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DESCRIPTION

This document contains two appendices not included in the published paper for space considerations.
Online Appendix D provides further details omitted from the proofs appearing Appendix B of the
published paper. Online Appendix E fills in technical details for the analysis of a hybrid journal
omitted from Appendix C of the published paper. The figures are numbered starting from the last
one in the published article.

ONLINE APPENDIX D:

FURTHER PROOF OF SELECTED PROPOSITIONS

This online appendix supplies additional details omitted for space considerations from the proofs
included in Appendix B of the published paper.

Completing Proof of Proposition 1

Here we provide the counterexample, promised in the text following the proposition, having non-
logconcave fa in which pmo

a < pmt
a . The counterexample involves discrete distributions of author

and reader values, but it is easy to construct continuous distributions approaching these discrete
distributions in the limit. Suppose v a takes on two values, 2 or 2.9, in equal measure. Suppose
vr also takes on two values, 0 for 30% of readers and a small, positive number, say 0.0001, for
the remainder. Suppose ca = 1 and cr = 0. It follows that πmt

r ≈ 0 and qmt
r = 0.7. Both types

of journal have two possible pricing strategies: serving all authors with a low submission fee or
serving just high-value ones with a high submission fee. One can show that a traditional journal
earns approximately 0.4 from charging 1.4 and serving all authors and approximately 0.515 from
charging 2.03 and serving just the high-value ones. Thus pmt

a = 2.03. An open-access journal earns
1 from charging 2 and serving all authors and 0.95 from charging 2.9 and serving just the high-value
ones. Thus pmo

a = 2 < 2.03 = pmt
a . �

Completing Proof of Proposition 3

Here we set up and solve several subproblems that are components in the solution of the larger
problem, MIN1, leading to the desired result. The first subproblem, labeled MAX1, involves the
maximization of the integral I2 defined in (B42) for given values of pmt

r and qmt
r subject to constraints

(B37), (B39), and (B44). For pmt
r and qmt

r to be a well-defined price and quantity, they must be related
by

(D1) F̄r(pmt
r ) = qmt

r .

Imposing (D1) as an additional constraint, MAX1 can be represented by the following optimal-
control problem:

max
x1

∫ T

a
te−x1dt(D2)
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subject to ẍ1 = u(D3)

u ≥ 0(D4)

x1 ≥ 0(D5)

x1(a) = ln

(
pr

r − cr

qmt
r

)
(D6)

∫ T

a
e−x1 dt = qmt

r ,(D7)

where a = pmt
r and where the rest of the index, state, and control variables are defined as in MIN2.

Rather than directly equating state variable x1 with the density f r in objective (D2), we have here
specified fr(vr) = e−x1(t). A logconcave density can always be written in this way for some con-
vex x1(t), called the potential function; see, e.g., Definition 2.1 in Saumard and Wellner [2014].
Conditions (D3) and (D4) embody the needed convexity constraint on x 1(t), and (D5) embodies the
nonincreasingness of fr.

MAX1 has some nonstandard features. Constraint (D3) on the state variable involves a second
derivative rather than the usual first derivative. This can be handled by letting the first derivative of
x1 be a new state variable and controlling the derivative of this derivative. Further, (D7) is an integral
rather than the usual derivative condition, leading the optimal-control problem to be what is called
isoparametric. This can be handled by introducing a third state variable x3(t) =

∫ t
a e−x1(s)dx, leading

to the conditions ẋ3 = x1, x3(a) = 0, and x3(T ) = qmt
r . Incorporating these new state variables

and conditions into the problem yields the following equivalent optimal-control problem, labeled
MAX2:

max
∫ T

a
te−x1dt(D8)

subject to ẋ1 = x2(D9)

ẋ2 = u(D10)

u ≥ 0(D11)

x1(a) = ln

(
pr

r − cr

qmt
r

)
(D12)

x2 ≥ 0(D13)

ẋ3 = e−x1(D14)

x3(a) = 0(D15)

x3(T ) = qmt
r(D16)

We will simplify the problem by ignoring constraints (D12), (D13), (D15), and (D16) for now.
The associated Hamiltonian and Lagrangians then are

H = te−x1 + λ1x2 + λ2u + λ3e−x1(D17)

L = H + μu.(D18)

“Textbook” necessary conditions for an optimum are

0 =
∂L

∂u
= λ2 + μ(D19)

2



λ̇1 = −
∂L

∂x1
= (t + λ3)e−x1(D20)

λ̇2 = −
∂L

∂x2
= −λ1(D21)

λ̇3 = −
∂L

∂x3
= 0(D22)

μu = 0(D23)

μ ≥ 0.(D24)

A series of arguments will show that these conditions entail (D11) binds for t > a. By (D19), we
have −λ2 = μ, implying

(D25) λ2 ≤ 0

by (D24). Condition (D22) implies λ 3(t) is a constant for all t, call it λ̄3. Hence λ̈2 = −λ̇1 =
−(t + λ̄3)e−x1 , where the first equality holds by (D21) and the second by (D20). Thus λ2(t) is strictly
convex for t < −λ̄3, strictly concave for t > −λ̄3, with an inflection point at t = − λ̄3. We will
show λ2(t) = 0 for at most one t ∈ (a,T). Suppose for the sake of contradiction that there exist
t ′, t ′′ ∈ (a,T) with t ′ < t ′′ and λ2(t ′) = λ2(t ′′) = 0. There are two cases to consider. If t′ < −λ̄3,
then λ2 is strictly convex and thus strictly quasiconvex in an ε-neighborhood around t ′. Then 0 =
λ2(t ′) < max[λ2(t ′ − ε), λ2(t ′ + ε)], contradicting (D25). If t ′ ≥ −λ̄3, then the strict concavity of
λ2 for t > −λ̄3 implies the strict quasiconcavity of λ2 for all t ∈ (t ′, t ′′), in turn implying λ2(t) >
min[λ2(t ′), λ2(t ′′)] = 0 for all t ∈ (t ′, t ′′), contradicting (D25).

We have thus shown that λ2(t)= 0 for at most one t ∈ (a,T), implyingλ2 < 0 almost everywhere
(a.e.) by (D25), implying μ > 0 a.e. by (D19), implying u = 0 a.e. by (D23), implying x 2 = 0 a.e.
by (D10), implying x1 is affine by (D9), i.e., x1(t) = αt + β for some α,β. Substituting this affine
x1(t) back into MAX2 and substituting a = p mt

r gives the equivalent problem, which we will label
MAX3:

max
α,β

[
e−β

∫ T

pmt
r

te−αtdt

]
(D26)

subject to α ≥ 0(D27)

e−(αpmt
r +β) =

qr
r

pmt
r − cr

(D28)

e−β
∫ T

pmt
r

e−αt dt = qmt
r ,(D29)

where condition (D13) has become (D27), (D6) has become (D28), and (D16) has become (D29).
The rest of the constraints in MAX2 can be eliminated because they are satisfied by affine x1(t) by
construction (as they were explicitly considered in the optimal-control solution of MAX2).

MAX3 is a standard constrained optimization problem involving the choice of variables α, β,
and T , which can be solved using the Kuhn-Tucker method. Using (D28) to solve for β, substituting
this β into the rest of the problem and rearranging leads to the Lagrangian

(D30) L =
qmt

r

pmt
r − cr

∫ T

pmt
r

te−α(t−pmt
r )dt + λ

[
pmt

r − cr −
∫ T

pmt
r

e−α(t−pmt
r )

]
+ μα,

where λ and μ are the Lagrange multipliers on constraints (D29) and (D27). The following are
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necessary conditions for an optimum:

0 =
∂L

∂α
=

(
qmt

r

pmt
r − cr

− λ

)∫ T

pmt
r

(t − pmt
r )e−α(t−pmt

r )dt + μ(D31)

0 =
∂L

∂T
=

(
Tqmt

r

pmt
r − cr

− λ

)
e−α(T−pmt

r )(D32)

0 = μα.(D33)

Now (D32) implies λ = Tqmt
r /(pmt

r − cr). Substituting into (D31) and rearranging,

(D34) μ =
∫ T

pmt
r

(T − t)(t − pmt
r )e−α(t−pmt

r )dt > 0,

implying α = 0 by (D33). Hence f r must be the uniform distribution on [p mt
r , v̄r].

Using these results, the proof in Appendix B shows reduces the worst-case analysis down to the
following minimization problem, labeled MIN3:

min
fa

[∫ v̄a

zmo
a

�1(va) fa(va)dva︸ ︷︷ ︸
I7

−
∫ zmo

a

zmt
a

�2(va) fa(va)dva︸ ︷︷ ︸
I8

]
(D35)

subject to (zmo
a − ca − cr)F̄a(zmo

a ) ≥ (qmt
r zmt

a − ca + πmt
r )F̄a(zmt

a )(D36)

f ′a(va) ≤ 0(D37)

fa logconcave(D38)

F̄a(0) ≤ 1,(D39)

where (D36) is the same as (B35) with profits written out and where the generic conditions on f r

have been omitted because we have found its functional form. We can progress toward solving
MIN3 by considering two subproblems necessary for its solution. Consider fixing the four constants
zmo
a , zmt

a , qmo
a = F̄a(zmo

a ), and qmt
a = F̄a(zmt

a ). The remaining terms in (D36) are constants independent
of fa by (B59) and (B60). Hence (D36) is automatically satisfied if these constants constitute a
feasible solution to MIN3. Integrals I7 and I8 can then be optimized independently for the given
values zmo

a , zmt
a , qmo

a , and qmt
a subject to the remaining constraints (D37), (D38), and (D39).

Since it enters positively in (D35), I7 must be minimized subject to given values zmo
a and qmo

a that
appear in it and subject to the nonincreasingness constraint (D37). The constraint on logconcavity
and the survivior function, (D38) and (D39), turn out not to bind as will be verified later. Expressed
as an optimal-control problem, labeled MIN4, we have

min

[∫ T

a
�1(t)x1dt

]
(D40)

subject to ẋ = u(D41)

− u ≥ 0(D42)

ẋ2 = x1(D43)

x2(a) = 0(D44)

x2(T ) = qmo
a .(D45)

where a = zmo
a , T = v̄a, t = va, x1(t) = fa(va), and x2(t) =

∫ t
a x1(s)ds. See MAX2 above for more
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details on the setup of a similar problem. The associated Hamiltonian and Lagrangian are

H = �1(t)x1 + λ1u + λ2x1(D46)

L = H − μu,(D47)

yielding necessary conditions

0 =
∂L

∂u
= λ1 − μ(D48)

λ̇1 = −
∂L

∂x1
= −�1(t)− λ2(D49)

λ̇2 = −
∂L

∂x2
= 0(D50)

μ(−u) = 0(D51)

μ ≥ 0.(D52)

Equation (D50) implies λ2 is a constant for all t, i.e., λ2(t) = λ̄2. Then (D49) implies that λ1 is
strictly quasiconcave, increasing in t up to its maximum �−1

1 (λ̄2) and decreasing above this. Now
0 ≤ μ = λ1 by (D52) and (D48). But then λ1(t) > min[λ1(a), λ1(T )]≥ 0 for all t ∈ (a,T), where the
first inequality follows from strict quasiconcavity and the second by λ 1 ≥ 0 as just shown. Hence
μ = λ1 > 0 for all t ∈ (a,T), implying 0 = u = ẋ1 by (D51) and (D41). Therefore fa(va) is the
uniform distribution on [z mo

a , v̄a].
Since it enters negatively in (D35), I8 must be maximized subject to given values zmo

a , zmt
a , and

qmt
a −qmo

a = F̄a(zmt
a )− F̄a(zmo

a ) and constraints (D37), (D38), and (D39). Sparing the details, the setup
is similar to MIN4 and yields the uniform distribution as the solution. �

Completing Proof Proposition 6

Here we fill in some omitted details from the proof in Appendix B of the published paper. We
first need to verify that the conditions behind subcase G.2b entail Πmo ≥ Πmt . Recall that case G.2
involves moving from structure (T ∗,O∗) = (0,1) to structure (T ′,O′) = (1,0) and that subcase G.2b
involves the further condition ΠFt ≤ 0 < ΠFo. Let pFt

a and pFo
a be the equilibrium prices in the

duopoly structure with one of each journal mode indicated by point F in Figure 2. Since Π Fo > 0 in
the present subcase, the duopoly margin must be positive for the open-access journal:

(D53) pFo
a > ca + cr.

Another condition behind the subcase is ΠFt ≤ 0. Now it cannot be that ΠFt < 0 because the tradi-
tional journal could guarantee zero quantity and thus zero profit by deviating to a submission fee of
v̄a. Hence ΠFt is identically 0, which could follow from two possibilities: either the traditional jour-
nal serves no authors or serves a positive measure of authors at a zero margin. The latter possibility
cannot be an equilibrium as demand is continuous, so the traditional journal would gain by slightly
increasing price, earning a positive margin, and still have a positive author quantity. Hence, the tra-
ditional journal must serve no authors. For this to be true, it must be the case that for all v a ∈ [0, v̄a],
either qmt

r va − pFt
a ≤ 0 (i.e., an author with that value would rather not submit than submit to the

traditional journal) or qmt
r va − pFt

a ≤ va − pFo
a (i.e., an author with that value prefers the competitor).
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Consolidating these conditions, for the traditional journal to serve no authors,

(D54) qmt
r va − pFt

a ≤ max(0,va − pFo
a ) ≤ max(0,va − ca − cr) for all va ∈ [0, v̄a],

where the second inequality follows from (D53). Condition (D54) must hold not just for p Ft
a but for

any pa > ca +πmt
r or else the traditional journal could profitably deviate to this p a and earn a positive

margin on a positive measure of authors. Replacing pFt
a with ca + πmt

r in (D54) yields the necessary
equilibrium condition

(D55) qmt
r va − ca + πmt

r ≤ max(0,va − ca − cr) for all va ∈ [0, v̄a].

In particular, (D55) must hold for va = pmt
a /qmt

r , which upon substituting into (D55) gives

(D56) pmt
a − ca + πmt

r ≤ max(0, pmt
a /qmt

r − ca − cr).

We then have

Πmt = (pmt
a − ca + πmt

r )F̄(pmt
a /qmt

r )(D57)

≤ max(0, pmt
a /qmt

r − ca − cr)F̄a(pmt
a /qmt

r )(D58)

≤ max

{
0,argmax

pa≥0
[(pa − ca − cr)F̄a(pa)]

}
(D59)

= max(0,Πmo)(D60)

= Πmo,(D61)

where (D57) follows from (8), (D58) follows from (D56), (D59) follows from the fact that the
maximizer will generate a weakly higher value of the objective function than pmt

a /qrmt, and (D60)
follows from (10). The last equality holds since 0 < ΠFo ≤ Πmo, where the first inequality is one of
the conditions defining the subcase and the second inequality follows from monopoly being at least
as profitable as duopoly. We have succeeded in showing Πmo ≥ Πmt) in subcase G.2b, implying
SWmo ≥ SWmt by Proposition 3.

The remaining detail to fill in is analysis of case D.1 Let SWD be equilibrium social welfare in
the initial market structure in this case, i.e., structure D, in which (T ∗,O∗) = (∞,1). Let SWE be
equilibrium social welfare in the market structure arising after the reduction in open access, i.e.,
structure E, in which (T ′,O′) = (∞,0). After some rearranging, one can show

(D62) SWD − SWE =
∫ v̄a

zDo
a

∫ pmt
r

0
(va + vr − cr) fr(vr) fa(va)dvrdva,

where zDo
a is the lowest type served by the open-access journal in market structure D. Marginal

type zDo
a must weakly prefer submitting to the open-access over traditional journals in structure D:

zDo
a − pDo

a ≥ qmt
r zDt

a − pDt
a = qmt

r zDt
a , where the equality follows because competition among traditional

journals drives pDt
a to 0. Rearranging, (1−qmt

r )zDo
a ≥ pDo

a , implying zDo
a ≥ pDo

a > ca +cr ≥ cr. Hence
for all va above the lower limit of integration in (D62), v a + vr − cr ≥ va − cr ≥ zDo

a − cr ≥ 0. �

Additional Reference

Saumard, A.and Wellner, J. A., 2014, ‘Log-Concavity and Strong Log-Concavity: A Review,’
Statistics Surveys, 8, pp. 45–114.
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No submission
Submit; choose 
traditional access

Submit; choose 
open access

Figure 6
General Characterization of Author’s Continuation Strategy Facing Hybrid Journal

Notes: Author value per reader partitioned into three subintervals. Author does not submit article for lowest values, submits
under traditional access for intermediate values, and pays premium for open access for highest values. Depending on the
prices (pa,xa) set by the hybrid journal, up to two subintervals may be empty.

ONLINE APPENDIX E

COMPLETING ANALYSIS OF HYBRID PRICING STRATEGY

This online appendix fills in the technical details of the of the hybrid-pricing strategy provided in
Appendix C of the published paper.

As discussed there, the analyses of the reader-pricing stage and the subscription stage are iden-
tical to those already given. Thus the game can be folded back to the author submission stage. The
author has three options: not submitting, providing him with surplus 0; submitting under traditional
access, providing him with surplus vaqmt

r − pa; and submitting under open access, providing him
with surplus va − pa −xa. The author chooses the option providing him with the highest surplus. Not
submitting provides strictly more surplus than the other options if 0 > v aqmt

r − pa and 0 > va − pa −xa,
which upon combining conditions yields

(E1) va < min

(
pa + xa,

pa

qmt
r

)
.

Submitting under open access provides strictly more surplus than the other options if v a − pa −xa > 0
and va − pa − xa > vaqmt

r − pa, which upon combining conditions yields

(E2) va > max

(
pa + xa,

xa

1 − qmt
r

)
.

Because

min

(
pa + xa,

pa

qmt
r

)
≤ pa + xa ≤ max

(
pa + xa,

xa

1 − qmt
r

)
,

it is immediate that the interval of author values is partitioned into three subintervals as shown in Fig-
ure 6, with no submission for the lowest values, submission under traditional access for intermediate
values, and submission under open access for the highest values.

Zero, one, or two of the subintervals in Figure 6 can be empty in specific cases. There are
seven ways this can happen, leading to the seven cases. The seven cases are detailed in Figure 7.
The necessary and sufficient conditions are mutually exclusive and exhaustive. Which case to place
the boundaries between them is somewhat arbitrary. We adopted the convention of setting the in-
equalities (strict or weak) such that a partition is displayed only if it contains a positive measure of
types.

We will establish the necessary and sufficient conditions behind each case in Figure 7 in turn,
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Case Diagram of author submission strategy
Necessary and 

Sufficient Condition

None Open accessTraditional

(i)

Open accessTraditional

(ii)

Open accessNone

(iii)

None
(iv)

TraditionalNone

(v)

Traditional
(vi)

Open access
(vii)

Figure 7
Detailed Subcases for Author’s Continuation Strategy Facing Hybrid Journal

Notes: General characterization leads to seven cases depending on which partitions from the previous figure are empty.
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starting with case (i). For there to be a positive measure of non-submitting authors,

(E3) 0 < min

(
pa + xa,

pa

qmt
r

)
.

But (E3) requires pa > 0, implying

(E4)
pa

qmt
r

> 0.

Next, for there to be a positive measure of authors submitting under traditional access,

(E5) min

(
pa + xa,

pa

qmt
r

)
< max

(
pa + xa,

xa

1 − qmt
r

)
.

For (E5) to hold, xa > 0. Furthermore, one of the following two conditions must hold:

(E6) pa + xa >
pa

qmt
r

(E7) pa + xa <
xa

1 − qmt
r

.

Some algebra shows (E6) and (E7) are equivalent to each other and furthermore are both equivalent
to

(E8)
pa

qmt
r

<
xa

1 − qmt
r

.

Condition (E6) implies that the cutoff between types who do not submit and types who submit under
traditional access is va = pa/qmt

r . Condition (E7) implies that the cutoff between types who submit
under traditional access and types who submit under open access is va = xa/(1−qmt

r ). These simple
expression for the boundaries are reflected in case (i) of Figure 7. Finally, for there to be a positive
measure of authors submitting under open access, the boundary between traditional and open access
must be strictly below v̄a:

(E9)
pa

qmt
r

< v̄a.

Collecting conditions (E3), (E8), and (E9) yields the necessary and sufficient condition shown in
case (i) of Figure 7.

Case (ii) can be analyzed using similar arguments maintaining the assumption pa = 0. Turn
therefore to case (iii). For there to be a zero measure of types submitting under traditional access,

(E10) max

(
pa + xa,

xa

1 − qmt
r

)
≤ min

(
pa + xa,

pa

qmt
r

)
.

Condition (E10) implies

(E11) max

(
pa + xa,

xa

1 − qmt
r

)
= min

(
pa + xa,

pa

qmt
r

)
= pa + xa.
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Hence the cutoff between types who do not submit and types who submit under open access is
va = pa + xa. For there to be a positive measure of authors submitting under open access, this cutoff
type must be strictly below v̄a:

(E12) pa + xa < v̄a.

The final step in deriving the necessary and sufficient condition for case (iii) in Figure 7 is to note
that (E11) is equivalent to

(E13)
xa

1 − qmt
r

≤ pa + xa ≤ pa

qmt
r

.

Case (v) is analyzed similarly to case (iii). Case (vi) can then be analyzed using arguments
similar to case (v), but maintaining the assumption pa = 0. The details of these cases are omitted for
brevity. This leaves cases (iv) and (vii). Consider each case in turn. For there to be a zero measure
of submitting types (whether under traditional or open access),

(E14) v̄a ≤ min

(
pa + xa,

pa

qmt
r

)
,

the necessary and sufficient condition shown in case (iv) of Figure 7. For there to be a zero measure
of both types who either do not submit or submit under traditional access,

(E15) max

(
pa + xa,

xa

1 − qmt
r

)
≤ 0,

which is equivalent to pa = xa = 0, the indicated condition in case (vii) of Figure 7.
The algebraic conditions for the seven cases in Figure 7 are difficult to envision. Figure 8 graphs

them in the price space for a hybrid journal, (pa,xa). The cases form four regions, two segments,
and one point.

We next provide sufficient conditions under which equilibrium falls into the cases—(i) and (ii)—
analyzed in Appendix C. The first step is to restrict attention to the case in which a monopoly journal,
if it were prevented from choosing a hybrid strategy and forced to be either a purely traditional
or purely open-access journal, would find the traditional strategy more profitable. Proposition 2
provided a sufficient condition for this outcome, and we will maintain that sufficient condition here.
This rules out cases (iv), (v), and (vi) from Figure 7 as possible equilibria. The next step is to
provide a further condition under which a traditional journal would find it profitable to move to a
hybrid model if it could. This rules out cases (iii) and (vii) from Figure 7 as possible equilibria,
leaving cases (i) and (ii) as the only possibilities, as desired. We have the following proposition.

Proposition 8. A profitable monopoly traditional journal would strictly profit from moving to hybrid
pricing if v̄a is high enough, a sufficient condition being

(E16) v̄a >
cr + πmt

r

1 − qmt
r

.

Proof. Suppose a traditional journal currently charging author price p a maintains that author price
but adds the option of open access for a premium of xa = πmt

r +cr + ε for some ε > 0. For each author
type who now chooses open access, the journal earns continuation profit

pa + xa − ca − cr = pa − ca + πmt
r + ε,
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●

Case (i)

Case (v)

Case (iv)

Case (iii)

C
as

e 
(v

i)
C

as
e 

(ii
)

Case (vii)

Figure 8
Diagramming Algebraic Conditions from Previous Figure

Notes: Cases along vertical axis involve zero submission fee: cases (ii) and (vi) are line segments and (vii) is a point.

ε > 0 more than it earned under the original traditional strategy. We need to check that a positive
measure of author types choose open access. An author chooses open access if his benefit va satisfies
va − pa − xa > qmt

r va − pa, or upon substituting for xa and rearranging,

(E17) va >
cr + πmt

r + ε

1 − qmt
r

.

But (E16) ensures that (E17) holds for some ε > 0. �

The proof works by having the journal add an open access option, priced according to what in the
context of telecommunications regulation is called the Efficient Components Pricing Rule (ECPR)
(Baumol and Sidak 1994). To see this, consider the open-access premium for small ε:

lim
ε→0

xa = cr + πmt
r = (1 − qmt

r )cr + pmt
r qmt

r .

As specified by the ECPR, the open-access premium reflects two terms, a standard marginal cost
term—in the present case the cost per reader cr of serving the 1 − qmt

r additional readers attracted by
open access—and a second, opportunity cost term—in this case the lost revenue from these readers
pmt

r qmt
r .

It remains to check that the sufficient conditions allowing us to focus on cases (i) and (ii) in
equilibrium are not mutually inconsistent. This is easy to verify. We can ensure that hybrid pricing
is more efficient than traditional by taking a distribution of author values with v̄ a = ∞. Fixing this
distribution and all other parameters, by Proposition 2 we can then ensure that a traditional journal
is more profitable than an open-access journal by using α to scale the benefit distributions as in the
statement of the proposition and considering a sufficiently low value of α.
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