AN EXPLANATION FOR EARLY UNIVERSE'S STABILITY, AND THE DOMINANCE OF STANDARD MODEL

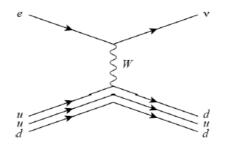
based on HERTZBERG, MJ 1807.05233; 1904.04262; 1910.04664; and 1911.04648

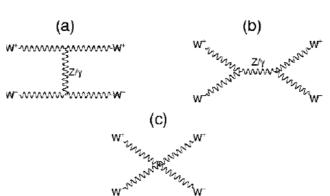
Mudit Jain

Institute of Cosmology Dept. of Physics and Astronomy Tufts University

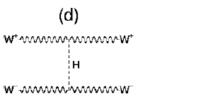
UNITARITY AT TREE LEVEL

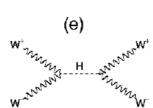
W/Z-bosons unitarize fermion scattering

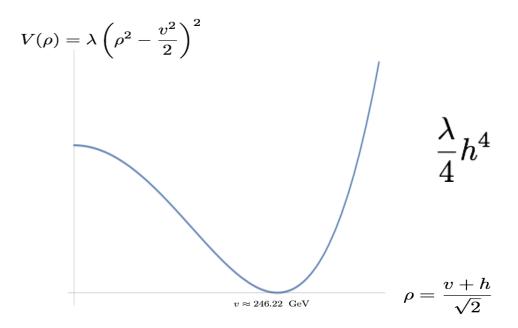




The Higgs unitarizes WW scattering







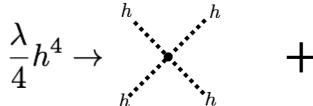
and so on...

QED + Fermi Theory $\xrightarrow{\text{Unitarity}}$ Electro-Weak Theory

(all the way up to Planckian scales)

ANALYZING HIGGS BEYOND TREE LEVEL

 Since Higgs couples to all massive SM particles. Loop corrections due to all of them

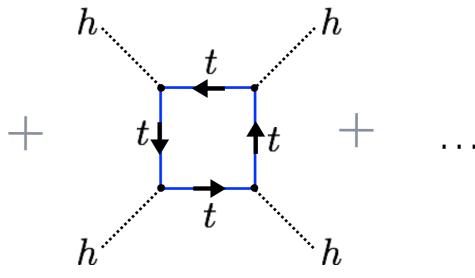


Bosons in the loop

$h \dots h, Z, W \dots h$

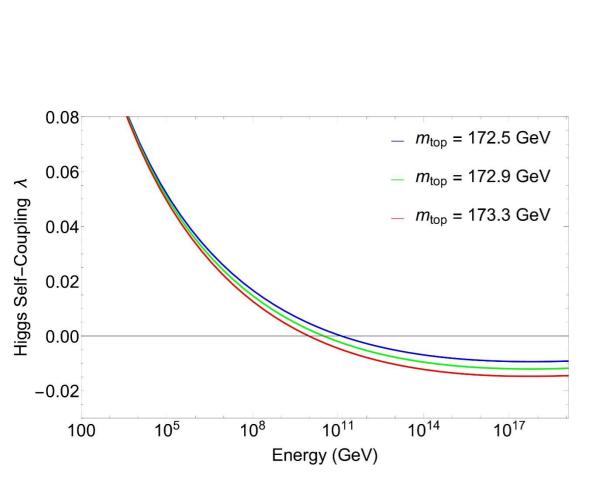
$$h$$
 h
 h
 h
 h
 h

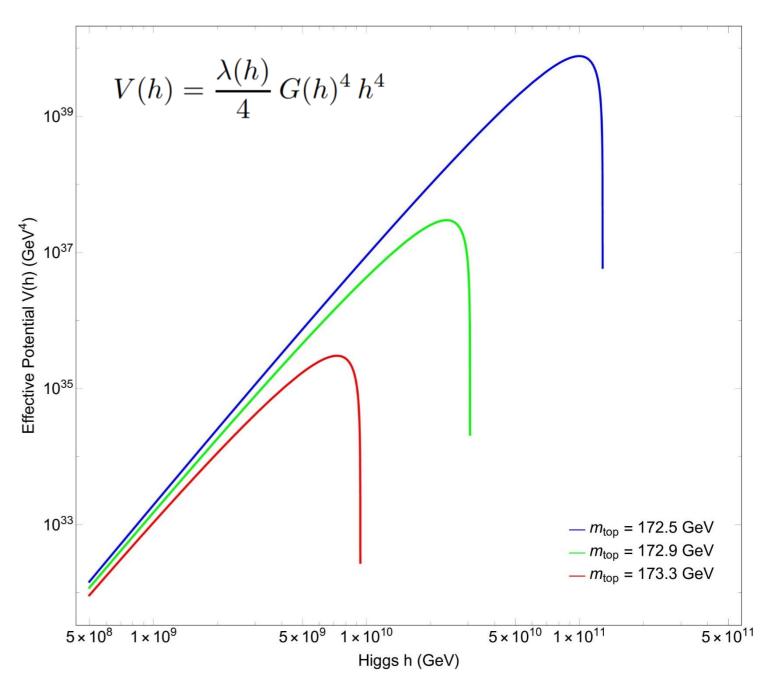
Fermions in the loop



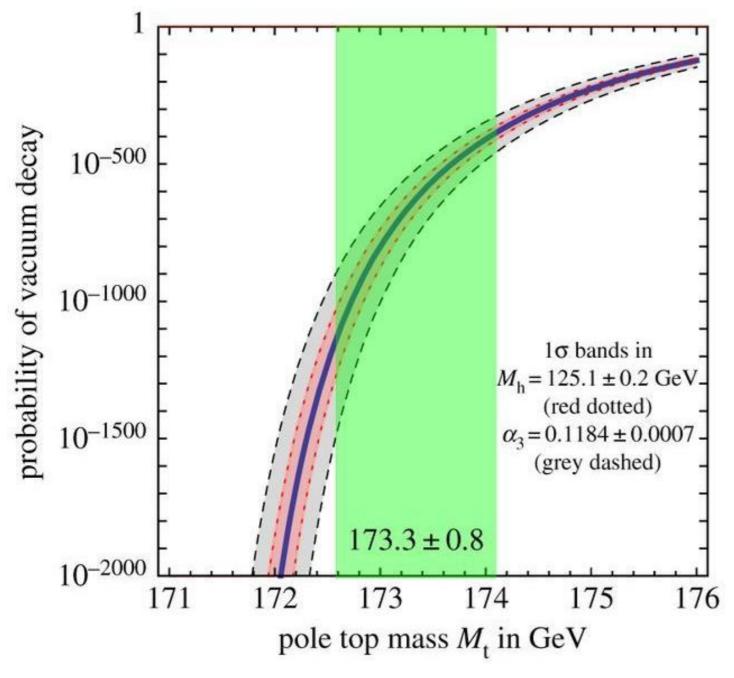
$$\beta_{\lambda}^{^{\scriptscriptstyle{(1)}}} \equiv \frac{d\lambda}{d\log(E/M_Z)} = \frac{1}{16\pi^2} \left(24\lambda^2 + \frac{3}{2}(2g^4 + \frac{3}{2}(g^2 + g'^2)^2)\right) \left(-\right) \frac{1}{16\pi^2} (6y_t^4)$$

A catastrophe (two loop result below)





PROBABILITY OF DECAY



(Buttazzo, Degrassi, Giardino, Giudice, Sala, Salvio, Strumia; Espinosa)

But very early epochs in the history of the Universe

FINITE TEMPERATURE EFFECTS

- Early Universe was at high temperatures. Temperature corrected effective potential; + Higgs could be fluctuating a lot!
- Assuming adiabatic expansion, calculate the total probability of tunneling: "What is the probability that there would have been 1 bubble nucleation anywhere in the observable Universe, till today"

$$P_{tunnel} \sim \int_{T_0}^{T} dT \, \frac{V_0 T_0^3}{H} \left(\frac{S_B}{T}\right)^{3/2} e^{-\frac{S_B}{T}}$$



Standard Model is good even for Planckian temperatures

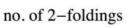
LAUNCHING HIGGS INTO INFLATIONARY UNIVERSE

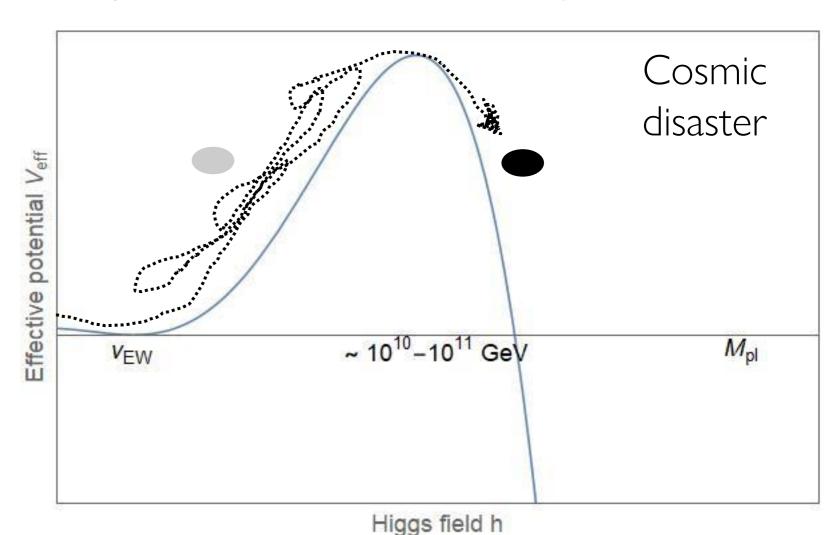
(East, Espinosa, Giudice, Isidori, Kearney, Kohri, Matsui, Miro, Morgante, Riotto, Senatore, Shakya, Strumia, Tetradis, Yoo, Zurek,...)

De-Sitter Fluctuations

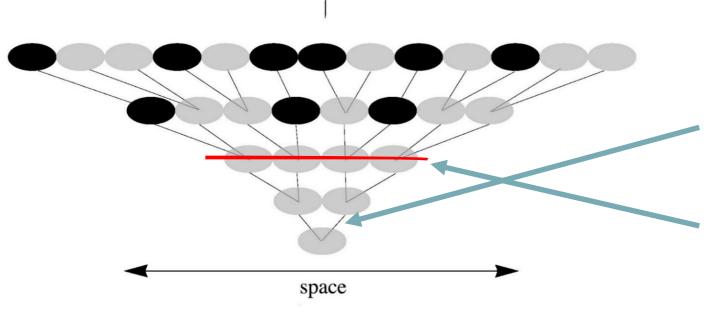
$$\Delta h = \frac{H}{2\pi}$$
 (kick)

per Hubble patch per unit time (a random walk behavior)





- Initial delta at zero,
- Gaussian pdf,
- Evolve till some N=60



LAUNCHING HIGGS INTO (ETERNAL) INFLATIONARY UNIVERSE

STATISTICS OF INFLATING ISLANDS

De-Sitter Fluctuations

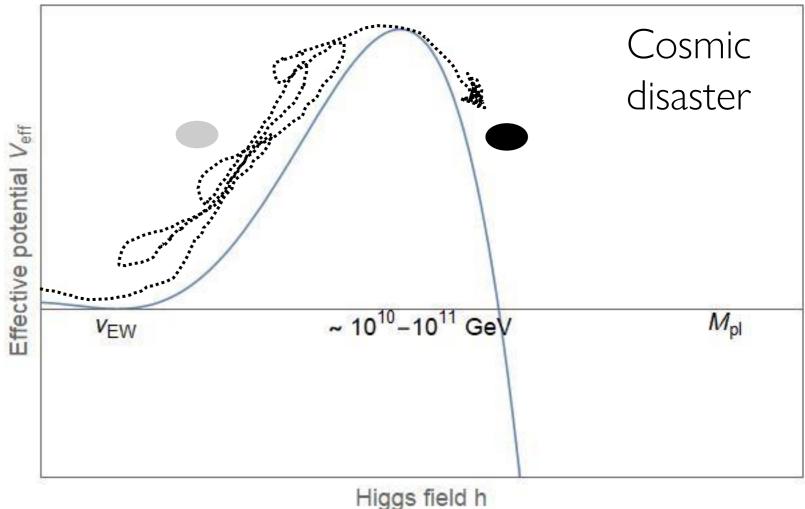
$$\Delta h = \frac{H}{2\pi}$$
 (kick)

per Hubble patch per unit time (a random walk behavior)

need $\sim e^{180}$ Hubble patches

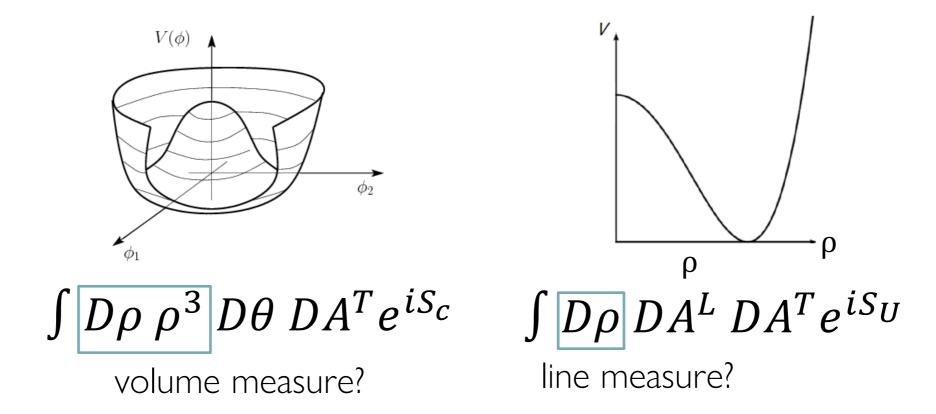
space

no. of 2-foldings



- Full distribution + eternal inflation
- But first, what's the correct probability measure in the QPF of the Higgs?

- Gauge redundancies, no Goldstones -> No spontaneous symmetry breaking?
- But if no SSB, then what is the probability measure?



$$\mathcal{L}_{ct} = -3i\Lambda^4 \ln(v + h) = -3i\Lambda^4 \ln \rho$$
$$Z = \int D\rho \, \rho^3 \, DA^L \, DA^T e^{iS_U}$$

volume measure

LAUNCHING HIGGS INTO (ETERNAL) INFLATIONARY UNIVERSE

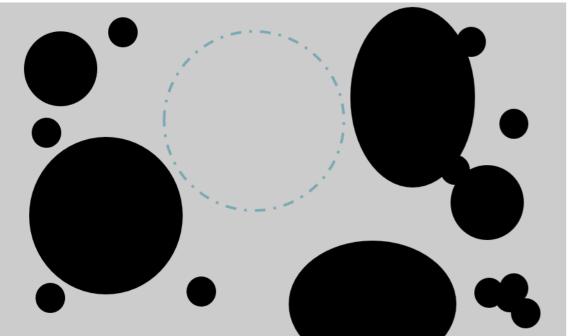
STATISTICS OF INFLATING ISLANDS

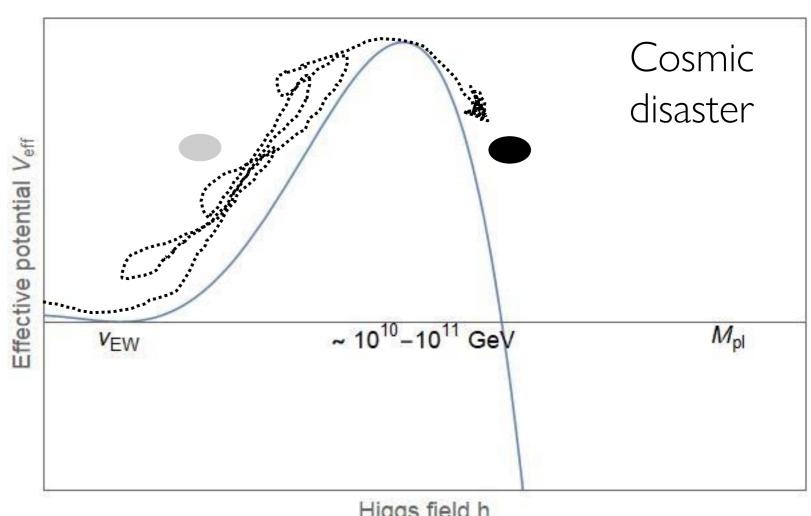
De-Sitter Fluctuations

$$\Delta h = \frac{H}{2\pi}$$
 (kick)

per Hubble patch per unit time (a random walk behavior)

need $\sim e^{180}$ Hubble patches

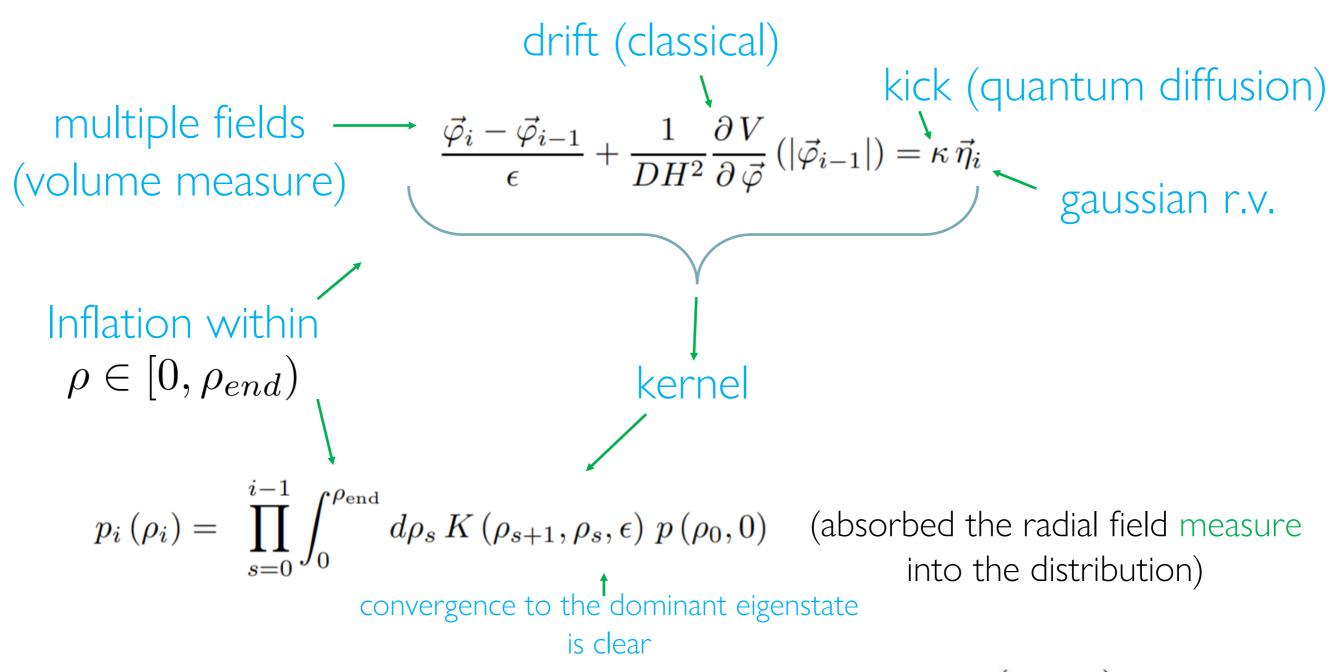




Higgs field h

Full distribution + eternal inflation

LANGEVIN INTEGRAL EVOLUTION



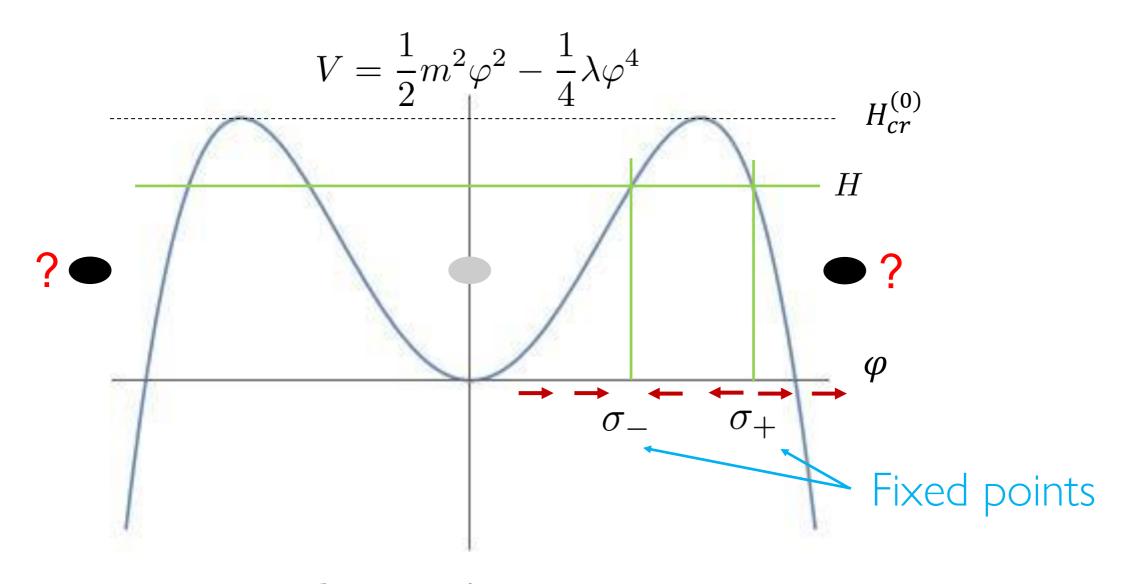
Steady state (constant) distribution

(dominant eigenstate of the kernel)

$$ilde{p}(
ho) \equiv rac{p(
ho,\infty)}{\int_0^{
ho_{
m end}} d
ho \, p(
ho,\infty)}$$

 (ρ_{end}) is in the fast roll regime)

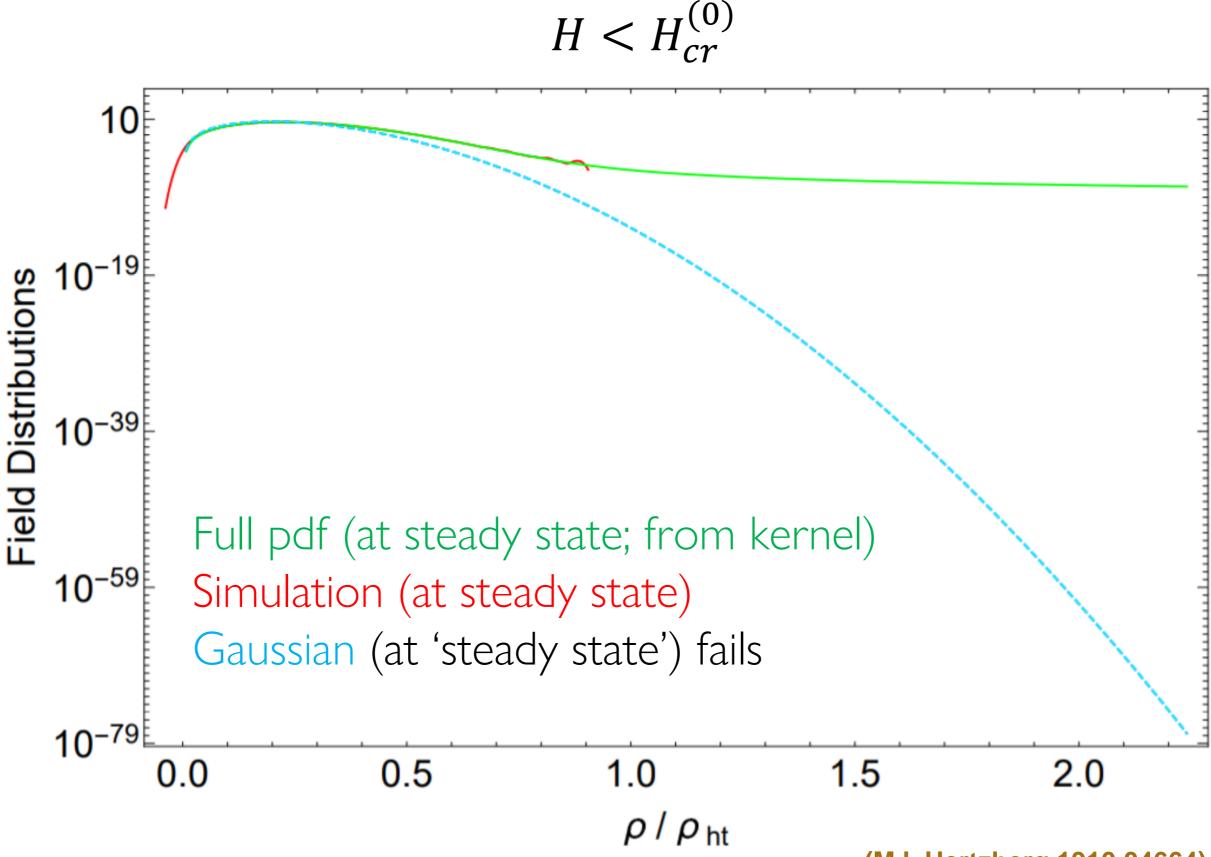
GAUSSIAN APPROXIMATION A toy example of Higgs like 'M' potential



$$\frac{d}{dN}\sigma^2 + \frac{2\lambda}{H^2} \left(\sigma^2 - \sigma_+^2\right) \left(\sigma^2 - \sigma_-^2\right) = 0$$

- $H \le H_{cr}^{(0)}$ at least gives stationarity
- $H > H_{cr}^{(0)}$ does not even fetch this; flattening of distribution

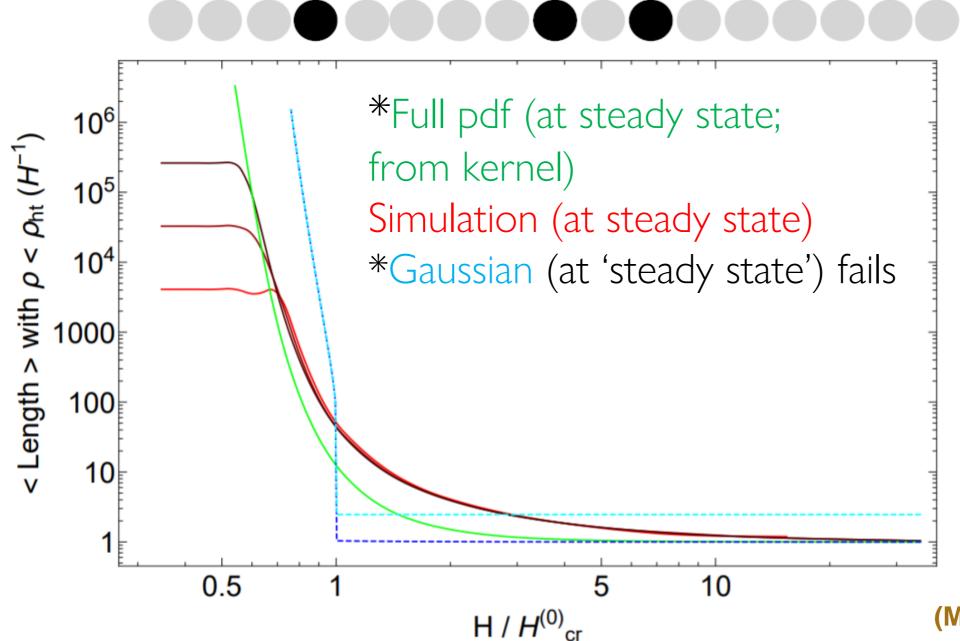
COMPARISON of DISTRIBUTIONS with 1D SIMULATIONS (large number of foldings)



AVERAGE SIZE OF HILLTOP CONTAINED REGIONS

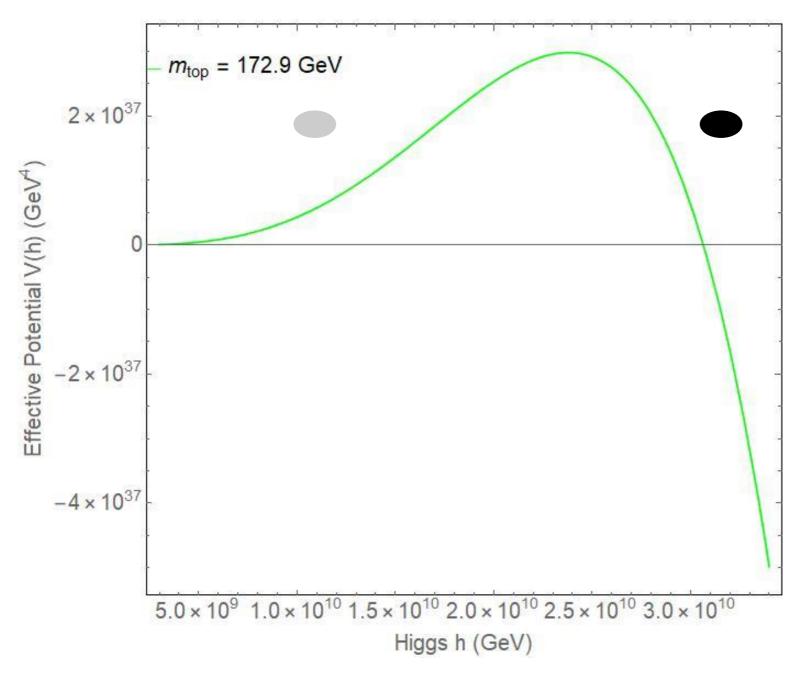
*Under the assumption that each patch could be treated independently, we have (in 1D for instance)

$$\langle \text{Length} \rangle = \frac{1}{1-f} H^{-1}; \quad f = \int_0^{\rho_{\text{ht}}} d\rho \ \tilde{p}(\rho)$$



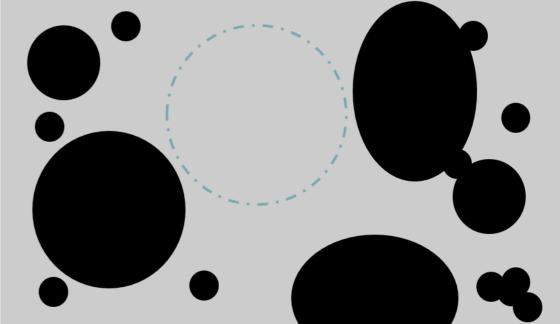
 Suggests that independent treatment is indeed valid for large average inflating lengths

ANALYSIS WITH HIGGS

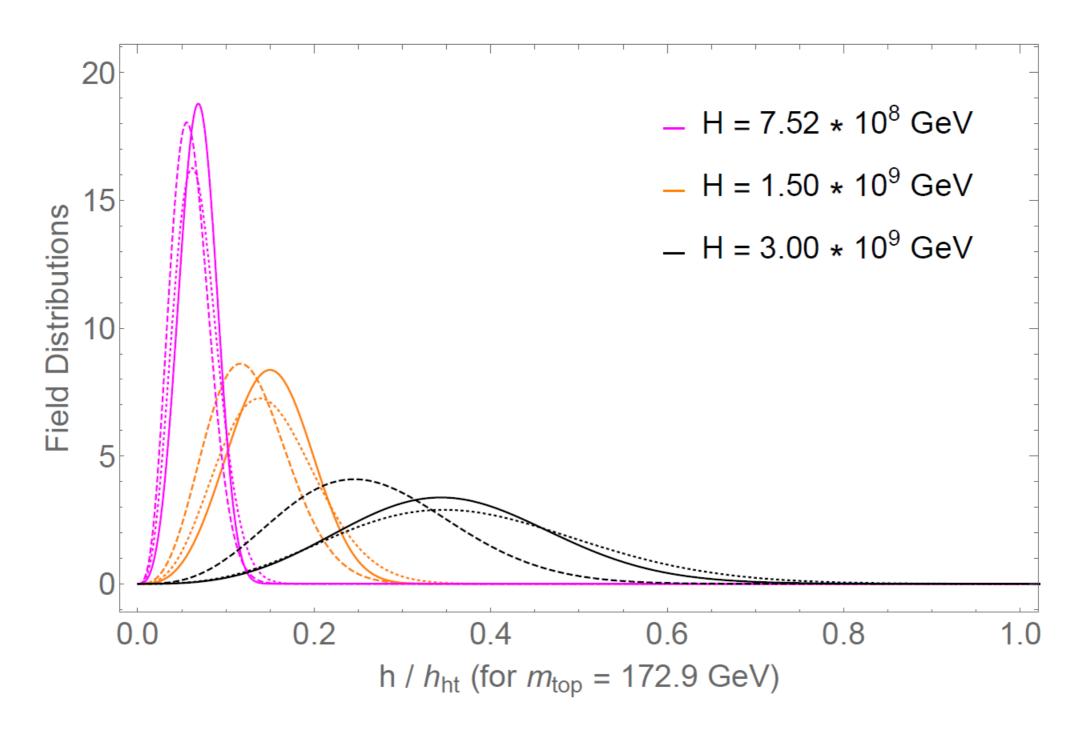


$$V(h) = \frac{\lambda(h)}{4} G(h)^4 h^4$$

need $\sim e^{180}$ Hubble patches



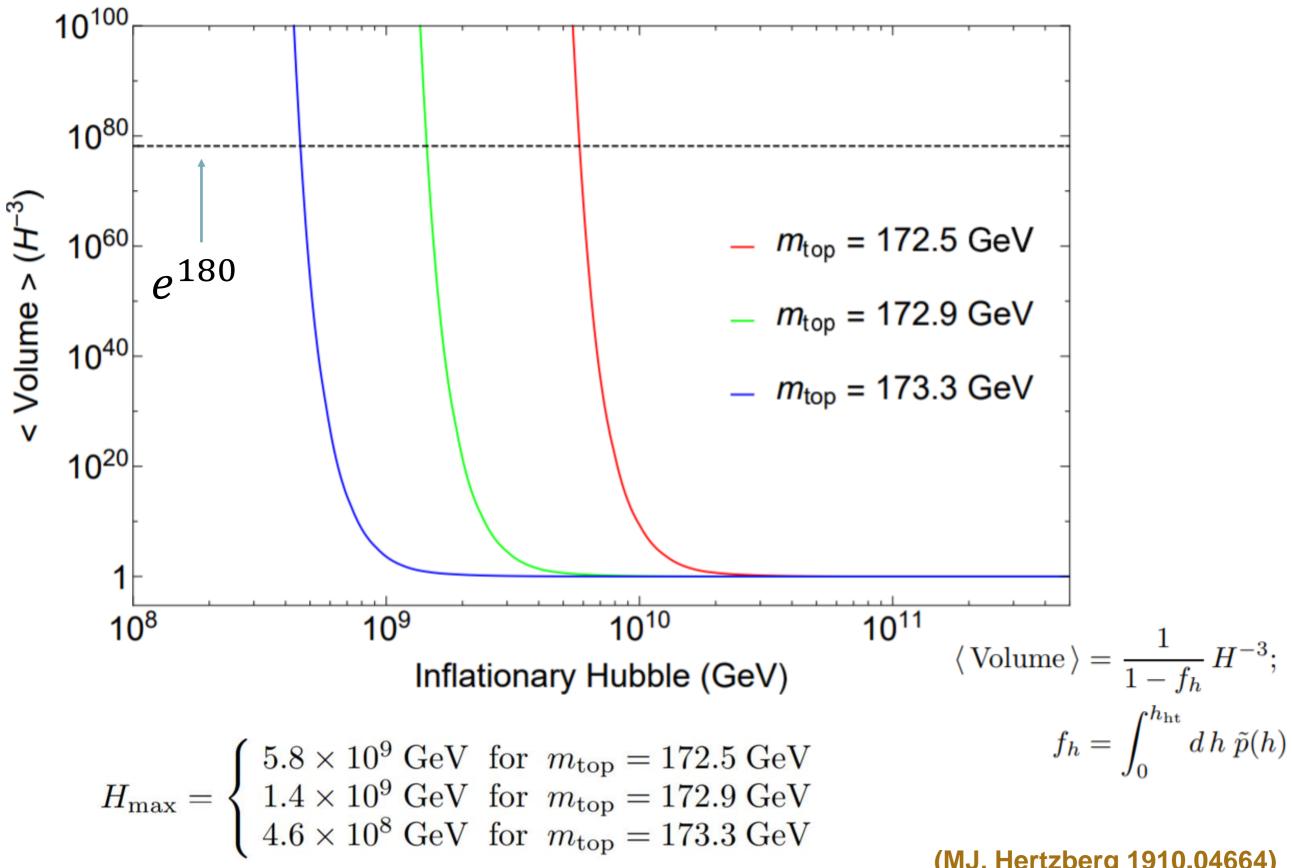
Higgs field distributions



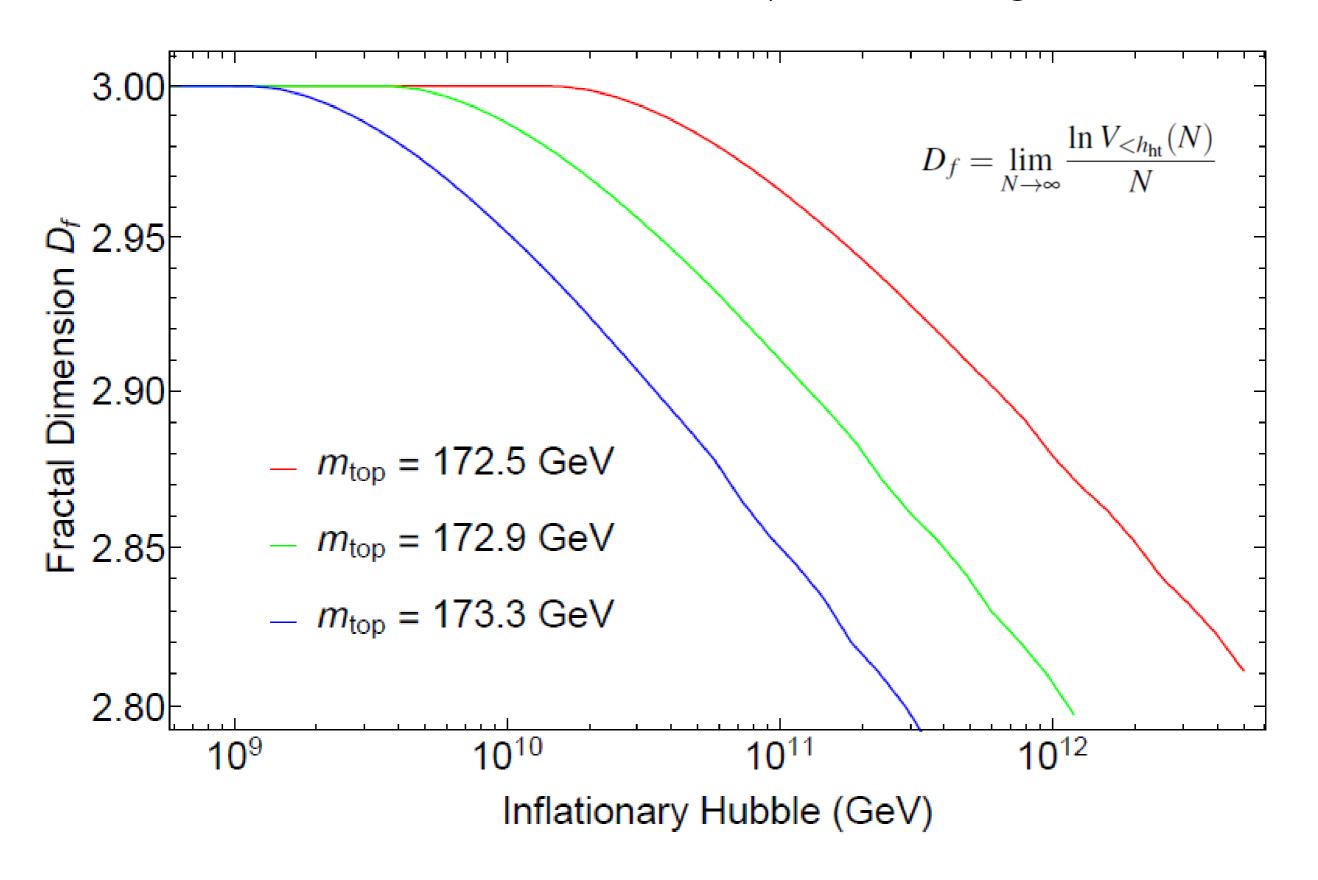
Full, steady state (from kernel)
Gaussian; steady state

- Gaussian; N=60

Average size of inflating regions, and a bound on inflationary Hubble



Fractal dimension of within hilltop contained regions



STORY AFTER INFLATION (Bridging the gap)

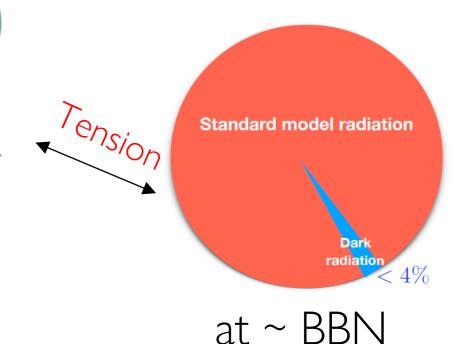
• Inflaton ϕ must couple to (at-least) the SM d.o.f. <=> (Reheating) e.g. direct coupling, non-minimal coupling $\kappa \phi H^{\dagger} H$, $g \phi^2 H^{\dagger} H$, $\xi R H^{\dagger} H$

(Ema, Mukaida, Nakayama; Enqvist, Karciauskas, Lebedev, Rusak, Zatta;...) [Moduli: Amin, Fan, Lozanov, Reece]

- But, parametric resonance? (Preheating)
 => small / fine tuned couplings
- Dark matter? (String theory suggests numerous hidden sectors

$$\dots \{SM\} \times \dots \times SU(N_D) \times \dots$$

Baryogenesis?



or $\Delta N_{eff} < 0.3$

A 'NATURAL' AND CONSERVATIVE MODEL

Explosive resonance?

 $\Delta \mathcal{L}_{UV} = -\kappa \phi H^{\dagger} H - \sum_{i}^{\text{Dark}} \frac{\phi}{4M_{i}} Tr[G_{i \mu\nu} G_{i}^{\mu\nu}] + \frac{\mu}{2} \phi \chi^{2} + \cdots$

Push κ to natural values ($\sim m_{\phi}$), but <u>use</u> the existence of a light Higgs

some high mass scale like $\sim M_{pl}$

Natural

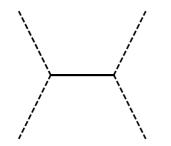
(unprotected masses are huge)

 m_{χ} huge; projected out

The first two are in fact the leading couplings

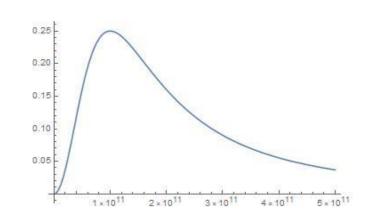
CORRECTION TO HIGGS SELF-COUPLING

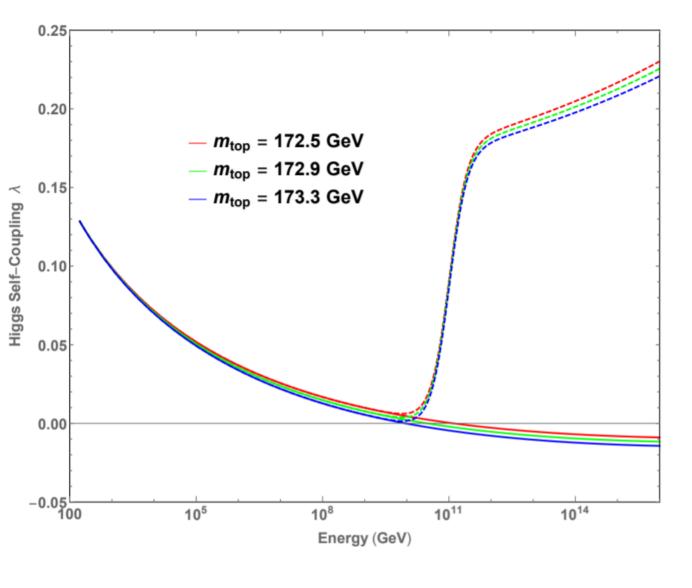
$$\Delta \mathcal{L} = -\kappa \phi H^{\dagger} H$$

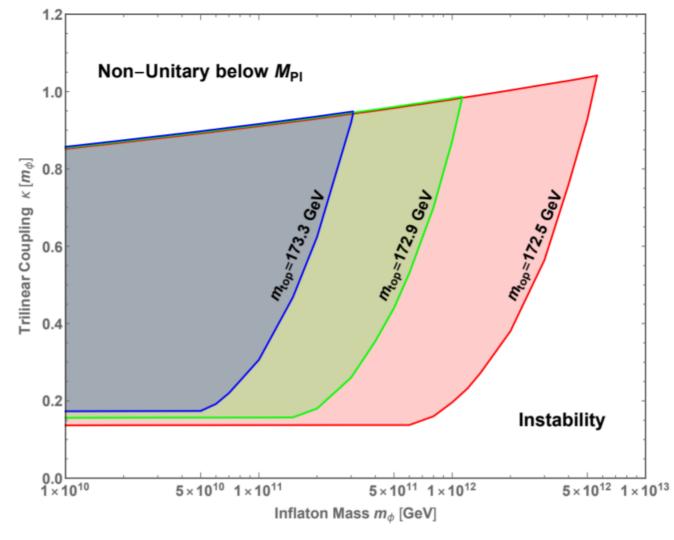


$$\beta_{\lambda} = \frac{d\lambda}{d \ln E} = \beta_{\lambda}^{SM} + \frac{\kappa^2 E^2}{\left(m_{\phi}^2 + E^2\right)^2}$$

$$\frac{\kappa^2 E^2}{\left(m_\phi^2 + E^2\right)^2}$$



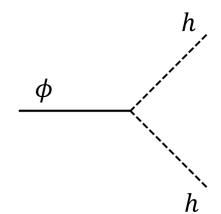




INSTABILITY CURED; STORY AFTER INFLATION

- Inflation ends ⇒ Preheating (no problem) + gradual/perturbative reheating...
- Reheating:

$$\Gamma(\phi \to h h) = \frac{\kappa^2}{8\pi m_{\phi}}$$



Number of (dark) gauge d.o.f.

$$\Gamma_{\rm i}(\phi \to \gamma_i \, \gamma_i) = \frac{g_i m_\phi^3}{128\pi \, M_i^2} \qquad \frac{\phi}{128\pi \, M_i^2} \qquad \frac{\phi}{\gamma_i} \qquad \frac{\gamma_i}{\gamma_i} \qquad \frac{\phi}{\gamma_i} \qquad \frac{\gamma_i}{\gamma_i} \qquad \frac{\phi}{\gamma_i} \qquad \frac{\gamma_i}{\gamma_i} \qquad \frac{\phi}{\gamma_i} \qquad \frac{\phi}{\gamma_$$

- 1. Perturbative decay dominant into the Higgs
- 2. Universe reheats to temperature $T_{reh} \approx 0.5 \sqrt{\Gamma M_{pl}}$ by the time $t_{reh} \sim \Gamma^{-1}$

SKETCHING THE SCENARIO

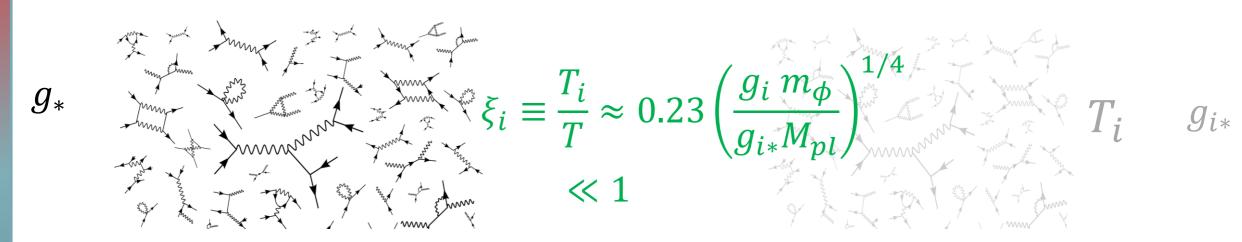
Inflation ends ⇒ Preheating + gradual/perturbative reheating

 $T \sim T_{reh} \approx 0.5 \sqrt{\Gamma M_{pl}}$ (room for baryogenesis, e.g. $T_{reh} \sim 10^{14} \; {\rm GeV})$

 $T \sim m_{\varphi}$ (inflaton becomes Boltzmann suppressed from here)

Inflaton + SM in equilibrium

dark sector(s) out of equilibrium



 $T \sim O(10) \text{ MeV} - O(100) \text{ TeV}$ (possible dark sector confinement)

(Hertzberg, Sandora 1908.09841)

$$T \sim O(1) MeV (BBN)$$

$$ilde{g}_*$$

 $\Delta N_{eff} = \frac{4}{7} \sum_{i} \xi_{i}^{4} \tilde{g}_{i*} \left(\frac{g_{i*} \tilde{g}_{*}}{\tilde{g}_{i*} g_{*}} \right)^{4/3} < 0.3$

MR equality $\sim CMB$

Today $\Omega_d \approx 0.26$ (easily allowed)

23

SUMMARY

- Took SM seriously to high energies because it is allowed by Unitarity.
- Instability in the Higgs at high energies. Dangerous during inflationary and post inflationary (preheating) eras. Went beyond Gaussian approximation + eternal inflation.
- Hint for new physics, especially when looked in broader setting of dark matter, BBN, CMB etc.
 - Presented a 'natural' model to explain the dominance of visible sector during early eras, avoids catastrophes during inflation and post-inflation eras, leaving enough room for dark matter, baryogenesis.

BACKUP SLIDES

Fokker Planck

$$\frac{d\vec{\varphi}}{dN} + \frac{1}{DH^2} \frac{\partial V}{\partial \vec{\varphi}} = \kappa \vec{\eta}_N$$

$$\frac{\partial p}{\partial N} = \frac{1}{DH^2} \frac{\partial}{\partial \vec{\varphi}} \left[\frac{\partial V}{\partial \vec{\varphi}} p \right] + \frac{\kappa^2}{2} \frac{\partial^2 p}{\partial \vec{\varphi}^2}$$

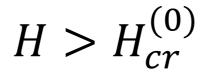
GAUSSIAN APPROXIMATION (?)

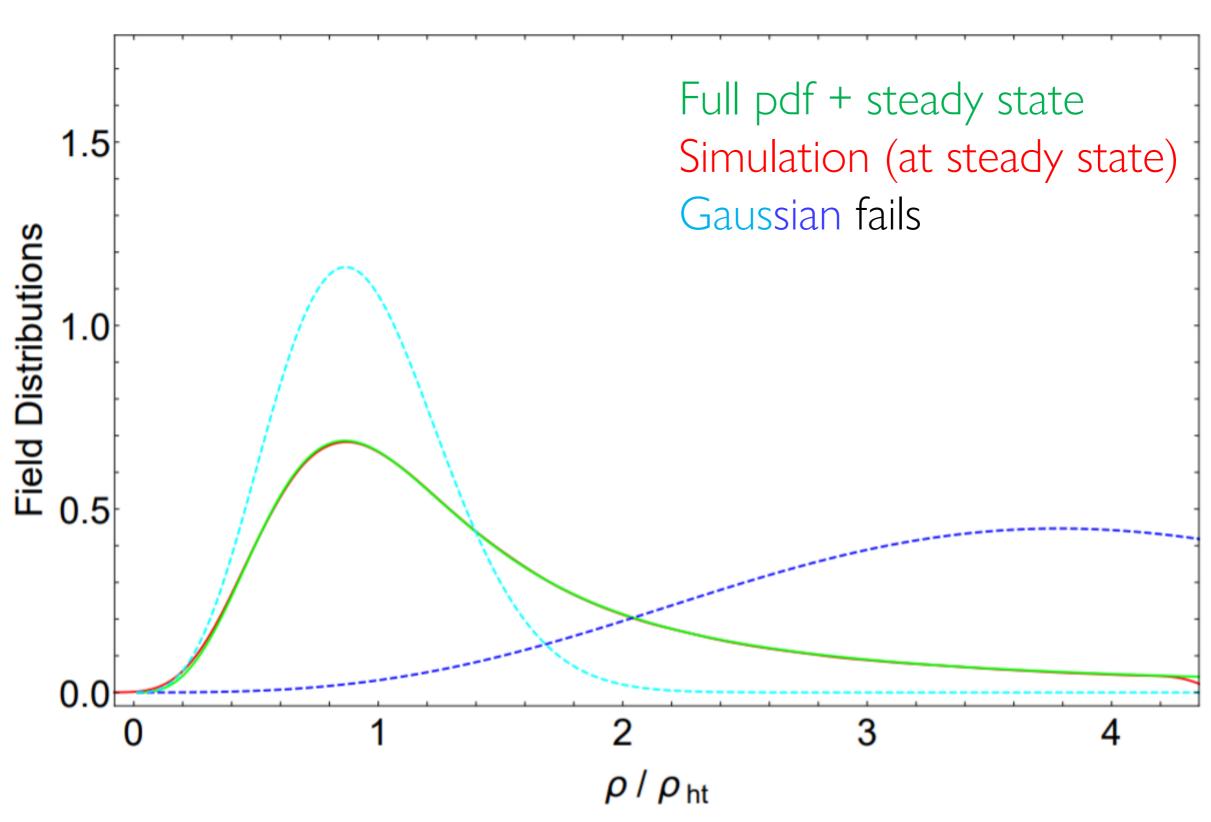
$$p(\vec{\varphi}, N) = \frac{1}{\sqrt{2\pi\sigma^2(N)}} e^{-\frac{\vec{\varphi}^2}{2\sigma^2(N)}}$$

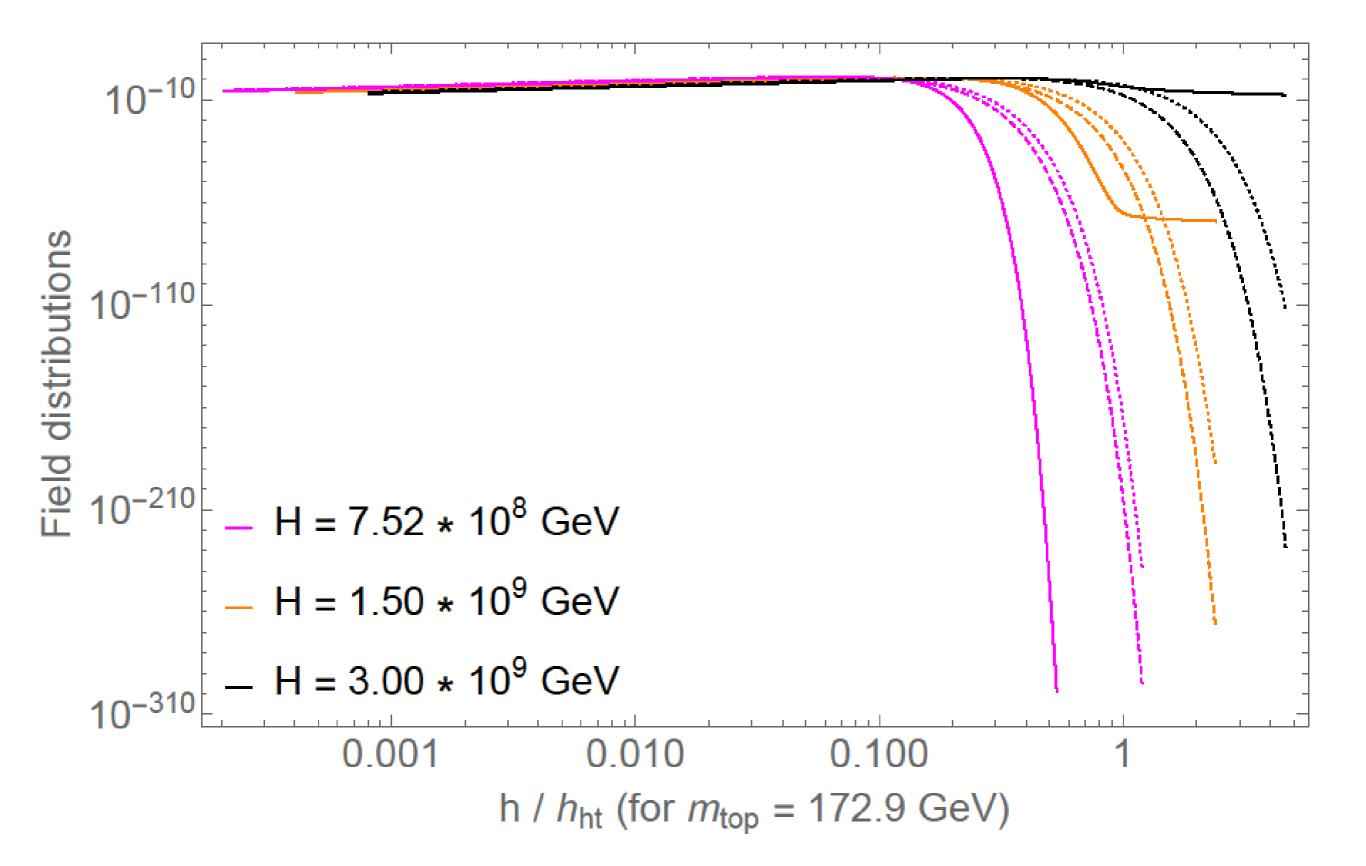
$$\frac{d}{dN}\sigma^2 + \frac{2}{DH^2} \left\langle \vec{\varphi} \cdot \frac{\partial V}{\partial \vec{\varphi}} \right\rangle = \kappa^2$$

Fokker Planck

COMPARISON of DISTRIBUTIONS with 1D SIMULATIONS



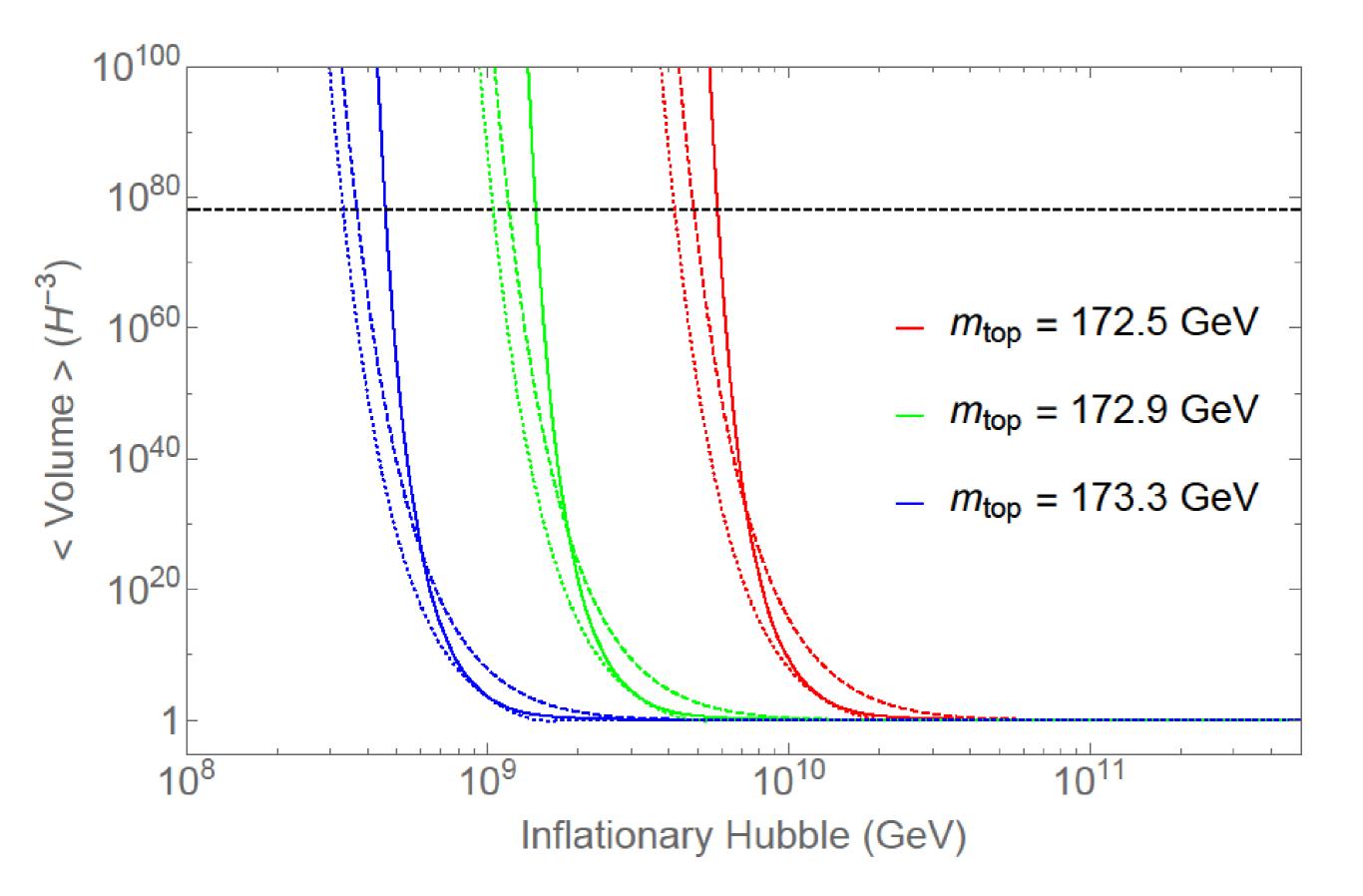




A MEASURE OF FAST ROLL



FIG. 9. A measure of the fast-roll $V''(h)/H^2$, with $H = H_{max}$ (the maximum H value to allow for a large observable universe). The dashed vertical lines are $h = h_{ht}$ are the hill-top values for the Higgs. This plot shows that for $h > h_{ht}$ the field is about to undergo fast-roll and we expect it to readily head towards an AdS crunch or other catastrophe. This is within the framework of the minimal SM in 3+1-dimensions for 3 different values of the top mass.



Tree level potential function

potential
$$V = \frac{m_{\phi}^{2}}{2} \phi^{2} + \kappa \phi (H^{\dagger}H) + \lambda (H^{\dagger}H)^{2} + \cdots$$

$$= \frac{1}{2} \left(m_{\phi} \phi + \frac{\kappa}{m_{\phi}} (H^{\dagger}H) \right)^{2} + (\lambda - \frac{\kappa^{2}}{2m_{\phi}^{2}}) (H^{\dagger}H)^{2} + \cdots$$

$$= \frac{1}{2} \left(m_{\phi} \phi + \frac{\kappa}{m_{\phi}} (H^{\dagger}H) \right)^{2} + (\lambda - \frac{\kappa^{2}}{2m_{\phi}^{2}}) (H^{\dagger}H)^{2} + \cdots$$

$$= \frac{1}{2} \left(m_{\phi} \phi + \frac{\kappa}{m_{\phi}} (H^{\dagger}H) \right)^{2} + (\lambda - \frac{\kappa^{2}}{2m_{\phi}^{2}}) (H^{\dagger}H)^{2} + \cdots$$

$$= \frac{1}{2} \left(m_{\phi} \phi + \frac{\kappa}{m_{\phi}} (H^{\dagger}H) \right)^{2} + (\lambda - \frac{\kappa^{2}}{2m_{\phi}^{2}}) (H^{\dagger}H)^{2} + \cdots$$

$$= \frac{1}{2} \left(m_{\phi} \phi + \frac{\kappa}{m_{\phi}} (H^{\dagger}H) \right)^{2} + (\lambda - \frac{\kappa^{2}}{2m_{\phi}^{2}}) (H^{\dagger}H)^{2} + \cdots$$

$$= \frac{1}{2} \left(m_{\phi} \phi + \frac{\kappa}{m_{\phi}} (H^{\dagger}H) \right)^{2} + (\lambda - \frac{\kappa^{2}}{2m_{\phi}^{2}}) (H^{\dagger}H)^{2} + \cdots$$

$$= \frac{1}{2} \left(m_{\phi} \phi + \frac{\kappa}{m_{\phi}} (H^{\dagger}H) \right)^{2} + (\lambda - \frac{\kappa^{2}}{2m_{\phi}^{2}}) (H^{\dagger}H)^{2} + \cdots$$

$$= \frac{1}{2} \left(m_{\phi} \phi + \frac{\kappa}{m_{\phi}} (H^{\dagger}H) \right)^{2} + (\lambda - \frac{\kappa^{2}}{2m_{\phi}^{2}}) (H^{\dagger}H)^{2} + \cdots$$

$$= \frac{1}{2} \left(m_{\phi} \phi + \frac{\kappa}{m_{\phi}} (H^{\dagger}H) \right)^{2} + (\lambda - \frac{\kappa^{2}}{2m_{\phi}^{2}}) (H^{\dagger}H)^{2} + \cdots$$

$$= \frac{1}{2} \left(m_{\phi} \phi + \frac{\kappa}{m_{\phi}} (H^{\dagger}H) \right)^{2} + (\lambda - \frac{\kappa^{2}}{2m_{\phi}^{2}}) (H^{\dagger}H)^{2} + \cdots$$

$$= \frac{1}{2} \left(m_{\phi} \phi + \frac{\kappa}{m_{\phi}} (H^{\dagger}H) \right)^{2} + (\lambda - \frac{\kappa^{2}}{2m_{\phi}^{2}}) (H^{\dagger}H)^{2} + \cdots$$

$$= \frac{1}{2} \left(m_{\phi} \phi + \frac{\kappa}{m_{\phi}} (H^{\dagger}H) \right)^{2} + (\lambda - \frac{\kappa^{2}}{2m_{\phi}^{2}}) (H^{\dagger}H)^{2} + \cdots$$

$$= \frac{1}{2} \left(m_{\phi} \phi + \frac{\kappa}{m_{\phi}} (H^{\dagger}H) \right)^{2} + (\lambda - \frac{\kappa^{2}}{2m_{\phi}^{2}}) (H^{\dagger}H)^{2} + \cdots$$

$$= \frac{1}{2} \left(m_{\phi} \phi + \frac{\kappa}{m_{\phi}} (H^{\dagger}H) \right)^{2} + (\lambda - \frac{\kappa^{2}}{2m_{\phi}^{2}}) (H^{\dagger}H)^{2} + \cdots$$

$$= \frac{1}{2} \left(m_{\phi} \phi + \frac{\kappa}{m_{\phi}} (H^{\dagger}H) \right)^{2} + (\lambda - \frac{\kappa^{2}}{2m_{\phi}}) (H^{\dagger}H)^{2} + \cdots$$

$$= \frac{1}{2} \left(m_{\phi} \phi + \frac{\kappa}{m_{\phi}} (H^{\dagger}H) \right)^{2} + (\lambda - \frac{\kappa}{m_{\phi}}) (H^{\dagger}H)^{2} + \cdots$$

$$= \frac{1}{2} \left(m_{\phi} \phi + \frac{\kappa}{m_{\phi}} (H^{\dagger}H) \right)^{2} + (\lambda - \frac{\kappa}{m_{\phi}}) (H^{\dagger}H)^{2} + \cdots$$

$$= \frac{1}{2} \left(m_{\phi} \phi + \frac{\kappa}{m_{\phi}} (H^{\dagger}H) \right)^{2} + (\lambda - \frac{\kappa}{m_{\phi}}) (H^{\dagger}H)^{2} + \cdots$$

$$= \frac{1}{2} \left(m_{\phi} \phi + \frac{\kappa}{m_{\phi}} (H^{\dagger}H) \right)^{2} + (\lambda - \frac{\kappa}{m_{\phi}}) (H^{\dagger}H)^{2} + \cdots$$

$$= \frac{1}{2} \left(m_{\phi} \phi + \frac{\kappa}{m_{\phi}} (H^{\dagger}H) \right)^{2} + (\lambda - \frac{\kappa}{m_{\phi}}) (H^{\dagger}H)^{2} + \cdots$$

$$= \frac{1}{2} \left(m_{\phi} (H^{\dagger}H) \right)^{2} + (\lambda$$

