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Supplementary Appendix for 
“Designing Pull Funding for a COVID-19 Vaccine” 

This appendix provides technical details supporting the analysis in the manuscript. 

A1. Formal Model 

This section provides a formal description of the model. Besides complementing the more 
conceptual description in the text, the notation introduced here will be useful in the derivation of 
the optimal mechanism in the next section. 
 Let 𝑛𝑛 denote the number of potential suppliers, indexed by 𝑖𝑖 ∈ {1, … ,𝑛𝑛}. Vaccine firms 
can undertake a project combining at-risk investment (investment before success in earlier 
clinical trials is learned) in both phase-3 trials and capacity installation. Let 𝑐𝑐3𝑖𝑖 and 𝑐𝑐4𝑖𝑖 denote 
the respective fixed costs of those stages. Conditional on success, the firm expends additional 
manufacturing costs to produce 𝑞𝑞𝑖𝑖 ≤ 𝑞𝑞 units, where 𝑞𝑞 denotes firm capacity. Letting 𝑐𝑐5𝑖𝑖 denote 
the variable manufacturing cost (sometimes referred to as “cost of goods sold,” abbreviated 
COGS) per dose, total variable manufacturing costs are 𝑐𝑐5𝑖𝑖𝑞𝑞𝑖𝑖. We simplify the firm’s problem by 
assuming that the firm produces up to full capacity 𝑞𝑞 if it produces at all. This assumption is 
without loss of generality in the scenarios examined in the text since virtually all candidates are 
selected and net benefits increase with capacity. Let 𝐼𝐼𝑖𝑖 ∈ {0,1} denote the firm’s investment 
decision. Then its output equals 𝑞𝑞𝑖𝑖 = 𝑞𝑞𝐼𝐼𝑖𝑖. 

Let 𝐴𝐴𝑖𝑖  be an indicator for the success of firm 𝑖𝑖 ’s project, independent draws from a 
Bernoulli distribution, with 𝑠𝑠 = Pr(𝐴𝐴𝑖𝑖 = 1).  

Let 𝑐𝑐𝑖𝑖 be firm 𝑖𝑖’s combined cost for all three stages (phase-3 trials, capacity, and COGS) 
in ex ante expected value terms. At-risk investments are added into 𝑐𝑐𝑖𝑖 on a dollar for dollar basis. 
COGS are only expected conditional on success, so with probability 𝑠𝑠. Thus, COGS add into 𝑐𝑐𝑖𝑖 
weighted by 𝑠𝑠 . Hence, 𝑐𝑐𝑖𝑖 = 𝑐𝑐3𝑖𝑖 + 𝑐𝑐4𝑖𝑖 + 𝑠𝑠𝑐𝑐5𝑖𝑖𝑞𝑞𝑖𝑖 . Assume that 𝑐𝑐𝑖𝑖  factors in a sufficient profit 
margin so that if 𝑐𝑐𝑖𝑖 is covered by the award in the mechanism, the firm is willing to undertake 
investment.  

Assume the firm learns 𝑐𝑐𝑖𝑖  prior to any investment. Costs are private information for 
firms, independent and identically distributed (iid) draws from a distribution with support [0, 𝑐𝑐], 
probability density function (pdf) 𝑓𝑓(𝑐𝑐𝑖𝑖), and cumulative distribution function (cdf) 𝐹𝐹(𝑐𝑐𝑖𝑖), where 
the upper bound on the support 𝑐𝑐 can be infinite. Throughout the appendix, we use boldface to 
denote vectors of variables for each firm. Thus, for example, c = (𝑐𝑐1, … , 𝑐𝑐𝑛𝑛)  and 𝐀𝐀 =
(𝐴𝐴1, … ,𝐴𝐴𝑛𝑛). 

A2. Derivation of Optimal Mechanism 

Building on Myerson’s (1981) seminal work on optimal auction design, Chaturvedi and 
Martínez-de-Albéniz (2011) (hereafter CM) characterize the optimal procurement mechanism of 
multiple units from multiple suppliers who can suffer failure risk. In this section, we show how 
the optimal funding mechanism in our model can be derived as a corollary of their general 
characterization. 
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A2.1. Generalizing the Model  

CM’s model is more general than ours. As indicated by an added firm subscript, they allow for 
heterogeneity in firms’ success probabilities, 𝑠𝑠𝑖𝑖 , and investment-cost pdfs, 𝑓𝑓𝑖𝑖(𝑐𝑐𝑖𝑖) , and cdfs, 
𝐹𝐹𝑖𝑖(𝑐𝑐𝑖𝑖). Rather than studying a fixed investment project, they allow firms to produce a variable 
quantity, 𝑞𝑞𝑖𝑖. To accommodate this change, rather than regarding 𝑐𝑐𝑖𝑖 as a fixed investment cost, 
they regard it as the constant marginal cost for each unit of 𝑞𝑞𝑖𝑖.  

CM define a mechanism as a triple (𝐲𝐲, 𝐱𝐱,𝐪𝐪), where 𝐲𝐲 = (𝑦𝑦1, … , 𝑦𝑦𝑛𝑛) is a vector of ex ante 
payments 𝑦𝑦𝑖𝑖(𝐜𝐜, 𝐬𝐬) to firms (unconditional on success), 𝐱𝐱 = (𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) is a vector of ex post 
payments 𝑥𝑥𝑖𝑖(𝐜𝐜, 𝐬𝐬) to firms (conditional on success), and 𝐪𝐪 = (𝑞𝑞1, … , 𝑞𝑞𝑛𝑛) is a vector of quantities 
𝑞𝑞𝑖𝑖(𝐜𝐜, 𝐬𝐬) procured from firms. Let 𝐳𝐳 = (𝑧𝑧1, … , 𝑧𝑧𝑛𝑛) denote the vector of expected payments to 
firms 

𝑧𝑧𝑖𝑖(𝐜𝐜, 𝐬𝐬) = 𝑦𝑦𝑖𝑖(𝐜𝐜, 𝐬𝐬) + 𝑠𝑠𝑖𝑖𝑥𝑥𝑖𝑖(𝐜𝐜, 𝐬𝐬) (1) 

CM define payoffs as follows. The expected gross benefit of the funder (denoted player 
0) is 𝑈𝑈0(𝐪𝐪, 𝐬𝐬) = 𝔼𝔼𝐀𝐀�𝑉𝑉(∑ 𝐴𝐴𝑖𝑖𝑞𝑞𝑖𝑖𝑛𝑛

𝑖𝑖=1 )�, where 𝔼𝔼 is the expectations operator, here taken over the 
vector of Bernoulli variables 𝐀𝐀, and 𝑉𝑉 is some increasing, concave function over realized output.  
To obtain the funder’s net payoff will require payments to be subtracted. Firm 𝑖𝑖’s expected net 
payoff is 𝑈𝑈𝑖𝑖(𝐜𝐜, 𝐬𝐬) = 𝑧𝑧𝑖𝑖(𝐜𝐜, 𝐬𝐬) − 𝑐𝑐𝑖𝑖𝑞𝑞𝑖𝑖(𝐜𝐜, 𝐬𝐬).  

A2.2. Theoretical Results 

CM’s main relevant result imposes the following regularity condition on the cost distribution.  
 
Definition (Regularity). A distribution with pdf 𝑓𝑓(𝑐𝑐) and cdf 𝐹𝐹(𝑐𝑐) is regular if and only if 
𝐹𝐹(𝑐𝑐) 𝑓𝑓(𝑐𝑐)⁄  is nondecreasing.  
 
CM derive the following theorem as a corollary of Myerson (1981). 
 
Theorem 1 [Chaturvedi and Martínez-de-Albéniz (2011)]. Assume 𝑓𝑓𝑖𝑖(𝑐𝑐𝑖𝑖) is regular for all 𝑖𝑖. 
Then (𝐲𝐲, 𝐱𝐱,𝐪𝐪) represents an optimal mechanism in dominant strategy equilibrium if and only if 
for all 𝐜𝐜 it satisfies  

𝐪𝐪(𝐜𝐜, 𝐬𝐬) = argmax
𝐪𝐪

�𝑈𝑈0(𝐪𝐪, 𝐬𝐬) −�𝑀𝑀𝑖𝑖(𝑐𝑐𝑖𝑖)𝑞𝑞𝑖𝑖(𝐜𝐜, 𝐬𝐬)
𝑛𝑛

𝑖𝑖=1

� , (2) 

 
where 

𝑀𝑀𝑖𝑖(𝑐𝑐𝑖𝑖) = 𝑐𝑐𝑖𝑖 +
𝐹𝐹𝑖𝑖(𝑐𝑐𝑖𝑖)
𝑓𝑓𝑖𝑖(𝑐𝑐𝑖𝑖)

 (3) 

𝑧𝑧𝑖𝑖(𝐜𝐜, 𝐬𝐬) = 𝑐𝑐𝑖𝑖𝑞𝑞𝑖𝑖(𝐜𝐜, 𝐬𝐬) + � 𝑞𝑞𝑖𝑖(𝐜𝐜−𝑖𝑖, 𝑡𝑡𝑖𝑖, 𝐬𝐬)𝑑𝑑𝑡𝑡𝑖𝑖 .

𝑐𝑐𝑖𝑖

𝑐𝑐𝑖𝑖

∎ (4) 
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 We will derive the optimal funding mechanism in our model as a corollary of Theorem 1. 
The first step is to translate certain variables, recognizing that 𝑐𝑐𝑖𝑖 is the total cost of a 0-1 decision 
in our model, whereas CM take it as a marginal cost per unit. To make the translation, we will 
substitute 𝐼𝐼𝑖𝑖 for 𝑞𝑞𝑖𝑖 in Theorem 1. Equation (2) becomes 

𝐈𝐈(𝐜𝐜, 𝐬𝐬) = argmax
𝐈𝐈

�𝑈𝑈0(𝐈𝐈, 𝐬𝐬) −�𝑀𝑀𝑖𝑖(𝑐𝑐𝑖𝑖)𝐼𝐼𝑖𝑖(𝐜𝐜, 𝐬𝐬)
𝑛𝑛

𝑖𝑖=1

� , (5) 

where 𝐈𝐈 = (𝐼𝐼1, … , 𝐼𝐼𝑛𝑛) is the vector of 0-1 investment decisions; and (4) becomes 

𝑧𝑧𝑖𝑖(𝐜𝐜, 𝐬𝐬) = 𝑐𝑐𝑖𝑖𝐼𝐼𝑖𝑖(𝐜𝐜, 𝐬𝐬) + � 𝐼𝐼𝑖𝑖(𝐜𝐜−𝑖𝑖, 𝑡𝑡𝑖𝑖 , 𝐬𝐬)𝑑𝑑𝑡𝑡𝑖𝑖.

𝑐𝑐𝑖𝑖

𝑐𝑐𝑖𝑖

 (6) 

We next derive a convenient expression for 𝑈𝑈0(𝐈𝐈, 𝐬𝐬) . Let 𝑤𝑤(𝐜𝐜, 𝐬𝐬) = ∑ 𝐼𝐼𝑖𝑖(𝐜𝐜, 𝐬𝐬)𝑛𝑛
𝑖𝑖=1 , 

interpreted as the number of winning suppliers, i.e., selected by the mechanism to be eligible to 
invest and win an award. Let 𝑢𝑢(𝑤𝑤) be the funder’s gross surplus (surplus not subtracting off 
expenditures) if it selects 𝑤𝑤 winners. This is only a function of the number of winners because 
selected firms produce up to exogenous capacity 𝑞𝑞 and are homogeneous except for cost, which 
only determines payment, not the gross benefit that the funder obtains from them. The binomial 
distribution of successes from the pool of winners yields the following formula: 

𝑢𝑢(𝑤𝑤) = ��𝑤𝑤𝑖𝑖 �
𝑤𝑤

𝑖𝑖=1

𝑠𝑠𝑖𝑖(1 − 𝑠𝑠)𝑤𝑤−𝑖𝑖𝐺𝐺𝐺𝐺(𝑖𝑖𝑞𝑞), (7) 

where  

�𝑤𝑤𝑖𝑖 � =
𝑤𝑤!

(𝑤𝑤 − 𝑖𝑖)! 𝑖𝑖!
 (8) 

and  𝐺𝐺𝐺𝐺(𝑄𝑄) is the funder’s surplus, gross of expenditures, when 𝑄𝑄 units are available each month 
in the period during which pandemic harm is experienced. In our simulations, 𝑢𝑢(𝑤𝑤) turns out to 
be concave. We conjecture this is true in general based on the logconcavity of binomial 
coefficients and concavity of 𝐺𝐺𝐺𝐺(𝑄𝑄). One can show that 𝐺𝐺𝐺𝐺(𝑄𝑄) is concave since it is the sum of 
gross consumer surpluses—well known to be concave—derived from the vaccine demand curve 
each month during the pandemic period, summed across those months weighted by pandemic 
intensity in those months.  

Defining marginal benefit ∆(𝑤𝑤) = 𝑢𝑢(𝑤𝑤) − 𝑢𝑢(𝑤𝑤 − 1), we have 𝑢𝑢(𝑤𝑤) = ∑ ∆(𝑖𝑖)𝑤𝑤
𝑖𝑖=1 . Then  

𝑈𝑈0(𝐈𝐈, 𝐬𝐬) = 𝑢𝑢(𝑤𝑤(𝐜𝐜, 𝐬𝐬)) = � ∆(𝑖𝑖)
𝑤𝑤(𝐜𝐜,𝐬𝐬)

𝑖𝑖=1

. (9) 

The next step is to express the term that is subtracted in equation (5) in more concrete 
terms. Since costs are iid, the subscript on 𝑀𝑀𝑖𝑖 in equation (5) can be dropped, writing 
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𝑀𝑀(𝑐𝑐𝑖𝑖) = 𝑐𝑐𝑖𝑖 +
𝐹𝐹(𝑐𝑐𝑖𝑖)
𝑓𝑓(𝑐𝑐𝑖𝑖)

. (10) 

This is an increasing function since it is the sum of an increasing function and a nondecreasing 
function, the second function nondecreasing because of the regularity of the distribution. Since 
𝑈𝑈0(𝐈𝐈, 𝐬𝐬) is determined by 𝑤𝑤(𝐜𝐜, 𝐬𝐬), it is apparent that the term subtracted in objective (5) can be 
minimized leaving 𝑈𝑈0(𝐈𝐈, 𝐬𝐬)  unchanged by selecting the 𝑤𝑤(𝐜𝐜, 𝐬𝐬)  lowest-cost suppliers for the 
winners. To provide notation for this selection, arrange supplier costs in ascending order: 𝑐𝑐[1] ≤
𝑐𝑐[2] ≤ ⋯ ≤ 𝑐𝑐[𝑛𝑛], where bracketed subscripts are used to indicate order statistics. Then using the 
preceding insights and substituting from equation (9), (5) can be rewritten 

𝐈𝐈(𝐜𝐜, 𝐬𝐬) = argmax
𝐈𝐈

� � �∆(𝑖𝑖) −𝑀𝑀(𝑐𝑐[𝑖𝑖])�
𝑤𝑤(𝐜𝐜,𝐬𝐬)

𝑖𝑖=1

�, (11) 

implying 

𝑤𝑤(𝐜𝐜, 𝐬𝐬) = argmax
𝑤𝑤

���∆(𝑖𝑖) −𝑀𝑀(𝑐𝑐[𝑖𝑖])�
𝑤𝑤

𝑖𝑖=1

�. (12) 

 The solution to equation (12) is straightforward: since ∆(𝑖𝑖) is decreasing in 𝑖𝑖 and 𝑀𝑀(𝑐𝑐[𝑖𝑖]) 
is nondecreasing in 𝑖𝑖, the bracketed expression is decreasing in 𝑖𝑖. Bracketed terms should be 
added until they become negative. Hence, 

𝑤𝑤(𝐜𝐜, 𝐬𝐬) = max�𝑖𝑖 ∈ {0, … ,𝑛𝑛}�∆(𝑖𝑖) ≥ 𝑀𝑀(𝑐𝑐[𝑖𝑖])�. (13) 

Equivalently, upon inverting, 

𝑤𝑤(𝐜𝐜, 𝐬𝐬) = max�𝑖𝑖 ∈ {0, … ,𝑛𝑛}�𝑀𝑀−1(∆(𝑖𝑖)) ≥ 𝑐𝑐[𝑖𝑖]�. (14) 

Equation (14) embodies the procedure for selecting the number of winning firms 
described in the text and shown in the example in Exhibit 3. We now have the notation to 
express the procedure more formally. The funder demand schedule, drawn as the light blue 
curve, is given by ∆(𝑖𝑖). Applying the inverse function 𝑀𝑀−1 gives the reserve-price schedule. 
Equation (14) states that the optimal number of winning firms is given by the intersection of the 
reserve-price schedule 𝑀𝑀−1(∆(𝑖𝑖)), drawn as the dark blue curve, and the cost schedule 𝑐𝑐[𝑖𝑖] , 
drawn as the red curve. 

The last step is to derive a concrete expression for the expected award payment to 
winning firms in equation (6) fixing 𝑤𝑤∗ = 𝑤𝑤(𝐜𝐜, 𝐬𝐬). Now 𝐼𝐼𝑖𝑖(𝐜𝐜−𝑖𝑖, 𝑡𝑡𝑖𝑖, 𝐬𝐬) = 1 if both 𝑡𝑡𝑖𝑖 < 𝑐𝑐[𝑤𝑤∗+1] and 
𝑡𝑡𝑖𝑖 < 𝑀𝑀−1(∆(𝑤𝑤∗)), while 𝐼𝐼𝑖𝑖(𝐜𝐜−𝑖𝑖, 𝑡𝑡𝑖𝑖, 𝐬𝐬) = 0 if either  𝑡𝑡𝑖𝑖 > 𝑐𝑐[𝑤𝑤∗+1] or  𝑡𝑡𝑖𝑖 > 𝑀𝑀−1(∆(𝑤𝑤∗)).  Thus, 

� 𝐼𝐼𝑖𝑖(𝐜𝐜−𝑖𝑖, 𝑡𝑡𝑖𝑖, 𝐬𝐬)𝑑𝑑𝑡𝑡𝑖𝑖

𝑐𝑐𝑖𝑖

𝑐𝑐𝑖𝑖

= min�𝑐𝑐[𝑤𝑤∗+1],𝑀𝑀−1(∆(𝑤𝑤∗))� − 𝑐𝑐𝑖𝑖. (15) 

Substituting equation (15) into (6) yields award 
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𝑧𝑧𝑖𝑖(𝐜𝐜, 𝐬𝐬) = min�𝑐𝑐[𝑤𝑤∗+1],𝑀𝑀−1(∆(𝑤𝑤∗))� (16) 

for winning firms and 0 for losing firms. Equation (16) is the payment in a 𝑤𝑤∗ + 1 price Vickrey 
auction with reserve price 𝑀𝑀−1(∆(𝑤𝑤∗)). Graphically, this award is the highest point in the 
intersection between the reserve-price schedule (the dark blue curve in Figure 1) and the cost 
schedule (the red curve). 

As in CM, the division of the expected award into ex ante (𝑦𝑦𝑖𝑖 ) versus ex post (𝑥𝑥𝑖𝑖 ) 
payments is not pinned down in our model. We will take them to be ex post payments to address 
the concern coming from outside the model that suppliers would default on a supply commitment 
if paid up front. To obtain the correct expected payment in equation (1), the ex post payment 
must be scaled up by the reciprocal of the success probability: 𝑥𝑥𝑖𝑖(𝐜𝐜, 𝐬𝐬) = 𝑧𝑧𝑖𝑖(𝐜𝐜, 𝐬𝐬)/𝑠𝑠. 

A3. Global Demand 

A3.1. Expressing Mortality Losses in Monetary Terms 

As stated in the text, our mortality-loss estimates are based on projections by the Imperial 
College COVID-19 Response Team (Walker et al. 2020) of deaths by country. Several steps are 
required to express these losses in monetary terms. The medical study by Hanlon et al. (2020) 
suggests that after accounting for age and comorbidities, each COVID death results in an average 
of 12 years of lost life (YLL). Since this estimate already allocates shorter lifespans to people 
with comorbidities, we assume one YLL translates into one disability adjusted life year (DALY) 
without need for further downward adjustment to reflect a proportion of years lived with a 
disability. To convert DALYs into monetary values, we multiply DALYs lost in a country by 
three times that country’s 2019 GDP per capita, reflecting World Health Organization (WHO) 
standards for a cost-effective health intervention in a country stated in Marseille et al (2015). 
According to this standard, a health intervention is cost effective if the cost per DALY saved is 
less than three times that country’s per-capita GDP. We divide the result by the country’s 
population to obtain per-capita figures and further divide by 24 to convert into monthly figures. 

A3.2. Descriptive Statistics 

Exhibit A1 provides descriptive statistics for the country data used to estimate global vaccine 
demand. The dataset includes 191 observations, corresponding to the countries for which we 
have available data. Descriptive statistics for countries’ population, GDP, and sources of COVID 
harm are reported.   

A3.3. Static Demand 

The last row of Exhibit A1 provides descriptive statistics for the sum of health and economic 
harms due to COVID across the 191 countries in our dataset. This variable can be translated into 
a global demand curve for a vaccine that would allow this harm to be avoided. We do this by 
arranging countries in descending order of total harm and plotting each country’s harm against 
the running total countries’ populations plotted so far. The demand curve thus constructed is 
drawn as the black curve in Exhibit A2. 
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A3.4. Dynamic Demand 

The monthly demand curve is not static but can expand or contract as the pandemic varies in 
intensity over the timeframe considered. Exhibit A3 illustrates the intensity path assumed in the 
baseline scenario. The underlying assumption generating this path is that the arrival of herd 
immunity, an effective treatment, or some other event generates a 5% chance that the pandemic 
ends each month.  

The initial (month-12) cross section in Exhibit A3 is identical to the black curve in 
Exhibit A2. In subsequent months, the dynamic demand curve in Exhibit A3 shrinks over time 
because the demand for avoiding expected future harm (harm times the probability that it is 
experienced) declines.  

A3.5. Heterogeneous Population Within Country  

The black curve in Exhibit A2 is based on the assumption that the population within a country is 
homogenous. The added blue curve shows how demand changes when we introduce 
heterogeneity within each country in the form of a vulnerable subpopulation, constituting a third 
of its population but accounting for two thirds of its total harm.  

Let 𝑃𝑃𝑖𝑖 and 𝐻𝐻𝑖𝑖 be the population and harm for country 𝑖𝑖 in the model with within-country 
homogeneity. For the model with within-country heterogeneity, let 𝑃𝑃𝑖𝑖𝑣𝑣  and 𝐻𝐻𝑖𝑖𝑣𝑣  be the 
corresponding variables for the vulnerable subpopulation and 𝑃𝑃𝑖𝑖𝑙𝑙  and 𝐻𝐻𝑖𝑖𝑙𝑙  those for the less-
vulnerable subpopulation. One can show the following system of equations yields the assumed 
one-third/two-thirds concentration of harm: 𝑃𝑃𝑖𝑖𝑣𝑣 = 𝑃𝑃𝑖𝑖/3, 𝑃𝑃𝑖𝑖𝑙𝑙 = 2𝑃𝑃𝑖𝑖/3, 𝐻𝐻𝑖𝑖𝑣𝑣 = 2𝐻𝐻𝑖𝑖, and 𝐻𝐻𝑖𝑖𝑙𝑙 = 𝐻𝐻𝑖𝑖/2. 

Note the blue demand curve is approximately a rotation of the black one, concentrating 
more of the value toward the vertical axis, allowing more harm to be relieved with fewer vaccine 
doses.  

A4. Supplier Cost Distribution 

Our estimates of the distribution of suppliers’ investment costs use proprietary data from an on-
going survey conducted by the Coalition for Epidemic Preparedness Innovations (CEPI). The 
initial wave of the survey was analyzed by Gouglas et al. (2018). In comparison, our analysis 
covers an accreted sample for phase-3 trial costs and capacity costs and COGS for a focused 
survey of firms with COVID-19 vaccine candidates. 

A4.2. CEPI Survey Details 

Cost data included in this study draw from two sources: First, a survey-based cost data collection 
process (Gouglas et al. 2018) for a) Phase IIb/III efficacy testing, Chemistry, Manufacturing and 
Control (CMC) and regulatory activities associated with development of vaccines against 
Epidemic Infectious Diseases (EIDs); and b) development of stockpiles of up to 1 million doses 
of EID vaccines for emergency use in outbreak conditions. Second, CEPI’s own data on 
activities associated with large scale manufacturing capacity expansion to support phase IIb/III 
studies, scale up and scale out production in response to the COVID-19 pandemic. 

Specifically, from September 2017 to January 2018 a cost data collection survey was 
launched by which 414 organizations conducting EID vaccine R&D were approached, of whom 
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64 submitted responses, covering 313 vaccine candidates for EIDs in total. Organizations were 
surveyed if they appeared as EID vaccine development partners in published literature, websites 
and press releases per the systematic search process described in Gouglas et al 2018.  

The definition of full R&D costs for phase IIb/III included whether reported costs 
covered all or most critical clinical, CMC and other non-clinical activities associated with this 
R&D phase, including: a) Phase III trial planning and execution costs and justification for these 
i.e. number of clinical trial sites/locations, number of clinical trial subjects, cost per subject 
including direct costs and/or assumptions associated with clinical trial conduct; b) scale up 
manufacturing costs for production of investigational material to support large scale efficacy 
testing, including pilot plant manufacturing setup costs where these were needed; c) indirect and 
other program-management costs and/or assumptions associated with clinical trial conduct, etc. 

The definition of costs for a stockpile of up to one million doses included whether 
reported costs covered the production of engineering, consistency and stockpile batches, drug 
substance manufacturing but not drug product manufacturing and fill finish.  
Based on these criteria, a set of 99 vaccine candidate cost entries was constructed, where full 
R&D costs for phase IIb/III had been reported; and 90 cost entries were constructed for 
developing up to one million dose EID vaccine stockpiles for emergency use. For these entries, 
Request for Information- based follow ups with vaccine developers took place by CEPI between 
2018 and 2020 to clarify the nature and key drivers of this cost information. No follow ups were 
pursued for other data out of the 313 EID vaccine candidate sample, where the responses were 
either incomplete on phase IIb/III or stockpile development, or where development efforts 
concerned pathogens outside the WHO Blueprint list. For more details on survey design, see 
Gouglas et al. 2018. 

In addition to the above, this study draws from current CEPI estimates of manufacturing 
scale up, scale out and production for pandemic use based on its current portfolio of COVID-19 
vaccine project investments.  

The definition of large-scale manufacturing setup includes whether costs capture scale-up 
process and consistency lots for antigen, or scale-out process including technology transfer and 
consistency lots for antigen. In case of scale-out costs this includes reservation fees, start-up and 
leasing costs as well as scale-up process for antigen. Costs for building new manufacturing 
facilities from scratch are excluded. 

Large-scale manufacturing rollout accounts for monthly, fill-finished vaccine dose rollout 
(drug product available for distribution) using current yield, dose estimates and production 
timing, where yield, dose and timing are varied over a given range across a multiplicity of 
manufacturing sites of different production scale; and where glass vials are assumed to be in 
sufficient supply for fill-finish. 

In terms of manufacturing rollout costs, COGS per dose is assumed to be a sufficient, 
overall estimate of full manufacturing rollout cost per dose for the purposes of this study, 
including Drug Substance and Drug Product (added cost of vial and filling). Its estimation takes 
into account assumptions on: per dose equivalents of costs to build stockpiles of up to 1 million 
doses of EID vaccines, after accounting for the production of four engineering, consistency and 
stockpile batches; no economies of scale i.e. COGS per dose is fixed irrespective of volume of 
production; additional $2 per dose for vial and filling, assuming vial capacity exists. Delivery 
costs are excluded. 

In terms of variability and spread of phase IIb/III and manufacturing cost estimates in the 
reported data sample, indirect costs, sectoral affiliation (industry versus non-industry) and 
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geographical location of product development and manufacturing are all explanatory factors. 
Moreover, manufacturing costs vary because of how much in-house manufacturing capacity 
already exists, though this variability does not suggest corresponding differences in capacity to 
manufacture different volumes of vaccine.  

The target pathogens, number of sites and/or subjects of the different phase IIb/III trials 
for which cost data is included in this study sample are diverse, and consequently the range of 
phase IIb/III costs is quite wide. Given the current uncertainty around how COVID-19 phase III 
studies will be structured, and consequently costed, assuming a broader range of phase IIb/III 
costs associated with EID vaccines is, in the authors’ view, a reasonable assumption to make at 
this point in time. This assumption is further strengthened by the fact that CEPI vaccine project 
budgets over the past three years—e.g. for Lassa, MERS, and Nipah (see for instance Table 1 in 
Gouglas et al. 2019)—have fallen within a wide range of costs resembling closely the cost 
estimates reported in Gouglas et al. 2018. 

A4.2. Descriptive Statistics 

Exhibit A4 provides descriptive statistics for survey responses for costs of separate vaccine 
stages.  

A4.3. Maximum Likelihood Estimates of Lognormal Parameters 

Assuming investment cost 𝑐𝑐𝑡𝑡𝑖𝑖  in stage 𝑡𝑡 ∈ {1,2}  for firm 𝑖𝑖  has a lognormal distribution, its 
probability density function (pdf) is given by   

𝑓𝑓𝑡𝑡(𝑐𝑐𝑡𝑡𝑖𝑖) =
1

√2𝜋𝜋𝑣𝑣𝑡𝑡𝑐𝑐𝑡𝑡𝑖𝑖
exp�−

(ln 𝑐𝑐𝑡𝑡𝑖𝑖 − 𝑚𝑚𝑡𝑡)2

2𝑣𝑣𝑡𝑡2
� = 𝜙𝜙 �

ln 𝑐𝑐𝑡𝑡𝑖𝑖 − 𝑚𝑚𝑡𝑡

𝑣𝑣𝑡𝑡
�

1
𝑣𝑣𝑡𝑡𝑐𝑐𝑡𝑡𝑖𝑖

, (17) 

where 𝑚𝑚𝑡𝑡 denotes the lognormal distribution’s scale parameter, 𝑣𝑣𝑡𝑡 its shape parameter, and 𝜙𝜙 the 
standard normal pdf. One can express the lognormal distribution’s mean 𝜇𝜇𝑡𝑡 and variance 𝜎𝜎𝑡𝑡2 as a 
function of these parameters using standard formulas: 

𝜇𝜇𝑡𝑡 = exp�𝑚𝑚𝑡𝑡 +
𝑣𝑣𝑡𝑡2

2
� (18) 

𝜎𝜎𝑡𝑡2 = [exp(𝑣𝑣𝑡𝑡2) − 1] exp(2𝑚𝑚𝑡𝑡 + 𝑣𝑣𝑡𝑡2). (19) 

 The method of maximum likelihood (ML) searches for parameters maximize the sum 
over observations of the natural logarithm of the likelihood of each observation. For the 
lognormal distribution, the likelihood of an observation is given simply by the pdf in equation 
(17). Exhibit A5 provides results using the LOGNFIT routine in Matlab for a bias-corrected ML 
estimation of lognormal parameters. Besides bias correction, these routines have the advantage 
of providing useful ancillary statistics such as confidence intervals.  
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A4.4. Fenton-Wilkinson Approximation of Combined Distribution 

We seek a method of combining the cost distributions for the two stages into a single distribution 
representing their sum. There is no general guarantee that the sum of lognormals is lognormal. 
Following the argument in the text that the lognormal is an attractive functional form for an 
investment-cost distribution, we will impose the lognormal form on the combined cost 
distribution. A decision remains, however, because there is no single accepted way of 
approximating a sum of lognormals with a lognormal. In their comparison of various approaches, 
Beaulieu, Abu-Dayya, and McLane (1995) find that one of the earliest and simplest, the Fenton-
Wilkinson (FW) approximation [after Fenton (1960)] has the best performance under many 
circumstances. We adopt this approximation here. 

Intuitively, the FW approximation matches the first two moments of the lognormal 
distribution. For independent random variables, the sum of the means equals the mean of the sum 
(first moment) and the sum of the variances equals the variance of the sum (second moment). 
These equalities can be manipulated to obtain formulas for the resulting scale and shape 
parameters, 𝑚𝑚 and 𝑣𝑣, of the lognormal distribution for the combined investment. 

Formally, let 𝜇𝜇 and 𝜎𝜎2 denote the mean and variance of the combined cost distribution 
and �̂�𝜇 and 𝜎𝜎�2 denote their respective estimates. The FW approximation sets 

�̂�𝜇 = �̂�𝜇1 + �̂�𝜇2 (20) 

𝜎𝜎�2 = 𝜎𝜎�12 + 𝜎𝜎�22. (21) 

Substituting from equations (18) and (19) into (20) and (21) and solving yields 

𝑣𝑣� = �ln�1 +
𝜉𝜉1
𝜉𝜉02
� (22) 

𝑚𝑚� = ln 𝜉𝜉0 −
𝑣𝑣�2

2
, (23) 

where 

𝜉𝜉0 = exp �𝑚𝑚�1 +
𝑣𝑣�12

2
� + exp�𝑚𝑚�2 +

𝑣𝑣�22

2
� (24) 

𝜉𝜉1 = [exp(𝑣𝑣�12) − 1]exp(2𝑚𝑚�1 + 𝑣𝑣�12) + [exp(𝑣𝑣�22) − 1]exp(2𝑚𝑚�2 + 𝑣𝑣�22). (25) 

These formulas can be applied iteratively to add more than two lognormals. In the general case 
of adding 𝑘𝑘 lognormals, we have 

𝜉𝜉0 = � exp �𝑚𝑚�𝑡𝑡 +
𝑣𝑣�𝑡𝑡2

2
�

𝑘𝑘

𝑡𝑡=1

 (26) 
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𝜉𝜉1 = �[exp(𝑣𝑣�𝑡𝑡2) − 1]exp(2𝑚𝑚�𝑡𝑡 + 𝑣𝑣�𝑡𝑡2)
𝑘𝑘

𝑡𝑡=1

. (27) 

Substituting the values from Exhibit A5 into equations (26) and (27) yields 𝑚𝑚� = 0.788 and 𝑣𝑣� =
0.833. By construction [equations (20) and (21)], the moments for the combined distribution are 
�̂�𝜇 = 3.111 and 𝜎𝜎� = 3.111. All these estimates are measured in units of billion dollars. 

A4.6. Regularity of Lognormal 

Our optimal mechanism is derived as a corollary of CM’s Theorem 1, which requires the cost 
distribution to be regular. Thus, we need to prove the lognormal distribution is regular to use it in 
simulations of the optimal mechanism derived as a corollary of Theorem 1. By Table 3 of 
Bagnoli and Bergstrom (2005), a lognormal cdf 𝐹𝐹(𝑐𝑐) is logconcave, implying 

𝑑𝑑2

𝑑𝑑𝑐𝑐2
ln𝐹𝐹(𝑐𝑐) =

𝑓𝑓′(𝑐𝑐)𝐹𝐹(𝑐𝑐) − 𝑓𝑓(𝑐𝑐)2

𝐹𝐹(𝑐𝑐)2 < 0, (28) 

in turn implying 𝑓𝑓(𝑐𝑐)2 − 𝑓𝑓′(𝑐𝑐)𝐹𝐹(𝑐𝑐) > 0. But the preceding inequality implies 

𝑑𝑑
𝑑𝑑𝑐𝑐
�
𝐹𝐹(𝑐𝑐)
𝑓𝑓(𝑐𝑐)

� =
𝑓𝑓(𝑐𝑐)2 − 𝑓𝑓′(𝑐𝑐)𝐹𝐹(𝑐𝑐)

𝑓𝑓(𝑐𝑐)2 > 0, (29) 

proving that the cost distribution is regular. 

A5. Inversion for Reserve Price 

Letting ∆ be funder demand for the marginal winning firm’s investment, the associated reserve 
price is given by 𝑀𝑀−1(∆), the inverse of the function 𝑀𝑀(𝑐𝑐) defined in equation (10). Lacking a 
closed-form solution for this inverse, we resort to numerical methods. Letting 𝑐𝑐 = 𝑀𝑀−1(∆), we 
have 𝑀𝑀(𝑐𝑐) = ∆, implying 

𝜙𝜙(𝑐𝑐,∆) = 0, (30) 

defining 𝜙𝜙(𝑐𝑐,∆) = 𝑀𝑀(𝑐𝑐) − ∆. Since 𝑀𝑀(𝑐𝑐) is increasing, 𝜙𝜙(𝑐𝑐,∆) is increasing in 𝑐𝑐 as well. We 
use the procedure FSOLVE in Matlab to solve for 𝑐𝑐 in equation (30). 

A6. Detail on Baseline Scenario 

For reference, Exhibit A6 lists the assumptions in the baseline scenario. Exhibit A7 provides 
histograms showing the entire distribution across the million simulations for each outcome 
variable in the baseline scenario. This complements the first row of results in Exhibit 3, which 
just report means across the simulations in the baseline scenario. As Exhibit A7 shows, outcomes 
can vary widely across simulations. For example, funder surplus ranges from 0 (in simulations in 
which no selected candidate is successful) to over $4 trillion.  
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Descriptive statistics for country-level data on used in demand estimation

Vaccine stage Obs. Units Mean Median Std. dev.
Country population (2018) 191 Million 39.3 8.5 145.2
Country per-capita GDP (2019) 191 Thousand $ 15.1 6.2 20.7

Monthly per-capita harm in country
Economic-output loss 191 $ per capita 77.5 28.2 111.7
Mortality loss 191 $ per capita 30.2 9.5 45.8
Total 191 $ per capita 107.7 41.4 156.3

SOURCES Country population in 2018 from World Bank (2020a). GDP per capita computed from layering IMF (2020) growth statistics
for 2019 on World Bank (2020b) data on 2018 GDP per capita. Economic-output loss from authors' calculation based on IMF (2020)
projections layered 2019 per-capita GDP estimates. Mortality loss from authors' calculations based on Walker et al. (2020) mortality
projections.

EXHIBIT A1
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EXHIBIT A4

Vaccine stage Obs. Units Mean Median Std. dev.
Phase-3 trials 99 Million $ 83.1 30.0 125.3
Capacity installation (per site) 22 Million $ 78.3 60.0 63.5
Variable manufaturing costs (per dose) 90 $ 13.3 7.0 13.5

SOURCE CEPI survey of firms' investment costs. NOTES Capacity installation cost quoted for one site. Two sites assumed to
be required for baseline capacity of 750 mill ion doses annually.Variable manufacturing costs, also referred to as COGS,
scaled up by the 750 mill ion annual doses to get a total to add into firm's combined cost.

Descriptive statistics for CEPI survey data used to estimate cost distributions
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Maximum-likelihood estimates of lognormal cost distributions

Variable manufacturing
Phase-3 trials Capacity costs (COGS)

(t  = 3) (t  = 4) (t  = 5)
Units One set Two sites 750 million doses
Parameter estimates

Scale, m t

Estimate -3.119 -2.142 1.871
95% confidence interval [-3.328, -2.909] [-2.507, -1.777] [1.686, 2.055]

Shape, v t

Estimate 1.049 0.823 0.880
95% confidence interval [0.921, 1.220] [0.633, 1.176] [0.768, 1.302]

Observations, n 99 22 90
Derived moments

Mean, µ t 0.083 0.157 9.951

Standard deviation, σ t 0.125 0.127 10.094

Vaccine stage, t

SOURCE Author calculations using CEPI survey of firms' costs. NOTES Bias-corrected maximum likelihood estimates
produced using the LOGNFIT command in Matlab programming language. Estimates and derived moments in units of
bil l ion dollars.

EXHIBIT A5
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