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We propose a simple method, requiring only minimal data, for bounding
demand elasticities in growing, homogeneous-product markets. Since
growing demand curves cannot cross, shifts in market equilibrium over
time can be used to “funnel” the demand curve into a narrow region,
bounding its slope. Our featured application assesses the antitrust rem-
edy in the 1952 DuPont decision, ordering incumbents to license patents
for commercial plastics. We bound the demand elasticity significantly
below 1 in many post-remedy years, inconsistent with monopoly, sup-
porting the remedy’s effectiveness. A second application investigates
whether the 1911 dissolution of American Tobacco fostered competition
in the cigarette market.
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Though motivated by disparate questions, industrial-organization studies often boil
down to the common exercise of estimating a demand elasticity. The exercise is some-
times hindered by a paucity of data, especially in historical contexts, and by the complex-
ity of the methods required. We propose a method for bounding the demand elasticity in
a growing, homogeneous product market. Based on the idea that growing demand curves
do not cross, shifts in market equilibrium over time can be used to “funnel” the demand
curve into a narrow region, thus bounding its slope. The method requires only minimal
data—market price and quantity over a time span as short as two periods—and is simple
to operationalize.

Figure 1 provides intuition for how the method works. In this example, the researcher
has price and quantity data for two years. The equilibrium point in the initial year is e0
and in the second is e1. The researcher wants to bound the slope the inverse demand
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FIGURE 1. INTUITION FOR THE METHOD BOUNDING THE DEMAND ELASTICITY

curve through e0. With so little data, there may be little hope to say anything more
than inverse demand lies somewhere between the dotted horizontal line, corresponding
to an infinitely elastic demand curve, and the dotted vertical line, corresponding to an
infinitely inelastic one. In fact we can say more. Positing a functional form for demand,
say linear, and assuming demand is growing over time, a curve like D can be ruled out
because that would put the later equilibrium point e1 on a lower demand curve. The
demand curve through e0 must be at least as steep as the line D′ connecting e0 and e1.
Comparing the two equilibrium points leads to a lower bound on the steepness of inverse
demand, which translates into an upper bound on the elasticity of demand through e0. A
researcher who finds that demand is as inelastic as D′ may be able to rule out monopoly.
Intuitively, a drop from e0 to e1 may be so steep that a monopolist would never have
decreased price this much for such a small increase in quantity, even if marginal costs
fell to zero. A more plausible conclusion may be that competitive pressure drove firms
onto the inelastic portion of demand.

Just two equilibrium points are being compared in the example in Figure 1. It is
straightforward to see that with more data, the elasticity bound in the reference period
could be improved by comparing e0 to all other equilibrium points, taking the tightest
of the results for the bound. Less straightforward is the computation of standard er-
rors around the bounds, as standard bootstrapping methods are invalid for extreme order
statistics. We show how bootstrapping method for extreme order statistics proposed by
Zelterman (1993) can be adapted to our setting.

The example in Figure 1 implicitly assumes demand is linear, at least locally in the
reference period. For pedagogical purposes, we work with linear demand throughout
much of the paper; but the methods are quite general. We extend the bounds to whatever
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demand curve in a broad class the researcher imposes. We also provide bounds that only
require a weak concavity or convexity assumption rather than an explicit functional form.
Moving in the opposite direction of imposing stronger rather than weaker assumptions,
we develop a variant of the methodology that can narrow the bounds on the demand
elasticity considerably if the researcher is willing to assume that whatever functional
form is imposed applies across all periods and over the whole range of demand rather
than just locally around the equilibrium points.

Our featured application uses our method to assess the effectiveness of the antitrust
remedy in the 1952 DuPont decision. The case involved two incumbent chemical man-
ufacturers: the U.S. firm DuPont and the U.K. firm Imperial Chemical Industries (ICI).
The two firms signed a Patents and Processes agreement in 1929, dividing the global mar-
ket into exclusive territories between them. The U.S. government brought suit under the
Sherman Act, alleging an illegal market division. The judge ruled in favor of the govern-
ment, ordering the defendants to cancel their exclusive-territory arrangements, requiring
them to license the patents behind polyethylene, a plastic widely used for commercial
purposes.

Whether structural remedies for antitrust violations are effective in fostering competi-
tion has been an ongoing concern for scholars dating back to Adams (1951). As Areeda,
Kaplow and Edlin (2013) note, remedies do not typically set the licensing terms, leaving
them subject to commercial negotiation. This raises the opportunity for incumbent man-
ufacturers to preserve the monopoly outcome by quoting exorbitant fees or withholding
tacit knowledge necessary for entrants to compete effectively against them. The remedy
in the DuPont case ostensibly had the desired procompetitive effect: eleven manufactur-
ers entered by the end of the decade; prices steadily declined and output rose (Backman,
1964, p.71). However, the same price declines and output increases may have arisen in
a monopoly market experiencing substantial cost declines, plausibly true for plastics in
the 1950s and 60s. The entrants may merely have produced their share of the monopoly
quantity, returning most of the rents to the incumbents.

Formal study that could cut through these criticisms using existing methods is hindered
by a paucity of historical data for polyethylene, just yearly aggregate prices and quanti-
ties only for post-remedy years. Applying our method to this rather minimal dataset, we
are able to bound the demand elasticity substantially and statistically significantly below
1 in many sample years. The bounds are robust to alternative products, functional forms,
and method variants. Such inelastic demand is inconsistent with monopoly, suggesting
the remedy may have been effective. The U.S. polyethylene market is a particularly op-
portune one in which to apply our methods because the assumption of growing demand
needed for our method to work seems to be well founded for the product market dur-
ing our 1958–72 sample period. Commercial applications that had only recently been
invented were exploding, augmented by the baby boom and general macroeconomic
growth.

To demonstrate the broader applicability of our method, we briefly explore a second
application, investigating whether the breakup of the incumbent ordered by the remedy in
the 1911 American Tobacco case led to competition in the cigarette market. Our method
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delivers extremely wide elasticity bounds—consistent with even perfect collusion—over
the whole sample period except 1921–22, when the bound is 0.37, significantly less than
1 at the 5% level. Our method pinpoints the precise date of a breakdown in collusion
identified anecdotally by Nicholls (1951) among other industry studies .

Our work is related to several literatures. One is the literature assessing the effective-
ness of structural remedies for antitrust. In addition to the pioneering study by Adams
(1951), a series of papers by U.S Federal Trade Commission staff—including Federal
Trade Commission (1999, 2017) and Farrell, Pautler and Vita (2009)—have analyzed
remedies accompanying a large sample of more modern mergers. We also contribute to
the industrial-organization literature following Manski (1995) that seeks to bound rather
than point-estimate elasticities and other parameters, including Haile and Tamer (2003);
Ciliberto and Tamer (2009); Pakes (2010); and Pakes et al. (2015).

Our primary application is related to several literatures. The Patents and Processes
agreement between DuPont and ICI was effectively a patent pool (Stocking and Watkins,
1946). Hence, that application relates to the larger literature on patent pools, notably
Watzinger et al. (2017), who examine induced innovation in the aftermath of the 1956
Bell System consent decree. Our primary application also relates to commentaries on the
DuPont remedy. Several leading commentaries criticized the remedy as overreaching;
see, e.g., (Reader, 1975, p. 417) and (Hounshell and Smith, 1988, p. 206). We provide
evidence supporting the effectiveness of the remedy in ending the monopoly and spurring
competition in plastics.

Our secondary application contributes to the literature measuring conduct in the cigarette
market. Leveraging the pass-through rate of excise taxes, Sumner (1981), Sullivan
(1985), and Ashenfelter and Sullivan (1987) place firms’ conduct strictly between the
two extremes of perfect competition and perfect cartel. Our conclusions are consistent
with theirs but for a more remote period using a bounds method does not rely on tax
shifters. Our cigarette application also relates to historical commentaries on the 1911
American Tobacco case. Industry studies by Cox (1933), Tennant (1950), and Nicholls
(1951) have been criticized for reaching tentative or unwarranted conclusions (see, e.g.,
Watkins, 1933; Vandermeulen, 1953) in part because of a paucity of data, a limitation
which our study is designed to overcome.

I. Model

This section lays out a model of a growing market for a homogeneous product used in
the analysis. Each period t, the interaction between producers and consumers on the mar-
ket leads to an equilibrium et ≡ (qt , pt), where qt ≥ 0 is quantity and pt ≥ 0 is price. The
researcher observes the equilibrium over a set of periods T ≡ {. . . ,−2,−1,0,1,2, . . .},
where period t = 0 is the chosen reference period for which we will provide elasticity
bounds. Let E ≡ {et | t ∈ T} denote the set of time-series observations of equilibrium.

The following assumption streamlines the analysis by ruling out ties between price or
quantity observations.
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ASSUMPTION 1 (Distinct Equilibria): For all et ′,et ′′ ∈ E such that t ′ 6= t ′′, qt ′ 6= qt ′′

and pt ′ 6= pt ′′ .

This assumption entails little loss of generality supposing that two observations are never
exactly equal when measured to arbitrary precision. We further assume the market is
nontrivial in the sense of involving positive prices and quantities each period.

ASSUMPTION 2 (Nontrivial Equilibria): For all et ∈ E, qt , pt > 0.

We will characterize each side of the market in turn starting with producers. Since the
goal of our applications is to determine whether the antitrust remedies were effective in
changing producer conduct, it is natural to consider producer conduct as an unknown to
be determined. Thus, we will be agnostic about producer behavior in the model, whether
characterized by perfect competition, some form of oligopoly, or monopoly.

On the other side of the market, consumers are price takers whose behavior is captured
by the demand curve q = Dt(p). The index on the demand curve allows it to shift over
time. Assume this function obeys the law of demand, formally that Dt(p) is nonincreas-
ing in p.

ASSUMPTION 3 (Law of Demand): For all t ∈ T , Dt(p′)≥ Dt(p′′) for all p′′ > p′ ≥
0.

Assume that market demand is growing over time, formally that Dt(p) is nondecreasing
in t.

ASSUMPTION 4 (Growing Demand): For all t ′, t ′′ ∈ T such that t ′ < t ′′, Dt ′(p) ≤
Dt ′′(p) for all p≥ 0.

The assumption requires the demand curve to shift out at least weakly from one period
to the next. The shift could be parallel, or it could involve some clockwise or counter-
clockwise rotation as long as the rotation is not so acute that it leads demand curves in
different periods to intersect.

Not all equilibrium configurations E are consistent with growing demand. To aid the
discussion of which inconsistent configurations are ruled out, some additional notation
is in order. Figure 2 depicts subsets of equilibrium determined by compass directions
relative to the reference equilibrium point, e0. Algebraically, NW ≡ {(qt , pt) ∈ E | qt <
q0, pt > p0} and analogously for the sets NE, SE, and SW. The fact that the compass-
set definitions involve strict inequalities leaves points on the dotted lines through e0 in
the figure unclassified, but this is without loss of generality under Assumption 1, which
precludes equilibrium points from sharing coordinates. The compass sets can be further
partitioned depending on when the equilibria occur. For example, define NW− ≡ {et ∈
NW | t < 0}, the subset of equilibrium points in NW that occur before e0, and NW+ ≡
{et ∈ NW | t > 0}, the subset that occur after. Define the other six subsets (NE−, NE+,
SE−, SE+, SW−, and SW+) analogously. Using this notation, a necessary condition for
Assumption 4 is that SW+ = NE− = /0.
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FIGURE 2. SETS DETERMINED BY COMPASS POSITION

II. Bounds Assuming Linear Demand

Our bounds methods require the researcher to impose an assumption on the functional
form or curvature of demand. To build intuition, we start by assuming demand is linear.
Section III extends the methods to general functional forms.

A. Linear Specification

Assume demand in the reference period t = 0 is given by

(1) D0(p) = a0−b0 p.

Demand in other periods can be different from (1) and need not even be linear.
The demand specification in (1) involves two parameters, but further requiring the

line to pass through the equilibrium point e0 pins it down to a single-parameter family.
Focus for now on b0 as the key parameter. Letting D̃(p,b0,e0) be the linear demand with
parameter b0 passing through equilibrium point e0 = (q0, p0), we have

(2) D0(p) = D̃(p,b0,e0) = q0 +b0(p0− p).

Assumption 3 (law of demand) holds if and only if b0 ≥ 0.
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The absolute value of the demand elasticity is

(3) ε0 ≡ |D̃p(p0,b0,e0)|
p0

q0
=

b0 p0

q0
,

where the subscript on D̃p denotes a partial derivative. Note that b0 ≥ 0 implies ε0 ≥ 0.
Hereafter, we drop the “absolute value” modifier and simply call ε0 the demand elasticity.

B. Method Incorporating Local Information

We refer to our basic method for bounding demand elasticities as incorporating local
information since it uses no information beyond the relative location of the equilibrium
points. This contrasts the method incorporating limiting information, which introduced
in Section VI, that projects demand intercepts and constraints them not to cross.

The method incorporating local information derives bounds on demand steepness b0
via pairwise comparisons of that period’s equilibrium point e0 with the location of other
equilibrium points, et . Using equation (3), bounds on b0 can then be translated into the
desired bounds on ε0.

Start by comparing e0 to a later equilibrium point, et , with t > 0. We have

(4) D̃(p,b0,e0) = D0(p)≤ Dt(p),

where the equality follows from (2) and the inequality from the assumption of growing
demand. Since (4) holds for all p ≥ 0, it must hold in particular for pt . Substituting pt
into (4) yields D̃(pt ,b0,e0) = q0 +b0(p0− pt)≤ Dt(pt) = qt , or rearranging,

(5) b0(p0− pt)≤ qt −q0.

The bounds on b0 that can be derived from equation (5) depend on the compass posi-
tion of et relative to e0. There are three subcases to consider depending on whether et
is in NW+, NE+, or SE+ (as discussed in Section I, the remaining set SW+ is empty).
To streamline the subsequent analysis, introduce the function B(et ′ ,et ′′), denoting the
absolute value of the slope of the linear demand through points et ′ and et ′′ :

(6) B(et ′ ,et ′′)≡
∣∣∣∣ qt ′′−qt ′

pt ′′− pt ′

∣∣∣∣ .
Suppose et ∈ NW+. Cross multiplying (5) by p0− pt yields

(7) b0 ≥
qt −q0

p0− pt
= B(e0,et).

The first step follows from et ∈NW+, which implies p0 < pt by definition of the compass
set. The second step follows because the numerator and denominator of the middle
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fraction are both negative for et ∈ NW+. Condition (7) provides a lower bound on the
demand slope.

Next, suppose et ∈ NE+. Cross multiplying (5) by p0− pt yields

(8) b0 ≥
qt −q0

p0− pt
.

The right-hand is negative since the numerator is positive and the denominator is negative
for et ∈ NE+. Hence, (8) is a weaker condition than the maintained assumption b0 ≥ 0.
Thus, this case contributes no useful information to bound b0.

Next, suppose et ∈ SE+. Cross multiplying (5) by p0− pt yields

(9) b0 ≤
qt −q0

p0− pt
= B(e0,et).

Cross multiplying did not change the direction of the inequality because p0 > pt for
et ∈ SE+. The second step follows because both numerator and denominator of the
middle fraction are positive for et ∈ SE+. Condition (9) provides an upper bound on the
demand slope.

The pairwise comparison of e0 and et can be repeated for t < 0. Sparing the details,
analysis similar to the preceding can be used to show b0 ≤ B(e0,et) when et ∈ NW−,
b0 ≥ B(e0,et) when et ∈ SE−, and no useful information is contributed when et ∈ SW−.
We have proved the following proposition.

PROPOSITION 1: Suppose demands in all periods satisfy Assumptions 3 (law of de-
mand) and 4 (growing demand). If demand in the reference period is linear, i.e., D0(p) =
D̃(p,b0,e0), then b0 ∈ [

¯
b∗0, b̄

∗
0], where

¯
b∗0 ≡ 0∨ sup

et ∈SE−∪NW+

B(e0,et)(10)

b̄∗0 ≡ inf
et ∈NW−∪SE+

B(e0,et).(11)

The ∨ operator denotes the join; i.e., x∨ y≡max{x,y}. The use of this operator in (10)
indicates the imposition of a floor of 0 on top of the supremum.1 We will later use the
related operator ∧ for the meet; i.e., x∧ y≡min{x,y}.

Proposition 1 is more general than may first appear. The proposition only requires
demand to be linear in the reference period in which we are deriving the elasticity bound.
Functional forms in other periods can be arbitrary. Furthermore, the reference demand
curve is only required to be locally linear, i.e., for quantities and prices on or inside

1The supremum is taken in (10) rather than the maximum and the infimum in (11) rather than the minimum even
though the sets involved are discrete to accommodate the possibility that one of these sets is empty. An empty set does
not have a maximum or minimum but does have a supremum and infimum; we use the conventional definitions inf /0 = ∞

and sup /0 =−∞. If the set SW−∪NW+ over which the supremum is taken in (10) is nonempty, then imposing a 0 floor on
the supremum is superfluous because B is defined to be an absolute value. However, if the set over which the supremum
is taken happens to be empty, then

¯
b∗0 =−∞ without the imposition of the 0 floor.
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Simple Illustration of Method of Pairwise Equilibrium Comparisons

FIGURE 3. ILLUSTRATING METHOD INCORPORATING LOCAL INFORMATION

the minimum bounding box around E. For prices and quantities outside this box, the
reference demand curve can have any functional form.

Bounds on b0 can be translated into bounds on ε0 using the elasticity formula (3). In
particular, ε0 ∈ [

¯
ε∗0 , ε̄

∗
0 ], where

¯
ε∗0 ≡ ¯

b∗0 p0/q0 and ε̄∗0 ≡ b̄∗0 p0/q0.
Proposition 1 prescribes a simple algorithm for bounding the elasticity of demand. Fig-

ure 3 provides an illustration with three equilibrium points. Taking the initial equilibrium
as the reference point e0, suppose we want to bound the steepness, b0, and ultimately the
elasticity, ε0, of the demand curve through e0. We first draw lines `01 and `02 connecting
e0 to the other equilibrium points. The steeper of the two, `02, provides the a lower bound
on the steepness of the inverse demand curve through e0, which translates into the upper
bound b̄∗0 on the steepness demand stated in Proposition 1. Using (3), b̄∗0 can be translated
into an upper bound on the demand elasticity: ε̄∗0 = b̄∗0 p0/q0. Because SE− and NW+

happen to be empty, pairwise comparisons do not yield a nontrivial lower bound
¯
ε∗0 in

this illustration (apart from
¯
ε∗ = 0, implied by non-negativity).

C. Assessment in Cournot Example

This subsection takes stock of the performance of the bounding method under various
market conditions in a simple Cournot model. Besides being a tractable representation
of oligopoly, the Cournot model provides fairly robust insights because it nests both
monopoly and perfect competition as special cases.

Consider a two-period model indexed by t ∈ {0,1} in which nt homogeneous firms
with costant marginal and average cost equal to ct engage in Cournot competition in a
market with linear demand, qt = at − bt pt . For concreteness, we will take the initial
period as the reference period and determine the conditions under which the bounds
[
¯
ε∗0 , ε̄

∗
0 ] are tight around the actual elasticity, ε0. While the findings in this subsection

do not rise to the status of general propositions—applying just to the Cournot example
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considered here—we still set them off as numbered results so that they can be referenced
while relegating the technical details behind them to Appendix A.

Our first result clarifies what growing demand entails when demand is linear.

RESULT 1: Assumption 4 that demand is growing holds in this subsection’s model if
and only if

(12)
a1

a0
≥max

{
1,

b1

b0

}
.

The result indicates that the linear demand curve can grow in several ways. Linear de-
mand can grow increasing at holding bt constant, resulting in a parallel shift out from
the origin. Demand can also grow holding at constant but reducing bt , resulting in an
rotation of the inverse demand curve outward from the origin, pivoting through the hori-
zontal intercept. It is even possible for demand to grow when the inverse demand curve
rotates the opposite way as long as the rotation does not overwhelm the parallel shift out,
guaranteed by a1/a0 ≥ b1/b0.

Solving for a firm’s Nash equilibrium quantity, and using this to derive market quantity
and price, we obtain equilibrium point e0 = (q0, p0), where

(13) q0 =
n0

1+n0
(a0−b0c0), p0 =

1
1+n0

(
a0

b0
+n0c0

)
and analogously for e1.

The next result provides an example in which our bounds fail to contain the true elas-
ticity if demand is shrinking in violation of condition (12).

RESULT 2: Consider a market with a fixed structure (n0 = n1) that experiences a
parallel, downward demand shift (i.e., b0 = b1 and a0 > a1) though e1 ∈ SE+. Then
(ε0− ε̄∗0 )/ε0 ≥ (a0−a1)/a0.

The result not only provides an example in which the bound understates the true elastic-
ity, it quantifies the understatement, showing that our bound understates the true elasticity
by at least the percentage that demand shrinks.

While condition (12) ensures bounds
¯
ε∗0 and ε̄∗0 do not fail, a remaining problem is that

they may be trivially uninformative, including all nonnegative values. By (10),
¯
b∗0 and

¯
ε∗0 are trivially equal to 0 unless SE−∪NW+ is nonempty. Of course SE− = /0 because
there is no equilibrium point prior to e0 in this two-period model. Thus

¯
ε∗0 > 0 only if

NW+ is nonempty, requiring e1 ∈ NW+, in turn requiring output to fall from period 0
to 1. In view of (13), one can show that the only way for output to fall when demand is
increasing is for marginal cost or industry concentration to increase. One can similarly
show that for ε̄∗0 to be nontrivial, marginal cost or industry concentration must decrease.
We have the following result.

RESULT 3:
¯
ε∗0 is nontrivial (i.e.,

¯
ε∗0 > 0) only if c1 > c0 or n1 < n0; ε̄∗0 is nontrivial

(i.e., ε̄∗0 < ∞) only if c1 < c0 or n1 > n0.
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Result 3 suggests that obtaining a nontrivial bound on ε0 requires an appropriate mar-
ket shock. As the conditions required for the lower bound to be nontrivial are the opposite
of those required for the upper bound, we see that a single shock can inform the lower
bound or the upper bound but not both. With many periods and equilibrium points,
nontrivial values of both lower and upper bounds can be obtained if shocks in differ-
ent directions are experienced, allowing some pairwise comparisons to contribute to the
lower bound and some to the upper bound. In our DuPont application, there is never a
shock that moves a later equilibrium point into NW+, so we will only be able to identify
nontrivial upper, not lower, bounds.

If luck has it that demand remains constant across the two periods, then one of our
bounds will hit the true elasticity exactly, as the next result states.

RESULT 4: Suppose a0 = a1 and b0 = b1. Then one of
¯
ε∗0 or ε̄∗0 equals ε0. In particular,

¯
ε∗0 = ε0 if e1 ∈ NW+; and ε̄∗0 = ε0 if e1 ∈ SE+.

Improbable luck is required for demand to remain constant while satisfying Assump-
tion 4 because the assumption would then only be satisfied by the narrowest of margins.
If, instead of remaining constant, demand increases from one period to the next, whether
due to a parallel shift or rotation outward from the origin, ε̄∗0 will no longer hit ε0. The
greater the demand increase, the wider the gap between the two. A tension thus underlies
our method: a sizable increase in demand provides assurance that Assumption 4 is satis-
fied, without which the researcher cannot be sure ε̄∗0 is a bound at all. If the increase in
demand is too great, however, the bound ceases to be informative. Our bound works best
if a market with moderately growing demand experiences a sharp enough shock (whether
a drop in marginal cost or an increase in competitiveness) to induce firms to drop prices.

In the absence of identifying shocks, our bounds can perform poorly. Extreme cases
can be constructed in which our upper elasticity bound is infinite despite the true elas-
ticity being close to 0.2 For our upper bound on the elasticity to be close to 0, the true
elasticity must be close to 0 and the market must experience shocks during the sample
period capable of revealing the low elasticity. Absent such shocks, our method will be
uninformative.

Our underlying model assumes all consumers pay the same linear price on a common
market. The assumption is violated if firms charge different prices on segmented mar-
kets, engage in nonlinear pricing, or bargain with individual consumers. An exhaustive
study of the conditions under which our methods are robust under these alternatives is
beyond the scope of this subsection. Indeed, the notion of a single elasticity that can
be bounded may be ill-defined with multiple segmented markets. We will be content to
demonstrate the robustness of our methods to one extreme departure from our model.
Suppose the market is served by a monopolist (n0 = n1 = 1) who engages in perfect
price discrimination. Assume that e1 ∈ SE+ and that the growing-demand condition (12)

2For example, consider a perfectly competitive market (nt → ∞) with growing demand that does not experience a
cost shock (c0 = c1). Since neither marginal cost nor competitiveness change from one period to the next, the fact that
demand is growing implies p1 ≥ p0, in turn implying b̄∗0 = ε̄∗0 = ∞. The true elasticity is ε0 = b0c0/(a0−b0c0), which
approaches 0 as c0→ 0.
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holds. The next result shows that our upper bound continues to be valid in this case but
is quite conservative—more than double the true elasticity.

RESULT 5: Suppose a monopolist engages in perfect price discrimination. Then ε̄∗0 ≥
2ε0.

III. Generalizations

This section describes several generalizations of the bounds obtained under the as-
sumption of linear demand. Section III.A continues to require the researcher to assume a
functional form for demand but allows the form to be chosen from a general class beyond
linear. Section III.B requires the researcher to make an assumption on curvature (weak
concavity or convexity) rather than functional form. Section III.C discusses application
of the methods to markets with shrinking rather than growing demand.

A. General Functional Forms

Suppose the researcher specifies some (possibly nonlinear) form for demand, q =
D0(p) in the reference period. While this demand curve may start out as a multiple-
parameter family, assume that once it is required to pass through e0, this pins it down to
a single-parameter family indexed by θ0:

(14) D0(p) = D̃(p,θ0,e0).

The elasticity of demand in the general case is defined as

(15) ε0 ≡ |D̃p(p0,θ0,e0)|
p0

q0
,

where the subscript on D̃ denotes the partial derivative with respect to the indicated
argument.

Assume D̃(p,θ ,e0) is continuously differentiable of all orders in its first two argu-
ments. Assume further that increases in θ cause demand to rotate. As an accounting
convention, assume that the direction of the rotation is such that demand become steeper
(and inverse demand less steep) when θ increases. Thus, for all θ ≥ 0,

D̃θ (p,θ ,e0)< 0 if p > p0(16)
D̃θ (p,θ ,e0) = 0 if p = p0(17)
D̃θ (p,θ ,e0)> 0 if p < p0,(18)

Further, impose the following Inada conditions:

(19) lim
θ→0

D̃(p,θ ,e0) = q0
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(20) lim
θ→∞

D̃(p,θ ,e0) =

{
0 p > p0

∞ p < p0.

Equation (19) implies that D̃(p,θ ,e0) becomes perfectly inelastic for arbitrarily small θ ,
approaching a vertical line through quantity q0. Equation (20) implies that D̃(p,θ ,e0)
becomes perfectly elastic as θ becomes arbitrarily large. Together, (19) and (20) in effect
say the domain of θ is rich enough to allow changes in θ to trace out all possible demand
elasticities from perfectly elastic to perfectly inelastic.

Proceeding with the analysis, start by supposing t > 0. To respect Assumption 4 of
growing demand, for all p≥ 0 we must have D̃(p,θ0,e0) = D0(p)≤Dt(p). The preced-
ing inequality must hold in particular for p = pt , implying

(21) D̃(pt ,θ0,e0)≤ Dt(pt) = qt .

Let Θ(e0,et) be the solution to the equation formed by treating the preceding condition
as an equality, i.e., the value of θ ≥ 0 solving

(22) D̃(pt ,θ ,e0) = qt .

The proof of the next proposition, provided in Appendix A, shows that, for all et ∈ SE+,
Θ(e0,et) exists, is unique, and provides an upper bound on the θ0 satisfying (21). Similar
analysis applies for other compass sets and for t > 0. We have the following proposition,
which generalizes the bounds obtained by incorporating local information.

PROPOSITION 2: Suppose demands in all periods satisfy Assumptions 3 and 4. If
demand in the reference period has the general functional form specified in (14), i.e.,
D0(p) = D̃(p,θ0,e0), and further satisfies (16)–(20), then θ0 ∈ [

¯
θ ∗0 , θ̄

∗
0 ], where

¯
θ
∗
0 ≡ 0∨ sup

et ∈SE−∪NW+

Θ(e0,et)(23)

θ̄
∗
0 ≡ inf

et ∈NW−∪SE+
Θ(e0,et).(24)

The proposition prescribes the following algorithm for bounding θ0. The lower bound,

¯
θ ∗0 is found by pairing e0 with each of the equilibrium points et in SW− and NW+, com-
puting Θ(e0,et) by solving the nonlinear equation (22). Equation (22) is well-behaved.
In particular—as shown in the proof of Proposition 2—the left-hand side of (22) is mono-
tonic in θ for et ∈NW∪SE. Thus standard methods (including Newton-Raphson or even
a straightforward grid search) can be used to rapidly solve (22) to derive Θ(e0,et). The
largest Θ(e0,et) over all pairwise comparisons becomes

¯
θ ∗0 . If both SW− and NW+ are

empty,
¯
θ ∗0 is set to respect the non-negativity constraint on θ0; i.e.,

¯
θ ∗0 = 0. The upper

bound, θ̄ ∗0 , is found by pairing e0 with each of the equilibrium points et in NW− and SE+,
computing Θ(e0,et) for each pair by solving the nonlinear equation (22). The smallest
Θ(e0,et) over these pairwise comparisons becomes θ̄ ∗0 . If both NW− and SE+ are empty,



14 AMERICAN ECONOMIC JOURNAL MONTH YEAR

the formula (24) yields θ̄ ∗0 = inf /0 = ∞, correctly implying no upper bound is obtained in
this case.

Under maintained conditions, the right-hand side of (15) is nondecreasing in θt .3 Thus,
that elasticity formula can be used to translate bounds on θ0 into bounds on the elasticity.
In particular, defining

¯
ε∗0 ≡ |D̃p(p0, ¯

θ ∗0 ,e0)|p0/q0 and ε̄∗0 ≡ |D̃p(p0, θ̄
∗
0 ,e0)|p0/q0, we

have ε0 ∈ [
¯
ε∗0 , ε̄

∗
0 ].

An important special case of general nonlinear demand is logit. Since its microfound-
ing by McFadden (1973), logit has been a widely used functional form for demand in
industrial organization, for example, in structural estimation of differentiated-product de-
mand following Berry, Levinsohn and Pakes (1995). For reference, Appendix B provides
a specification of logit demand in a homogeneous-product market and derives corollaries
of the general-demand propositions in this special case. We draw on these corollaries in
our empirical analysis, which provides a parallel set of results for logit alongside those
for linear demand.

B. Curvature Assumptions

The bounds so far have required the researcher to posit a functional form for demand.
This subsection explores bounds that obtain when a weaker curvature (concavity or con-
vexity) assumption is imposed rather than a specific functional form. We obtain sharp
results. The bounds have the exact same form as under the stronger linear-demand as-
sumption. The penalty for imposing the weaker curvature assumption is that only a
subset of the data contributes useful information to the bound.

Figure 4 provides an illustration. Assuming linear demand, the inverse demand through
e0 must be at least as steep as the dashed line ` or else it would pass above e1, which is
not allowed if e1 is later than e0. Consider the strictly convex curve u through e0.4 If u
starts out less steep than ` as it passes through e0, the curvature of u will bend it above
e1. To avoid this contradiction to growing demand, u must be steeper at e0 than `. By this
logic, ` provides an upper bound on the steepness of all weakly convex inverse demands
through e0. On the other hand, a concave inverse demand curve like d can start out flatter
than ` at e0 yet bend so that does not pass above e1. Hence pairwise comparison of e0 and
e1 provides no useful bounding information under the assumption of weak concavity.

Analogous reasoning can be applied to the other compass sets—NW+, SE−, and
NW−—that were informative in the linear case. Relaxing the assumption on demand
from linearity to weak concavity, one can show that pairwise comparisons of e0 to later
equilibrium points are uninformative, but pairwise comparisons to earlier equilibrium
points are just as informative as under linear demand. Mirror-image results are obtained
if the assumption on demand is relaxed from linearity to weak convexity rather than
concavity.

3Conditions (16)–(18) together with the continuous differentiability of D̃ of all orders in all arguments imply
D̃pθ (pt ,θt ,et) ≤ 0. But then ∂

∂θ
[−D̃p(pt ,θt ,et)] ≥ 0, implying that the right-hand side of (15) is nondecreasing in

θt .
4Since convex and concave start with the same letter, we will distinguish between the two in the notation throughout

this subsection using u for concave up (equivalent to convex) and d for concave down (equivalent to concave).
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FIGURE 4. BOUNDS IMPOSING CURVATURE ASSUMPTIONS

PROPOSITION 3: Suppose demands in all periods satisfy Assumptions 3 (law of de-
mand) and 4 (growing demand). If demand in the reference period D0(p) is weakly
concave, then |D′0(p0)| ∈ [

¯
bd

0 , b̄
d
0 ], where

¯
bd

0 ≡ 0∨ sup
et ∈SE−

B(e0,et)(25)

b̄d
0 ≡ inf

et ∈NW−
B(e0,et).(26)

If D0(p) is weakly convex, then |D′0(p0)| ∈ [
¯
bu

0, b̄
u
0], where

¯
bu

0 ≡ 0∨ sup
et ∈NW+

B(e0,et)(27)

b̄u
0 ≡ inf

et ∈SE+
B(e0,et).(28)

The formal proof in Appendix A is a consequence of the mean value theorem. It is
worth emphasizing that the curvature assumptions need only be imposed on demand in
the reference period 0; demand in other periods can have arbitrary curvature.

The bounds on the demand slope translate readily into elasticity bounds. If D0(p) is
weakly concave, then ε0 ∈ [

¯
εd

0 , ε̄
d
0 ], where

¯
εd

0 ≡ ¯
bd

0 p0/q0 and ε̄d
0 ≡ b̄d

0 p0/q0. If D0(p) is
weakly convex, then ε0 ∈ [

¯
εu

0 , ε̄
u
0 ], where

¯
εu

0 ≡ ¯
bu

0 p0/q0 and ε̄u
0 ≡ b̄u

0 p0/q0.
Focusing on the sets over which the suprema and infima in Proposition 3 are taken

provides insight into when the bounds will be most informative. Taking the earliest
sample period as the reference period, we have SE− = NW− = /0, implying

¯
bd

0 = 0 and
b̄d

0 = ∞, whereas
¯
bu

0 =
¯
b0 and b̄u

0 = b̄0. This shows that for initial sample years, the
bounds for weakly concave demand are completely uninformative but the bounds for
weakly convex demand are just as tight as those for linear demand. A similar argument
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can be used to show that for the end of the sample, the bounds for weakly convex demand
are completely uninformative but the bounds for weakly concave demand are just as tight
as those for linear demand.5

C. Shrinking Demand

In theory, one should be able to obtain analogous elasticity bounds under the oppo-
site assumption of definitively declining demand simply by reversing all the signs and
inequalities. While theoretically true, there are some practical difficulties. First, even for
markets experiencing secular declines, it may be hard to contend that the demand curve
is definitively shifting back each year. Consumers may be losing their taste for a product,
but natural population growth may offset this taste change. Second, even if suppliers are
not investing much, the spillover of technology from other industries may lower costs in
the market, shifting supply out. Equilibrium points may end up shifting to the southwest
over time, offering little useful information to bound elasticities.

IV. Application to DuPont Case

A. Institutional Background

After World War II, the U.S. Department of Justice (DOJ) sued U.S. chemical man-
ufacturer, DuPont, and its U.K. co-conspirator, Imperial Chemical Industries (ICI), for
violating the Sherman Act with their Patents and Processes agreement. Signed in 1929,
the agreement granted each company exclusive licenses for the patents and secret pro-
cesses controlled by the other and divided the global market into exclusive territories
between them. The DOJ won the case;6 and a remedy was ordered in 1952.7 The rem-
edy cancelled the exclusive-territory arrangements between the firms and required them
to license the technologies behind some their most important products to all applicants
at reasonable royalty rates.

The incumbents’ most significant patents covered three products: polyethylene, ny-
lon, and neoprene. The order did not compel licensing of neoprene. Of the remaining
products, commentators have contended that only the polyethylene patents garnered sub-
stantial commercial interest (Whitney, 1958, p. 217). Thus, we focus on the structural

5The results for the two curvatures in Proposition 3 can be combined to provide bounds allowing one to be agnostic
about demand curvature. One approach continues in the spirit of imposing no assumptions on demand outside of reference
period 0. If demand in the reference period D0(p) is either weakly convex or weakly concave, then Proposition 3
implies |D′0(p0)| ∈ [

¯
bud

0 , b̄ud
0 ], where

¯
bud

0 ≡ ¯
bd

0 ∧ ¯
bu

0 and b̄ud
0 ≡ b̄d

0 ∨ b̄u
0. Translating into elasticities, ε0 ∈ [

¯
εud

0 , ε̄ud
0 ], where

¯
εud

0 ≡ ¯
bud

0 p0/q0 and ε̄ud
0 ≡ b̄ud

0 p0/q0. These bounds for unknown curvature will tend to be most informative toward the
middle of the sample since the bounds are uninformative in initial years for weakly concave demand and in final years for
weakly convex demand; these bounds also require identifying market shocks to occur both before and after the reference
period. If such data requirements prove too stringent in an application, another approach is to assume that demand in all
periods has each curvature in turn. If concavity produces tight bounds in some sample years and convexity in others, one
may be able to rule out monopoly in some years under either curvature.

6“United States v. Imperial Chemical Industries,” 100 F. Supp. 504 (Southern District of New York, 1951).
7“United States v. Imperial Chemical Industries,” 105 F. Supp. 215 (Southern District of New York, 1952).
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remedy’s effect on the polyethylene market. Polyethylene was among the first commer-
cially developed plastics and continues to top global sales. We have data on the two main
types: low-density polyethylene, used for example to make Tupperware (Clarke, 1999,
p. 2) and high-density polyethylene, used for example to make Hula Hoops (Fenichell,
1966, p. 264). Although polyethylene can be differentiated across producers, Lieberman
characterizes the differentiation as slight in a series of papers (Lieberman, 1984, 1987;
Gilbert and Lieberman, 1987). We follow these papers in modeling polyethylene as a
homogeneous, commodity-type chemical.

The remedy in the DuPont case ostensibly had a dramatic effect on the polyethylene
market (Backman, 1964, p. 71). Eleven manufacturers entered by 1959. Prices steadily
declined and output rose. On the face of these facts, one might be tempted to conclude
that the remedy achieved its purpose of increasing market competitiveness. However,
the same price declines and output increases may have arisen in a monopoly market
experiencing substantial cost declines, plausibly realistic for plastics in the 1950s and
60s. The fact of entry seems to disprove monopoly unless it is thought that the entrants
are merely producing their share of the monopoly quantity, returning most of the rents to
the licensor. Our study will try to produce evidence for the effectiveness of the remedy
cutting through these criticisms.

A key assumption for our bounds methods to work is that demand was growing over
the sample period. The explosive quantity growth documented in next section does not by
itself prove that demand was growing; a supply shift (decrease in cost or market concen-
tration) could have accounted for the quantity increase. Independent historical sources
bolster the case of growing demand. Prior to World War II, polyethylene mainly had mil-
itary rather than commercial applications. (Reader, 1975, p. 356) writes that downstream
commercial innovation after the war sparked polyethylene demand: “By the mid-fifties
packaging film and household goods, made by injection or extrusion moulding, would
carry the world consumption of low-density polythene into six figure tonnages, but in
1939 none of that had been thought of. . . .” Backman (1970) notes that consumer accep-
tance of the materials was unusually rapid. Gordon (2016) classifies plastics as a drastic
innovation for many commercial users, dramatically reducing their materials costs, mak-
ing a noticeable contribution to U.S. growth during the period. The baby boom, adding
65 million children to the United States population between 1944 and 1961, was an im-
portant demand driver (Hodges, 2016). In addition to the direct channel of increased
demand for plastic toys and household goods, another channel was household forma-
tion. House construction boomed, and these new houses were increasingly built with
polyethylene pipes, wire insulation, and other inputs containing polyethylene because of
its unique combination of strength with low weight. New households also bought more
cars, increasingly using polyethylene in their manufacture. More broadly, U.S. GDP
grew strongly over our sample period. The NBER identifies three recessions during our
sample; but each lasted only a quarter, and none led to an fall in annual GDP, which grew
every year in our sample (in nominal and real terms). A deeper recession started in 1973,
but our sample is cut off before then.
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TABLE 1—DESCRIPTIVE STATISTICS FOR POLYETHYLENE DATA

Low-density polyethylene High-density polyethylene

Variable Units Mean Std. dev. Mean Std. dev.

Price $ per pound 0.19 0.07 0.22 0.09
Quantity (sales) Billion pounds 2.37 1.27 0.78 0.61
Quantity (production) Billion pounds 2.57 1.41 0.92 0.69

Source: U.S. Tariff Commission (various years).
Note: Annual data over 1958–72. Price in nominal terms.

B. Data

Our dataset consists of annual price and quantity data, aggregated across all firms in
the U.S. market, for low- and high-density polyethylene. We hand collected data from
annual reports issued by the U.S. Tariff Commission (various years). While we would
have liked to include the immediate window around the DuPont decision in 1952 in
our sample, unfortunately the earliest year polyethylene data is available from that (or
to our knowledge any) source is 1958. We cut the sample off after 1972 because the
subsequent OPEC crisis created an oil shock, disrupting the plastics market, triggering
a recession, challenging the assumption of growing demand.8 The price series is an
average wholesale price, computed by dividing total annual industry revenue by industry
quantity sold. We use nominal prices in the analysis to avoid a mismeasured inflation
index driving spurious price decreases; the online appendix reports qualitatively similar
results using prices deflated by the Consumer Price Index.

Table 1 provides descriptive statistics. Prices are similar across products. The quantity
of low-density polyethylene sold was about twice that of high-density polyethylene. To
economize on space, we will focus the analysis on low-density polyethylene in the rest
of the text. The results for high-density polyethylene, provided in the online appendix,
are qualitatively similar.

Figure 5 displays the evolution of equilibrium over time in the market for low-density
polyethylene. This is not a demand curve: each dot is an equilibrium point resulting from
the interaction of demand and a supply relation in the given year. The figure shows how
these equilibrium points shift over time. The predominant pattern is for equilibrium to
shift to the southeast each year. With one exception, the equilibrium never shifts in the
direction (southwest) that, as discussed in Section I, entails a violation of Assumption 4
that demand is growing over time.9

8Table 1 of Lieberman (1984), a canonical source of data on the chemical industry, also uses U.S. Tariff Commission
reports as his primary source and also restricts the polyethylene sample to 1958–72. Rather than using Lieberman’s
data directly, we returned to the original source because, in addition to noticing typographical errors, we preferred using
sales rather than production for quantity. The results using production for quantity, reported in the online appendix, are
qualitatively similar.

9The lone exception is 1963. We exclude that year in the subsequent analysis. As a robustness check, we redo
the analysis preserving the requirement that SW+ = /0 by dropping 1962 rather than 1963. The results, reported in the
online appendix, are quantitatively similar. A likely cause of this violation of SW+ = /0 is that the market may have been
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FIGURE 5. EVOLUTION OF EQUILIBRIUM IN THE LOW-DENSITY POLYETHYLENE MARKET

C. Empirical Results

This subsection presents empirical results using the method incorporating local infor-
mation to bound the demand elasticity εt in the DuPont application. Our data only allow
nontrivial upper bounds ε̄∗t to be obtained; nontrivial lower bounds cannot be obtained
because SE− and NW+ are empty for all et ∈ E in our data. The trival lower bound

¯
ε∗0 = 0 is obtained by default, as a consequence of Assumption 3 (law of demand). To
gauge robustness to functional form, we carry out the analysis assuming both linear and
logit demands.

Figure 6 presents the results.10 The figure displays bootstrapped confidence intervals
around ε̄∗t as whiskers atop the bars. We chose to display a two-tailed 90% confidence
interval because this allows easy visualization of the one-tailed test of whether the elas-
ticity bound is less than 1 at the standard (5%) significance level.

The standard errors used to compute the confidence intervals—Zelterman (1993) boot-
strapped standard errors—require further discussion. Standard bootstrap methods are
invalid in our context because our upper elasticity bound involves an extreme order
statistic, the minimum over pairwise comparisons between a given equilibrium point
and others. Bickel and Freedman (1981) pointed out the impossibility of drawing a
pseudosample generating an order statistic more extreme than the original one because
any pseudosample is a subset of the original data. Hence the bootstrapped distribution
will be bounded by—rather than centered on—the extreme order statistic estimated from
the original data. Zelterman (1993) provides a way of circumventing this problem. In-
stead of sampling the data directly, to bootstrap the maximum order statistic, he proposes
sampling the spacings between the highest k observations. After suitable normalization,

growing but not fast enough to offset a small observation error that made it look like demand shrunk that year. Section V
discusses several approaches to robust estimation that accommodate such perturbations. High-density polyethylene does
not exhibit a southwest shift, nor does low-density polyethylene when production rather than sales is used for quantity.
Thus, all years are included in those analyses, reported in the online appendix.

10Precise numerical estimates and significance levels are provided in the online appendix for reference.
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FIGURE 6. ELASTICITY BOUNDS FOR LOW-DENSITY POLYETHYLENE.

Note: Uses method incorporating local information. Shaded bars are bounds on the demand elasticity assuming linear
demand (dark bars) or logit demand (light bars). Whiskers are 90% two-sided confidence intervals on the upper elasticity
bound based on the Zelterman (1993) bootstrap. Upper elasticity bound is thus significantly less than the upper whisker
in a one-sided test at the 5% level.

these spacings have an i.i.d. asymptotic distribution, a property inherited by pseudosam-
ples drawn with replacement. The maximum order statistic can thus be bootstrapped
by drawing pseudosamples of normalized spacings and adding them (after reversing the
normalization) to the order statistic k positions away from the maximum. Appendix C
illustrates the procedure in a numerical example and provides further technical details.

Focus first on the dark-shaded bars in Figure 6, representing the elasticity bounds
estimated assuming linear demand in the reference period. The results are remarkable.
Aside from the first year, in which the upper bound is quite high at 2.50, the upper bound
on the elasticity is never higher than 0.68. The upper bound is extremely low, 0.09 or
less, in two of the years. In 11 of the 15 years, the upper bound is significantly less than 1
in a one-sided test at the 1% level. Such low elasticities are inconsistent with a monopoly
outcome, the equilibrium of which in theory lies in the elastic region of demand.

The light-shaded bars represent elasticity bounds assuming logit demand. The height
of the bars is quite similar to that for linear demand, and the two sets move together over
the sample. The quantitative similarity of the results for linear and logit demand provide
confidence that the results are not dictated by functional form.11

11In the first sample year, the bounds assuming linear demand are slightly wider than that assuming logit demand,
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FIGURE 7. ELASTICITY BOUNDS IMPOSING CURVATURE ASSUMPTIONS FOR LOW-DENSITY POLYETHYLENE.

Note: Shaded bars are bounds on the demand elasticity assuming convex demand (dark bars) or concave demand (light
bars). Vertical axis cropped at 3 for comparison to Figure 6. Upper elasticity bound is in fact infinite for those bars
reaching the vertical-axis limit. Missing upper whisker indicates cropping of upper confidence threshold. Remaining
notes from Figure 6 apply.

Figure 7 presents bounds imposing curvature rather than functional-form assumptions.
Consider the dark-shaded bars, representing bounds [

¯
εd

t , ε̄
d
t ] assuming demand is weakly

concave. As discussed in Section III.B, the upper bounds are infinite in initial sample
years because of a lack of earlier equilibrium to make informative pairwise comparisons.
Starting in 1964, however, the elasticity bounds and associated confidence intervals as-
suming weak concavity are just as tight as the bounds assuming linearity. The light-
shaded bars represent bounds [

¯
εu

t , ε̄
u
t ] assuming demand is weakly convex. For these,

upper bounds are infinite in the final sample years because later equilibrium points are
lacking. The bounds assuming convexity perform poorly relative to those assuming lin-
earity; in only one year (1959) is the upper bounds significantly less than 1 at the 5%
level.12

confirming the theoretical result from Section III.B that the bounds assuming any convex demand curve including logit
must be at least as tight as those assuming linear demand in the first sample year.

12The bound assuming convexity can perform well in other samples. In the application to the American Tobacco case,
the bounds assuming convexity (not reported) are just as tight as those assuming linear demand in several years including
the crucial year (1921) allowing the researcher to pinpoint a possible breakdown in collusion.
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Slow-growing market with observation error

●
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Perturbation

FIGURE 8. VULNERABILITY OF METHOD TO OBSERVATION ERRORS IN SLOW-GROWING MARKET

V. Robustness

Our method implicitly assumes price and quantity are perfectly observed. Observation
errors can create potential problems for our method. These problems are likely to be
relatively inconsequential if the market is growing rapidly over the sample but may be
acute if the market experiences periods of only slow growth.

Figure 8 illustrates the potential vulnerability. To take an extreme example, suppose a
monopoly serves a market that is unchanging over time. Suppose that the initial equilib-
rium point e0 persists into the next period as e1, but due to an observation error or other
small perturbation, e′1 is instead recorded in the data. Using our method, say assuming
linear demand, pairwise comparison of e0 and e′1 implies that the inverse demand curve
in both periods would have to be at least as steep as the line drawn. If the perturbation
happened to nudge e′1 almost directly south of e0, we would conclude that demand was
almost perfectly inelastic, erroneously rejecting monopoly control of the market. Rapid
market growth would drive e0 and e1 apart, attenuating the effect of a small perturbation.
However, even in a growing market, growth may not be rapid every year. The concern is
not just theoretical. In the DuPont application, one might be concerned that the extremely
low elasticity bounds in 1959 and 1960 were generated by an isolated perturbation from
1959 to 1960 rather than being a robust consequence of several pairwise comparisons.

We take several approaches to addressing the robustness concern. One approach has
already been discussed: bootstrapping confidence intervals. If the estimates are unduly
influenced by the position of one or two equilibria, we will see higher estimates in boot-
strapped subsamples from which they are omitted, widening the confidence intervals.
This section takes a different approach. Rather than starting with an estimator that is
potentially vulnerable to small perturbations and drawing a confidence interval around
it to gauge its vulnerability, we propose a series of estimators that are robust to begin
with. Section V.A introduces estimators that leave out the most influential equilibrium
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FIGURE 9. LEAVE-TIGHTEST-OUT ESTIMATORS FOR LOW-DENSITY POLYETHYLENE.

Note: Uses method incorporating local information. Shaded bars are the same elasticity bounds as in Figure 6 for linear
demand (dark bars) and logit demand (light bars). Whiskers above bars represent leave-out estimators: the thick whisker
represents the leave-tightest-one-out estimator, and the thin whisker the leave-tightest-two-out estimator.

points. Section V.B proposes biennial estimators that only require demand to grow over
a two-year horizon rather than year to year.

A. Leave-Tightest-Out Estimators

Let L̄T∗t (1) denote the the leave-tightest-one-out estimator, i.e., the estimator leaving
the most influential observation out of the calculation of the upper bound on the demand
elasticity. Formally, L̄T∗t (1) ≡ maxt ′ 6=t ε̄∗〈et ′〉, where ε̄∗〈et ′〉 is the upper bound on the
elasticity restricting the sample to E \{et ′}. Analogously, define the leave-tightest-two-
out estimator L̄T∗t (2)≡maxt ′,t ′′ 6=t ε̄∗〈et ′ ,et ′′〉. Leave-out estimators with higher orders can
also be defined.

Figure 9 presents the results from the leave-tightest-out estimators. The shaded bars
repeat the elasticity bounds from Figure 6. The difference lies in the whiskers, which
before represented bootstrapped confidence intervals but now represent the extension of
the upper bound when the one or two most influential comparisons are left out. The thick
whisker is the extension due to the leave-one-out estimator and the thin whisker to the
leave-two-out estimator. The leave-tightest-out estimators causes some elasticity bounds
to jump, in particular in years in which the original elasticity bounds were extremely
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low. These results validate the concern that the tight bounds for 1959–60 were due to the
positioning of 1960 almost vertically below 1959. When one or the other is left out, this
causes the upper bound in 1959–60 to jump up to a level on par with the other years.

Some reassurance can still be taken from Figure 9. First, while the bounds jump
up in some early years, crossing the threshold of 1 ruling out monopoly, after 1964
the leave-tightest-out estimators remain below 1. Also reassuring is the stability of the
leave-out estimators: the thin whisker often does not extend much beyond the thick
one, implying that the leave-one-out and leave-two-out estimators are quite close to each
other. Leaving one pairwise comparison out appears to be sufficient to limit vulnerability
to small perturbations.

Panel A of Figure 10 compares the leave-tightest-one-out estimator against the 95%
bootstrapped upper confidence threshold from Figure 6. The points lie almost directly
on the 45-degree line, implying that the two approaches to robustness generate almost
equivalent results. Most points lie inside the dashed box indicating the threshold below
which monopoly behavior is ruled out.

Panel B plots the leave-tightest-two-out estimator versus the 95% bootstrapped up-
per confidence threshold. Given that the bootstrap threshold is nearly equivalent to the
leave-tightest-one-out estimator, and the leave-tightest-one is by construction more con-
servative than the leave-tightest-two-out estimator, we expect the latter to be more con-
servative than the bootstrap threshold. Indeed we see this in the panel, as the dots lie
above the 45-degree line. While the dots are above the 45-degree line, they are quite
close to it, reinforcing our earlier conclusion that the bootstrap threshold (and by ex-
tension the leave-tightest-one-out) reflects much of the robustness of more conservative
estimators.

B. Biennial Estimators

Assumption 4 that demand is growing is essential for the validity of our bounds. As
we saw in Section II.C, the true elasticity need not be contained within our bounds if
the assumption is violated. Few markets experienced the explosive growth evidenced
by plastics during out sample period. Yet even with plastics, it may be hard to rule out
a pause in growth over the decade and a half, perhaps due to a slowdown in the econ-
omy (the NBER identifies two brief recessions during our sample, from April 1960 to
February 1961, and from December 1969 to November 1970), perhaps due to variation
in when sales are booked relative to year end. A more conservative assumption is that de-
mand is certain to grow biennially if not yearly. This subsection proposes two estimators
leveraging this more conservative assumption.

The first estimator based on biennial growth leaves the year before and after t out of
pairwise comparisons with et . Formally, this leave-neighbors-out estimator is defined
as L̄N∗t (1)≡ ε̄∗〈et−1,et+1〉. Estimators leaving out neighbors in wider windows around t
can also be defined. It is not ex ante obvious how L̄N∗t (1) compares to L̄T∗t (1). On the one
hand, for years other than the endpoints of the sample, L̄N∗t (1) leaves out two comparison
years, while L̄T∗t (1) leaves out just one. On the other hand, the one comparison left out
by L̄T∗t (1) is by definition the tightest, while those left out by L̄N∗t (1) may not be.



VOL. VOL NO. ISSUE BOUNDING ELASTICITY OF GROWING DEMAND 25

0

1

2

3

Le
a

v
e

­T
ig

h
te

st
­O

n
e

­O
u

t 
E

st
im

a
to

r

0 1 2 3

Bootstrap 95% Threshold

45­degree line

Linear bound

Logit bound

 
  Panel A: Leave Tightest One Out
  Versus Bootstrap

0

1

2

3

Le
a

v
e

­N
e

ig
h

b
o

rs
­O

u
t 

E
st

im
a

to
r

0 1 2 3

Bootstrap 95% Threshold

45­degree line

Linear bound

Logit bound

 
  Panel C: Leave Neighbors Out
  Versus Bootstrap

0

1

2

3

Le
a

v
e

­T
ig

h
te

st
­T

w
o

­O
u

t 
E

st
im

a
to

r

0 1 2 3

Bootstrap 95% Threshold

45­degree line

Linear bound

Logit bound

 
  Panel B: Leave Tightest Two Out
  Versus Bootstrap

0

1

2

3

B
ie

n
n

ia
l 

E
st

im
a

to
r

0 1 2 3

Biennial Average of Bootstrap 95% Thresholds

45­degree line

Linear bound

Logit bound

 
  Panel D: Biennial Estimator
  Versus Averaged Bootstrap

FIGURE 10. COMPARING VARIOUS ROBUST ESTIMATORS FOR LOW-DENSITY POLYETHYLENE.

Note: Uses method incorporating local information. Horizontal axis is the bootstrapped 95% upper confidence threshold
from a one-tailed test, equivalent to the upper whisker for the 90% bootstrapped confidence interval from a two-tailed test
in Figure 6, using the Zelterman (1993) bootstrap.

Panel C of Figure 10 shows that the bootstrapped 95% confidence threshold is more
conservative than the leave-neighbors-out estimator as almost all the dots lie below the
45-degree line. Since the leave-tightest-one-out estimator is nearly equivalent to the 95%
confidence threshold, this implies that leaving the tightest one out is as or more robust
than leaving neighboring years out.

The second estimator based on biennial growth merges pairs of years together (1958–
59, 1960–61, and so forth), treating each biennial pair as the unit of observation. Let-
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ting uppercase distinguishing variables related to the merged pair of years starting in
t, quantity is simply the sum Qt = qt + qt+1 and price is average revenue per unit:
Pt = (ptqt + pt+1qt+1)/(qt +qt+1). Obviously, this approach effectively cuts the dataset
in half. Panel D of Figure 10 compares the bounds computed for this merged dataset
to the bootstrapped 95% thresholds computed using the original data averaged over the
years making up the pair. The dots are all quite close to the 45-degree line, suggesting
that the two approaches provide similar levels of robustness. If anything, the average
bootstrap threshold is slightly more conservative, as virtually all dots lie slightly below
the 45-degree line. Most are inside the box, indicating that the bounds are below the
elasticity value of 1 used to reject monopoly; some are well inside the box.

VI. Method Incorporating Limiting Information

The elasticity bounds can be tightened by exploiting additional information about the
relative position of demand curves for limiting values of prices, p→ 0 and p→ ∞. The
method delivers tighter bounds at the cost of requiring more demanding assumptions:
whatever functional form the researcher posits for demand must extend over the whole
domain of the demand curve rather than just locally and across all periods rather than
just in the reference period.

A. Intuition for Method

Figure 11 provides an intuitive explanation of how limiting information can tighten
the elasticity bounds. The figure revisits the simple example introduced in Figure 3,
carrying over the features from that previous figure as the solid lines. Recall the goal of
that simple example was to bound the elasticity ε0 of the linear demand curve through
the reference equilibrium point e0. The method of incorporating local information from
pairwise comparisons allowed us to conclude that the inverse demand through e0 must be
at least as steep as line `02, providing a lower bound of the steepness of inverse demand,
translating into an upper bound b̄∗0 on the steepness of demand and an upper bound ε̄∗0 on
the elasticity.

The new features of Figure 11, drawn as dotted lines and open circles, can be used to
tighten the bounds. Assume the demand curves through all equilibrium points are linear.
Pairwise comparison of points e1 and e2 shows that the inverse demand through e2 must
be as steep as line `12 for e1 not to lie on a higher demand curve. But notice that `12
intersects `02. Unless the inverse demand curve through e0 is steeper than `12, parts of the
curve will lie above the curve through e2, violating the assumption of growing demand.
For the whole inverse demand through e0 to be lower than the whole inverse demand
through e2, the demand curves cannot cross even for prices approaching 0, implying in
the case of linear inverse demands that their horizontal intercepts cannot cross. To ensure
their horizontal intercepts do not cross, the inverse demand through e0 must be at least
as steep as the dotted line that connects e0 with the horizontal intercept of `12, drawn as
the open circle. This new line through e0 is even steeper than `02, tightening the lower
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Illustrating Method Exploiting Limiting Information

FIGURE 11. ILLUSTRATING METHOD INCORPORATING LIMITING INFORMATION

bound on the steepness of inverse demand, and thus tightening the upper bound on the
demand elasticity.

B. Formal Bounds

The next proposition, proved in Appendix A, operationalizes the intuition from the
preceding subsection.

PROPOSITION 4: Suppose the demand curve in every period t ∈T is linear, i.e., Dt(p)=
D̃(p,bt ,et), and satisfies Assumptions 3 (law of demand) and 4 (growing demand). Whichever
element e0 ∈ E the researcher chooses for the reference equilibrium point, we have
b0 ∈ [

¯
b∗∗0 , b̄∗∗0 ], where

¯
b∗∗0 ≡ ¯

b∗0∨ sup
t<0

{
1
p0

(qt −q0 + ¯
b∗t pt)

}
∨ sup

t>0

{
q0

pt − p0 +qt/¯
b∗t

}
(29)

b̄∗∗0 ≡ b̄∗0∧ inf
t<0

{
q0

pt − p0 +qt/b̄∗t

∣∣∣∣ pt +
qt

b̄∗t
> p0

}
∧ inf

t>0

{
1
p0

(qt −q0 + b̄∗t pt)

}
.(30)

The proposition prescribes an iterative procedure for computing the bounds. In the first
stage, the bounds incorporating local information, indicated with a single star—

¯
b∗t and

b̄∗t —are computed for every equilibrium point. In the second stage, the first-stage bounds
are translated into demand intercepts. Ensuring none of these intercepts crosses the inter-
cepts of D0(p) generates new bounds on the steepness of D0(p). If the tightest of these
is tighter than the corresponding bound from the first stage incorporating local informa-
tion, we update the second-stage bound, indicated with two stars in the superscript, to
this tighter value. Otherwise, the second-stage bound is just set to first-stage bound.
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The next proposition extends the method incorporating limiting information to general
demand curves.

PROPOSITION 5: Suppose the demand curve in every period t ∈ T has the general
functional form specified in (14), i.e., Dt(p) = D̃(p,θt ,et). Suppose these curves satisfy
Assumptions 3 and 4 as well as conditions (16)–(20). Whichever element e0 ∈ E the
researcher chooses for the reference equilibrium point, we have θ0 ∈ [

¯
θ ∗∗0 , θ̄ ∗∗0 ], where

¯
θ
∗∗
0 ≡ ¯

θ
∗
0 ∨ sup

t<0

{
θ

∣∣∣∣ lim
p→0

[
D̃(p,θ ,e0)

D̃(p,
¯
θ ∗t ,et)

]
= 1
}
∨ sup

t>0

{
θ

∣∣∣∣ lim
p→∞

[
D̃(p,θ ,e0)

D̃(p,
¯
θ ∗t ,et)

]
= 1
}

(31)

θ̄
∗∗
0 ≡ θ̄

∗
0 ∧ inf

t<0

{
θ

∣∣∣∣ lim
p→∞

[
D̃(p,θ ,e0)

D̃(p, θ̄ ∗t ,et)

]
= 1
}
∧ inf

t>0

{
θ

∣∣∣∣ lim
p→0

[
D̃(p,θ ,e0)

D̃(p, θ̄ ∗t ,et)

]
= 1
}
.(32)

The proof in Appendix A includes guidance on computing these somewhat complex
formulas. Appendix B provides analytical expressions for (31) and (32) in the special
case of logit demand.

The bounds on the demand parameters from the previous propositions can be trans-
lated into bounds on elasticities using the provided elasticity formulas. In the case of
linear demand, substituting the bounds on b0 from Proposition 4 into (3) yields ε0 ∈
[
¯
ε∗∗0 , ε̄∗∗0 ], where

¯
ε∗∗0 ≡ ¯

b∗∗0 p0/q0 and ε̄∗∗0 ≡ b̄∗∗0 p0/q0. In the case of general demands,
substituting the bounds on θ0 from Proposition 5 into (15) and noting the right-hand
side of (15) is nondecreasing in θt (see footnote 3) yields ε0 ∈ [

¯
ε∗∗0 , ε̄∗∗0 ] where

¯
ε∗∗0 ≡

|D̃p(p0, ¯
θ ∗∗0 ,e0)|p0/q0 and ε̄∗∗0 ≡ |D̃p(p0, θ̄

∗∗
0 ,e0)|p0/q0.

C. Application

Figure 12 presents elasticity bounds in the polyethylene market using the method in-
corporating limiting information. The bounds are again quite similar across linear and
logit demand, and both are sharply tighter than in Figure 6. When limiting information
is incorporated, the upper bounds on the elasticity fall below 0.4 in the first year and
extremely close to 0 in all later years.

The confidence intervals suggest that the extremeness of these estimates may not be
particularly robust: the whisker representing the upper confidence-interval threshold is an
order of magnitude higher than the estimated elasticity bound in most years. Extremely
low elasticity bounds obtained in isolated cases in the first stage propagate across the
other years once the limiting information those extreme bounds imply is incorporated.
Bootstrapping helps account for this since isolated cases will not be drawn in many
second-stage pseudosamples, resulting in larger bootstrapped bounds and wider confi-
dence intervals.

While the method incorporating limiting information can improve on the method in-
corporating local information, the former method carries some caveats. First, if out of
a concern for robustness one focuses on the upper bootstrapped confidence thresholds
rather than the bounds themselves, the method incorporating limiting information does
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FIGURE 12. ELASTICITY BOUNDS FOR LOW-DENSITY POLYETHYLENE USING METHOD INCORPORATING LIMIT-

ING INFORMATION.

Note: Uses different method than Figure 6—incorporating limiting rather than local information—but remainder of notes
from Figure 6 apply.

not always tighten the thresholds (as we see in the early sample years). Second, tighter
thresholds come at the cost of more stringent assumptions: the assumed functional for
demand must hold globally, not just locally, and across the whole sample, not just in the
reference year.13

VII. Application to American Tobacco Case

To demonstrate the broader applicability of our bounding methods, this section pro-
vides an abbreviated application to the 1911 American Tobacco case. We seek to assess
whether the structural remedy in the case successfully curtailed the monopoly in the
cigarette market.

13An additional caveat is that the leave-tightest-out estimators for the method incorporating limiting information (de-
noted L̄T∗∗t (1) and L̄T∗∗t (2), not reported here for space considerations) have performance issues: L̄T∗∗t (1) is often consid-
erably higher than the upper bootstrapped confidence threshold; further, the jump from L̄T∗∗t (1) to L̄T∗∗t (2) can be higher
than that from the original bound to L̄T∗∗t (1), an instability not apparent with the method incorporating local information.
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A. Institutional Background

In the 1911 American Tobacco case,14 the DOJ alleged that the merger of the five
largest firms in the U.S. market into the American Tobacco Company and its subsequent
conduct violated the Sherman Act. The U.S. Supreme Court ruled in favor of the DOJ.
The remedy broke American Tobacco up into over a dozen companies, three of which
were cigarette manufacturers. Louis Brandeis, soon to become a Supreme Court justice,
criticized the remedy as too weak, calling for the creation of at least seven cigarette man-
ufacturers. The ambivalent conclusions reached in the industry studies by Cox (1933),
Tennant (1950), and Nicholls (1951) embody the uncertainty surrounding how collusive
the post-remedy market was.

We will study the effect of the remedy on subsequent performance of the tobacco
market focusing on cigarettes, which became the most popular tobacco product during
our sample and which form a well-defined product category. Cigarette brands were not
perfect substitutes: brand advertising was important and consumers had expressed pref-
erences (Johnson, 1984). Still, our methods may be usefully applied because quantity
and price retain meaning in this market—quantity because of brands’ physical similar-
ity, price because the major brands adopted an identical price policy during much of our
sample (Rostas, 1953).

Independent historical sources bolster the case of growing demand in this market,
a precondition for our bounding methods to work. A relatively new tobacco prod-
uct, cigarettes became a social fashion over the sample period (Tennant, 1950, p. 140).
Cigarettes were included in soldiers’ rations during World War I (Cox, 1933, p. 41) and
marketed to women for weight control (“Reach for a Lucky instead of a sweet,” quoted in
Goodman, 1993). The new medium of radio gained popularity, cigarettes being primary
advertisers (Johnson, 1984, p. 22). While the Great Depression led to a dip in cigarette
consumption, we cut our sample off before then.

B. Data

Our dataset consists of annual quantity and price data for the U.S. cigarette market.
For quantity, we use cigarette consumption, compiled in Table 2 of the American Lung
Assocation (2011) from U.S. Department of Agriculture tobacco yearbooks. Price data
are more scarce. Table 55 from Tennant (1950) provides a comprehensive list of price
announcements for the two most popular brands, Camel and Lucky Strike, obtained from
testimony in the sequel American Tobacco case in 1946.15 Given that both brands’ prices
closely matched each other but Camel’s series dated back further, we used Camel’s to
represent the market price. For years experiencing price changes, we took the average
weighted by number of days spent at each price. We use net wholesale price, i.e., list
price including taxes less wholesale discount—and nominal prices as in the polyethylene
application. Our sample starts when price data becomes available in 1913 and ends in

14“United States v. American Tobacco Company,” 221 U.S. 106 (1911).
15“American Tobacco Co. v. United States,” 328 U.S. 781 (1946).
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TABLE 2—DESCRIPTIVE STATISTICS FOR CIGARETTE DATA

Variable Units Mean Std. dev.

Price (wholesale net) $ per 1000 5.21 1.24
Quantity (consumption) Billion cigarettes 53.8 28.8

Source: Price computed by authors using data from Table 55 of Tennant (1950). Quantity from Table 2 of American
Lung Assocation (2011).
Note: Annual data over 1913–28. Price in nominal terms.

1928, before the Great Depression.
Table 2 provides descriptive statistics, and Figure 13 shows the evolution of market

equilibrium over the sample. After initially shooting up, prices declined precipitously
over 1921–22, leading to a period of virtually unchanging prices after 1923. Quantity
increased by almost an order of magnitude over the sample, reaching over 100 billion
cigarettes in 1928.
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C. Empirical Results

Figure 14 reports elasticity bounds using the method incorporating local information.
Since the informative set NW− ∪ SE+ is empty for each year in 1913–18, our method
delivers an infinite upper bound in those years. After that, the upper bound is finite.
Two of these years, 1921 and 1922, stand out as the only ones having upper bounds
significantly less than the monopoly threshold of 1 at the 5% level. Our method picks out
the exact years experiencing the precipitous declines we detected from visual inspection
of Figure 13. Our method goes beyond visual inspection by gauging how precipitous the
decline was—in this case, too precipitous to be consistent with a monopoly responding
to a cost shock.



32 AMERICAN ECONOMIC JOURNAL MONTH YEAR

0

1

2

3

4

E
la

st
ic

it
y

1
9

1
3

1
9

1
4

1
9

1
5

1
9

1
6

1
9

1
7

1
9

1
8

1
9

1
9

1
9

2
0

1
9

2
1

1
9

2
2

1
9

2
3

1
9

2
4

1
9

2
5

1
9

2
6

1
9

2
7

1
9

2
8

Year

Linear bounds

Logit bounds

Bootstrap c.i.

FIGURE 14. ELASTICITY BOUNDS FOR CIGARETTES.

Note: For 1913–18, upper elasticity bounds are infinite but are cropped at 4 in the graph to aid visualization. In addition,
notes to Figure 6 apply.

We conclude that the firms created by the remedy were not operating as a perfect car-
tel every year; 1921–22 may represent a notable breakdown in collusion, supporting the
contention in (Nicholls, 1951, pp. 174–175) that cigarette manufacturers used this period
to battle for price leadership and test rival reactions. The painful lesson may have con-
vinced manufacturers to maintain identical and unchanging prices over the subsequent
half decade.16

VIII. Conclusion

This paper provided a methodology for bounding the elasticity of demand that works in
growing markets for homogeneous products. The method requires minimal information,
working with as few as two time-series observations on aggregate prices and quantities.
The underlying idea is that the demand curve through a given equilibrium point cannot
be either so steep or so flat that it passes below earlier equilibria or above later equilib-
ria, violating the assumption of growing demand. The resulting inequalities bound the
elasticity of demand in any given year.

16The unchanging prices after 1923 are themselves evidence of imperfect collusion. Competitive prices should fluc-
tuate with costs shocks such as changing tobacco leaf prices. Unchanging prices are also inconsistent with the other
extreme of a perfect cartel, whose industry-profit-maximizing price should vary with demand and cost conditions.
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A potential drawback of any methodology delivering bounds rather than point esti-
mates is that the resulting bounds may be so wide as to be uninformative. In the DuPont
application, the bounds turned out to be quite informative, producing bounds signifi-
cantly less than the threshold of 1 at which monopoly is ruled out at the 5% level in 11 of
15 years. The results are robust across products (low- versus high-density polyethylene),
demand specifications (linear versus logit), methods (incorporating local or limiting in-
formation), quantity measures (sales versus production), and price measures (nominal
versus real). In some cases, the functional-form assumption could be generalized to a
curvature assumption without impairing the bounds; but in other cases bounds assuming
only curvature performed poorly.

Based on our finding that the elasticity of demand was bounded in the inelastic region,
we reject the contention that monopoly behavior effected by the Patents and Processes
agreement between DuPont and ICI continued after the remedy in the DuPont case. An
unconstrained monopolist would never have dropped its price by the amount observed
unless that generated a more substantial gain in quantity, leaving competitive pressure as
the leading explanation of the price drop.

The configuration of equilibrium points in 1959 and 1960 in the low-density polyethy-
lene market, with the 1960 lying close to but almost vertically below 1959, raised a
question of robustness. The vertical shift might be due to observation error or other
small perturbation not the consequence of a perfectly inelastic demand curve. We dealt
with the robustness issue in two ways. First, we provided bootstrapped confidence inter-
vals around the estimates using a procedure due to Zelterman (1993) for extreme order
statistics. Second, we proposed estimators leaving out the most influential equilibria
for pairwise comparison. The leave-one-out estimator generated very similar results to
the 95% bootstrapped upper confidence threshold across products, functional-forms, and
methods. While the tight bounds for early years such as 1959 and 1960 did not prove to
be robust, those for later years did. The method incorporating limiting information some-
times delivered tighter bounds, although the advantage was diminished in bootstrapped
confidence intervals and leave-out estimators. Furthermore, the method incorporating
limiting information requires additional functional-form assumptions that some empiri-
cal researchers may find too restrictive.

In a second application, to the 1911 American Tobacco case, we obtained bounds sig-
nificantly below the threshold of 1 in 1921–22. Commentators singled out exactly these
years as the period during which cigarette manufacturers battled for price leadership.

We hope researchers will find our methods valuable and easy to apply using the sup-
plied Stata code. As demonstrated by the applications, our methods can be valuable
in historical settings lacking detailed data (at a high frequency, for a cross section of
markets, or including cost information) required by familiar structural methods outlined
in Bresnahan (1989). Our methods appear to work even for products that are not ho-
mogeneous in the narrow sense of being perfect substitutes across manufacturers but in
the broader sense of having a well-defined physical unit for quantity and limited price
dispersion, leading to a meaningful price variable.

Crucial for our methods to work is that demand grow over time. This is a key obstacle
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in applying our methods because the very data limitations that motivated the researcher to
use our methods may preclude formal tests of growing demand. In our applications, we
dealt with this obstacle by citing factors from independent historical sources supporting
growing demand. The most reassuring factors, common to both applications, were, first,
that the products were not mature but relatively new ones exploding in popularity and,
second, that the sample periods exhibited relatively stable macroeconomic conditions—
by construction, as we cut the samples off before impending recessions. Researchers
could look for the presence of these factors in other markets when seeking to apply our
methods. Another approach would be to use our methods as an initial screen. Depending
on the results from the screen, the researcher could either acquire more data to verify
the growing-demand assumption or apply additional structural methods to pin down the
elasticity more precisely. This might be an efficient approach not just when studying an
isolated historical case but facing a broad cross section of modern markets.

Overall, we view of methods as a supplement rather than substitute for existing meth-
ods. The methods leverage the time-series evolution of a market, an underappreciated
source of information, to assess market competitiveness, complementing narrative meth-
ods using historical anecdotes or structural methods using more detailed cost data.

REFERENCES

Adams, Walter. 1951. “Dissolution, Divorcement, Divestiture: The Pyrrhic Victories in
Antitrust.” Indiana Law Journal, 27: 1–37.

American Lung Assocation. 2011. “Trends in Tobacco Use.” Chicago, IL.

Areeda, Phillip, Louis Kaplow, and Aaron Edlin. 2013. Antitrust Analysis: Problems,
Text, and Cases. . Seventh ed., New York, NY:Aspen Publishers.

Ashenfelter, Orley, and Daniel Sullivan. 1987. “Nonparametric Tests of Market Struc-
ture: An Application to the Cigarette Industry.” Journal of Industrial Economics,
35: 483–498.

Backman, Jules. 1964. Competition in the Chemical Industry. Washington,
DC:Manufacturing Chemists Association.

Backman, Jules. 1970. The Economics of the Chemical Industry. Washington,
DC:Manufacturing Chemists Association.

Berry, Steven, James Levinsohn, and Ariel Pakes. 1995. “Automobile Prices in Mar-
ket Equilibrium.” Econometrica, 63: 841–890.

Bickel, Peter J., and David A. Freedman. 1981. “Some Asymptotic Theory for the
Bootstrap.” Annals of Statistics, 9: 1196–1217.

Bresnahan, Timothy F. 1989. “Empirical Studies of Industries with Market Power.” In
The Handbook of Industrial Organization. , ed. Richard Schmalensee and Robert D.
Willig. New York, NY:North-Holland.



VOL. VOL NO. ISSUE BOUNDING ELASTICITY OF GROWING DEMAND 35

Ciliberto, Federico, and Elie Tamer. 2009. “Market Structure and Multiple Equilibria
in Airline Markets.” Econometrica, 77: 1791–1828.

Clarke, Alison J. 1999. Tupperware: The Promise of Plastic in 1950s America. Wash-
ington, DC:Smithsonian Institution Press.

Cox, Reavis. 1933. Competition in the American Tobacco Industry, 1911–1932. New
York, NY:Columbia University Press.

Farrell, Joseph, Paul Pautler, and Michael Vita. 2009. “Economics at the FTC: Ret-
rospective Merger Analysis with a Focus on Hospitals.” Review of Industrial Organi-
zation, 35: 369–385.

Federal Trade Commission. 1999. “A Study of the Commission’s Divestiture Process.”
report prepared by the Bureau of Competition, William J. Baer, director.

Federal Trade Commission. 2017. “The FTC’s Merger Remedies 2006–2012.” report
prepared by the Bureau of Competition and Bureau of Economics, Deborah L. Fein-
stein and Ginger Zhe Jin, directors.

Fenichell, Stephen. 1966. Plastic: The Making of a Synthetic Century. New York,
NY:Harper Collins.

Gilbert, Richard J., and Marvin B. Lieberman. 1987. “Investment and Coordination
in Oligopolistic Industries.” Rand Journal of Economics, 18: 17–33.

Goodman, Jordan. 1993. Tobacco in History: The Cultures of Dependence. London,
UK:Routledge.

Gordon, Robert J. 2016. The Rise and Fall of American Growth: The U.S. Standard of
Living since the Civil War. Princeton, NJ:Princeton University Press.

Haile, Philip A., and Elie Tamer. 2003. “Inference with an Incomplete Model of En-
glish Auctions.” Journal of Political Economy, 111: 1–51.

Hodges, Paul. 2016. “Letter from the Chairman of International eChem.” Financial
Times.

Hounshell, David A., and John K. Smith, Jr. 1988. Science and Corporate Strategy:
Du Pont R & D, 1902–1980. Cambridge, UK:Cambridge University Press.

Johnson, Paul R. 1984. Economics of the Tobacco Industry. New York, NY:Praeger
Publishers.

Lieberman, Marvin B. 1984. “The Learning Curve and Pricing in the Chemical Pro-
cessing Industries.” Rand Journal of Economics, 15: 213–228.

Lieberman, Marvin B. 1987. “Postentry Investment and Market Structure in the Chem-
ical Processing Industries.” Rand Journal of Economics, 18: 533–549.



36 AMERICAN ECONOMIC JOURNAL MONTH YEAR

Manski, Charles F. 1995. Identification Problems in the Social Sciences. Cambridge,
MA:Harvard University Press.

McFadden, Daniel. 1973. “Conditional Logit Analysis of Qualitative Choice Behavior.”
In Frontiers in Econometrics. , ed. Paul Zarembka. New York, NY:Academic Press.

Nicholls, William H. 1951. Price Policies in the Cigarette Industry. Nashville,
TN:Vanderbilt University Press.

Pakes, Ariel. 2010. “Alternative Models for Moment Inequalities.” Econometrica,
78: 1783–1822.

Pakes, Ariel, Jack Porter, Kate Ho, and Joy Ishii. 2015. “Moment Inequalities and
their Application.” Econometrica, 83: 315–334.

Reader, W. J. 1975. Imperial Chemical Industries: A History: Volume II: The First
Quarter Century, 1926–1952. London, UK:Oxford University Press.

Rostas, L. 1953. “Review of The American Cigarette Industry by R. B. Tennant and
Price Policies in the Cigarette Industry by W. H. Nicholls.” Economic Journal,
63: 156–160.

Stocking, George W., and Myron W. Watkins. 1946. Cartels in Action. New York,
NY:The Twentieth Century Fund.

Sullivan, Daniel. 1985. “Testing Hypotheses about Firm Behavior in the Cigarette In-
dustry.” Journal of Political Economy, 93: 586–598.

Sumner, Daniel A. 1981. “Measurement of Monopoly Behavior: An Application to the
Cigarette Industry.” Journal of Political Economy, 89: 1010–1019.

Tennant, Richard B. 1950. The American Cigarette Industry. New Haven, CT:Yale Uni-
versity Press.

U.S. Tariff Commission. various years. Synthetic Organic Chemicals: United States
Production and Sales. Washington, DC:Government Printing Office.

Vandermeulen, Daniel C. 1953. “Review of The American Cigarette Industry by
Richard B. Tennant.” American Economic Review, 43: 226–229.

Watkins, Myron W. 1933. “Review of Competition in the American Tobacco Industry,
1911–1932, Reavis Cox.” Journal of Political Economy, 41: 833–835.

Watzinger, Martin, Thomas Fackler, Markus Nagler, and Monika Schnitzer. 2017.
“How Antitrust Enforcement Can Spur Innovation: Bell Labs and the 1956 Consent
Decree.” CESifo Working Paper Series 6351.

Weissman, Ishay. 1978. “Estimation of Parameters and Large Quantiles Based on the k
Largest Observations.” Journal of the American Statistical Association, 73: 812–815.



VOL. VOL NO. ISSUE BOUNDING ELASTICITY OF GROWING DEMAND 37

Whitney, Simon. 1958. Antitrust Policies: American Experience In Twenty Industries.
Vol. I, New York, NY:The Twentieth Century Fund.

Zelterman, Daniel. 1993. “A Semiparametric Bootstrap Technique for Simulating Ex-
treme Order Statistics.” Journal of the American Statistical Association, 88: 477–485.

APPENDIX A: PROOFS

This appendix provides omitted proofs or omitted technical details for the results and
propositions stated in the text.

A1. Proof of Result 1

To prove necessity, note that Assumption 4 requires D1(0)≥ D0(0), implying

(A1) a1 ≥ a0.

Assumption 4 also requires D1(a0/b0)≥ D0(a0/b0) = 0, implying a1−b1a0/b0 ≥ 0, in
turn implying

(A2)
a1

a0
≥ b1

b0
.

Conditions (A1) and (A2) together are equivalent to (12).
To prove sufficiency, suppose (12) holds. Then

(A3) D1(p) = a1−b1 p =
a1

a0

(
a0−

b1a0 p
a1

)
≥ a0−b0 p = D0(p),

where the inequality uses (A1) and (A2), just shown to be equivalent to (12). Hence,
Assumption 4 holds. Q.E.D.

A2. Proof of Result 2

We have

(A4)
ε0− ε̄∗0

ε0
= 1−

1− b̄∗0
b0

= 1− 1
b0

(
q1−q0

p0− p1

)
=

(1+n0)(a0−a1)

a0−a1 +b0n0(c0− c1)
.

The first equality follows from elasticity formula (3). The second equality follows from
e1 ∈ SE+, implying q1 > q0 and p0 > p1. The third equality follows by substituting from
(13) and further substituting n1 = n0 and b1 = b0. The derivative of the last expression
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in (A4) with respect to n0 can be shown to equal

(A5) − (a0−a1)(1+n0)(q1−q0)

n0[a0−a1 +b0n0(c0− c1)]2
,

which is negative. Thus (A4) exceeds the limit

(A6) lim
n0→∞

(1+n0)(a0−a1)

a0−a1 +b0n0(c0− c1)
=

a0−a1

b0(c0− c1)

using l’Hôpital’s rule. Combining (A4) and (A6) yields

(A7)
ε0− ε̄∗0

ε0
>

a0−a1

b0(c0− c1)
>

a0−a1

a0
.

To see the second inequality, q > 0 implies a0 > b0c0 > b(c0− c1). Q.E.D.

A3. Proof of Result 3

Suppose c1 ≤ c0, n0 ≥ n1, and the maintained assumptions hold (in particular, As-
sumption 4). Then

q1 =
n1

1+n1
(a1−b1c1)(A8)

≥ n0

1+n0
(a1−b1c1)(A9)

≥ n0

1+n0

(
a1−

a1b0c0

a0

)
(A10)

=
a1q0

q0
.(A11)

Equations (A8) and (A11) follow from (13). Condition (A9) follows from n0 ≥ n1 and
c1≤ c0. Condition (A10) follows from (A2), which the previous proof showed is entailed
by (12). Result 1 showed that (12) is equivalent to Assumption 4.

Conditions (A8)–(A11) imply q1 ≥ a1q0/a0, implying q1 ≥ q0 by (A1), entailed by
Assumption 4. But q1 ≥ q0 implies e1 6∈ NW+, implying NW+ = /0. As argued in the
text, this implies

¯
ε∗0 = 0.

Similarly, one can show that c1 ≥ c0 and n0 ≤ n1 imply p1 ≥ p0 under maintained
assumptions. Thus SE+ = /0, implying ε̄∗0 = ∞ by (11). Q.E.D.

A4. Proof of Result 4

Suppose a0 = a1 and b0 = b1. Substituting these values into (13), and then substitut-
ing the resulting equilibrium points into (6), tedious calculations can be used to show
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B(e0,e1) = b0. By Assumption 1 that equilibrium points are distinct, p0 6= p1, implying
p0 < p1 or p0 > p1. First suppose p0 < p1. Then e1 ∈ NW+, implying

¯
b∗0 = b0 by (10),

implying
¯
ε∗0 = ε0. Similar reasoning implies ε̄∗0 = ε0 if p0 > p1. Q.E.D.

A5. Proof of Result 5

Under perfect price discrimination, market quantity is the same as under marginal-cost
pricing: qt = at−btct . Revenue rt equals the area of the trapezoid under inverse demand:
rt = qt(at/bt +ct)/2. While a single price is ill-defined under perfect price discrimination
in theory, price is measured in our data as average revenue: pt = rt/qt = (at/bt + ct)/2.
We have

B(e0,e1) =
q1−q0

p0− p1
(A12)

= 2b0

(
a1−b1c1−a0 +b0c0

a0 +b0c0−a1b0/b1−b0c1

)
(A13)

≥ 2b0

[
a1−b1c1−a0 +b0c0

b0(c0− c1)

]
(A14)

= 2b0 +2b0

[
a1−b1c1− (a0−b0c1)

b0(c0− c1)

]
(A15)

= 2b0 +2b0

[
D1(c1)−D0(c1)

b0(c0− c1)

]
.(A16)

Equation (A12) follows from e1 ∈ SE+. Equation (A13) follows from substituting qt and
pt and rearranging. Equation (A14) follows from a0− a1b0/b1 ≤ 0 by (12). Equations
(A15) and (A16) follow from rearranging. The factor in brackets in (A16) is nonneg-
ative. The numerator is nonnegative by assumption of demand growth. To show that
the denominator is positive, note e1 ∈ SE+ implies p1 < p0, implying (a1/b1 + c1)/2 <
(a0/b0 + c0)/2, in turn implying c0 > c1 because a1/b1 ≥ a0/b0 by (12).

Translating the results into elasticities, ε̄∗0 = b̄∗0q0/p0 = B(e0,e1)q0/p0 ≥ 2b0q0/p0 =
2ε0, computing the relevant elasticity under perfect price discrimination at the marginal
unit sold. Q.E.D.

A6. Proof of Proposition 2

Suppose t > 0. We proceed by showing that for all et ∈ SE+, Θ(e0,et) exists, is
unique, and provides an upper bound on the θ0 satisfying (21). Condition (19) implies
limθ→0 D̃(pt ,θ ,e0) = q0 < qt , where the inequality follows from et ∈ SE+. Condition
(20) implies limθ→∞ D̃(pt ,θ ,e0) = ∞ since pt < p0 for et ∈ SE+. Condition (18) im-
plies that D̃(pt ,θ ,e0) is increasing in θ since pt < p0. Together, these results imply
D̃(pt ,θ ,e0) is below qt for low θ and monotonically increases in θ until it rises above qt
for high θ . Thus the solution Θ(e0,et) to (22) exists and is unique. Since (21) is satisfied
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for all θ0 ≤Θ(e0,et) and violated for all θ0 > Θ(e0,et), we see that Θ(e0,et) provides an
upper bound on θ0 satisfying (21).

One can similarly show that for all et ∈ NW+, then Θ(e0,et) exists, is unique, and
provides a lower bound on the θ0 satisfying (21). For all et ∈ NE+, there exists no
θ ≥ 0 solving (22) since (21) is a strict inequality for all θt ≥ 0. In this case, pairwise
comparison of e0 and et yields no bounding information. The case in which et ∈ SW+

can be ignored because the set is empty under Assumption 4 of growing demand.
Pairwise comparison of e0 and et can be repeated for t < 0. Growing demand then

implies the same inequality as (21) with the direction reversed, leading to the same bound
but for the opposite compass direction. Q.E.D.

A7. Proof of Proposition 3

Consider the comparison between the reference equilibrium point e0 and some et ∈
SE+. By the mean value theorem, there exists p̃ ∈ [pt , p0] such that

(A17) D′0(p̃) =
D0(p0)−D0(pt)

p0− pt
≥ q0−qt

p0− pt
,

where the second step follows from qt = Dt(pt) ≥ D0(pt) by Assumption 4 of growing
demand. Taking absolute values,

(A18) |D′0(p̃)| ≤
∣∣∣∣ q0−qt

p0− pt

∣∣∣∣= B(e0,et).

If D0(p) is weakly convex, then for p̃ ≤ p0, we have D′0(p̃) ≤ D′0(p0), implying
|D′0(p̃)| ≥ |D′0(p0)|. Combining this inequality with (A18) yields |D′0(p0)| ≥ B(e0,et).
On the other hand, if D0(p) is weakly concave, then |D′0(p̃)| ≤ |D′0(p0)|, which does not
generate conclusive information combined with (A18).

Pairwise comparisons between e0 and et in the other compass sets relevant to the
proposition (NW+, SE−, and NW−) are similar and omitted for brevity. Q.E.D.

A8. Proof of Proposition 4

We will derive new bounds emerging from an examination of the limits p→ 0 and
p→∞ in turn. Start by considering the limit p→ 0 and comparing e0 to later equilibrium
points et , t > 0. Assumption 4 of growing demand implies D̃(p,b0,e0) ≤ D̃(p,bt ,et)
for all p ≥ 0, implying in particular that D̃(0,b0,e0) ≤ D̃(0,bt ,et). Substituting for D̃
from (2) into this inequality, and further substituting p = 0, yields q0 +b0 p0 ≤ qt +bt pt .
Notice this is a condition on the relative position of the inverse demand curves’ horizontal
intercepts. Rearranging,

(A19) b0 ≤
1
p0

(qt −q0 +bt pt)≤
1
p0

(qt −q0 + b̄∗t pt),
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where the second inequality follows from Proposition 1.
Next, continue considering the limit p→ 0 but now suppose t < 0. Using the argu-

ments behind (A19), just reversing the inequalities, we obtain

(A20) b0 ≥
1
p0

(qt −q0 +bt pt)≥
1
p0

(qt −q0 + ¯
b∗t pt).

Next, consider the limit p→ ∞. Start by comparing e0 to et for t > 0. The fact that
D̃(p,b0,e0)≤ D̃(p,bt ,et) for all p≥ 0 implies limp→∞ D̃(p,b0,e0)≤ limp→∞ D̃(p,bt ,et).
These limits are just the vertical intercepts of the respective inverse demands. Hence, the
preceding inequality implies p0 +q0/b0 ≤ pt +qt/bt , or after rearranging,

(A21) b0

(
pt − p0 +

qt

bt

)
≥ q0.

We will show that the factor in parentheses is positive. It is immediate that it is positive
when pt > p0 since qt > 0 and bt ≥ 0. Suppose instead that pt < p0. Then et ∈ SW+∪
SE+ = SE+ since SW+ = /0 under Assumption 4 as discussed in Section I. Then

(A22) bt ≤ b̄∗t ≤ B(e0,et) =
qt −q0

p0− pt
<

qt

p0− pt
.

The first and second steps follow from Proposition 1. The next step follows from the
definition of B(e0,et) from (6) and from qt > q0 and p0 > pt for et ∈ SE+. The last
step follows from q0 > 0, which holds by Assumption 2. Cross multiplying by p0− pt ,
which is positive, and rearranging proves that the term in parentheses is positive. Cross
multiplying (A21) by the positive factor in parentheses yields

(A23) b0 ≥
q0

pt − p0 +qt/bt
≥ q0

pt − p0 +qt/¯
b∗t

.

Continue to consider the limit p→ ∞, but now suppose instead that t < 0. Applying
the analysis behind (A21), just reversing inequalities, yields

(A24) b0

(
pt − p0 +

qt

bt

)
≤ q0.

An important difference with (A21) is that the factor in parentheses in (A24) cannot be
unambiguously signed when t < 0. When the factor in parentheses is non-positive, (A24)
holds for all b0. In that case, the condition provides no useful bounding information.
When the factor in parentheses is positive, cross multiplying by it preserves the direction
of the inequality, yielding

(A25) b0 ≤
q0

pt − p0 +qt/bt
≤ q0

pt − p0 +qt/b̄∗t
.
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To emphasize, condition (A25) only provides a potentially useful upper bound if the
denominator of the last fraction is positive, i.e.,

(A26) pt +
pt

b̄∗t
> p0.

If (A26) does not hold, we must ignore (A25) lest we conclude that b0 is bounded above
by the negative number on the right-hand side of (A25), violating the law of demand
(Assumption 3), which implies b0 ≥ 0.

The second-stage lower bound
¯
b∗∗0 in (29) is set to the lower of the first-stage bound

¯
b∗0 and the supremum of the bounds (A20) and (A25) incorporating limiting information.
Similarly, the second-stage upper bound b̄∗∗0 in (30) is set to the lower of the first-stage
bound b̄∗0 and the infimum of the bounds incorporating limiting information (A19) and
(A24). Q.E.D.

A9. Proof of Proposition 5

Begin the analysis by considering the limit p→ 0 and comparing equilibrium points
e0 and et for t > 0. We have

(A27) 1≥ lim
p→0

[
D̃(p,θ0,e0)

D̃(p,θt ,et)

]
≥ lim

p→0

[
D̃(p,θ0,e0)

D̃(p, θ̄ ∗t ,et)

]
,

To see the first inequality, Assumption 4 that demand is nondecreasing over time implies
D̃(p,θt ,et) ≥ D̃(p,θ0,e0). Dividing by D̃(p,θt ,et) and taking limits gives the first in-
equality in (A27). To see the second inequality in (A27), note that in the limit as p→ 0,
eventually p ≤ pt . But (18) then implies D̃θ (p,θ ,et) ≥ 0 in the limit as p→ 0, in turn
implying D̃(p, θ̄ ∗t ,et)≥ D̃(p,θt ,et) in the limit as p→ 0 since θ̄ ∗t ≥ θt by Proposition 2.
It can be further argued by (18) the numerator in the last expression in (A27) is increasing
in θt , as is the expression itself. Treating the inequalities in (A27) as equalities,

(A28) lim
p→0

[
D̃(p,θ0,e0)

D̃(p, θ̄ ∗t ,et)

]
= 1,

thus provides an equation in θ0 that can be solved to provide a upper bound on θ0.
Repeating the analysis for each t > 0, the lowest of the solutions to (A28) across

t > 0 is an upper bound that may be tighter than θ̄ ∗0 from the method incorporating local
information. The upper bound may be further tightened by examining the opposite limit,
p→ ∞, comparing the reference equilibrium point e0 to et for t < 0. The analysis is
similar to that above and omitted for brevity. Also similar and omitted for brevity are the
analysis of the limit p→ 0 comparing the reference equilibrium point e0 to et for t > 0
and the analysis of the limit p→ ∞ for t < 0. These analyses turn out to contribute to
lower rather than upper bounds.

The proposition implicitly prescribe an iterative procedure for computing bounds in-
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corporating limiting information for general demands. Suppose one wants to compute
the upper bound θ̄ ∗∗0 . In the first stage, one computes the upper bounds θ̄ ∗t incorporating
local information for all et ∈ E. In the second stage, one solves the equation for θ ,

(A29) lim
p→∞

[
D̃(p,θ ,e0)

D̃(p,
¯
θ ∗t ,et)

]
= 1

for each t < 0 and takes the smallest solution. One then solves a similar equation, just
involving a different limit, for θ ,

(A30) lim
p→0

[
D̃(p,θ ,e0)

D̃(p,
¯
θ ∗t ,et)

]
= 1

for each t > 0 and takes the smallest solution. The new bound θ̄ ∗∗0 is set to whichever
is smallest of (a) the upper bound from the method incorporating local information, θ̄ ∗0 ,
(b) the smallest solution over t < 0 to (A29), and (c) the smallest solution over t > 0 to
(A30). The lower bound

¯
θ ∗∗0 is computed analogously. Q.E.D.

APPENDIX B: LOGIT DEMAND

In the context of a homogeneous product market under study, logit demand can be
specified as

(B1) Dt(p) =
nt exp(−θt p)

1+ exp(−θt p)
=

nt

1+ exp(θt p)
,

where nt is interpreted as a market-size parameter and θt as a price-sensitivity parameter.
For demand to be nonnegative, nt ≥ 0; for the law of demand (Assumption 3) to hold,
θt ≥ 0.

This specification of demand involves two independent parameters, but further requir-
ing the curve to pass through the equilibrium point et pins it down to a single-parameter
family. Focus for now on price sensitivity, θt , as this key parameter. Given θt and equi-
librium point (qt , pt), equation (B1) can be solved for the market-size parameter:

(B2) nt = qt [1+ exp(θt pt)].

Substituting for nt from equation (B2) into (B1) yields an expression for logit demand in
terms of the single unknown parameter θt and known equilibrium point et = (qt , pt):

(B3) D̃(p,θt ,et) =
qt [1+ exp(θt pt)]

1+ exp(θt p)
.
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The elasticity of logit demand is

(B4) εt =−D̃p(pt ,θt ,et)
pt

qt
=

θt pt

1+ exp(−θt pt)
.

To apply Propositions 2 and 5, covering general demand curves, to the logit special
case, we need to verify that conditions (16)–(20) are satisfied by logit demand. Condition
(16)–(18) can be verified by differentiating (B3):

(B5) D̃θ (p,θ ,et) =
qt [(pt − p)exp(θ pt)exp(θ p)+ pt exp(θ pt)− pexp(θ p)]

[1+ exp(θ p)]2
.

It is easy to see that (B5) is negative if p > pt , verifying (16); that (B5) equals 0 if
p = pt , verifying (17); and that (B5) is positive if p < pt , verifying (18). To verify (19),
substitute θt = 0 into (B3), yielding D̃(p,0,et) = qt . To verify (20),

(B6) lim
θ→∞

D̃(p,θ ,et) = qt lim
θ→∞

exp(θ(pt − p))+ exp(−θ p)
1+ exp(−θ p)

= qt lim
θ→∞

exp(θ(pt − p)).

It is easy to see that (B6) equals 0 if p > pt and equals ∞ if p < pt , verifying (20).
Applying Propositions 2 and 5, which cover general demand curves, to the special

case of logit demand is fairly straightforward; but a few computational details deserve
mention. In the general case, the solution of equation (22) for θ is the Θ(et ,et ′) having a
prominent role in the general propositions. In the special case of logit demand, (22) can
be written after rearranging as

(B7) q0[1+ exp(θ p0)] = qt [1+ exp(θ pt)].

Proposition 5 bounds the price-sensitivity parameter for general demand curves us-
ing the method incorporating limiting information. To apply this proposition to a given
demand curve requires the relevant limits to be computed and substituted into the the
bounds formulas. For reference, we report the computations for logit demand in the
following corollary.

PROPOSITION 6: Suppose the demand curve in every period t ∈T is logit, i.e., Dt(p)=
D̃(p,θt ,et) defined in (B3). Suppose further these curves satisfy Assumptions 3 and 4.
Whichever element e0 ∈ E the researcher chooses for the reference equilibrium point, we
have θ0 ∈ [

¯
θ ∗∗0 , θ̄ ∗∗0 ], where

¯
θ
∗∗
0 ≡ ¯

θ
∗
0 ∨ sup

t<0

{
1
p0

ln
(

qt

q0
[1+ exp(

¯
θ
∗
t pt)]−1

)}
∨ sup

t>0 ¯
θ
∗
t .(B8)

θ̄
∗∗
0 ≡ θ̄

∗
0 ∧ inf

t<0
θ̄
∗
t ∧ inf

t>0

{
1
p0

ln
(

qt

q0
[1+ exp(θ̄ ∗t pt)]−1

)}
.(B9)
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APPENDIX C: ZELTERMAN BOOTSTRAP

As noted in the text, standard bootstrap methods are invalid in the context of extreme
order statistics. Since any pseudosample is a subset of the original data, the bootstrapped
distribution will be bounded by—rather than centered on—the extreme order statistic
estimated from the original data. Zelterman (1993) provides a method for circumvent-
ing this problem. Instead of sampling the data directly, to bootstrap the maximum order
statistic, he proposes sampling the spacings between the highest k observations. The
maximum order statistic can be bootstrapped by adding the spacings from the pseu-
dosample to the order statistic in the sample anchored k positions away from the maxi-
mum.

C1. Semiparametric Method

Zelterman classifies the technique as semiparametric since the key result behind the
technique—that the normalized spacings are asymptotically i.i.d. exponential—holds for
a wide range of distributions of the underlying data. The sole parameter is k, anchoring
the order statistic to which the sampled spacings are appended when simulating the max-
imum order statistic.

Weissman (1978) provides a sufficient condition for the asymptotic result: there exists
real numbers at > 0, bt , t = 1,2, . . ., such that for all x∈ (−∞,∞), the distribution function
F(x) for the underlying data satisfies

(C1) lim
t→∞

F t
(

x−bt

at

)
= exp(−exp(−x)).

In words, the highest order statistic—properly normalized by constants at and bt—
converges in distribution to a Gumbel extreme value as the sample size grows large. One
can show this condition is satisfied by the normal, lognormal, logistic, gamma, Pareto,
Gompertz, Weibull, and Gumbel, among others.

C2. Implementation for Method Incorporating Local Information

Consider applying the technique to bootstrap a confidence interval around ε̄∗t , the upper
bound on the demand elasticity in period t using the method incorporating local infor-
mation. Although it is an upper bound, ε̄∗t is a minimum order statistic: the minimum of
the upper bounds derived from pairwise comparisons between et and the other equilib-
rium points. Let ε̄

[1]
t ≤ ε̄

[2]
t ≤ ·· · ≤ ε̄

[T−1]
t be the elasticity bounds from these pairwise

comparisons ordered from smallest to largest; superscripts on these terms thus denote
the order of these order statistics. We have ε̄∗t = ε̄

[1]
t .

As Zelterman’s analysis is predicated on a maximum rather than a minimum order
statistic but ε̄∗t is a minimum order statistic, we will bootstrap the reciprocal of ε̄∗t rather
than ε̄∗t itself, reversing the reciprocal in the final step to recover the elasticity bound.
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Defining the reciprocal r̄[i]t = 1/ε̄
[i]
t , the inequalities between the order statistics on the re-

ciprocals are the reverse of those between the elasticity bounds: r̄[1]t ≥ r̄[2]t ≥ ·· · ≥ r̄[T−1]
t .

Let d[i]
t ≡ i(r̄[i]t − r̄[i+1]

t ) denote the normalized spacing between two of these recipro-
cals. The normalization needed to generate the exponential distribution asymptotically
is simply multiplication by i, the degree of the order statistics involved in the spacing.

Let dt ≡ {d[i]
t | i = 1, . . . ,k} denote the set of the normalized spacings observed in the

data between the k highest reciprocals. Pseudosamples d̃t = {d̃ti} of size k are drawn with
replacement from dt . (In practice, we take 10,000 draws of bootstrap pseudosamples to
provide the precision demanded by 99% confidence intervals.) For each pseudosample,
the bootstrap maximum order statistic is computed as

(C2) r̃∗t ≡ r̄[k+1]
t +

k

∑
i=1

d̃ti/i.

Intuitively, k draws of normalized spacings are subtracted (after reversing the normaliza-
tion by dividing by i) from the observed (k+1)st order statistic r̄[k+1]

t , which anchors the
procedure, to arrive at the simulated maximum r̃∗t . Following Zelterman’s recommen-
dation, we take k = b(T − 1)/3c. Taking the reciprocal of this bootstrapped maximum
order statistic recovers the bootstrapped elasticity bound: ε̃∗t = 1/r̃∗t .

Zelterman notes that the asymptotic argument requires k→ ∞ as well as T → ∞. Our
sample of pairwise comparisons is small since it comes from a relatively short time
series. We still proceed to apply the technique and the recommendation for k but note
that we may be straining the asymptotic arguments behind the bootstrap. On a positive
note, despite the small size of T and k in our application, the bootstrapped confidence
intervals appear quite sensible and well behaved.

C3. Numerical Example

A numerical example serves to illustrate the Zelterman bootstrap. In Figure 6, the
upper bound on the demand elasticity for low-density polyethylene derived under the
assumption of linear demand is ε̄∗t = 0.52 in the year t = 1964. Suppose we want to
bootstrap this estimate. This is the minimum of the elasticity bounds from pairwise
comparisons, the five lowest of which are shown in the second column of Table C1.
Setting the key parameter for the technique to k = 4, the five lowest pairwise bounds
are all that are relevant for the computation. Taking reciprocals in the next column, the
entry in the first row now becomes the maximum order statistic among them. The last
column computes the normalized spacings. This is the set from which pseudosamples
are drawn with replacement to compute bootstrapped estimates. Suppose, for example,
that the pseudosample {0.40,0.40,0.64,0.24} was drawn. This would generated the
bootstrapped reciprocal

(C3) r̃∗t = 1.22+
0.40

1
+

0.40
2

+
0.64

3
+

0.24
4

= 2.09,
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equal to the anchor reciprocal in the last row plus the four draws of normalized spacings
with normalizations reversed. Reversing the reciprocal generates the bootstrapped value
of the elasticity bound: ε̃∗t = 1/2.09 = 0.48. This procedure can be repeated (we do
this 10,000 times) to generate a bootstrapped sample of elasticity bounds from which
standard errors and confidence intervals can be derived.

TABLE C1—NUMERICAL EXAMPLE OF ZELTERMAN BOOTSTRAPPING

[i] ε̄
[i]
t r̄[i]t d[i]

t

1 0.52 1.92 〉
→ (1.92−1.52)×1 = 0.40

2 0.66 1.52 〉
→ (1.52−1.46)×2 = 0.12

3 0.68 1.46 〉
→ (1.46−1.38)×3 = 0.24

4 0.72 1.38 〉
→ (1.38−1.22)×4 = 0.64

5 0.72 1.38

Note: Entries in ε̄
[i]
t column are the five lowest of the actual elasticity bounds from pairwise comparison of the 1964

equilibrium point to other years’ assuming linear demand.

C4. Implementation for Method Incorporating Limiting Information

Bootstrapping the bound ε̄∗∗ incorporating limiting information is more involved be-
cause it is a two-stage estimator, and the outcome of the second stage depends in a com-
plicated way on the first stage. We adopt what in our view is the most natural alternative:
applying Zelterman’s technique to simulate a bootstrapped estimate from the normalized
spacings observed in each separate stage, and then taking the minimum over the result
from each stage to generate the final bootstrapped bound ε̃∗∗t .

An alternative would be to bootstrap the demand parameter rather than the elasticity
directly. In the case of linear demand, bt could be bootstrapped. Then the first stage
bound (b̄∗) could be treated equivalently to the pairwise comparisons between et and
the other equilibrium points incorporating limiting information in the second stage (the
expressions in braces in equation (30)). We tried this alternative, and the results were
nearly identical.


