Cosmological Measurements of Neutrinos and Other Massive Light Relics

New England Theoretical Cosmology, Gravity and Fields Workshop

W. Linda Xu

with Nick Deporzio, Julian Muñoz, & Cora Dvorkin [2006.09395] & [2006.09380]

Harvard University

W. Linda Xu

Cosmological Measurements of Neutrinos and Other Massive Light Relics 1/25

Introduction

[ESA, Planck Collaboration]

- In the precision era of cosmology
- Lots of data, what questions can be answered?
- Can we answer these questions accurately?

Oppurtunities to find or constrain new physics, e.g. light relics!

Particles that were in thermal contact with SM at early universe, were relativistic at decoupling, but behaves like matter today.

Neutrinos

- Two categories: Not Noutries

- New particles!
 - Ubiquitous in SM extensions

Light Relics & Cosmology

Light relics are important for cosmology:

- Unique imprints on growth of structure
- Degeneracy with other parameters

Cosmology is important for light relics:

- Cosmologically abundant
- Doesn't require present-day interactions

Outline

Introduction

Signatures of massive light relics

- Imprint on the power spectrum
- Imprint on the bias
- How accurately can we measure light relics?
 - Implement new detailed effects
- How precisely can we measure light relics?
 - Forecast constraints from future experiments

Outline

Introduction

Signatures of massive light relics

- Imprint on the power spectrum
- Imprint on the bias
- How accurately can we measure light relics?
 - Implement new detailed effects
- How precisely can we measure light relics?
 - Forecast constraints from future experiments

A relic X is characterized by its

- ► Mass m_X
- (present-day) Temperature $T_X^{(0)}$
- ► Thermalized* dofs *gX* (bosonic or fermionic)

*Higher-spin particles have effective $g_X = 2$

A relic X is characterized by its

- Mass m_X
- (present-day) Temperature $T_X^{(0)}$
- Thermalized* dofs g_X (bosonic or fermionic)

*Higher-spin particles have effective $g_X = 2$

$$m_{\nu} = ? \quad T_{\nu}^{(0)} = 1.95 \text{ K} \quad g_{\nu} = 2$$

Relic X is characterized by $\{m_X, T_X^{(0)}, g_X\}$

•
$$\{T_X, g_X\} \rightarrow \Delta N_{\text{eff}}$$
 (while relativistic), epoch of decoupling

 $\Delta N_{\text{eff}} \propto g_X (T_X^0)^4 \qquad g_{*S}^{(dec)} \propto (T_X^0)^{-3}$

Relic X is characterized by $\{m_X, T_X^{(0)}, g_X\}$

► $\{T_X, g_X\} \rightarrow \Delta N_{\text{eff}}$ (while relativistic), epoch of decoupling

 $\Delta N_{\rm eff} \propto g_X (T_X^0)^4 \qquad g_{*S}^{(dec)} \propto (T_X^0)^{-3}$

Minimal extensions $\implies T_X^0 \ge 0.91$ K. Planck $\Delta N_{\text{eff}} \le 0.36$ (95% CL) $\implies T_X^0 \le 1.5$ K for X Weyl

W. Linda Xu

Massive Light Relics: the Basics Relic X is characterized by $\{m_X, T_X^{(0)}, g_X\}$

• $\{T_X, g_X\} \rightarrow \Delta N_{\text{eff}}$ (while relativistic), epoch of decoupling

 $\Delta N_{\rm eff} \propto g_X (T_X^0)^4 \qquad g_{*S}^{(dec)} \propto (T_X^0)^{-3}$

Minimal extensions $\implies T_X^0 \ge 0.91$ K. Planck $\Delta N_{\text{eff}} \le 0.36$ (95% CL) $\implies T_X^0 \le 1.5$ K for X Weyl

▶ $\{m_X, T_X\}$ → Free-streaming scale, non-relativistic epoch

$$k_{fs,X}, z_{nr,X} \propto m_X / T_X^{(0)}$$

Non-relativistic today $\implies m_X \gtrsim 0.1 \text{ meV}$

Massive Light Relics: the Basics Relic X is characterized by $\{m_X, T_X^{(0)}, g_X\}$

• $\{T_X, g_X\} \rightarrow \Delta N_{\text{eff}}$ (while relativistic), epoch of decoupling

 $\Delta N_{\rm eff} \propto g_X (T_X^0)^4 \qquad g_{*S}^{(dec)} \propto (T_X^0)^{-3}$

Minimal extensions $\implies T_X^0 \ge 0.91$ K. Planck $\Delta N_{\text{eff}} \le 0.36$ (95% CL) $\implies T_X^0 \le 1.5$ K for X Weyl

▶ $\{m_X, T_X\}$ → Free-streaming scale, non-relativistic epoch

 $k_{fs,X}, z_{nr,X} \propto m_X / T_X^{(0)}$

Non-relativistic today $\implies m_X \gtrsim 0.1 \text{ meV}$

• $\{m_X, T_X, g_X\} \rightarrow$ Present-day abundance

$$\omega_X \propto g_X m_X (T_X^{(0)})^3$$

Overclosure $\omega_X < \omega_{cdm} \implies m_X < 100 \text{ eV}$ for X Weyl

W. Linda Xu

Galaxies are biased tracers of matter

$$P_g \propto b P_m(k,z)$$
 $\delta_m = \delta_{cb} + \delta_\nu + \delta_X$

Galaxies are biased tracers of matter

$$P_g \propto b P_m(k,z)$$
 $\delta_m = \delta_{cb} + \delta_\nu + \delta_X$

Galaxies are biased tracers of clustering matter

$$P_g \propto b P_m P_{cb}(k,z) \qquad \delta_m = \left(\begin{array}{c} \delta_{cb} \end{array} \right) + \delta_\nu + \delta_X$$

Detail 1: Hierarchical Neutrinos

Neutrinos live in a hierarchy

$$\sum g_{\nu} = 6, \quad T_{\nu}^{(0)} = 1.95 \text{ K}, \quad \sum m_{\nu} \ge \begin{cases} 60 \text{ meV } \text{Normal} \\ 100 \text{ meV } \text{Inverted} \end{cases}$$

$$\begin{bmatrix} \text{Mass}^2 \\ \text{Mass}^2 \\ \text{Signature} \\ \text{Sig$$

[Super-Kamiokande]

Detail 1: Hierarchical Neutrinos

Neutrinos live in a hierarchy

$$\sum g_{\nu} = 6$$
, $T_{\nu}^{(0)} = 1.95 \text{ K}$, $\sum m_{\nu} \ge \begin{cases} 60 \text{ meV} & \text{Normal} \\ 100 \text{ meV} & \text{Inverted} \end{cases}$

- Heavier ν, more suppression
- Can distinguish in data?
- Will bias results?

[RelicFast: github.com/JulianBMunoz/RelicFast]

W. Linda Xu

Cosmological Measurements of Neutrinos and Other Massive Light Relics 11/25

W. Linda Xu

Cosmological Measurements of Neutrinos and Other Massive Light Relics 11/25

LSS Data and Parametrization

Single Tracers:

- BOSS
 - $\mathcal{O}(100)/\Delta z/\mathrm{deg}^2 \ \mathrm{LRGs}$
- DESI *O*(1000)/∆z/deg² ELGs

 Euclid
 - Euclid $\mathcal{O}(5000)/\Delta z/\text{deg}^2 \text{ H}\alpha \text{s}$

LSS Data and Parametrization

- Single Tracers:
 - BOSS
 - $\mathcal{O}(100)/\Delta z/{\rm deg}^2$ LRGs
 - ► DÈSI $\mathcal{O}(1000)/\Delta z/\text{deg}^2$ ELGs
 - Euclid $\mathcal{O}(5000)/\Delta z/\text{deg}^2 \text{ H}\alpha \text{s}$

LSS Data and Parametrization

- Single Tracers:
 - ► BOSS
 - $\mathcal{O}(100)/\Delta z/\mathrm{deg}^2 \ \mathrm{LRGs}$
 - DESI *O*(1000)/∆z/deg² ELGs

 Euclid
 - $\mathcal{O}(5000)/\Delta z/\text{deg}^2 \,\text{H}lpha$ s
- Follow parametrization of Science Books

$$b_L^{\text{DESI}}(k,z) = \beta_0/D(z) - 1$$

$$b_L^{\text{Euclid}}(k,z) = \beta_0(1+z)^{\beta_1/2} - 1$$

Outline

- Signatures of massive light relics
- How accurately can we measure light relics?
 - Implement hierarchical neutrinos
 - Account for GISDB
- How precisely can we measure light relics?
 - Neutrinos
 - LiMRs

Neutrinos: Set-up

- Markov Chain Monte Carlo
- $\blacktriangleright \{\omega_b, \omega_{cdm}, h, n_s, A_s, \tau\} + \sum m_{\nu} m_{\nu}$
- ► CMB-S4 + *τ*
- DESI ELGs, Euclid Hαs (mock data)

- How accurately can we measure light relics?
 - Implement hierarchical neutrinos
 - Account for GISDB
- How precisely can we measure light relics?
 - Neutrinos
 - LiMRs

	LSS	CMB	$\sum m_{ u}$ [meV]	
			103.6 \pm	
 At least 3σ detection of ∑ m_ν, 5σ if IH At most 2σ hierarchy differentiation 	Fuelid	OND-04 + 7	20.1	
	Luciiu		102.9 \pm	
		CIVID-04	27.5	
		CMB-S4 + τ	107.6 \pm	
	DLSI		26.7	

[All entries assume Deg. hierarchy, include GISDB]

W. Linda Xu

Data	Model		Mean and error		
Dala	Bias	GISDB	$\sum m_{ u}$ [meV]	β_0	β_1
Evelial	$\{\beta_0,\beta_1\}$	Yes	103.6 \pm	1.702 \pm	$1.005 \pm$
CMB-S4 +		20.1	2.97e-3	3.08e-3	
	No	104.2 \pm	1.704 \pm	$1.003 \pm$	
au			21.9	3.14e-3	3.24e-3

[All entries assume Deg. hierarchy]

Data	Model		Mean and error			
Dala	Bias	GISDB	$\sum m_{ u}$ [meV]	β_0	β_1	
	$\{\beta_0,\beta_1\}$	Yes	103.6 \pm	1.702 \pm	$1.005 \pm$	
Euclid + CMB-S4 + τ	$\{\beta_0\}$		20.1	2.97e-3	3.08e-3	
		No	104.2 \pm	1.704 \pm	$1.003 \pm$	
			21.9	3.14e-3	3.24e-3	
		Yes	102.8 ±	$1.699 \pm$	-	
			16.5	2.71e-3		
		No	114.5 \pm	1.707±	-	
			15.6	2.59e-3		

[All entries assume Deg. hierarchy]

Data	Model		Mean and error			
Dala	Bias	GISDB	$\sum m_{ u}$ [meV]	β_0	β_1	
E l'al	$\{\beta_0\}$	Yes	102.8 ±	$1.699 \pm$	-	
CMB-S4 +			16.5	2.71e-3		
		No	114.5 \pm	1.707±	-	
τ			15.6	2.59e-3		

[All entries assume Deg. hierarchy]

- Include GISDB if want accurate biases
- Marginalize over z-dependence to avoid shift in cosmo parameters

LiMRs: Set-up

Fisher Forecasts

- $\{ \omega_b, \omega_{cdm}, h, n_s, A_s, \tau, \sum m_\nu \}$ + g_X , fixed $\{ m_X, T_X^{(0)} \}$
- ► {Scalar, Weyl, Vector, Dirac}
- ▶ 10 meV $\leq m_X \leq$ 10 eV, 0.91 K $\leq T_X^{(0)} \leq$ 1.5 K

- How accurately can we measure light relics?
 - Implement hierarchical neutrinos
 - Account for GISDB
- How precisely can we measure light relics?
 - Neutrinos
 - LiMRs

LiMRs: Set-up

Fisher Forecasts

- $\{ \omega_b, \omega_{cdm}, h, n_s, A_s, \tau, \sum m_\nu \}$ + g_X , fixed $\{ m_X, T_X^{(0)} \}$
- ► {Scalar, Weyl, Vector, Dirac}
- ► 10 meV $\leq m_X \leq$ 10 eV, 0.91 K $\leq T_X^{(0)} \leq$ 1.5 K
- ▶ Planck, CMB-S4 $+\tau$
- BOSS LRGs, DESI ELGs, Euclid Hαs

- How accurately can we measure light relics?
 - Implement hierarchical neutrinos
 - Account for GISDB
- How precisely can we measure light relics?
 - Neutrinos
 - LiMRs

[Minimal temperature $T_X = 0.91$ K]

[Minimal temperature $T_X = 0.91$ K]

[Minimal temperature $T_X = 0.91$ K]

C	30	3σ limits on m_X [eV]			
LSS	CMB	Scalar	Weyl	Vector	Dirac
BOSS	Planck	-	2.85	2.05	1.30
DESI	Planck	1.96	1.20	0.90	1.61
Euclid	CMB-S4	0.93	0.63	0.47	All

W. Linda Xu

Cosmological Measurements of Neutrinos and Other Massive Light Relics 22/25

Summary of Results

- Signatures of massive light relics
- How accurately can we measure light relics?
 - Incorrect hierarchy won't cause significant biasing
 - Neglecting GISDB will shift bias and cosmo parameters, latter evaded if marginalize over redshift

Summary of Results

- Signatures of massive light relics
- How accurately can we measure light relics?
 - Incorrect hierarchy won't cause significant biasing
 - Neglecting GISDB will shift bias and cosmo parameters, latter evaded if marginalize over redshift
- How precisely can we measure light relics?
 - Neutrinos measured at 20 meV level. Hierarchy differentiation at most 2σ
 - Significant measurements of LiMRs can be expected with DESI/Euclid and S4

Summary of Results

- Signatures of massive light relics
- How accurately can we measure light relics?
 - Incorrect hierarchy won't cause significant biasing
 - Neglecting GISDB will shift bias and cosmo parameters, latter evaded if marginalize over redshift
- How precisely can we measure light relics?
 - Neutrinos measured at 20 meV level. Hierarchy differentiation at most 2σ
 - Significant measurements of LiMRs can be expected with DESI/Euclid and S4
 - With Euclid + S4, 3σ measurements on Dirac fermions of any mass, and any particle with eV-scale masses.
 - Currently available BOSS + Planck can constrain/detect any fermion with $m_X \gtrsim 3 \text{ eV}$ at 3σ .

Thank you!

