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THE HUBBLE PARAMETER
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BEYOND LAMBDA-CDM

Early time solutions mainly rely on adding some
extra energy before recombination to raise
the value of the Hubble parameter inferred from the CMB.

Extra component should decay
at I east as faSt as "'adiation Poulin, Smith, Karwal, Kamionkowski 18
not to spoil fit to CMB

(Pseudo)scalar
fields

with suitable potential which

Dark radiation

ANeg = Neg — 3.046

switches on around equality

coincidence problem!

the early Universe tool bag
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EARLY DARK ENERGY (EDE)

Poulin, Smith, Karwal, Kamionkowski 18

Consider axion-like field with A I f
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SEARCHING FOR MOTIVATION

“ In this talk it;stead:
model-building perspective

Is EDE potential well-motivated from a model-building point of view?

2006.13959, with M. Gonzalez and M. Hertzberg

Can better-motivated models convincingly address the tension?

2006.13959, with M. Gonzalez and M. Hertzberg

2004.05049, with G. Ballesteros and A. Notari
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EDE POTENTIAL

In general, for a field with a discrete shift-symmetry (axion)
V(p) = m?f? Z Cp, COS (n_;b)

EDE potential requires

62/61 — —2/5, 03/01 = 1/15
Ci>3 =0

V() ~ [1 — cos(¢/f)]”

Poulin, Smith, Karwal, Kamionkowski 18

conspiracy among harmonics hides severe tuning!

2006.13959, with M. Gonzalez and M. Hertzberg
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RESONANT DECAY

Decay should be very fast to keep goodness of fit!

Very interestingly, axion decay to gauge fields exhibits resonant behavior
for certain values of gauge field momenta !
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FLUID MODELING

To check performance of the model, implementation
in Boltzmann code (CLASS) is required.

Two-field resonant system numerically challenging, see also
g : : Poulin et al 18,
but can use effective single fluid model co
Linetal 19
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FLUID MODELING

To check performance of the model, implementation
in Boltzmann code (CLASS) is required.

Iwo-field resonant system numerically challenging, see also
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FLUID MODELING

To check performance of the model, implementation
in Boltzmann code (CLASS) is required.

Iwo-field resonant system numerically challenging, see also

' : : Poulin et al 18,
but can use effective single fluid model L
Linetal 19
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1 Treatment of perturbations
=5 ag\4 is more subtle.
1+ (7) We used a simplified picture

with sound speed tracking
the equation of state
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RESULTS

Dataset: Planck 18 + BAO + Pantheon + SHOES 19

Parameter ACDM dULS A Neog

100 wp 2.254 (2.26)15 015 2.261 (2.249)70010 | 2.272 (2.268) £0.017
Wedm 0.1183 (0.1189)19:99087 1 0.1232 (0.124)19:092% | 0.1235 (0.123)+0.0029
109 A, RAIIEDH IR b i 2.138 (2.143)10:9%5 A4 (2. 135S
ns 0.97 (0.9699)19:9938 | (.9812 (0.9822)79:907% | 0.9793 (0.98) + 0.0062
TS 0.06053 (0.06027)79-297 10.06042 (0.05883)9-297210.0604 (0.05753)+9:9072
Hy 68.24 (68.06) + 0.41 69.69 (69.67)15-51 69.96 (69.82)19-%8
10°QquLs/ANeg 2 7.387 (9.021)F2° 0.3107 (0.2865)12:16
10%a. = 4.526 (6.053)73% -

Jd — fixed to 1.5 —

s 0.8097 (0.8119)F3-0061 | (.8231 (0.8251)79-999* | 0.8245 (0.8215) + 0.01
Ax? 0 —7.92 —2.78

Table I. The mean (best-fit in parenthesis) +1o0 error of the cosmological parameters obtained by fitting ACDM, the dULS and
the A Neg models to our combined cosmological dataset.




3 extra parameters,

of which we fix one
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the A Neg models to our combined cosmological dataset.




RESULTS

Dataset: Planck 18 + BAO + Pantheon + SHOES 19

Parameter ACDM L - dULS A Neog
100 wy, 2.254 (2.26)*0-912 2.261 (2.249)19:019 | 9979 (2.268) 4 0.017
B 0.1183 (0.1189)19:99087 | 0.1232 (0.124)13-292% | 0.1235 (0.123)+0.0029
107 A, N PR R R AR 2.138 (2.143)1903° 247 (S 1a5 TR
s 0.97 (0.9699)19-9938 | 0.9812 (0.9822)75:9079 1 0.9793 (0.98) % 0.0062
e TS 0.06053 (0.06027)79-297 10.06042 (0.05883)9-297210.0604 (0.05753)+9:9072
: _ © |He—=———_ | 68.24 (68.06) & 0.41 69.69 (69.67)15-51 69.96 (69.82)19-%8
of which we fix ONe/ 1105Qaurs /ANog D 2 7.387 (9.021)F2° 0.3107 (0.2865)9:16
such that s 4.526 (6.053)24 =
CLd ~ a L 2 — fixed to 1.5 —
& O """ | ().8097 (0.8119)72-20%, | 0.8231 (0.8251)72-0%%* | 0.8245 (0.8215) & 0.01
o 0 —7.92 SoTR s =y

Table I. The mean (best-fit in parenthesis) +1o0 error of the cosmological parameters obtained by fitting ACDM, the dULS and
the A Neg models to our combined cosmological dataset.

—  ACDM Very similar to
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—— dULS but significantl
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TENSION WITH UV PHYSICS

Well-motivated effective field theory, but
large coupling between axion and gauge field
is required to achieve fast decay!

Concrete UV setups to generate such a large coupling require

additional ingredients see e.g. Kim, Nilles, Peloso 04/.../

(e. g. extra fields) Farina, Pappadopulo, FR, Tesi 16
for some realizations

Other models with scalar fields
resonantly/perturbatively decaying to
light fields similarly exhibit
see 2006.13959 for details UV complications/large coupling

Take home:
Scenarios of EDE/dULS
do not convincingly address
the Hubble tension.
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A DIFFERENT ATTEMPT:
BEYOND GR 2004.05049

EDE/dULS models feature a coincidence problem:
why should a dynamical transition occur at equality?

A simple theory where such a transition occurs
naturally around equality is that of a
non-minimally coupled scalar Matter, radiation,

cosmological constant

: A
5= / d*2y/=g [M[($)R + 8,60"$ + Liot]

Variation of Newton constant from
e.d. ¢ 2 / early time to today
2
f@)=1+8(%) ——» AGymf

: see also Lin et al. 18/Rossi et al/Sola et al/
with 5 < O Sakstein et al. 19/Zumalacarregui 20/... for
related ideas
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DYNAMICAL TRANSITION
AROUND EQUALITY

d+3Hp— BRGp=0 wih R=6H+12H?

(mY/H? ~ 0

during radiation
domination

Field is stuck

during matter

Field rolls/oscillates m2 / H 2 z 1 i
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DISCUSSION

Fit to CMB gives results similar to
dark radiation when neglecting post-newtonian constraints
(screening mechanisms? late time dynamics of the field?)

see 2004.05049 for details

Constraints from LSS?
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CONCLUSIONS

Hubble tension may hint at additional complexity beyond
Lambda-CDM.

Early Dark Energy (EDE) models require tuned UV setups.

decaying ultralight scalar (dULS) models are well-behaved
EFTs, but UV realization requires additional ingredients!

Evidence that EDE/dULS models not convincingly address
Hubble tension!

(complementary to LSS-driven constraints)

Non-minimally coupled scalars explain why dynamical transition
occurs around equality!

However, tension is only alleviated in simple models.



THE SEARCH CONTINUES

Thank you for the attention!



BACKUP



RESONANT DECAY

é _|_ 3H¢ —|— V,(¢) o O caveat: neglect

back reaction!

/6 see Kitajima, Sekiguchi,

: A _I_ HA ¢_ X A FTTE O Takahashi 17

in Fourier space

N2 kB
Sk,+ + Hsk + + (—) :5§¢ Sk,+ = U

Tachyonic resonance Parametric resonance

Effective frequency see Floquet bands where

(k T B/19) st ~ (D)

can go negative Ui > 0




RESONANT DECAY

\ caveat: neglect
" back reaction!

/6 see Kitajima, Sekiguchi,

: A _I_ HA ¢_ X A FTTE O Takahashi 17
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RESONANT DECAY

Energy in the gauge fields

s
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SCALAR RESONANT DECAY

1 13

_1 2 &= ST 22_1 2
£=208) + o(0x) —sm o - Seix

2
m
Efficient resonant decay for € > ? fine, since m & f
1



SCALAR RESONANT DECAY
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SCALAR RESONANT DECAY

. 2
R = >

However, how to justify lightness ?
LUV e |8(I)'2 o )\(‘(I)|2 o 212)2
et B U k(g - B0

then m = v/ 2)\1), e = 2\v

standard resonance analysis

iti ' | > U
and condition above requires ‘¢z' does not apply!



NON-MINIMALLY
COUPLED SCALAR
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Scalings

100

1000  10*  10°  10°

Z



eq
Pc

Scalings

10° i
10%
0.1 pd Behaves lke
, //::f,’/ ANeff
1076 *
10-"" /":.’.f_f:f: *
0 0 000 10t 108 qof

Z



Scalings

10°

Dilutes faster than

Behaves Iike

10

100 1000 10
&

i

i0



Scalings
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