

at this learning strategy, whether some participants deviated from this strategy in a systematic 

way, and the role of attention in learning. Here, using a combination of model-free analyses and 

fitting choice data with more complex reinforcement learning models, we characterized how 

participants’ choice behavior was affected by different attentional strategies, how these 

attentional strategies interacted with value learning and decision making, and how these 

interactions affected the overall performance. 
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Figure 1. The experimental design and overall performance. (A) The timeline of each choice trial 
consisting of fixation, stimulus presentation, choice presentation, and reward feedback. Five bouts of 
probability estimation trials were interleaved throughout the 432 choice trials. The reward probabilities of 
the 27 stimuli, each identified by 3 visual features, are shown in the inset. (B) The average learning curve 
across all participants. The black and gray curves show the average reward received and the proportion of 
trials the participants chose the better option, respectively. Both curves were smoothed by a moving 
average filter over 20 trials. The shaded area indicates the SEM. Performance reached the steady state at 
around 150 trials. Arrows on the x-axis indicate the trials after which a value estimation trial was 
administered. (C) Informativeness of each dimension as measured by the proportion of variance in the 
reward schedule explained by each feature, conjunction, and the stimulus (object) identity. The 
informative feature and conjunction predict a larger amount of variance in the reward schedule than non-
informative ones. Additional variance can only be explained by the stimulus (object) identity. (D) The 
average reward value of individual stimuli ordered by each feature dimension and contained feature. The 
height of the bars shows the mean values with error bars indicating standard deviation, and circles show 
the exact stimulus values with a small jitter for clarity. The reward values of stimuli that share each of the 
two non-informative features varied from each other due to the design of the reward schedule even though 
these values were close to 50% on average. (E) The error in estimated probabilities (approximation error) 
based on different learning strategies. Learning about the informative feature and informative conjunction 
provided the lowest error, whereas learning about the non-informative features and conjunctions lead to a 
similar error as learning about the informative feature alone (see leftmost point on the blue curve and 
rightmost point on the red and yellow curves). 

Finf Fnoninf1 Fnoninf2
0

0.2

0.4

0.6

0.8

1
R

ew
ar

d 
pr

ob
ab

ilit
es

+

+

+

+

+1 +0

Fixation

Stimuli Presentation

Choice

Reward Feedback

<10% >90%10-20% 20-30% 30-40% 40-50% 50-60% 60-70% 70-80% 80-90%

Probability Estimation

S = {                               }

C = {                               }

P = {                               }

0.95 0.15 0.9

0.75 0.75 0.75

0.45 0.95 0.45

0.5 0.5 0.5

0.5 0.5 0.5

0.5 0.5 0.5

0.55 0.05 0.55

0.25 0.25 0.25

0.1 0.85 0.1

Informative Feature

Informative 
Conjunction

N
on-inform

ative
Feature 1

Non-informative
Feature 2

0 100 200 300 400
Trial

0.5

0.55

0.6

0.65

0.7

Pe
rfo

rm
an

ce

Reward
Proportion better

F inf
F noninf1

F noninf2 C inf
C noninf1

C noninf2 O
0

0.1

0.2

0.3

0.4

0.5

Pr
op

. v
ar

ia
nc

e 
ex

pl
ai

ne
d

 Feat.         Mixed           Conj. 

0.6

0.62

0.64

0.66

0.68

0.7

Ap
pr

ox
im

at
io

n 
er

ro
r

Finf+Cinf
Fnoninf1+Cnoninf1
Fnoninf2+Cnoninf2
Chance

A B

C D E

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 18, 2023. ; https://doi.org/10.1101/2023.04.24.538148doi: bioRxiv preprint 

~~ 
-

□ ◊6 ......... 
(:!:::i. 0 '!::, ,' 

0 0 O 
0 

i 

https://doi.org/10.1101/2023.04.24.538148


 17 

Learning in multi-dimensional environments is guided by the informative 

feature and conjunction. 

To determine how participants adjusted their choices based on reward and choice history early in 

the experiment, we applied a mixed-effects logistic regression to the first 150 trials of the 

experiment, before the performance converges (see Materials and Methods for more details). We 

found that participants’ choices could be significantly predicted by the reward outcome from the 

previous trial associated with the informative feature (𝛽 = 0.19, 	𝑆𝐸 = 0.04, 	𝑡(9970) =

4.27, 	𝑝 < 0.001; Fig. 2A) and informative conjunction (𝛽 = 0.17, 	𝑆𝐸 = 0.08, 	𝑡(9970) =

2.15, 	𝑝 = 0.03; Fig. 2A). This means that whenever one of the two choice options (stimuli) in 

the current trial shared the same informative feature or informative conjunction as the chosen 

stimulus from the previous trial, participants were more likely to choose it if the previous choice 

was rewarded and avoid it if the previous choice was not rewarded (i.e., win-stay and lose-switch 

based on feature). In contrast, there was no evidence that participants adjusted their choices 

according to feedback based on the non-informative features or non-informative conjunctions 

(𝑝 > 0.05). These results provide evidence for differential learning about more informative 

features or conjunctions. In contrast, we found that learning about the non-informative features 

(including the ones that are constituents of the informative conjunction) and the non-informative 

conjunctions was attenuated. 

In addition, we found that participants’ choices were significantly influenced by the previous 

trial’s choice on the informative feature (𝛽 = 0.15, 	𝑆𝐸 = 0.05, 	𝑡(9970) = 2.78, 	𝑝 = 0.005) 

and non-informative feature 1 (𝛽 = 0.18, 	𝑆𝐸 = 0.05, 	𝑡(9970) = 3.57, 	𝑝 < 0.001). Overall, 

participants were more likely to repeat choosing an option that shared either the informative 

feature, or the non-informative feature 1, with the previously chosen option regardless of the 

previous outcome. Such choice auto-correlation in general could be explained by a positivity bias 

in reward learning that weighs positive outcomes more heavily than negative outcomes 

(Palminteri and Lebreton, 2022). The elevated level of choice auto-correlation in the informative 

feature and the first non-informative dimensions could also be a consequence of biases in 

learning or choice, as the effect of positivity bias is amplified through attentional effects on 

learning. Although the logistic regression analysis cannot separate the influence of attention on 

choice vs. learning (Katahira, 2018), it enabled us to detect biases in choice behavior that imply 
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differential processing of different features or conjunctions of the stimuli. These results 

motivated us to investigate the mechanisms through which this attentional bias could have 

emerged and how it could have interacted with value learning (see the next section). 

We also verified that participants’ steady-state choice behavior reflected knowledge about the 

values of both the informative feature and the informative conjunction. To that end, we used the 

log ratio of the objective reward probabilities/values of the two options along the informative 

feature and conjunction dimensions to predict participants’ choice in the last 150 trials using a 

mixed effects logistic regression model. We found that the log ratio of values along both the 

informative feature (𝛽 = 1.78, 	𝑆𝐸 = 0.20, 	𝑡(10047) = 8.71, 	𝑝 < 0.001) and the informative 

conjunction (𝛽 = 0.23, 	𝑆𝐸 = 0.08, 	𝑡(10047) = 2.89, 	𝑝 = 0.003) significantly predicted 

participants’ steady-state choices, suggesting that participants learned the values of both the 

informative feature and conjunction and made choices based on a weighted combination of these 

values as reflected in the best fit logistic curves based on the informative feature and conjunction 

values (Fig. 2B). We also fit mixed-effects logistic regression models using the objective reward 

values of both the non-informative conjunctions and the stimulus (the objective values of the 

non-informative features are all too close to 0.5 to be meaningful). We found that the model that 

best explained choice behavior considered both the informative feature and the informative 

conjunction (𝜒R(4) = 81.73, 𝑝 < 0.001), compared to the model that used only the informative 

feature, and this model achieved the overall best Akaike Information Criterion (AIC) compared 

to other models that took into account the non-informative conjunctions’ values, or the 

stimulus/object values.  

Based on the above analyses, we conclude that in the multi-dimensional reward learning task, 

participants’ initial behavioral adjustments indicated a higher sensitivity to the reward and choice 

history of certain features and conjunctions over other ones. This adaptive strategy allowed 

participants to learn an approximate value representation by learning the values of the 

informative feature and informative conjunction without having to learn the object/stimulus 

values directly. This had lasting effects on the participants’ behavior, as they made their choices 

by combining the values from the informative feature and conjunction once their performances 

had reached steady state. 
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Figure 2. Model-free analysis of reward credit assignment and decision making. (A) Analysis of choice 
behavior during the first 150 trials of the experiment. Plot shows the regression weights from the mixed 
effects logistic regression model to predict choice using features of choice and reward outcomes in the 
previous trial. Early choices can be significantly predicted by reward outcome associated with the 
informative feature and informative conjunction, but not non-informative features or conjunctions. 
Choices can also be significantly predicted by the informative feature and one of the non-informative 
features of previous choice, but not other variables. Star, double stars, and triple stars indicate 𝑝 < 0.05, 
𝑝 < 0.01, and 𝑝 < 0.001. (B) Analysis of choice during the last 150 trials of the experiment. Plot shows 
the fit of late choice data using the informative feature (blue) and conjunction (purple) as indicated in the 
legend. Inset shows the regression weights from the mixed effects logistic regression analysis of choice, 
using ground truth reward values of the informative feature and conjunction. Choices later in a session 
were strongly informed by the values of the informative feature and informative conjunction. 

 

Attention is guided jointly by the informative feature and conjunction, and 

only affects learning. 

The above model-free analyses verified that participants’ credit assignment and/or decision 

making were biased towards certain features and conjunctions. Next, to explain how these 

attentional biases emerge and exert their influences, we constructed various reinforcement 

learning (RL) models that included different attentional mechanisms, and fit choice behavior 

with these models. The general architecture of the models (Fig. 3A) was inspired by the 

hierarchical decision making and learning model proposed by Farashahi and colleagues 

(Farashahi, Rowe, et al., 2017). In these models, a set of nine feature-encoding units (three for 

each feature), 27 conjunction-encoding units (nine for each conjunction), and 27 object-encoding 

units are tuned to different dimensions of the stimuli. Each of these units projects to a 

corresponding value-encoding unit via synapses that undergo reward-dependent plasticity. This 

allowed the value-encoding units to estimate reward values associated with individual features, 
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conjunctions of features, and objects. In addition, feature- and conjunction-value encoding units 

send input to the corresponding attentional-selection circuits that in turn, provide feedback to 

modulate the gain of stimulus-encoding units. This feedback could modulate decision making by 

prioritizing values associated with some stimulus dimensions over others. The ensuing attention-

weighted value signals drive the decision-making circuit that generates choice on each trial and 

could result in harvesting reward. The reward outcome on each trial in turn modulates the update 

of synapses between sensory- and value-encoding units (Soltani and Wang, 2010). In addition to 

gain modulation during decision making, attention could also differentially modulate the rate of 

synaptic updates by changing the gain of the pre-synaptic stimuli encoding units, which 

ultimately modifies the learning rates or associability of different stimuli dimensions (Kruschke, 

2001). 

To test how learned reward values could drive attention, we compared three possible 

relationships between these values and attention (in addition to no relationship): summation, 

absolute difference, and maximum (see Materials and Methods). All of these functions could be 

implemented by canonical recurrent neural network circuits and had been used in prior studies to 

calculate attention based on subjective reward values, sometimes in much simpler reward 

schedules where these possibilities could be hard to distinguish from each other (Soltani et al., 

2016,, 2021; Farashahi, Rowe, et al., 2017; Farashahi and Soltani, 2021; Hunt, Dolan, and 

Behrens, 2014; Pettine et al., 2021; Niv et al., 2015; Anderson, Laurent, and Yantis, 2011; Gluth, 

Spektor, and Rieskamp, 2018; Daniel, Radulescu, and Niv, 2020; Leong et al., 2017). In our 

model, reward values of the two presented options along different dimensions are first passed 

through one of the above functions, and then normalized across dimensions to have a sum of 1, 

resulting in one attention weight per feature or conjunction dimension (e.g., color or color/shape 

conjunction). Attention could modulate decision making, learning, both, or neither. We assumed 

that during decision making, attention could modulate the relative weights of a stimulus’ feature 

and conjunction values in determining the log odds of choosing that stimulus. Furthermore, the 

learning rates of feature and conjunction value updates were modulated by the attention weights 

to model the effects of attention during learning. We also considered five learning strategies: (1) 

feature-based learning (𝐹); (2) feature- and object-based learning (𝐹 + 𝑂); (3) feature- and 

conjunction-based learning with separate attention, where attention weights on the features and 

conjunction are calculated separately (𝐹 + 𝐶<=2>!>?=); (4) feature- and conjunction-based 
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learning where attention only biases features, whereas attention is uniform over conjunctions 

(𝐹 + 𝐶@=>?A!=	>??(); and (5) feature- and conjunction-based learning attention is calculated based 

on the integrated values of features and conjunctions, modulating both similarly (𝐹 + 𝐶$B"(?). 

The last three variations of value learning strategies were tested to investigate possible 

mechanisms of previously unexplored interaction between attention based on features values and 

conjunctions values. This comprises 50 models in total. 

After fitting the parameters of all models on the trial-by-trial choice behavior of participants 

using maximum likelihood estimation, we applied Bayesian model selection (BMS) to the 

Bayesian information criterion (BIC) of all models. The model that best explained our choice 

data (𝐹 + 𝐶$B"(? diff X L, posterior probability = 0.32, 𝑝𝑥𝑝 = 0.98, Fig. 3B) learned both feature 

and conjunction values. In this model, attention only modulated learning and not decision 

making. Moreover, attention to conjunctions was linked to attention to features such that the 

value of a feature was first integrated with the value of the conjunction of the two other features, 

and then used to guide attention. The resulting attention weights modulated the learning rates of 

both that feature and conjunction, but not how they were combined during decision making. This 

means that more attention was allocated to the feature and conjunction pair whose integrated 

value had the largest absolute difference between the two options. We validated this result by 

confirming that the best fit model could be identified when compared with models that use the 

same learning strategy or the same attentional mechanism (Fig. S1A and Fig. S1B). 
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Figure 3. Computational model for learning in high-dimensional environments with value-driven 
attention. (A) Illustration of the model’s architecture. Sensory units encode different features, 
conjunctions, and object/stimulus identities of the choice options. These units project to feature-value, 
conjunction-value, and object-value encoding units via plastic synapses that undergo reward-dependent 
plasticity, allowing the latter units to estimate the corresponding reward values. Feature-value and 
conjunction-value encoding circuits send feedback to feature and conjunction attention circuits, which 
potentially interact with each other. Using these value signals, the attention circuit calculates modulatory 
signals that feedback into the sensory encoding units to modulate the gain of feature/conjunction 
encoding, which in turn modulates decision making and/or learning. (B) Results of random effects 
Bayesian Model Selection (BMS). Reported values in the middle panel are protected exceedance 
probability (pxp) of all models. The column and row above and to the right are the results of family-wise 
BMS aggregating across different types of value learning strategies and across different attentional 
mechanisms, respectively. The name of attentional mechanisms is given by how attention is calculated 
(const: constant and uniform, diff: absolute difference, sum: sum / average, max: maximum) and when 
attention is applied (none: no attentional modulation, C: during choice, L: during learning, CL: during 
choice and learning). For example, diff X L denotes that attention is calculated based on absolute 
difference and modulates value updates. (C) The average differences in trial-wise BIC between the best 
model (𝐹 + 𝐶!"#$%, diff X L) and all other models with the same attentional strategy, but distinct value 
learning strategies. Shaded areas indicate the SEM. A moving average of window size 100 was applied 
for visualization purposes, not in hypothesis testing. 

 
 

Using family-wise BMS by pooling together models that share the same attentional mechanism 

or the same learning strategies, we confirmed that across all value learning strategies, the best-

fitting attentional mechanism modulated only the value updates and not decision making, and 
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this attentional mechanism was controlled by the absolute value difference between the two 

alternative options (on each trial) along different dimensions (posterior probability = 0.42, 

𝑝𝑥𝑝 > 0.99). This reflects a form of biased credit assignment where each outcome was 

attributed to certain dimension(s) depending on how well value information along that dimension 

predicted the outcome. This is consistent with previous findings that learning is faster for 

informative (Farashahi, Rowe, et al., 2017) and reliable (Mackintosh, 1975) features but extends 

these findings to learning for informative conjunctions. 

Overall, we also found that across all attentional mechanisms, the learning strategies that best fit 

our data were feature and conjunction learning with separate attention (posterior probability = 

0.49, 𝑝𝑥𝑝 = 0.90), closely followed by feature-based learning (posterior probability = 0.35, 

𝑝𝑥𝑝 = 0.10). Models with feature-based learning had a good overall fit compared to many of the 

𝐹 + 𝐶$B"(? models because the improvement of fit (with additional parameters) in the latter 

models was not enough to counteract the penalty for having additional parameters captured by 

BIC. Nonetheless, the winning model’s attentional mechanism (diff X L) was uniquely good at 

explaining choice behavior among all the 𝐹 + 𝐶$B"(? models. By examining the trial-wise BIC 

(Equation 11) of the models with the best attentional strategy (diff X L), we found the difference 

between the trial-wise BIC of the 𝐹 + 𝐶$B"(? model and the feature-based learning model with 

the same attentional mechanism decreased over time (𝛽 = −0.05, 	𝑆𝐸 = 0.01, 	𝑡(28942) =

−4.30, 	𝑝 < 0.001), and so did the difference between the trial-wise BIC of the 𝐹 + 𝐶$B"(? with 

the mixed feature- and object-based learning model (𝛽 = −0.04, 	𝑆𝐸 = 0.01, 	𝑡(28942) =

−3.35, 	𝑝 < 0.001). Consistent with previous studies (Farashahi, Rowe, et al., 2017; Farashahi 

and Soltani, 2021), this result suggests a transition from feature-based to more conjunction-based 

learning, without fully transitioning to object-based learning (Fig. 3C), even after considering 

feature- and conjunction-based attentional modulations. More importantly, attention might play 

an important role in guiding a gradual transition in learning strategy: after learning about feature 

values, instead of learning about the values of all conjunctions, attention can be used to select the 

most informative conjunction for further learning. 

Using the maximum likelihood parameter estimates of the best model (Table S1, see Fig. S1C 

and Fig. S1D for parameter recovery results), we could infer the trial-by-trial subjective 

attentional weights in the same way that subjective values could be inferred from the RL models 
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that fit choice data the best. Using this approach, we investigated the distribution and dynamics 

of attention across the informative and non-informative stimulus dimensions. Because attentional 

weights add up to 1, we treated their distribution as a categorical probability distribution over the 

dimensions and applied an information-theoretic approach to characterize their dynamic 

properties with the following observations. First, we found that the entropy of the attentional 

weights, which is inversely proportional to how focused attention is, decreased throughout the 

session (𝛽 = −0.17, 	𝑆𝐸 = 0.03, 	𝑡(28942) = −5.72, 	𝑝 < 0.001; Fig. 4A). This means that 

attention became more focused as participants learned about reward values associated with 

stimuli and their features over the time course of the experiment, consistent with previous work 

(Niv et al., 2015). Second, the Jensen-Shannon divergence (JSD) of attentional weights across 

consecutive trials, which is proportional to the changes in attention across trials, increased over 

time (𝛽 = 0.06, 	𝑆𝐸 = 0.01, 	𝑡(28875) = 4.77, 	𝑝 < 0.001). Even though value learning was a 

gradual process in our experiment, the model could allow for stimulus-specific, rapid switching 

of attention across trials by assuming a large inverse temperature in the softmax function used to 

calculate the normalized attentional weights (see Equation 8). Indeed, we found the estimated 

value for this quantity to be relatively large (𝑀𝑒𝑑𝑖𝑎𝑛 = 257.88, 	𝐼𝑄𝑅 = 410.17 − 70.39; Fig. 

5A), making the competition for the control of attention to be close to a hard winner-take-all. 

Nonetheless, attention was influenced by both feature values and conjunction values and in turn, 

modulated the learning of both sets of values, as revealed by the distribution of the 𝜔 values that 

quantify the relative influence of feature and conjunction in the model (𝑀𝑒𝑑𝑖𝑎𝑛 = 0.57, 	𝐼𝑄𝑅 =

0.81 − 0.45; Fig. 5B).  
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Figure 4. Dynamics of attentional modulation and its effects on performance. (A) Plot shows the entropy 
of the attentional weights and Jensen-Shannon divergence (JSD) between attentional weights in 
consecutive trials. Entropy rapidly decreased and remained low, suggesting that attention became more 
focused over time. The increase in JSD suggests that attention tended to switch across trials even late in 
the session. A moving average with a window size of 20 trials was applied for visualization purposes, not 
hypothesis testing. (B) The average attentional weights for individual participants. The color indicates the 
average cross-trial JSD for each participant. Participants exhibited a variety of patterns for attentional 
modulation. Some concentrated on either the informative feature and conjunction pair, or one of the non-
informative feature and conjunction pairs (points close to the vertices of the triangle with low JSD). 
Others oscillated between two or three different dimensions (points far from the vertices with high JSD). 
(C) Plot shows the time course of smoothed average attentional weights across participants, weighted by 
participants’ overall sensitivity to reward feedback (𝛽 × (𝛼& + 𝛼')). The most informative feature and 
conjunction pair received the most attentional weights on average. A moving average of window size 30 
trials was applied for visualization and the cluster-based permutation test. (D) Relationship between the 
allocation of attention and performance. Effective attention weight quantifying credit assignment to the 
most informative dimensions was associated with increased performance. In contrast, incorrect credit 
assignment to non-informative dimensions led to poorer performance. Star, double stars, and triple stars 
indicate 𝑝 < 0.05, 𝑝 < 0.01, and 𝑝 < 0.001.  
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Figure 5. Distribution of key model parameters. (A) The distribution of 𝛾 values, measuring inverse 
temperature for attentional selection, in the best-fit model. Higher values of 𝛾 correspond to more focused 
attention. (B) The distribution of 𝜔 values, measuring relative weighting of feature vs. conjunction for 
decision making. This distribution suggests that participants tend to consider both feature and conjunction 
when making decisions but with a slight overall bias towards feature-based learning. (C) The distribution 
of the learning rates for rewarded and unrewarded trials (𝛼& and 𝛼') and the decay rate for the value of 
the unchosen option (𝑑). The learning rate for rewarded trials was overall larger than the learning rate for 
unrewarded trials for most participants, and decay rates were small but non-zero. 

 

The distribution of participants’ trial-averaged attentional weights (Fig. 4B) revealed that 

participants employed a diverse range of attentional strategies. Although some participants 

focused more on the informative dimensions (i.e., the informative feature and informative 

conjunction pair), a substantial proportion of them developed attention on the non-informative 

dimension 1 (the non-informative feature 1 and non-informative conjunction 1). The trial-by-

trial, participant-averaged attentional weights also demonstrated an initial bias towards the non-

informative dimension 1 (Fig. 4C). To account for each participants’ overall sensitivity to reward 

feedback, the attention trajectory of each participant was weighted by 𝛽 × (𝛼5 + 𝛼7) based on 

their best fit parameters before being averaged, making them a measure of effective attention 

weights over the entire group. However, the unweighted average of trial-by-trial attention 

weights (Fig. S2A) was used for the following hypothesis testing procedure. Using a one-tailed t-

test with a cluster-based permutation test to correct for multiple comparisons (cluster threshold 

𝛼 = 0.05), we discovered a cluster of time points during early trials where more attention was 

allocated to learning about the non-informative dimension 1 compared to the non-informative 

dimension 2. As learning progressed, however, more attention was allocated to the informative 

dimension. A cluster of time points was observed in later trials where more attention was 

allocated to learning about the informative dimension compared to the non-informative 

dimension 2. However, we did not find any significant differences between attentional weights to 

the informative dimension and non-informative dimension 1. It is worth noting that similar 
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attentional weights for the informative feature and non-informative feature 1 does not correspond 

to similar learning or decision weights for these features, because only the informative feature 

carries information about reward. One possible explanation for this bias towards non-informative 

dimension 1 was the asymmetric learning rates (Fig. 5C), which led participants to update their 

values to a lesser extent after a lack of reward, causing them to learn biased value representations 

(Palminteri and Lebreton, 2022; Katahira, 2018; Cazé and van der Meer, 2013). This would also 

explain why the choice history of non-informative feature 1 had a strong effect on participants’ 

ongoing choices (Fig. 2B). This asymmetry in learning rates was also not simply due to adding 

the attention component, as it was still present in models without attention (Fig. S3). However, 

its effect could potentially be amplified by attention, leading to differential sensitivity to the 

choice history associated with different features, as we observed in the current study (Fig 2A). 

Importantly, individual participants’ trial-averaged attention weights predicted their empirical 

performance such that the more they allocated attention towards learning the values of the 

informative feature and conjunction, the higher their performance was (𝜌(65) = 0.35, 	𝑝 =

0.003; Fig. 4D). On the other hand, more attention towards learning the values of non-

informative dimension 1 corresponded with lower performance (𝜌(65) = −0.27, 	𝑝 = 0.03). 

The correlation between attention towards non-informative dimension 2 and performance was 

negative but not significant (𝜌(65) = −0.13, 	𝑝 = 0.30), however, this null result could be due 

to the small number of subjects who ended up focusing on non-informative dimension 2 (see 

4B). Overall, these results suggest that initially, participants tended to develop a bias towards one 

of the non-informative dimensions. After receiving more reward feedback, however, they 

transitioned to learning about the correct combination of the informative feature and conjunction. 

Ultimately, the extent of learning (credit assignment) about the informative dimensions 

influenced their final performance. These observations highlight the critical role of attention in 

performing multi-dimensional learning tasks. 

RL model captures key characteristics of the experimental data. 

To ensure that the aforementioned results were not due to the best model capturing specific 

sequence of choices made by the participants and that our best model is able to replicate the main 

pattern of behavioral results, we simulated the MDPL task using the estimated parameters from 
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the best model (Wilson and Collins, 2019). To that end, we simulated 50 sessions of the 

experiment using individual participants’ estimated parameters and the exact order of choice 

options they were presented with. We found that on average, the best model’s performance 

matched the empirical learning curve (Fig. 6A). Moreover, the model was able to capture 

individual differences in performance, as there was a high degree of correlation between the 

empirical performance and the average simulated performance for individual participants 

(𝜌(65) = 0.60, 	𝑝 < 0.001) (Fig. 6B). 

Computing the trial-by-trial simulated attentional weights, we found that attention in the model 

became more focused over time, as indicated by the decrease of attention weights’ entropy by 

trial (linear mixed effect model, main effect of trial 𝛽 = −0.16, 	𝑆𝐸 = 0.002, 	𝑡(1447198) =

−79.80, 	𝑝 < 0.001; Fig. 6C), similar to our experimental observation (Fig. 4A). Moreover, the 

Jensen-Shannon divergence of attentional weights across consecutive trials increased throughout 

the trials, suggesting larger jumps of attention across consecutive trials as the session progressed 

(linear mixed effect model, main effect of trial, 𝛽 = 0.04, 	𝑆𝐸 = 0.001, 	𝑡(1443848) =

36.60, 	𝑝 < 0.001; Fig. 6C). In addition, similar to our experimental observations, we found 

diverse attentional strategies (compare Fig. 6D and Fig. 4B), suggesting that participants’ 

attentional weights could diverge due to noise in the choice sequence. 

We also repeated the cluster-based permutation-test (one-sided t-test, cluster threshold 𝛼 = 0.05) 

on simulated data generated by the best model and found that on average, more attention tended 

to be allocated to the informative dimension than to the second non-informative dimension. In 

addition, more attention was allocated to non-informative dimension 1 than non-informative 

dimension 2, but the difference only occurred at the beginning of the session (Fig. 6E, see Fig. 

S2B for the unweighted average attention weights for the simulation). We note that due to the 

large number of simulated trials for each parameter set, the time course of simulated attentional 

modulation appears smoother than that of the empirical attention weights (compare Fig. 6E and 

Fig. 4C). However, the overall amount of stochasticity and cross-trial switches in attention were 

similar between simulated and empirical data (compare Fig. 6C and Fig. 4A). There was also 

significant variability in the trajectory of both value functions and attention weights across 

different runs of the same participant due to stochasticity of choice (Fig. S4A and Fig. S4B). 

Finally, similar to experimental data, we found a significant correlation between performance 
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and attentional strategy in the simulated data such that more attention to the informative 

dimension was associated with better performance (𝜌(3348) = 0.40, 	𝑝 < 0.001; Fig. 6F) and 

more attention towards the non-informative dimensions was associated with lower performance 

(𝜌(3348) = −0.30, 	𝑝 < 0.001 for non-informative dimension 1, 𝜌(3348) = −0.22, 	𝑝 <

0.001 for non-informative dimension 2; Fig. 6E). 

 
Figure 6. Analyses of simulated data generated by the best model and its estimated parameters for 
individual participants. (A–B) Performance based on simulated data and comparison with observed 
performance. The simulated performance matched empirical performance on average and across 
participants. Shades and error bars show the SEM. (C) The entropy of the attentional weights and Jensen-
Shannon divergence (JSD) between attentional weights on consecutive trials. Simulated trial-by-trial 
attention became more concentrated over time, and attention can jump sharply across consecutive trials. 
(D) The average attentional weights for simulated data. Conventions are similar to Fig. 4B. The 
distribution of attentional weights in simulated data exhibited a diverse set of credit assignment strategies. 
(E) Simulated trial-by-trial attention. (F) Relationship between the allocation of attention and 
performance in simulated data. Higher attention on the informative feature and conjunction predicted 
better performance. Triple stars indicate 𝑝 < 0.001. Overall, model simulations replicated key aspects of 
empirical data. 

 

Value estimations are biased by the informative feature and conjunction. 

To more directly test the participant’s representation of the reward contingencies or values, we 

further analyzed their estimations for reward probabilities associated with the 27 stimuli/objects. 

Our hypothesis was that the similarities between each participant’s value estimations of different 

stimuli could be influenced by their attentional biases. For example, a participant who focused 
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their attention on the color dimension would rate all stimuli that share the same color as having 

similar values. Alternatively, a participant who focused their attention on the conjunction of 

shape and pattern dimensions would rate all stimuli that share the same shape and pattern 

configuration similarly but would not rate stimuli that share only a shape or a pattern similarly. 

Expanding on methods used in previous work (Farashahi and Soltani, 2021), we fit linear mixed 

effect models of the participants’ estimation of the reward probability of each stimulus using 

different reward values based on features, conjunctions, or their combinations as the independent 

variables. More specifically, we fit five models using the following independent variables: (1) 

values of the informative feature, 𝐹"(@; (2) values of the informative feature and the informative 

conjunction, 𝐹"(@ + 𝐶"(@; (3) values of the non-informative feature 1, 𝐶(B("(@'; (4) values of the 

non-informative feature 2, 𝐶(B("(@R; and (5) values of stimuli/objects, 𝑂. Consistent with 

previous work, we found that the best model for fitting participants’ estimates on estimation 

trials was a model that predicted value estimates with the values of the informative feature and 

the informative conjunction as reflected in the adjusted 𝑅R values (Fig. 7B). This model showed 

the lowest Akaike Information Criterion (AIC) compared to all other models (see the likelihood 

ratio test comparing to the second-best model that includes only the informative feature in Table 

1: 𝜒R(4) > 21.25, 𝑝 < 0.001). Importantly, the worst model was the one that used the 

stimulus/object values equal to the ground-truth reward probabilities. 

In order to test whether participants learned about stimulus/object values in addition to feature 

and conjunction values, we fit mixed-effect models using reward values of the informative 

feature and the informative conjunction, as well as the reward values of the stimuli/objects. We 

found the regression weight on the informative feature to be always significantly bigger than 0 

(𝛽 > 0.48, 𝑝 < 0.001 for all five bouts; Fig. 7C; Table 2), and this was also the case for the 

weight on the informative conjunction (𝛽 > 0.11, 𝑝 < 0.007 for all five bouts; Fig. 7C). The 

regression weight on the stimulus/object values was either non-significant or significant but 

negative, suggesting that participants did not meaningfully learn about the reward values of 

objects other than those explained by the informative feature and conjunction (Table 2). These 

dovetail our results based on the analysis of choice behavior, suggesting that participants 

employed an efficient learning strategy using the informative feature and conjunction. 
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Although the above analyses revealed that participants acquired knowledge about the ground-

truth reward values in terms of the informative feature and conjunction, they cannot detect if they 

exhibited deviations from the ground truth that could reflect attentional biases. Such biases can 

be uncovered by fitting ANOVA models that use the features of each stimulus and their 

interactions to predict the participants’ reward probability estimates, and comparing the variance 

explained by each feature and their interactions. This method does not depend on the ground 

truth reward values (calculated from the reward schedule) and therefore, is more capable of 

capturing biases in learning. Using this method we found that, consistent with the previous 

method, both the informative feature and the interaction of the two non-informative features (the 

informative conjunction) explained a significant amount of variance in the value estimates from 

all estimation trials (informative feature: 𝐹(2,528) > 31.40, 𝑝 < 0.001, 𝜂2R > 0.38; informative 

conjunction: 𝐹(4,528) > 2.71, 𝑝 ≤ 0.03, 𝜂2R > 0.03). We performed the same analysis on each 

of five estimation bouts separately and found that non-informative feature 1 explained a 

significant amount of variance in the first bout of value estimates despite the fact that this feature 

carried no information (𝐹(2,528) = 7.15, 𝑝 = 0.001, 𝜂2R = 0.12; Table 3). Consistent with the 

observation in the previous sections (Fig. 2B and Fig. 4C), this suggests a sub-optimal attentional 

focus on the non-informative feature 1 dimension at the beginning of the session. We speculate 

that this happened due to the small amount of information carried by this dimension, the noise in 

the choice process, the bias induced by asymmetric learning rates, and fluctuations in attention 

during learning. Nonetheless, later in the session, the informative feature and the informative 

conjunction explained most variance in value estimates (Table 3), consistent with the results 

from RL modeling that attention became more focused on the informative feature and 

conjunction after more trials (Fig. 4C). 

To further relate reward probability estimates from the estimation bouts to the RL models used to 

fit choice data, we also utilized subjective values from the RL models to predict reward 

probability estimates. To that end, we first computed a weighted average of the subjective values 

along different feature and conjunction dimensions to compute reward value of stimuli before 

each estimation bout (i.e., after choice trials 86, 173, 259, 346, 432). As mentioned above, the 

RL model that best explained participants’ choice data estimated the reward values of features 

and conjunction and had uniform attention during choice (see Fig. 3B and Equation 5). We z-
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scored these subjective values from
 R

L m
odeling for each participant because the inverse 

tem
perature param

eter allow
ed these values to assum

e very different ranges. U
sing a linear 

m
ixed-effects m

odel, w
e then fit a scaling param

eter and an intercept in order to predict the 

estim
ated rew

ard probabilities reported by participants using the subjective values from
 the R

L 

m
odel. W

e found that rew
ard probability estim

ates w
ere better fit by subjective values based on 

the best R
L m

odel than by the objective rew
ard values (Table 1). This result further illustrates 

that the w
inning R

L m
odel captured the learning and integration of values along different 

dim
ensions w

ell. 

O
verall, analyses of the participants’ value estim

ates confirm
ed our analyses of choice data 

suggesting that participants learned about the inform
ative feature and the inform

ative 

conjunction and prioritized learning about these dim
ensions over other dim

ensions. In addition, 

these analyses show
ed that sub-optim

al attentional strategy also led to biases in value estim
ation. 

Finally, the fact that subjective probability estim
ates w

ere w
ell captured by the subjective values 

based on the best R
L m

odel, even though that R
L m

odel w
as not fit on the value estim

ates in 

estim
ation trials, further validates the suitability of this m

odel in capturing behavioral data. 
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 Est. bout 1 Est. bout 2 Est. bout 3 Est. bout 4 Est. bout 5 

𝐹"(@ 
-LL=2562.07  
AIC=5136.14  
BIC=5169.14 

-LL=2389.29  
AIC=4790.58  
BIC=4823.59 

-LL=2299.19  
AIC=4610.38  
BIC=4643.38 

-LL=2262.57  
AIC=4537.13  
BIC=4570.14 

-LL=2231.88  
AIC=4475.76  
BIC=4508.76 

𝐹"(@	 + 𝐶"(@ 
-LL=2551.01  
AIC=5122.01  
BIC=5177.02 

-LL=2378.67  
AIC=4777.33  
BIC=4832.34 

-LL=2288.18  
AIC=4596.35  
BIC=4651.36 

-LL=2248.43  
AIC=4516.87  
BIC=4571.88 

-LL=2212.18  
AIC=4444.36  
BIC=4499.36 

𝐶(B("(@' 
-LL=2565.59  
AIC=5143.17  
BIC=5176.18 

-LL=2392.94  
AIC=4797.89  
BIC=4830.89 

-LL=2295.46  
AIC=4602.91  
BIC=4635.91 

-LL=2263.92  
AIC=4539.84  
BIC=4572.85 

-LL=2231.15  
AIC=4474.30  
BIC=4507.30 

𝐶(B("(@R 
-LL=2562.44  
AIC=5136.87  
BIC=5169.87 

-LL=2406.55  
AIC=4825.10  
BIC=4858.10 

-LL=2313.55  
AIC=4639.10  
BIC=4672.10 

-LL=2284.04  
AIC=4580.07  
BIC=4613.08 

-LL=2246.90  
AIC=4505.80  
BIC=4538.81 

𝑂 
-LL=2651.50  
AIC=5315.00  
BIC=5348.00 

-LL=2523.29  
AIC=5058.57  
BIC=5091.58 

-LL=2463.17  
AIC=4938.35  
BIC=4971.35 

-LL=2453.61  
AIC=4919.22  
BIC=4952.22 

-LL=2386.02  
AIC=4784.03  
BIC=4817.03 

𝑅𝐿 
-LL=2457.04  
AIC=4926.08  
BIC=4959.08 

-LL=2233.19  
AIC=4478.38  
BIC=4511.38 

-LL=2158.97  
AIC=4329.95  
BIC=4362.95 

-LL=2071.04  
AIC=4154.07  
BIC=4187.08 

-LL=2127.15  
AIC=4266.30  
BIC=4299.30 

 
Table 1. Comparison of different reward values’ ability to predict participants’ reward probability 
estimates across five bouts of estimation trials (𝑁 = 67). Reported values are the goodness-of-fit metrics 
(smaller values correspond to better models) based on linear mixed models with different reward values 
as predictors. The bold values show the best model in each bout, which consistently was the model in 
which subjective values based on the RL models were used. The underlined values indicate the best 
model based on objective values calculated based on the reward schedule (as opposed to subjective values 
estimated by RL models). 
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Bout Name Coefficient SE p-value 
1 𝐹"(@ 0.48 0.04 <0.001 
 𝐶"(@ 0.22 0.04 <0.001 
 𝑂 -0.01 0.005 0.004 
2 𝐹"(@ 0.5 0.03 <0.001 
 𝐶"(@ 0.11 0.04 0.007 
 𝑂 0 0.004 0.504 
3 𝐹"(@ 0.53 0.03 <0.001 
 𝐶"(@ 0.17 0.04 <0.001 
 𝑂 -0.01 0.004 0.09 
4 𝐹"(@ 0.55 0.03 <0.001 
 𝐶"(@ 0.18 0.04 <0.001 
 𝑂 -0.01 0.004 0.024 
5 𝐹"(@ 0.51 0.03 <0.001 
 𝐶"(@ 0.18 0.04 <0.001 
 𝑂 0 0.004 0.324 

 
Table 2. Coefficients from the linear mixed-effects modeling of the participants’ reward probability 
estimates (𝑁 = 67). The independent variables were the log odds of reward values for the informative 
feature, informative conjunction, and the stimuli/object, with coefficients denoted as 𝐹#$*, 𝐶#$*, and 𝑂, 
respectively. 
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 Est. bout 1 Est. bout 2 Est. bout 3 Est. bout 4 Est. bout 5 

𝐹#$* 
F(2, 528)=31.40  

p<0.001  
𝜂()=0.38 

F(2, 528)=47.01  
p<0.001  
𝜂()=0.48 

F(2, 528)=43.69  
p<0.001  
𝜂()=0.54 

F(2, 528)=50.22  
p<0.001  
𝜂()=0.55 

F(2, 528)=58.25  
p<0.001  
𝜂()=0.49 

𝐶$"$#$*+ 
F(2, 528)=7.15  

p=0.001  
𝜂()=0.12 

F(2, 528)=2.08  
p=0.13  
𝜂()=0.03 

F(2, 528)=3.06  
p=0.05  
𝜂()=0.05 

F(2, 528)=2.29  
p=0.11  
𝜂()=0.04 

F(2, 528)=0.97  
p=0.38  
𝜂()=0.01 

𝐶$"$#$*+ 
F(2, 528)=0.13  

p=0.88  
𝜂()=0.00 

F(2, 528)=0.66  
p=0.52  
𝜂()=0.01 

F(2, 528)=1.57  
p=0.21  
𝜂()=0.02 

F(2, 528)=0.72  
p=0.79  
𝜂()=0.01 

F(2, 528)=0.81  
p=0.44  
𝜂()=0.01 

𝐶#$* 
F(4, 528)=5.00  

p<0.001  
𝜂()=0.06 

F(4, 528)=2.71  
p=0.03  
𝜂()=0.03 

F(4, 528)=6.39  
p<0.001  
𝜂()=0.07 

F(4, 528)=5.53  
p<0.001  
𝜂()=0.07 

F(4, 528)=9.09  
p<0.001  
𝜂()=0.09 

𝐶$"$#$*+ 
F(4, 528)=0.49  

p=0.74  
𝜂()=0.00 

F(4, 528)=0.79  
p=0.53  
𝜂()=0.01 

F(4, 528)=1.93  
p=0.11  
𝜂()=0.02 

F(4, 528)=0.64  
p=0.63  
𝜂()=0.01 

F(4, 528)=0.91  
p=0.46  
𝜂()=0.01 

𝐶$"$#$*+ 
F(4, 528)=0.71  

p=0.59  
𝜂()=0.01 

F(4, 528)=0.89  
p=0.47  
𝜂()=0.01 

F(4, 528)=2.67  
p=0.03  
𝜂()=0.02 

F(4, 528)=1.89  
p=0.11  
𝜂()=0.02 

F(4, 528)=3.27  
p=0.01  
𝜂()=0.03 

𝑂 
F(8, 528)=0.85  

p=0.56  
𝜂()=0.01 

F(8, 528)=1.56  
p=0.13  
𝜂()=0.02 

F(8, 528)=2.06  
p=0.04  
𝜂()=0.03 

F(8, 528)=1.58  
p=0.13  
𝜂()=0.02 

F(8, 528)=1.72  
p=0.09  
𝜂()=0.03 

 
Table 3. Result from the mixed-effects ANOVA analysis of participants’ reward probability estimates 
(𝑁 = 67). 

 

Discussion 

Learning in naturalistic environments relies on the interaction between reward learning, decision 

making, and selective attention. To investigate this interaction and underlying neural 

mechanisms, we analyzed behavioral data from a multi-dimensional probabilistic reward 

learning task using multiple approaches. Using model-free methods, we found differences in 

sensitivity to both the reward and choice history associated with different features and 

conjunctions. Specifically, participants adjusted their behavior by associating reward outcomes 

to the informative feature and conjunction of selected stimuli. They were also more likely to 

repeat choosing options that shared the same informative feature, as well as one of the non-
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informative features. Similarly, their value estimations resembled a weighted combination of the 

reward values of the informative feature and the informative conjunction, with an initial bias 

towards one of the non-informative features. 

To explain these observations, we constructed multiple RL models that learned feature, 

conjunction, and/or stimulus values with different value-based attentional mechanisms that 

modulated decision making and/or learning. We found that the model that best explained the 

participants’ choice behavior learned both feature and conjunction values. In this model, 

attention was controlled by the difference in reward values of the two options in terms of feature 

and conjunction and in turn, modulated learning but not choice behavior. Interestingly, feature 

and conjunction values influenced attention in a cooperative manner such that the values of a 

feature were first integrated with the values of the conjunction of the two other features, and the 

resulting attention weights modulated the learning of both feature and conjunction values. 

Although previous studies have revealed the influence of feature-based attention on 

reinforcement learning (Niv et al., 2015; Leong et al., 2017; Farashahi, Rowe, et al., 2017) and 

provided evidence for conjunction-based learning (Farashahi and Soltani, 2021; Duncan et al., 

2018; Ballard, Wagner, and McClure, 2019), our results yield new insight about both processes. 

More specifically, we found that in a high-dimensional environment with more than two 

features, attention allows humans to learn about more informative conjunctions selectively. 

Importantly, this can occur even when learning about the features that make up the informative 

conjunction was already suppressed. Nonetheless, we found that some participants attempted to 

attend and learn about the non-informative dimensions, but this faulty generalization strategy 

came at the cost of lower performance. Overall, our results point to intricate interaction between 

different types of value representations through attentional mechanisms. Future experiments with 

neural recording could identify where this interaction happens in the brain. 

The attentional modulation present in the best-fitting model is similar to the process in a 

hierarchical decision making and learning model that used the relative informativeness of 

stimulus values and integrated feature values to arbitrate between feature-based and object-based 

learning, but without a need for attention (Farashahi, Rowe, et al., 2017). In low-dimensional 

environments where there are only a few features and stimuli to learn about, feature-based 

attention may not be required. In contrast, in high-dimensional environments in which there are 
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multiple ways for constructing or representing the reward value of a stimulus (feature-based, 

conjunction-based, object-based representations, or a mixture thereof), additional adaptive 

mechanisms are needed. This includes selection between different ways for representing stimulus 

values such that the resulting representations are parsimonious and that the associated values 

provide a strong signal to differentiate between choice options. 

Identifying the appropriate representations and learning strategy can be seen as an inference 

problem. Interestingly, stochastic, reward-dependent Hebbian synaptic plasticity provides a 

biologically plausible mechanism for implementing the Naive Bayes algorithm (Soltani and 

Wang, 2010; Murphy, 2012). This works well when the different features are conditionally 

independent given a reward, in which case feature-based learning is sufficient. However, when 

this assumption is violated, as in the current experiment where the conjunction of two features 

provided additional information about reward probabilities, feature-based learning leads to sub-

optimal performance. However, including attentional modulation in conjunction learning is 

conceptually similar to the hierarchical Naive Bayes algorithm, which has been proposed to deal 

with conjunction learning (Han et al., 2005; Langseth and Nielsen, 2006). Similar to the best-fit 

model in the current study, instead of trying to filter out irrelevant features or irrelevant 

conjunctions, hierarchical Naive Bayes selects features to group together into conjunctions based 

on their informativeness. This connection between our empirical findings and theoretical 

algorithms may provide a normative explanation for why this attentional mechanism is favored 

by participants. Overall, our results suggest that in naturalistic environments in which reward 

values cannot be generalized across features, selective attention can be more complex than a 

simple competition among features or among conjunctions. Instead, value representations based 

on both features and conjunctions interact to determine attention, which in turn shapes efficient 

state representations on top of which learning can happen. This value-guided attention provides 

an additional mechanism for controlling the tradeoff between adaptability and precision 

(Farashahi, Donahue, et al., 2017; Farashahi, Rowe, et al., 2017).  

Although we assumed that value-based attention could affect both choice and learning (but only 

found evidence for attentional effects on learning), other theoretical works have suggested that 

attention at choice and learning could serve different roles to aid decision making in high 

dimensional and uncertain environments (Dayan, Kakade, and Montague, 2000), and that the 
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outcome of the choice may play a role in switching attention before value updates (Kruschke, 

2001). Empirical studies have found evidence for different degrees of attentional modulation at 

choice and learning, and for outcome-dependent attention during learning (Akaishi et al., 2016; 

Kruschke, 2001). In the models tested here, the switching of attention was dependent on gradual 

value learning but not on instantaneous reward feedback. Due to concerns of parameter 

identifiability, we also did not test for different attentional mechanisms during choice and 

learning. Eye-tracking could be used as a model-independent measure of attention to avoid this 

issue (Leong et al., 2017). Although uniform attention to multiple features individually might be 

hard to differentiate from attention to the conjunctions of these features even with eye-tracking, 

this method can provide auxiliary data for fitting attention modulated RL models (Radulescu, 

Niv, and Daw, 2019). 

Due to the difficulty of the task, we focused on learning with a stable reward schedule. However, 

naturalistic environments can be volatile, with changing reward contingencies. These changes 

usually do not manifest as randomly reassigning reward probabilities across all stimuli/objects, 

but as localized changes within a task-relevant dimension or changes in the identity of the task 

relevant dimension. These two types of changes mirror the intra- and extra-dimensional shifts in 

the set-shifting literature (Owen et al., 1991) and may have distinct effects on learning and 

choice behavior. The presence of reversals has consequences on learning and choice behavior in 

both humans and non-human primates (Behrens et al., 2007; Farashahi, Donahue, et al., 2017; 

Farashahi et al., 2019; Soltani and Izquierdo, 2019). Similarly, the contributions of attention to 

learning may be easier to detect when there are reversals. This is because attention at learning 

would lead to blocking of learning when the informative dimension is changed, and facilitation 

of learning when there is a reversal along the previously informative dimension. Attention at 

choice alone would not have these effects on learning but may enhance the effect of blocking and 

facilitation when acting in conjunction with attention at learning. Although previous studies on 

multi-dimensional reward learning have utilized both types of reversals, their effects were not 

systematically investigated in the context of probabilistic reward learning, and it would be an 

interesting direction for future research (Farashahi, Rowe, et al., 2017; Akaishi et al., 2016; Niv 

et al., 2015; Kruschke, 2001). 
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Finally, the neural mechanisms by which attention modulates learning are not currently known. 

Although previous recurrent neural network models have investigated plausible mechanisms for 

top-down modulation of decision making by attention (Mante et al., 2013), the effect of attention 

on learning is relatively less explored. Although a study found neural evidence for selective 

reward credit assignment to task-relevant variables (Donahue and Lee, 2015), the relevant 

variable did not change across sessions in that study (e.g., color was always the reward-

predictive cue) and no dynamic interaction between learning and attention was necessary to 

solve the task. Future studies could investigate how attentional effects emerge with value 

learning, and how it in turn modulates learning, possibly through feedback connections involving 

multiple brain regions (Roelfsema, Ooyen, and Watanabe, 2010). 

Overall, our study provides evidence for the existence and possible origin of attentional 

modulations in a multi-dimensional reward learning task. We found that humans prioritize 

learning about both the informative feature and the informative conjunction. This effect can be 

explained by interactions between attention and reinforcement learning, where attention towards 

informative representations of multi-dimensional stimuli biases value updates. This model 

explains both adaptive and sub-optimal attentional strategies, and moreover, captures their 

behavioral consequences. 
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Supplementary Information 
 

Name 25% Percentile Median 75% Percentile 
bias -0.07 0.05 0.21 
𝛽 19.11 24.60 42.00 
𝜔 0.45 0.57 0.81 
d 0.01 0.01 0.02 
α5 0.07 0.15 0.29 
𝛼7 0.00 0.00 0.01 
𝛾 70.39 257.88 410.17 

Supplementary Table S1. Summary statistics of estimated parameters of the best-fitting model.  

 

 
Supplementary Figure S1. Model and parameter recovery. (A–B) Using Bayesian Model Selection, we 
compared the winning model with other models with: the same attentional mechanism (modulation of 
learning based on value difference) and different learning strategies (A), and the same learning strategy 
(F+C learning with joint attention) but different attentional mechanisms (B). The reported values are pxp, 
and the color of the cells show the posterior model probabilities. The true models were all well-recovered 
with pxp=1, except the models with value-difference-based attention modulating both choice and learning 
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were hard to recover from the model where only learning was modulated. However, the false model did 
not fit the data significantly better than the true model (Wilcoxon’s signed-rank test, 𝛥𝐵𝐼𝐶 = 1.20, 𝑝 =
0.83). (C–D) Parameter recovery of the winning model calculated as the Spearman’s correlation between 
true and estimated parameters is shown in D. All estimated parameters were significantly correlated with 
the true parameters (Spearman’s 𝜌 > 0.60, 𝑝 < 0.001), and the correlations between different parameters 
were small. 

 

 
Supplementary Figure S2. Trial-by-trial average attentional weights, not weighted by the product of 
inverse temperature and learning rate, during (A) empirical and (B) simulated choice sequences. The 
difference between the informative and first non-informative dimensions was diminished, but the same 
qualitative pattern was still present.  

 
 

 
Supplementary Figure S3. Estimated learning rates for the feature-based and conjunction-based learning 
in the model without attention. Learning rates were larger for rewarded than unrewarded trials (positivity 
bias). This suggests that the positivity bias in learning rate was not due to the inclusion of attention or the 
inadequacy of the current attentional mechanisms in explaining learning from a lack of reward. 
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Supplementary Figure S4.  Variability of value estimations and attention weights across simulations of 
each individual participant for the winning model. (A) The variability of each feature/conjunction value, 
as quantified by the standard deviation of each value across different simulation runs of the same set of 
empirical parameters. The grey lines are for each individual value and the dark green lines are aggregated 
across all feature and conjunction values. This shows that even with the same set of parameters, due to 
stochasticity in choice, variability in subjective values can persist throughout the session. (B) The 
variability in attention, as quantified by the KL-divergence between attention weights in each simulation 
run and the average attention weights across all simulation runs, for each subject. Similar to the subjective 
values, variability in attention persists throughout the session.  
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