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Do buyer-size discounts depend on the
curvature of the surplus function?
Experimental tests of bargaining models

Hans-Theo Normann∗
Bradley J. Ruffle∗∗
and

Christopher M. Snyder∗∗∗

A number of recent theoretical papers have shown that, for buyer-size discounts to emerge in
a bargaining model, the total surplus function over which parties bargain must have certain
nonlinearities. We test the theory in an experimental setting in which a seller bargains with
a number of buyers of different sizes. Nonlinearities in the surplus function are generated
by varying the shape of the seller’s cost function. Consistent with the theory, we find that
quantity discounts emerge only in the case of increasing marginal cost, corresponding to a
concave surplus function. We provide additional structural estimates to help identify the source
of remaining discrepancies between experimental behavior and theoretical predictions (whether
due to preferences for fairness or other factors such as computation errors).

1. Introduction

� The topic of large-buyer discounts has generated considerable interest among antitrust
policymakers, business journalists, and academic economists. The conventional wisdom is that
large buyers are somehow better bargainers than small buyers in price negotiations with a
seller. Theoretical analyses of such a bargaining model (Horn and Wolinsky, 1988; Stole and
Zwiebel, 1996; Chipty and Snyder, 1999; Inderst and Wey, 2003; Raskovich, 2003) concluded that

∗ Royal Holloway College, University of London; hans.normann@rhul.ac.uk.
∗∗ Ben-Gurion University; bradley@bgu.ac.il.
∗∗∗ Dartmouth College; christopher.m.snyder@dartmouth.edu.
We are grateful to Dan Benjamin, Bryan Boulier, Amitabh Chandra, Massimiliano De Santis, Naomi Feldman, Roman
Inderst, John Kwoka, Jay Shambaugh, Doug Staiger, Bart Wilson, and Jonathan Zinman, seminar participants at Dartmouth
College, Nagoya City University, Tilburg University, University of Amsterdam, University College London, University
of Chicago Graduate School of Business, and University of Toyko, and conference participants at the 2003 Economic
Science Association Meetings in Erfurt, the 2004 International Industrial Organization Conference in Chicago, and the
2006 Southern Economic Association Conference in Charleston, three anonymous referees, and Editor Ariel Pakes for
helpful comments. Urs Fischbacher provided us with his z-Tree software, and Brian Wallace wrote the computer code
used in our experiments. We thank the Nuffield Foundation (grant SGS/00767) for funding this research.

Copyright C© 2007, RAND. 747



748 / THE RAND JOURNAL OF ECONOMICS

large-buyer discounts are not guaranteed but depend on the curvature of the total surplus function
over which the parties bargain.

Figure 1 captures the logic behind the theoretical argument. Suppose for simplicity that
buyers are final-good consumers or are downstream firms which sell their output on separate
markets. The total surplus over which the parties bargain, W (Q), is equal to total benefits
(downstream consumer surplus or revenue) minus total costs (upstream and downstream
production costs) as a function of the quantity, Q, sold to buyers who reach an agreement
with the seller. Suppose a buyer with demand for q units trades with the seller. Assuming that
others come to an efficient agreement with the seller, the buyer may be regarded as the marginal
player, contributing marginal surplus A to the total. In Figure 1A, in which the total surplus
function is concave, A is quite small, and so whatever the sharing rule implicit in the bargaining
process, the buyer will not obtain very much surplus per unit. Now consider a second buyer who
is twice as big as the first, having demand for 2q units. The relevant marginal surplus over which

FIGURE 1
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the large buyer and seller bargain becomes A + B, which is much greater per unit than A due to
the concavity of the surplus function. The large buyer’s greater per-unit surplus translates into a
lower per-unit price than paid by the small buyer.

Contrast this result with the case of a linear total surplus function in Figure 1B. Taking the
small buyer to be the marginal player, the surplus over which he bargains to satisfy his q units of
demand is A. Taking the large buyer to be the marginal player, to fulfill his 2q units of demand,
he bargains over the surplus A + B, which is twice as large as A by the linearity of the surplus
function. Thus, the large and small buyer contribute the same marginal surplus per unit and, as a
result, pay the same per-unit price.

The case of a convex total surplus function in Figure 1C is more complicated. The surplus
over which the small buyer bargains, A, is much larger per unit than that over which the large buyer
bargains, A + B. Hence we might expect large-buyer premia to emerge in equilibrium. However,
buyers’ contributions to surplus at the margin may be so high that the low prices they pay as
a result are insufficient to cover the seller’s costs. Multiple equilibria may arise with one buyer
or another paying more to prevent the seller from taking his outside option not to produce. As
our analysis in Section 3 will show, the set of equilibrium outcomes may range from large-buyer
premia, to prices independent of size, to large-buyer discounts.

We test this theory in an experimental setting with three treatments corresponding to markets
with concave, linear, and convex total surplus functions. We generate curvature in the surplus
function by varying the seller’s marginal cost function, with increasing marginal costs leading to
a concave total surplus function, constant marginal costs leading to a linear total surplus function,
and decreasing marginal costs leading to a convex total surplus function.

Our results support the qualitative predictions of the theory for buyer-size discounts.
Substantial large-buyer discounts are observed in the increasing marginal cost treatment (i.e.,
concave total surplus function). Large buyers’ per-unit bids are 12% lower on average than small
buyers’ in this treatment. Sellers are also more likely to accept low bids from large buyers. Thus,
the large-buyer discount is even greater, 14%, if attention is restricted to accepted bids. In the
cases of constant and decreasing marginal costs, large and small buyers bid virtually the same
per-unit price on average, and sellers’ acceptance probabilities do not differ between them.

The fact that buyer-size discounts emerge in the cases predicted by theory and only those
cases is notable for several reasons. First, the underlying bargaining game involves a considerable
amount of strategic uncertainty. Buyers must form conjectures about the simultaneous bids
of other heterogeneous buyers and the sequential rationality of the seller’s response to these
bids. The solution concept employed by the theoretical papers we test, typically subgame-
perfect equilibrium, effectively requires buyers to regard themselves as marginal in just the
right way depending on their size. The solution concept may not be a good predictor of observed
outcomes in our experimental setting. Indeed, the level of buyer bids differs markedly from the
corresponding theoretical predictions for a number of cases (average bids are higher than theory
predicts for the constant and decreasing marginal cost treatments; small-buyer bids are lower
than theory predicts for the increasing marginal cost treatment). Despite the fact that the theory’s
quantitative predictions concerning buyer-bid levels do not always hold in the experiments, the
theory’s qualitative predictions concerning buyer-size discounts do hold. Second, the experimental
bargaining literature underscores that fairness and equity concerns may inhibit convergence to the
subgame-perfect equilibrium in settings such as the ultimatum game, even with repeated play and
high stakes (see, e.g., Slonim and Roth, 1998). Despite the latitude for fairness considerations and
their ability to account for some observed divergences from equilibrium play in our experiments,
buyer-size discounts nonetheless emerge only where predicted by the theory.

To our knowledge, ours is the first direct test of the bargaining literature cited in the
first paragraph. A few empirical papers have provided indirect tests (Ellison and Snyder, 2002;
Sorensen, 2003). In the particular industries studied, large-buyer discounts were found in markets
with competing suppliers but not with monopoly suppliers. Although this result does not support
the bargaining literature cited above, it is not a direct rejection as the theory does not say
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large-buyer discounts must emerge in equilibrium—large-buyer discounts may not emerge if the
total surplus function is not concave. Chipty and Snyder (1999) estimate the curvature of the total
surplus function in cable television. Their estimates could be used to determine which case from
the bargaining theory applies to cable television, but their paper is not a direct test of the theory
as they have no data on prices paid by buyers.

Although ours is the first experimental study of size as a source of buyer discounts, previous
experimental papers have studied other sources of buyer discounts. Ruffle (2000) examines
buyers’ ability to extract price concessions from competing sellers through demand withholding.
Davis and Wilson (forthcoming) analyze the impact of strategic buyers on market outcomes after
a seller merger. Engle-Warnick and Ruffle (2005) show that two buyers achieve significantly
lower prices against a monopoly seller than do four buyers. None of these studies varies buyer
size within a market to measure buyer-size discounts, nor do they vary the shape of the total
surplus function to test the bargaining theories cited in the first paragraph, as we do in the present
article.

To fit our article into the theoretical literature on buyer-size discounts, as mentioned, our
article directly tests the result from the bargaining models cited in the first paragraph that
buyer-size discounts depend on the curvature of the surplus function. Our article offers a
modest theoretical contribution to this literature by analyzing in detail a particular variant of
the bargaining model: one side makes take-it-or-leave-it offers to the other. A broader literature
provides alternative theories of buyer-size discounts that do not depend on the curvature of the
bargaining-surplus function. In Katz (1987) and Scheffman and Spiller (1992), large buyers’
credible threat of backward integration limits prices charged to them. In Snyder (1996, 1998),
collusion is difficult to sustain in the presence of larger buyers. In McAfee and Schwartz (1994),
Dobson and Waterson (1997), and Chen (2003), downstream product market competition affects
firms’ negotiations with an input supplier. In Chae and Heidhues (2004) and DeGraba (2005),
sellers favor large buyers because of risk aversion.

2. Experimental design

� To test for the relationship between the curvature of the surplus function and buyer-size
discounts, we designed three separate markets or treatments. The three treatments differ only
in the shape of the seller’s marginal cost function: a treatment with an increasing marginal cost
function (IMC), constant marginal cost function (CMC), and decreasing marginal cost function
(DMC). In each market, three buyers face a single seller. Two of the buyers are small, with unit
demand for the fictitious commodity, and the other buyer is large, with demand for two units.1

The buyers’ per-unit gross surplus is vi = 100, implying total gross surplus of Vi = 100
for a small buyer and Vi = 200 for the large buyer. The seller can supply up to four units to the
buyers, so there is no binding capacity constraint. We control for the total cost of supplying all
four units by setting it equal to 80 in all three treatments. In the IMC treatment, the seller’s first
unit of production costs 0, the second unit costs 5, the third unit 15, and the fourth 60. The DMC
treatment uses the same numbers but in reverse order, so the first unit costs 60, the second unit
15, the third 5, and the fourth 0. In the CMC treatment, all four units have the same marginal
cost of 20. Combining the gross surplus and cost parameters yields the total surplus functions
graphed in Figure 2. The IMC treatment leads to a concave surplus function, CMC to a linear
one, and DMC to a convex one.

Twelve subjects participate in each experimental session. After reading the instructions, nine
of the subjects are randomly selected to play the role of buyer and three to play the role of seller.
This role remains fixed throughout the experiment.

1 Exogenous variation in buyer size allows for a simple, direct test of the theory but is also of practical relevance
for wholesale and intermediate-good markets in which a monopolist sells to independent local buyers whose size is
exogenous, reflecting varying downstream demand that each buyer faces in its local market.
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FIGURE 2

TOTAL SURPLUS FUNCTIONS IN DIFFERENT TREATMENTS
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The experiment consists of 60 rounds. In each round, all three markets are simultaneously
conducted (one IMC, one CMC, and one DMC market) and with probability 1/3 each subject is
assigned to each of these markets. Thus, over the course of the 60-round experiment, all subjects
participate in each of the three markets. This design feature permits within-subject comparisons
across markets. Further, we used a random matching scheme. That is, the cohort of three buyers
and one seller that constitutes a market each round is randomly determined. We selected this
design feature to minimize repeated-game effects.2 A final random element in the design is the
designation of the large and two small buyers in each market. In a each market, two buyers are
randomly assigned the role of small buyer and one buyer the role of the large buyer in each of
the 60 rounds. The randomization scheme was performed once, prior to conducting any of the
experiments. The outcome of the randomization scheme was used for all six sessions. In this way,
we minimize between-session differences unrelated to behavior.

Trading takes place in a posted-bid market (first analyzed by Plott and Smith, 1978), involving
the following sequence of events. First, each subject is informed of the market to which he has
been assigned and buyers are told whether they have a demand for one or two units that round.
Each buyer i then privately and independently chooses a bid, pi. A small buyer’s bid reflects
the price he is willing to pay to fulfill his unit demand, while the large buyer’s bid reflects the
per-unit price he is willing to pay for the bundle of two units. The large buyer is not given
the option of bidding separate amounts for the two units. The seller observes each buyer bid
for xi ∈ {1, 2} units and decides whether to accept (ai = 1) or reject (ai = 0) each one. The
seller does not have the discretion to supply one of the large buyer’s two units and reject the
other.3

2 Subjects who play together repeatedly even for a known, fixed number of rounds sometimes exhibit supergame-
style strategies, especially when the number of rounds is large (Selten and Stoecker, 1986).

3 To simplify subjects’ tasks, we restricted large buyers to bidding the same price for both its units and sellers to
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Buyers earn a payment equal to net consumer surplus aixi(vi − pi), and sellers earn a payment
equal to total revenue,

∑
i pi ai xi , minus the total cost of producing realized sales. Rejected

bids yield zero profit for the buyer and the seller; the seller does not incur the cost of unsold
units.

Buyers’ valuations, seller costs, and the structure of the market are all made common
knowledge by reading aloud the subjects’ instructions (available from the authors upon request).
As mentioned, subjects are told that cohorts would be randomized in each round, but were not
told with whom they were playing in a market. Feedback at the end of a round is minimal,
again with the aim of minimizing repeated-game effects or possible collusion. Each buyer
learns only whether his bid was accepted and his resulting payoff. Buyers do not observe any
other buyers’ bids in their own or the other two markets, nor the sellers’ decisions on other
bids.

At the completion of 60 rounds, all subjects were paid their experimental earnings in cash. All
subjects were given an initial endowment of 1000 experimental “points” at the beginning of the
experiment. For every 250 points accumulated, the subject received £1. In total, 72 subjects
participated in one of six experimental sessions conducted in the Experimental Economics
Laboratory at Royal Holloway, University of London. Each session, including the instructions,
five practice rounds, and a post-experiment questionnaire, lasted between 120 and 160 minutes.
On average, sellers earned £22 and buyers £19 each, including the initial endowment.

3. Theoretical predictions

� In this section, we derive the pure-strategy, subgame-perfect equilibria of our experimental
game. Our experimental setting differs slightly from any of the related theoretical papers because
we have adopted a different bargaining game. Rather than Nash bargaining (as in Horn and
Wolinsky, 1988; Chipty and Snyder, 1999; Raskovich, 2003), or specific bargaining procedures
giving rise to the Shapley value (as in Stole and Zwiebel, 1996; Inderst and Wey, 2003), we adopt
a simpler, and thus more tractable, bargaining game for an experimental setting, namely one in
which parties make take-it-or-leave-it offers. The equilibrium outcomes are qualitatively similar
to those in these other papers, but to derive the equilibria formally requires new propositions.
Because these propositions are of some independent interest, we first prove a general version
of them, and then proceed to derive their implications for the specific parameters used in our
experiment.

Suppose there are N buyers indexed by i = 1, . . . , N . Let B = {1, . . . , N} denote the set of
buyers. Each buyer i has inelastic demand for xi ∈ N units, with Vi representing the buyer’s total
gross surplus for the bundle of xi units, and vi = Vi/xi representing the buyer’s gross surplus per
unit. Let X = ∑

i∈B xi . In the first stage of the bargaining game, each buyer i makes a simultaneous
offer of a bid per unit pi ∈ [0, ∞) to the single seller in the market. In the second stage of the
bargaining game, the seller decides whether to accept the bid of each buyer i, the decision denoted
ai ∈ {0, 1}. Equivalently, the seller chooses the set of accepted buyer bids A = {i ∈ B | ai = 1}.
Market sales are Q = ∑

i∈B ai xi .
Denote the seller’s total cost of producing Q by C(Q), its marginal cost of producing the last

of Q units by MC(Q) = C(Q) − C(Q − 1), its incremental cost of producing Q2 on top of Q1 by
I C(Q2, Q1) = C(Q1 + Q2) − C(Q1) = ∑Q2

j=1 MC(Q1 + j), and its average incremental cost of
producing Q2 on top of Q1 by AIC(Q 2, Q 1) = I C(Q 2, Q 1)/Q 2. Normalize C(0) = 0.

A full characterization of the subgame-perfect equilibria of this game for general parameter
configurations turns out to be quite complicated. In our experiments, we chose the parameters
so that all buyers are served in equilibrium. This simplifies the characterization of equilibria
considerably. We will thus restrict attention to the case in which all buyers are served for the

supplying large buyers with both or no units. With subjects switching between treatments, buyers alternating size, and
others’ play generating considerable strategic uncertainty, our experiment is already quite complex.

C© RAND 2007.



NORMANN, RUFFLE, AND SNYDER / 753

remainder of the section. The following proposition provides a sufficient condition for all buyers
to be served in equilibrium. The proofs of all propositions appear in the Appendix.

Proposition 1. All buyers are served (formally, the set of buyers whose bids are accepted A equals
the set of all buyers B) in any pure-strategy, subgame-perfect equilibrium if, for all i ∈ B,

vi > max
{Q≤X}

MC(Q). (1)

Condition (1) specifies that all buyers’ per-unit valuations exceed the marginal cost of producing
any unit. If condition (1) holds, but not all buyers are served in a particular outcome, the outcome
cannot be an equilibrium. Rather than earning zero profit, an excluded buyer could offer a bid
between its valuation and the incremental cost of being served that would be strictly profitable for
the seller to accept regardless of which other buyers were also being served. This accepted bid
would generate positive profit for the buyer. Note that the condition in the proposition is satisfied
by the experimental parameters because vi = 100, which is greater than 60, the highest marginal
cost of producing any unit in the experiment.

The next set of propositions characterizes the pure-strategy, subgame-perfect equilibria in
which all buyers are served for marginal cost functions of different shapes.

Proposition 2. Suppose marginal costs are non-decreasing, that is, MC(Q + 1) ≥ MC(Q) for all
Q ∈ {1, 2, . . . , X}. Buyer bids {pi | i ∈ B} form a pure-strategy, subgame-perfect equilibrium in
which all buyers are served if and only if, for all i ∈ B,

pi = AI C(xi , X − xi ) ≤ vi . (2)

Proposition 3. Suppose marginal costs are strictly decreasing, that is, MC(Q + 1) < MC(Q) for
all Q ∈ {1, 2, . . . , X}. Buyer bids {pi | i ∈ B} form a pure-strategy, subgame-perfect equilibrium
in which all buyers are served if and only if pi ≤ vi for all i ∈ B and, for all subsets S ⊆ B,

I C

(∑
i∈S

xi , X −
∑
i∈S

xi

)
≤
∑
i∈S

pi xi ≤ C

(∑
i∈S

xi

)
. (3)

Proposition 2 subsumes the cases of strictly increasing marginal costs and everywhere
constant marginal costs, which correspond to two of our experimental treatments, as well as
marginal cost functions that are strictly increasing over some regions and constant over others.
In view of Proposition 2, characterization of the equilibrium with all buyers being served under
constant or increasing marginal costs is quite simple. Each buyer bids an amount that exactly
covers the incremental cost of being served on top of the other N − 1 buyers’ purchases. Any
less than this and the seller would gain by rejecting the bid; any greater than this and the buyer
could profitably lower the bid and still not have it rejected by the supplier.

As Proposition 3 shows, characterization of equilibria under decreasing marginal costs is
more complicated. There is a continuum of equilibria. Within the bounds provided by condition
(3), any set of bids summing exactly to the total cost of serving all buyers forms an equilibrium
in which all buyers are served. The first inequality in (3) ensures that the seller does not have an
incentive to reject a subset of buyer bids. The second inequality in (3) ensures that a buyer does
not have an incentive to lower his bid because it would be rejected by the seller. To see this, note
that if a buyer deviated to a lower bid, the second weak inequality would become strict for all
subgroups containing the deviating buyer, implying that the seller would earn negative profit if
it accepted the bids of any subgroup containing the deviating buyer. The seller would earn more
(zero rather than negative profit) by simply rejecting all bids.

Figure 3 summarizes the implications of Propositions 2 and 3 in the case of our experimental
parameters. The 45◦ line represents equal average large-buyer and small-buyer per-unit bids; large-
buyer discounts are found in the region below the 45◦ line, and small-buyer discounts above it.
For the IMC treatment, Proposition 2 implies that small buyers bid psi = AI C(1, 3) = 60 in
equilibrium while the large buyer bids p� = AIC(2, 2) = 37.5. The seller accepts all bids in
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FIGURE 3

EQUILIBRIA FOR EXPERIMENTAL PARAMETERS
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equilibrium and earns 115, small buyers each earn a profit of 40, and the large buyer earns 125.
The large buyer obtains a substantial discount of 22.5.

For the CMC treatment, Proposition 2 implies that the small buyers’ equilibrium bids,
psi = AI C(1, 3) = 20, are the same as the large buyer’s, p� = AIC(2, 2) = 20, and the seller
accepts all bids and earns zero. Thus, there is no buyer-size discount, as the large and small buyers
make the same per-unit bids equal to the constant marginal cost. Small buyers each earn a profit
of 80 while the large buyer earns 160.

In the DMC treatment, as Figure 3 indicates, there exists a continuum of equilibria.
Proposition 3 states that condition (3) must hold for all possible subsets of buyers. Translated into
our experimental setting, for condition (3) to hold for a subset of one small buyer, 0 ≤ psi ≤ 60;
for it to hold for a subset of one large buyer, 5 ≤ 2p� ≤ 75; for it to hold for a subset of two
small buyers, 5 ≤ ps1 + ps2 ≤ 75; for it to hold for a subset of one large and one small buyer,
20 ≤ 2p� + psi ≤ 80; and for it to hold for the set of all buyers, 80 ≤ 2p� + ps1 + ps2 ≤ 80.
Combining these inequalities yields the set of equilibria labeled DMC in Figure 3. Equilibria
may involve large-buyer discounts, small-buyer discounts, or equal per-unit prices for large and
small buyers. All buyers are served in equilibrium. Buyers’ payoffs depend on the equilibrium;
the seller earns zero in all cases.

To summarize the predictions for the three treatments, large-buyer discounts should be
observed in the IMC treatment and no discounts observed in the CMC treatment. The DMC
treatment may exhibit a range of outcomes including no discounts. Average bids are predicted to
be higher in IMC than the other treatments. Only in the IMC treatment is the seller predicted to
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TABLE 1 Descriptive Statistics for Buyer Bids

(a) All Rounds (b) Last 30 Rounds

Mean Median Std. Dev. Obs. Mean Median Std. Dev. Obs.

All bids
IMC large buyer 39.8 40.0 11.4 360 39.5 40.0 10.1 180
IMC small buyer 43.4 42.0 11.9 720 44.8 45.0 9.9 360
CMC large buyer 34.1 35.0 10.4 360 34.6 35.0 10.0 180
CMC small buyer 34.7 35.0 10.1 720 34.5 35.0 8.8 360
DMC large buyer 41.7 40.0 13.6 360 40.9 40.0 11.7 180
DMC small buyer 42.0 40.0 13.8 720 40.2 40.0 12.1 360

Accepted bids
IMC large buyer 41.7 40.0 10.4 316 41.1 40.0 8.9 162
IMC small buyer 47.6 50.0 10.8 436 48.0 49.0 9.4 217
CMC large buyer 35.9 35.0 9.8 298 36.3 35.0 9.4 149
CMC small buyer 35.9 35.0 10.2 617 35.3 35.0 8.7 325
DMC large buyer 42.4 40.0 13.5 340 41.1 40.0 11.7 177
DMC small buyer 42.7 40.0 13.7 673 40.5 40.0 12.1 347

earn positive profit; in the CMC and DMC treatments, buyers’ bids sum exactly to the seller’s
total cost of 80.

4. Results

� In this section, we test the implications of the theory concerning buyer-size discounts based
on the six experimental sessions we conducted. The next subsection focuses on tests of the
comparative-statics predictions of the theory, that is, predictions of the theory for differences
between large and small buyers. The last subsection focuses on explaining observed deviations
from equilibrium behavior.

� Buyer-size discounts. Our analysis of buyer-size discounts in each of the three treatments
(IMC, CMC, and DMC) proceeds by first examining the extent to which the discounts show up
in descriptive statistics reported in Table 1 and using the regression results in Table 2 to test
whether the discounts are statistically significant. Although the tables also report results based on
all 60 rounds, we direct attention to the last 30 rounds of play throughout the discussion in this
subsection. This choice follows from the insight that experimental data may be noisy in the early
rounds as subjects familiarize themselves with the environment and learn how rivals play. We
will investigate these and other dynamic effects more formally in the next subsection, but note
for now that all of the qualitative results discussed in this subsection are robust to considering the
entire 60 rounds of play.

Regarding the IMC treatment, the summary statistics in the first two rows of part (b) of
Table 1 point to an appreciable large-buyer discount. The mean large-buyer bid is 39.5 (median =
40.0), about five points less than the mean small-buyer bid of 44.8 (median = 45.0). The random-
effects regression in part (a) of Table 2 shows that this discount is statistically significant.4

The standard errors are corrected for possible non-independence of observations across multiple
rounds of play for the same buyer (by clustering each buyer’s observations) and are robust to
possible heteroskedasticity (following White, 1980). The regression includes dummy variables
for the IMC and DMC treatments, labeled IMC and DMC, respectively, with CMC as the omitted
treatment. To assess the magnitude of buyer-size discounts or premia, interaction terms between

4 Our experimental design obviates the need for fixed buyer effects because the buyer’s size and the treatment in
which he plays are chosen randomly each round. Indeed, the regression coefficients of interest are virtually identical
across fixed- and random-effects specifications. A Hausman test cannot reject the appropriateness of random effects.
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TABLE 2 Buyer-Bid Regressions

All Buyer Bids Accepted Buyer Bids

All Rounds Last 30 Rounds All Rounds Last 30 Rounds
(a) (b) (c) (d)

Constant 34.60∗∗∗ 35.02∗∗∗ 35.45∗∗∗ 35.52∗∗∗

(1.22) (1.14) (1.22) (1.12)
IMC 8.73∗∗∗ 9.31∗∗∗ 10.96∗∗∗ 10.53∗∗∗

(1.32) (1.17) (1.39) (1.29)
DMC 7.69∗∗∗ 5.69∗∗∗ 7.24∗∗∗ 5.40∗∗∗

(1.72) (1.56) (1.74) (1.52)
IMC × LARGE −3.62∗∗∗ −4.84∗∗∗ −5.55∗∗∗ −5.81∗∗∗

(.88) (.93) (1.09) (1.09)
CMC × LARGE −.08 −.86 .37 −.33

(.71) (.69) (.75) (.72)
DMC × LARGE −1.11 −.44 −.83 −.54

(1.04) (.90) (1.01) (.90)

N 3240 1620 2680 1377
R2 .09 .12 .11 .14

Notes: Omitted treatment dummy is CMC, so coefficients on IMC and DMC reflect
the difference between small-buyer bids in these treatments and the CMC treatment. All
columns are random-effects regressions accounting for random buyer effects. Standard errors
reported in parentheses below coefficient estimates are heteroskedasticity robust (following
White, 1980) and are clustered by buyer. Coefficient significantly different from zero in
a two-tailed test at the ∗∗∗1% level, ∗∗5% level, and ∗10% level. N is the number of observations.

each of the treatments and buyer size are included, IMC × LARGE, CMC × LARGE, and DMC ×
LARGE. The dummy variable LARGE equals one for bids made by large buyers. The coefficient
of −4.84 (significantly different from zero at the 1% level) on the interaction term IMC × LARGE
in part (a) indicates nearly a five-point large-buyer discount in this treatment.

The existence and magnitude of the large-buyer discount in IMC are striking when contrasted
with the absence of buyer-size discounts in the other two treatments. Theory predicts that the
mean large- and small-buyer bids should be identical in the CMC treatment. The descriptive
statistics in part (b) of Table 1 bear this out: the mean large-buyer bid in this market is 34.6
(median = 35.0) compared to 34.5 (median = 35.0) for small buyers. In the random-effects
regression in part (a) of Table 2, the coefficient of −.86 on CMC × LARGE is not significantly
different from zero. Turning to the DMC treatment, we again find no difference between large
and small buyers’ bids. The mean large-buyer bid for the DMC treatment reported in part (b)
of Table 1 is 40.9 (median = 40.0) compared to 40.2 (median = 40.0) for small buyers. In the
random-effects regression in part (a) of Table 2, the coefficient of −.44 on the interaction term
DMC × LARGE is not statistically different from zero.

The results are if anything stronger if we consider the subsample of accepted bids. The
justification for focusing on accepted bids is that these would be the prices observed by the
empirical researcher in a typical non-experimental market; one would not observe prices for
trades that were not executed due to a breakdown in bargaining. Summary statistics for accepted
bids are provided in the last six rows of Table 1. Comparing the large- and small-buyer bids in part
(b) of the table for the IMC treatment shows that the mean large-buyer discount increases to about
seven points and the median rises to about nine points when just accepted bids are considered.
Similarly, the regression coefficient of −5.81 on IMC × LARGE in part (b) of Table 2 is larger
(by about one point) than the corresponding coefficient for all bids reported in column (a). By
contrast, the means and medians of large and small buyers’ bids remain virtually unchanged for
the CMC and DMC treatments when we restrict attention to accepted bids, and the corresponding
regression coefficients measuring a buyer-size discount continue not to be significantly different
from zero.
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FIGURE 4

SELLER ACCEPTANCE DECISION FROM PROBIT ESTIMATES (LAST 30 ROUNDS)
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We next turn to an analysis of the impact of buyer size on sellers’ acceptance decisions. In
the IMC treatment, theory predicts that the seller accepts a large buyer’s bid whenever it would
accept an equal small buyer’s bid, at least in the range of bids in our data set, but the converse
is not true. (A proof of this statement is provided at the end of the Appendix.) In the CMC
treatment, theory implies that there should be no difference in the accept/reject decision for large-
and small-buyer bids because both provide the same per-unit surplus for a given bid. There are
no strong theoretical predictions for the DMC treatment in this regard because of the multiplicity
of equilibria.

The descriptive statistics in part (b) of Table 1 provide some evidence on the seller’s
acceptance decision. Comparing the number of accepted bids in the last six rows of the table to
the total number of bids in the first six rows, the disproportionate number of rejected bids made
by small buyers in the IMC treatment stands out. For the other buyer types, rejection rates range
from 2% (large buyers in DMC) to 17% (large buyers in CMC). In the case of small buyers in
IMC, the rejection rate is 40%, with 143 out of 360 bids rejected. Compare this with large buyers
in the same treatment, whose bids are rejected at the rate of only 10% (18 out of 180), despite
bidding significantly lower than their small-buyer counterparts.

A more formal analysis of the seller’s accept/reject decision is provided by Figure 4. We
ran a probit to determine the reduced-form probability of seller acceptance as a function of a
buyer’s bid for each of the six different buyer-size/treatment combinations.5 To aid interpretation,
rather than report a table of coefficient estimates, in Figure 4 we provide a graph of the seller’s
acceptance decision based on coefficient estimates. As the figure shows, the seller acceptance

5 The dependent variable in the probit is an indicator for the seller’s accept/reject decision; regressors include a full
set of dummies for buyer-size/treatment combinations and interactions between these and the buyer’s bid. We use the
results based on the last 30 rounds of bids; results based on all rounds of bids are similar.
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TABLE 3 Comparison of Observed, Predicted, and Experimental Best-Response
Bids

Best Response to Others’
Experimental Behavior

Mean Theoretical Monetary Utility with
Bid Prediction Payoffs Fairness
(a) (b) (c) (d)

IMC large buyer 39.5 37.5 37.0 36.9
IMC small buyer 44.8 60.0 54.8 53.4
CMC large buyer 34.6 20.0 36.8 37.6
CMC small buyer 34.5 20.0 33.3 34.2
DMC large buyer 40.9 * 25.5 26.3
DMC small buyer 40.2 * 18.6 19.9

Notes: Entries in columns (a), (c), and (d) are based on data from last 30 rounds of play.
Column (a) is taken from Table 1. Column (b) is based on Figure 3. Column (c) is based on
Figure 5. Column (d) is computed multiplying acceptance probabilities from Figure 4 by the
utility function incorporating fairness using the parameters from part (b) of Table 4.

∗ Theoretical prediction is not unique; it can be any number in the interval [2.5, 37.5] with
four unit bids averaging 20.

functions are similar for the large and small buyers in both the CMC and DMC treatments.
However, the acceptance function for the IMC small buyers lies well below that of IMC large
buyers, indicating that the seller is much more likely to accept a large-buyer bid than an equal
small-buyer bid. The figure highlights the seller’s distinct treatment of IMC small buyers’ bids.
For example, a bid of 40 by a small buyer in the IMC treatment has less than a 50% chance of
being accepted, whereas this same per-unit bid is accepted with near certainty when submitted by
each of the other five buyer types. In all five comparisons of the probability of acceptance with
small buyers in IMC, the difference is significantly different from zero at better than the 1% level
in pairwise χ 2 tests.6

To sum up, the results for buyer-size discounts are qualitatively consistent with the
comparative-static predictions of the theory. Large buyers’ bids are lower and sellers accept these
lower bids in the IMC treatment. There are no price discounts and sellers’ acceptance behavior is
alike across large and small buyers in the CMC treatment. These findings are all predicted by the
theory. Theory predicts a broad range of possible outcomes for the DMC treatment, including the
possibility that large and small buyers pay equal per-unit prices and sellers’ acceptance behavior
is alike across large and small buyers. Consistent with this possibility, large and small buyers’ bids
are about equal in the DMC treatment in our experimental data and sellers’ acceptance behavior
is about the same across large and small buyers.

� Explanations of deviations from equilibrium. Although the theory correctly predicts the
direction of buyer-size discounts in the experiment, there remain some discrepancies between bid
levels in certain treatments and the corresponding theoretical predictions that merit investigation.
For ease of comparison, Table 3 juxtaposes the mean bids from the experimental data from Table 1
and the theoretical predictions from Figure 3. In the IMC treatment, the average large-buyer bid
of 39.5 is close to the theoretical prediction of 37.5. The random-effects regressions from Table 2
can be used to provide a statistical test of the difference as well as the other differences discussed
below in this section: the estimated large-buyer bid in the IMC treatment—given by the sum of
the coefficients on the constant, IMC, and IMC × LARGE from column (b)—is not significantly

6 All statistical tests are based on the probit referred to in footnote 5. The standard errors from this population-
averaged, panel-data probit are heteroskedasticity robust and clustered by seller (to account for possible correlation in the
errors for the same seller across multiple rounds).
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FIGURE 5

OPTIMAL BUYER BID GIVEN OTHERS’ EXPERIMENTAL BEHAVIOR (LAST 30 ROUNDS)
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different from 37.5 at the 10% level in a two-tailed t test. On the other hand, the average small-
buyer bid of 44.8 is lower than the theoretical prediction of 60, significantly different at the 1%
level. (Indeed, the absence of buyer-size discounts in the CMC and DMC treatments coupled with
small buyers’ below-equilibrium bidding in IMC make large-buyer discounts in this treatment all
the more striking.) Although large- and small-buyer bids in the CMC treatment—34.6 and 34.5,
respectively—are not significantly different from each other, they are higher than the theoretical
prediction of 20 for both, significantly different at the 1% level. Although large- and small-buyer
bids in the DMC treatment cannot be compared to their theoretical counterparts individually
because there is not a unique theoretical prediction for them, the average across large- and small-
buyer bids can be compared to theory. The average in column (a) of about 40 is higher than the
theoretical prediction of 20, significantly different at the 1% level.

We begin with a preliminary analysis of whether the buyers, the sellers, or both are
responsible for the discrepancies between bid levels and theoretical predictions. To help determine
whether buyer play is rational—“rational” will be used throughout the discussion in the narrow
sense of maximizing own monetary payoffs in a one-shot game—for each treatment and buyer-
size combination, we calculate buyers’ monetary-payoff-maximizing best responses to others’
experimental play. A divergence between mean bids and these best responses would suggest
possible departures from buyer rationality. We use the results underlying Figure 4 as an input in
the calculation. Multiplying the acceptance probability from Figure 4 times the buyer’s payoff
conditional on acceptance for each bid level results in the expected buyer payoff function
conditional on others’ experimental play, displayed in Figure 5. The peak of a function is a
payoff-maximizing buyer’s best response to others’ experimental behavior, recorded in column
(c) of Table 3.

Comparing columns (a) and (c), we see a divergence between experimental best responses
and mean bids in three of the six rows: for small-buyer bids in IMC and for large- and small-buyer
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bids in DMC. This suggests some deviation from rational play on the buyer side at least in these
cases. On the other hand, comparing columns (b) and (c), experimental best responses diverge
from theoretical predictions in three of the six rows: for small-buyer bids in IMC and for large-
and small-buyer bids in CMC. This raises the possibility of departures from rational play on the
seller side as well, as will be examined below.

More direct evidence on the rationality of seller play can be obtained from an analysis
of individual seller acceptance decisions. A sequentially rational seller would best respond to
the set of observed bids in each round (which do not necessarily correspond to the equilibrium
bids predicted by theory, as just seen). Focusing on the last half of the rounds in each session
(periods 31–60), for each treatment we have 180 seller decisions to analyze (30 periods times
six sessions) involving 540 buyer bids. In the IMC treatment, 149 out of 180 sellers’ decisions
(83%) are rational. Half of the irrational decisions are acceptances of all three bids when the
seller should have rejected one small-buyer bid. In CMC (where sellers’ decisions on all 540
bids can be analyzed separately), we found 481 rational seller decisions (89%). Seven of these
are rejections of bids less than 20. All 59 irrational decisions are rejections of bids larger than
20, albeit relatively low bids: the average rejected bid was 28.7, significantly less than large and
small buyers’ average bids. No bid above 40 is rejected. Finally, in DMC, bids were sufficiently
high that it is rational for sellers to accept all bids in all cases. Out of 180 sets of decisions in
DMC, 170 are rational; 10 involve an irrational rejection of at least one bid.

A number of possible factors may account for the departures from rational play by buyers
and sellers. Players may care about fairness in addition to monetary payoffs; they may make
calculation errors; they may slowly learn about others’ experimental play; they may manipulate
their short-run play in a dynamic strategy to affect future outcomes, and so forth. A preference
for fairness has some intuitive appeal as an explanation. For example, a preference for fairness
on the part of sellers might explain why they reject 59 bids in the CMC treatment greater than
20: even though accepting would have increased sellers’ monetary payoff, the bids may have
been low enough to give them a small share of the payoff relative to the buyer. A preference for
fairness on the part of buyers might explain why they bid more on average in the DMC treatment
than the monetary-payoff-maximizing best responses, as the latter would leave the buyer with a
disproportionate share of the surplus relative to the seller.

To investigate more formally the importance of fairness relative to the other factors, we
estimate a structural fairness model. A variety of different theories of fairness have been proposed
(see Fehr and Schmidt, 2006, for a survey). Perhaps the most influential is Fehr and Schmidt’s
(1999) model of inequality aversion. Unfortunately, even though the Fehr-Schmidt model is
relatively simple, it is still intractable to compute the equilibrium in our setting.7 We proceed
by estimating the model on sellers in isolation. Because sellers move second in the stage game,
conditional on the bids they receive, their behavior can be characterized as a simple discrete-choice
problem.

Sellers must decide whether to accept or reject each of three bids, leading to a choice
among 23 = 8 possible acceptance configurations. Seller i’s utility from choosing acceptance
configuration k from among the eight possibilities is

uik = xik − αi

N − 1

∑
j �=i

max{x jk − xik, 0} − βi

N − 1

∑
j �=i

max{xik − x jk, 0} + εik

λ
, (4)

where xik is seller i’s monetary payoff from decision k, α i measures the disutility from payoff
disadvantages relative to the buyers (indexed by j) from whom seller i receives bids, β i measures
the disutility from seller i’s payoff advantages relative to these buyers, ε ik is a logit error term, λ

is a term scaling the precision of the error, and N is the number of players in the market (four in

7 In our setting, the seller may accept multiple offers and the total surplus function is potentially nonlinear. The
sequential-move games for which Fehr and Schmidt (1999) explicitly derive equilibria all have the flavor of the simpler
ultimatum game.
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TABLE 4 Structural Model of Seller Fairness

α̂ β̂ λ̂ N

(a) All rounds
All treatments .054 .135∗∗∗ .098∗∗∗ 1080

(.066) (.068) (.008)
IMC treatment .022 .098 .132∗∗∗ 360

(.080) (.068) (.019)
CMC treatment .035 .549∗∗∗ .098∗∗∗ 360

(.087) (.169) (.010)
DMC treatment .223∗∗∗ .399∗ .076∗∗∗ 360

(.073) (.211) (.007)

(b) Last 30 rounds
All treatments .068 .133∗∗ .130∗∗∗ 540

(.079) (.060) (.015)
IMC treatment .013 .161∗∗∗ .197∗∗∗ 180

(.074) (.054) (.041)
CMC treatment .086 1.028∗∗∗ .100∗∗∗ 180

(.095) (.271) (.010)
DMC treatment .220∗∗ −.411 .106∗∗∗ 180

(.110) (.292) (.014)

Notes: Maximum-likelihood estimates of the parameters in equation (4). N is the
number of seller-round observations. Standard errors reported in parentheses below
coefficient estimates are heteroskedasticity robust (following White, 1980) and are
clustered by seller. Coefficient significantly different from zero in a two-tailed test at
the ∗∗∗1% level, ∗∗5% level, and ∗10% level.

our experiments). Fehr and Schmidt’s (1999) model is reproduced in the first three terms on the
right-hand side of (4). Seller i enjoys a higher monetary payoff but dislikes inequality relative to
its transacting partners. Including separate coefficients α and β allows the disutility from earning
less surplus than transacting partners to potentially differ from the disutility of earning more.
The last term, ε ik/λ, has been appended to the Fehr-Schmidt model in the spirit of McKelvey
and Palfrey’s (1998) quantal response equilibrium. This last term allows for tractable estimation
of the model. It captures any sort of deviation from seller rationality including computation
errors and dynamic strategies to affect future play beyond the stage game. The smaller is λ, the
more important are these other factors relative to fairness in explaining deviations from seller
rationality.

Table 4 presents maximum-likelihood estimates of the α̂, β̂, and λ̂, assuming parameters
are constant in the population.8 Focusing on the results for all treatments in part (b) of the table
(using the last 30 rounds of data), estimates of both fairness parameters α̂ = .068 and β̂ = .133
are positive, and β̂ is significantly different from zero. There is some instability among the fairness
parameters across treatments: β̂ is significantly greater than zero for most subsamples, and α̂ is
significantly positive in DMC only.9

These estimates thus provide some evidence that fairness plays a role in deviations by
sellers from payoff maximization. However, analysis of the relative magnitudes of the estimated
parameters suggests that the overall role of fairness is dwarfed by other factors. The error term
ε ik/λ, which in our setting has the interpretation of deviations from rational play caused by

8 When α̂ and β̂ were allowed to vary across sellers, the procedure failed to converge for some subsamples. It did
converge for the subsample of all treatments in the last 30 rounds. Though a likelihood-ratio test rejected the equality of
parameters across sellers for this subsample, λ̂ was still close to that reported in Table 4.

9 The parameter instability across treatments indicates possible misspecification in the fairness model. We estimated
several alternative models that produced a better fit than Fehr and Schmidt (1999); the overall picture that fairness plays
only a limited role in explaining deviations from rationality was unchanged.
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factors besides fairness, has a standard deviation of π/λ
√

6. Substituting λ̂ = .130, this standard
deviation equals 10. A standard deviation this high would be generated by adding noise in the
form of an equal chance of adding or subtracting 10 points from each seller decision. A rise or
fall of 10 payoff points dominates any estimated fairness effects. For example, considering the
estimate α̂ = .068 (insignificantly different from zero, but we will still take the point estimate
for the sake of this exercise), for the seller to be willing to give up 10 payoff points, each buyer’s
advantage over the seller would have to be reduced by over 146 points (146 ≈ 10/α̂). This is an
order of magnitude greater than buyer-seller advantages observed on average in the data (18.1).
Similarly, considering the estimate β̂ = .133, for the seller to be willing to give up 10 payoff
points, each buyer’s payoff would have to be increased 74 points to narrow their shortfall relative
to the seller, over 2.5 times higher than seller-buyer advantages observed on average in the data
(29.5).

The buyers’ side provides another gauge of the relative importance of fairness versus other
factors in explaining deviations from rationality. Because sellers were selected randomly from the
pool of subjects, we can assume that their fairness parameters are representative of the population,
and thus that buyers share the same parameters.10 We will see how much a buyer’s best responses
to others’ experimental play changes if we alter the buyer’s utility function to reflect this amount
of fairness. The best response to others’ experimental play for a buyer with fairness preferences
can be computed following the same steps used to derive column (c) of Table 3 but substituting
the new utility function. The resulting best responses are given in column (d). Including fairness
in the utility function hardly changes the best responses from column (c). The greatest change is
for small-buyer bids in IMC. Even there, the change of 1.4 points accounts for only 14% of the
discrepancy between the payoff-maximizing best response of 54.8 in column (c) and the mean
bid of 44.8 in column (a).

By this measure, at most 14% of players’ (specifically buyers’) deviation from rational play
is accounted for by fairness. Indeed, the raw data themselves suggest limits to how much fairness
would emerge from any empirical model. As mentioned, only a minority of observations involve
irrational play. Among these, fairness preferences do not seem to be consistent across treatments.
Irrational seller play in IMC consists of accepting bids that a payoff maximizer would reject,
whereas in CMC it consists of rejecting profitable bids.

Some evidence on the contribution of other factors besides fairness to departures from
rational play comes from examining the λ̂. Restricting attention to the results for all treatments in
Table 4, and comparing λ̂ in part (a) to that in part (b), we see a substantial increase in λ̂ between
the first and last 30 rounds, statistically significant at the 1% level. This increase in λ̂, equivalent
to a fall in the scaled error ε ik/λ in equation (4), suggests that factors causing departures from
rational play other than fairness decline in importance as experimental play progresses. One
explanation would be that sellers make fewer computation errors as they learn to play the game
better over time. Another would be that as the end of the game draws nearer, there is less value
in distorting stage-game play in order to gain a dynamic advantage. For example, in a model in
which sellers’ fairness parameters α i are private information, a seller might reject more offers
than statically optimal in order to signal a high value of α i and raise buyer offers in future
rounds. Such signalling would be less useful over time, as buyers’ posteriors on the distribution
of fairness parameters become tighter and as the future horizon over which to earn a return from
signalling shrinks. Because players were shuffled anonymously between markets, the benefit of
such signalling or other dynamic strategies is considerably reduced; but such strategies remain a
possibility.

Comparing the λ̂ across treatments, the lowest value is .076 for the DMC treatment in
part (a) of the table, suggesting that factors other than fairness led to the biggest departures

10 Given the instability of parameters across treatments, it is quite possible that estimates of buyers’ fairness
parameters would differ from those in Table 4. However, the exercise of simulating buyer best responses with these
fairness parameters still is a useful exercise to gauge the economic magnitudes of α̂ and β̂.
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TABLE 5 Buyer-Bid Dynamics

Interactions with Dummy Interactions with Dummy
for First 30 Rounds for Last 30 Rounds

(a) (b) (b) − (a)

Constant .290∗∗∗ .120∗∗∗ −.170∗

(.101) (.039) (.094)
Bid last .082∗∗∗ .063∗∗∗ −.019

round (.032) (.018) (.022)
Bid last round played .367∗∗∗ .191∗∗∗ −.177∗∗∗

same treatment (.055) (.048) (.064)
Bid last round played same .458∗∗∗ .710∗∗∗ .251∗∗∗

treatment and size role (.060) (.045) (.065)
Rejection .063∗∗∗ .028∗∗∗ −.035∗

last round (.018) (.011) (.019)
Rejection last round .026 −.001 −.027

played same treatment (.023) (.018) (.026)
Rejection last round played .134∗∗∗ .087∗∗∗ −.047∗∗∗

same treatment and size role (.022) (.012) (.026)

Notes: Results from a single random-effects regression with 2916 observations (324 observations lost in the
formation of lagged variables) in which the dependent variable is the natural logarithm of the buyer’s bid. Overall
R2 is .78. The three regressors involving lagged bids entered as natural logarithms; the three involving lagged
seller rejections are dummy variables. Standard errors reported in parentheses below coefficient estimates are
heteroskedasticity robust (following White, 1980) and are clustered by buyer. Coefficient significantly different
from zero in a two-tailed test at the ∗∗∗1% level, ∗∗5% level, and ∗10% level.

from seller rationality in early-round play of the DMC treatment compared to the others. This
pattern is consistent with computation errors. As suggested by the lengthy proof of Proposition
3, which applies to the DMC case, compared to the relatively shorter proof of Proposition 2,
which applies to the IMC and CMC cases, computations are more difficult for DMC than for
the other treatments, with few shortcuts to the brute-force method of computing the payoff
from all eight acceptance configurations to ensure an optimal decision.11 On the other hand,
it is hard to see why dynamic strategies would be more important in the DMC treatment
than others, although this possibility cannot be ruled out in the absence of a general dynamic
theory.

Table 4 provides evidence on the dynamics of seller behavior. Evidence on the dynamics
of buyer behavior is provided by Table 5, which reports a single random-effects regression of
bids on lagged bids and lagged seller rejections. Each regressor is interacted with a dummy
variable for the first 30 rounds of play (column (a)) and the last 30 rounds (column (b)), with the
difference between these two reported in the final column. The coefficient on “bid previous round
played same treatment” falls significantly between the first and the second 30 rounds, whereas the
coefficient on “bid previous round played same treatment and size role” increases significantly.
These opposite trends suggest that buyers learn the difference between markets and size roles
over time, playing more consistently within them and differentiating their strategies across them.
Buyers respond to rejections by increasing their bids. The response is sharpest for closely related
past experience (same size role and treatment). For example, the coefficient of .134 in the last
row of column (a) indicates that a rejection in the same size role and treatment leads to a 13.4%
increase in a bid in the first 30 rounds of play. The buyer does respond to a rejection in the previous
round even for unrelated roles, although less so. A comparison of column (b) with column (a)
reveals that buyers respond less to rejections over time, a decline that is significant in two of the

11 Among other shortcuts, in IMC and CMC, it is optimal for a payoff-maximizing seller to accept all bids if each
exceeds the relevant marginal cost conditional on all others being accepted. This simple check does not suffice for DMC,
as can be shown in the example in which one small buyer bids 80 and the other two buyers bid 4 per unit each.
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three cases. This reduced sensitivity suggests that they become more confident in their strategies
and learn less from seller responses over time.

5. Conclusion

� An accumulation of results from theoretical bargaining models links the existence of buyer-
size discounts to the curvature of the total surplus function over which the seller and buyers
negotiate. In theory, large-buyer discounts emerge if the total surplus function is concave; there
are no discounts if the total surplus function is linear, and a range of possible outcomes if it is
convex. We test the theory in markets in which large and small buyers bargain simultaneously
with a single seller. The markets differ in the curvature of the total surplus function. By varying
the seller’s marginal cost function, we obtain concave, linear, and convex surplus functions from
increasing, constant, and decreasing marginal cost curves, respectively. Our results support the
qualitative predictions of the theory. Large-buyer discounts are observed where predicted—in the
treatment with the concave total surplus function—and only where predicted.

The main deviation from theory is that the levels of certain bids differ from the theoretical
predictions. Structural estimates of a formal model of inequality aversion provide evidence that
preferences for fairness lead to some deviations from payoff maximization in the stage game,
but other factors including possibly computation errors or dynamic strategies in a repeated-game
context seem to be more important.

Some implications for real-world industries can be drawn from our experimental results.
According to our results, large-buyer discounts that stem from the bargaining theory we test
should arise in industries in which the seller’s cost function exhibits increasing marginal cost
(i.e., decreasing returns). Empirical estimates of cost functions provide examples of decreasing
returns, at least for large enough production levels, in residential water supply (Kim, 1985),
electricity generation (Pollitt, 1995), electricity distribution (Kwoka, 2005), trucking (Spady and
Friedlaender, 1978), and for some automobile manufacturers (Friedlaender, Winston, and Wang,
1983). In industries with constant or increasing returns, alternative theories, including those
discussed in the introduction, may account for any observed large-buyer discounts.

Appendix

� Proofs of Propositions 1–3 follow. The Appendix concludes with the proof of an additional, minor claim in the text.

Proof of Proposition 1. Suppose vi > max{Q≤X} MC(Q) for all i ∈ B. Consider any outcome in which there are some
buyers whose bids are not accepted by the seller; that is, B − A, the complement of A in B, is non-empty. Let i ∈ B −
A. Buyer i earns zero profit in this outcome because its bid per unit, pi, is rejected. If pi > max{Q≤X} MC(Q), the seller’s
rejecting pi cannot be subgame perfect. By accepting, the seller could increase its profit by

pi xi − I C

(
xi ,
∑
j∈A

x j

)
= xi

[
pi − 1

xi

xi∑
k=1

MC

(
k +

∑
j∈A

x j

)]

> xi

[
pi − max

{Q≤X}
MC(Q)

]
,

which is positive by assumption.
Assume therefore that pi ≤ max{Q≤X} MC(Q). The buyer could raise the price so that it is in the interval (max{Q≤X}

MC(Q), vi). If the seller’s strategy is subgame perfect, it would accept such a bid by the calculations in the previous
paragraph. This bid would be profitable for the buyer because it is strictly less than vi. Q.E.D.

Proof of Proposition 2. Assume

MC(Q) ≥ MC(Q − 1) for all Q ∈ {1, 2, . . . , X}. (A1)

To prove necessity, consider a set of buyer bids {pi | i ∈ B} forming a pure-strategy, subgame-perfect equilibrium in
which all buyers are served. If the seller deviates by rejecting buyer i’s bid, its profit falls by

pi xi + C(X − xi ) − C(X ) = xi [pi − AI C(xi , X − xi )].

For this deviation to be unprofitable, pi ≥ AIC(xi, X − xi). An argument similar to the proof of Proposition 1 shows that
pi ≤ AIC(xi, X − xi) or else buyer i could deviate by lowering its price and be assured that this bid is still accepted.
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Combining these two inequalities yields pi = AIC(xi, X − xi). Finally, for buyer i not to deviate by dropping out of the
market (equivalently, bidding pi = 0), pi ≤ vi. This proves (2) must necessarily hold in a pure-strategy, subgame-perfect
equilibrium in which all buyers are served.

To prove sufficiency, suppose AIC(xi, X − xi) ≤ vi for all i ∈ B. Consider the proposed equilibrium in which buyer
i bids pi = AIC(xi, X − xi) for all i ∈ B and the seller accepts the set of bids giving it the highest profit (in case of ties,
assume the seller accepts the largest set of such bids). We will argue that this proposed equilibrium is subgame perfect,
and the seller serves all the buyers. It is tautological that the seller’s strategy is part of a subgame-perfect equilibrium.
There remain two claims to be proved: first, that buyers have no incentive to deviate given the seller’s strategy and second,
that the players’ strategies lead all buyers to be served. We will prove these claims in reverse order.

To show the seller’s strategy leads it to accept all bids, we have to show that the seller cannot gain from rejecting a
subset S ⊆ B of them. The change in the seller’s profit from so doing is

I C

(∑
i∈S

xi , X −
∑
i∈S

xi

)
−
∑
i∈S

pi xi ≤
∑
i∈S

I C(xi , X − xi ) −
∑
i∈S

pi xi

=
∑
i∈S

xi [AI C(xi , X − xi ) − pi ].

The first line holds by (A1). The second line holds by algebraic manipulation. The last expression is zero, as pi = AIC(xi,
X − xi).

To show the buyers have no incentive to deviate given the seller’s strategy, note first that buyers have no incentive
to raise bids because they are all accepted in equilibrium. Buyer i has no incentive to lower its bid because this would
lead the seller to reject it by the argument in the second paragraph above. Q.E.D.

Proof of Proposition 3. Assume marginal costs are strictly decreasing, that is,

MC(Q) < MC(Q − 1) for all Q ∈ {1, 2, . . . , X}. (A2)

To prove necessity of the conditions in Proposition 3, consider a set of buyer bids {pi | i ∈ B} forming a pure-strategy,
subgame-perfect equilibrium in which all buyers are served. As argued in the proof of Proposition 2, pi ≤ vi is a necessary
condition. We then need to show that the two inequalities in (3) are necessary conditions. The seller can deviate by
rejecting a subset S ⊆ B of buyer bids. For this deviation to be weakly unprofitable,

I C

(∑
i∈S

xi , X −
∑
i∈S

xi

)
≤
∑
i∈S

pi xi . (A3)

Thus, the first inequality in (3) is a necessary condition.
To prove that the second inequality in (3) is also necessary, we will proceed in several steps. The first step is to

show that the seller makes zero profit in a subgame-perfect equilibrium in which all buyers are served. Suppose to the
contrary

∑
i∈B pi xi − C(X ) > 0. Let pi = max {pj | j ∈ B}. Then this highest-bidding buyer i can deviate to a lower bid

pi − ε, where

ε = 1

2
min

{
1

xi

[ ∑
j∈B−{i}

p j x j − C(X )
]

, {MC(Q − 1) − MC(Q) | Q = 1, 2, . . . , X}
}

(A4)

and still have it accepted. To see this, let S′ be the set of buyers whose bids are accepted after the deviation by i. The
definition of ε in (A4), in particular that ε < [

∑
j∈B−{i} p j x j − C(X )]/xi , implies that the seller continues to make strictly

positive profit if it continues to accept all buyer bids. Hence S′ is non-empty. If i ∈ S′, then i’s deviating bid is accepted
and we are done. If i �∈ S′, then for all j ∈ S′,

pi − ε ≥ p j − ε (A5)

≥ AI C

(
x j ,
∑
k∈S′

xk − x j

)
− ε (A6)

> AI C

(
xi ,
∑
k∈S′

xk

)
. (A7)

Condition (A5) holds as pi is the weakly highest bid. Condition (A6) holds as j ∈ S′, so accepting pj must give the seller
a non-negative profit at the margin. Condition (A7) holds because

ε < MC

(∑
k∈S′

xk

)
− MC

(
1 +

∑
k∈S′

xk

)
(A8)

≤ AI C

(
x j ,
∑
k∈S′

xk − x j

)
− AI C

(
xi ,
∑
j∈S′

x j

)
. (A9)

Condition (A8) holds by (A4). Condition (A9) holds because the average incremental cost of producing a bundle is weakly
less than the marginal cost of the first unit in the bundle and weakly more than the last unit in the bundle by (A2). We have
thus shown that i’s deviating price exceeds the expression in (A7). But then the seller would gain from accepting buyer
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i’s bid in addition to the bids in S′. Hence buyer i’s deviating bid is profitable because it would be accepted. We have thus
established that the seller earns zero profit in a pure-strategy, subgame-perfect equilibrium in which all buyers are served.

Combining the fact that
∑

i∈B pi xi = C(X ) with the fact that (A3) must hold for the set B − S, we have

∑
i∈S

pi xi ≤ C

(∑
i∈S

xi

)
.

Thus, the second inequality in (3) is a necessary condition for a pure-strategy, subgame-perfect equilibrium in which all
buyers are served.

To show sufficiency, consider a proposed equilibrium in which buyers’ bids are {pi | i ∈ B}, satisfying pi ≤ vi and
condition (3), and in which the seller accepts the subset of bids giving it the highest profit (in case of ties, assume the
seller accepts the largest set of such bids). We will argue that the proposed equilibrium is subgame perfect, and the seller
serves all the buyers. It is tautological that the seller’s strategy is part of a subgame-perfect equilibrium. There remain two
claims to be proved: first, that buyers have no incentive to deviate given the seller’s strategy and second, that the player’s
strategies lead all buyers to be served. We will prove these claims in reverse order. To show the seller’s strategy leads it
to accept all bids, we have to show that the seller cannot gain from rejecting a subset S ⊆ B of them. But this is ensured
by the first inequality in (3). To show that the buyers have no incentive to deviate given the seller’s strategy, note first that
buyers have no incentive to raise bids, as they are all accepted in equilibrium. If buyer i deviates to a lower price p′

i < pi,
for any subset of buyers S including i,

p′
i xi +

∑
j∈S−{i}

pi xi <
∑
i∈S

pi xi

≤ C

(∑
i∈S

xi

)
.

The first line holds because p′
i < pi and the second by the second inequality of condition (3). Therefore, it is better for the

seller to reject all bids (giving it zero profit) rather than accepting the bids in S. Because this is true for all S containing i,
the deviating buyer’s bid would be rejected, and so his deviation would be unprofitable. In sum, no buyer deviation would
be accepted by the seller, establishing sufficiency. Q.E.D.

Seller acceptance behavior in IMC. We prove the statement in Section 4 that in IMC treatment, accepting a small-buyer
bid and rejecting an equal large-buyer bid is never optimal for the seller for the range of bids observed in our data. To
prove this, consider equal large- and small-buyer bids: p� = ps1 = p. Let Qs2 ∈ {0, 1} be the quantity supplied to the
second small buyer. Both bids are accepted if p > I C(3, Qs2 ) and both are rejected if p < I C(1, Qs2 ). Accepting the
large-buyer bid and rejecting the small-buyer bid yields a profit of 2p − I C(2, Qs2 ). Accepting the small-buyer bid and
rejecting the large-buyer bid yields a profit of p − I C(1, Qs2 ). But 2p − I C(2, Qs2 ) > p − I C(1, Qs2 ) if and only if
p > MC(Qs2 + 2). Note that MC(Qs2 + 2) ∈ {5, 15} for our design. Because we do not observe any small-buyer bids
less than 15 in IMC, accepting the small buyer and rejecting the large buyer is never optimal for the range of bids in our
data set. Q.E.D.
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