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UNITARITY AT TREE LEVEL
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Unitarity

QED + Fermi Theory > Electro-Weak Theory 0.@ @‘

(all the way up to Planckian scales) q
(Minimal bottom-up construction) |




ANALYZING HIGGS BEYOND TREE LEVEL

» Since Higgs couples to all massive SM particles. Loop corrections
due to all of them
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A catastrophe
(two loop result below)
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probability of vacuum decay
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FINITE TEMPERATURE EFFECTS

- Early Universe was at high
temperatures. Temperature
corrected effective potential; +
Higgs could be fluctuating a lot!

- Assuming adiabatic expansion,
calculate the total probability of
tunneling: “WWhat is the
probability that there would
have been 1 bubble nucleation
anywhere in the observable
Universe, till today”
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Standard Model is good even for Planckian temperatures

(MJ, Hertzberg 1910.04664)
also (Espinosa, Giudice, Isidori, Miro, Riotto, Strumia, ...) 6



LAUNCHING HIGGS INTO INFLATIONARY UNIVERSE

(East, Espinosa, Giudice, Isidori, Kearney, Kohri, Matsuli, Miro,
Morgante, Riotto, Senatore, Shakya, Strumia, Tetradis, Yoo, Zurek,...)

De-Sitter Fluctuations Cosmic
H disaster
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LAUNCHING HIGGS INTO (ETERNAL) INFLATIONARY UNIVERSE

STATISTICS OF INFLATING ISLANDS

De-Sitter Fluctuations
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Full distribution + eternal

inflation

QPF of the Higgs?

But first, what's the correct
brobability measure in the




* (Gauge redundancies, no Goldstones -> No spontaneous

symmetry breaking?
* Butif no SSB, then what is the probability measure?

V
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LAUNCHING HIGGS INTO (ETERNAL) INFLATIONARY UNIVERSE
STATISTICS OF INFLATING ISLANDS

De-Sitter Fluctuations 7Y Cosmic
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10



LANGEVIN & INTEGRAL EVOLUTION

drift (classical)

\ kick (quantum diffusion)
multiple fields — @; — @i_; L] 8V(|_,. ) —\‘,.;, .
(volume measure) € DH? 9 7T Ussian ry
N ) gaussian r
/
Inflation within 1
P € [Oa )Oend) kernel

/

i—1 Pend
pi(pi) = Hfo dps K (psi1,ps,€) p(po,0) (absorbed the radial field measure
s=0

into the distribution)
convergence to the dominant eigenstate

is clear

Steady state (constant) p(p) = — dp(P» )
distribution fo “dpp(p,0)

(dominant eigenstate of the kernel)

y (Peng is in the fast roll regime)



GAUSSIAN APPROXIMATION
A toy example of Higgs like ‘™' potential

Fixed points

d 2
from Fokker-Planck d_NOQ + 3 (02 —02) (6 —0%) =0

. H < H at least gives stationarity

. H>HY does not even fetch this; flattening of distribution
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COMPARISON of DISTRIBUTIONS with 1D SIMULATIONS
(large number of foldings)

H<HY
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AVERAGE SIZE OF HILLTOP CONTAINED REGIONS

*Under the assumption that each patch could be treated
independently, we have (in 1D for instance)
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Effective Potential V(h) (GeV")
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Higgs field distributions
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Average size of inflating regions, and a bound on inflationary Hubble
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STORY AFTER INFLATION
(Bridging the gap)

Inflaton ¢ must couple to (at-least) the SM
d.o.f. <=> (Reheating)
e.g. direct coupling, non-minimal coupling

K¢H+H1 gd)zHTH’ ERHTH (Ema, Mukaida, Nakayama; Enqvist,

Karciauskas, Lebedev, Rusak, Zatta;...)
[Moduli: Amin, Fan, Lozanov, Reece]

But, parametric resonance! (Preheating)
=> small / fine tuned couplings

Dark matter? (String theory suggests
numerous hidden sectors

W fSM} X -+ X SU(Np) X...

at ~ BBN
or ANeff < 0.3

Baryogenesis?
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A ‘NATURAL AND CONSERVATIVE
MODEL

Natural
(unprotected masses are huge)

/ \
Dark

¢
ALyy = —kpHTH — Z4Mi Tr[Gl- WGL.‘W] + ;i Yo+
l

’ \

Push k to natural values (~my),  some high mass
but use the existence of a light scale like ~M,,

iggs

m, huge;
projected out

The first two are in fact the leading couplings
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Higgs Self-Coupling A

CORRECTION TO HIGGS SELF-COUPLING
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INSTABILITY CURED; STORY AFTER INFLATION

Inflation ends = Preheating (no problem) + gradual/perturbative
reheating. ..

Reheating:
2

K b
['(p > hh)= 87 g

Number of (dark) gauge d.of.

\ "

gim¢3 p ﬁ
i

(P~ vyiy) =

1281 M7

some high mass scale like Yi

}
1. Perturbative decay dominant into the Higgs

2. Universe reheats to temperature Ty, = 0.5 /FMpl
by the time t,ep ~ 1
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SKETCHING THE SCENARIO

Inflation ends = Preheating + gradual/perturbative reheating

T ~ Tyren = 0.5,/TM,,; (room for baryogenesis, e.g. Trep~10'* GeV)

T ~ m,, (inflaton becomes Boltzmann suppressed from here)

Inflaton + SM in equilibrium dark sector(s) out of equilibrium
-~ ot A
@%Wgﬂ%vﬁ" . g1 iy \ 1/
g+ J:(\%/ﬁi 2 $$5i5%~023< .qub) T; i
¥ e oA, giv, 0l

T ~0(10) MeV — 0(100) TeV (possible dark sector confinement)
(Hertzberg, Sandora 1908.09841)
..................... T ~ 0(1) MeV <BBN>

~ \ 4/3 Jix
4 . g* g*
MR equality ~ CMB l. Gix g+

~

Today (O, = 0.26 (easily allowed)
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SUMMARY

Took SM seriously to high energies because it is
allowed by Unitarity.

Instability in the Higgs at high energies. Dangerous
during inflationary and post inflationary (preheating)
eras. VWent beyond (Gaussian approximation + eternal
inflation.

Hint for new physics, especially when looked in
broader setting of dark matter, BBN, CMB etc.

Presented a ‘natural’ model to explain the dominance
of visible sector during early eras, avoids catastrophes
during inflation and post-inflation eras, leaving enough
room for dark matter, baryogenesis.
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Langevin - Fokker Planck
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GAUSSIAN APPROXIMATION (?)
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Field Distributions

COMPARISON of DIS

RIBUTIONS with 1D SIMULATIONS
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A MEASURE OF FAST ROLL

My, = 172.9 GeV

~0.8|
" — Myp = 173.3 GeV

108 Bx107 1x100 5x 10701 x 1071
Higgs h (GeV)

FIG. 9. A measure of the fast-roll V”(h)/H?, with H =
H oz (the maximum H value to allow for a large observable
universe). The dashed vertical lines are h = hy are the hill-
top values for the Higgs. This plot shows that for A > hy the
field is about to undergo fast-roll and we expect it to readily
head towards an AdS crunch or other catastrophe. This is
within the framework of the minimal SM in 3+ 1-dimensions
for 3 different values of the top mass.
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Tree level potential function

W —  y= m"’ $% + kp(HYH) + A(HTH) +-

potential )
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Effective Potential V
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