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1. Introduction

In previous work (Kremer and Snyder, 2015), we argued that a drug may be more lucrative than a

vaccine, even when both products target the same disease and thus have the same health benefit,

even in the absence of epidemiological externalities. The argument is that a vaccine is sold before

consumers contract the disease, when consumers differ considerably in disease risk, preventing the

firm from easily extracting much of their surplus with a uniform price. On the other hand, a drug

is sold after consumers have contracted the disease, when they no longer differ in disease risk,

allowing the manufacturer to extract more surplus from these relatively homogeneous consumers.

The drug may thus end up being more lucrative and the manufacturer biased toward developing it

over the vaccine even if the vaccine is substantially more effective or lower cost.1 We calibrated

the distribution of infection risk in the U.S. population for human immunodeficiency virus (HIV)

and found it to be close to Zipf, i.e., a power-law distribution with exponent equal to 1. A Zipf dis-

tribution of disease risk intuitively means that each doubling of risk cuts the number of consumers

with at least that risk in half, leading to an iso-revenue property. In view of our theoretical result

that, owing to this iso-revenue property, the Zipf risk distribution generates the worst bias against

preventives, our previous work provided one explanation for why a variety of HIV drugs have been

developed but as yet no vaccine.

The present paper contributes along both empirical and theoretical dimensions. The main con-

tribution is empirical. We expand the calibrations of demand for HIV pharmaceuticals beyond the

U.S. market, calibrating a global demand curve using country-level data on disease prevalence,

factoring in the joint distribution of income using data on per capita gross domestic product (GDP)

and considering a range of values of the income elasticity of healthcare expenditures for robust-

ness. For consistency, throughout most of the analysis we interpret calibrated world demand in

a similar way as Kremer and Snyder (2015) did U.S. demand, i.e., reflecting the individual pur-

chase decisions on a (perhaps counterfactual) private market in the absence of intervention by

governments or insurance companies and in the absence of epidemiological externalities.2 How-

1Kremer and Snyder (2015) show that this bias may be reversed when income (or more generally willingness to
pay) covaries sufficiently negatively with disease risk (see their Proposition 18). The bias against vaccines described

in the footnoted paragraph arises in a setting with little or no income variation (covered by their Proposition 3) or in a

setting with independent income and disease-risk distributions (covered by their Proposition 16).
2For theoretical analyses of vaccine markets in the presence of epidemiological externalities, see Brito, Sheshinski,

and Intrilligator (1991); Francis (1997); Geoffard and Philipson (1997); Gersovitz (2003); Gersovitz and Hammer
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ever, the calibrations can be interpreted more broadly. We offer an alternative interpretation of

world demand as reflecting purchases by national agencies on behalf of citizens in their health

systems. This interpretation allows for consumer heterogeneity and epidemiological externalities

within countries.

Using the calibrated global demand for an HIV drug, we show that—in the absence of interna-

tional price discrimination, subsidies in low-income countries, or regulatory threats to intellectual

property—a profit-maximizing monopolist would charge such a high drug price that only about 4%

of infected individuals worldwide would buy the treatment. These estimates are remarkably close

to the actual prices and quantities of antiretroviral therapies (ARTs) in 2003, the year we focus on

in the subsequent analysis as arguably approximating the “state of nature” before subsidies or other

policy interventions became widespread. We estimate that the deadweight loss from charging such

a high price for an existing product (the area of the Harberger (1954) triangle) amounts to about

half of the global benefit from curing HIV.

The resulting calibrated demands are employed to examine a range of policy issues. One

exercise leverages Kremer and Snyder’s (2015) formulas for worst-case bounds on deadweight loss

from pharmaceutical sales on the private market. Since the greatest conceivable distortions turn out

to occur at the extensive margin (whether a product is developed at all) rather than the intensive

margin (how high the mark up is for an existing product, generating a Harberger deadweight-

loss triangle), the formulas hinge on the percentage of the surplus that would be generated by

completely relieving the disease burden that the producer can extract for itself (we refer to this

as the producer-surplus ratio, denoted ρ). The producer-surplus ratio in turn depends on how the

demand curve is shaped. Using the calibrated demands, we can compute ρ for a monopoly producer

of either a vaccine (v) or a drug (d). In our baseline calibration (indicated by superscript 0), we

obtain a producer-surplus ratio of ρ
0
v = 44% for an HIV vaccine. Considering the market for an

HIV vaccine in isolation, this leads to a worst-case bound on deadweight loss of 100 − 44 = 56%.

In other words, the distorted incentives provided by the private market to the firm regarding the

vaccine’s development and price could dissipate as much as 56% of the global benefit from curing

HIV. Moving to the isolated drug market, our baseline estimate of the drug-producer-surplus ratio

is ρ
0
d = 38%, leading to a worst-case bound on deadweight loss of 100 − 38 = 62%.

(2004, 2005); Chen and Toxvaerd (2014); as well as our own work (Kremer, Snyder, and Williams 2012).
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Rather than consider the vaccine and drug markets in isolation, it is natural to wonder what the

worst-case deadweight loss is in the comprehensive case in which either or both products can be

produced. The theoretical result relevant to this comprehensive case is Proposition 15 of Kremer

and Snyder (2015). We have been able to tighten the bounds, as reported in Proposition 3 of this

paper. For canonical values of model parameters, these tighter bounds lead to an exact expression

for worst-case deadweight loss as reported in Proposition 2. The exact expression simply equals

the larger of the two worst-case bounds for the isolated products; i.e., using the numbers from the

calibration, max(56,62) = 62%. The previous result merely told us that worst-case deadweight in

the comprehensive case is no less than the difference between the worst cases for the individual

products, i.e., no less than 62 − 56 = 6%. The new bound thus represents a dramatic sharpening of

the analysis in this application: instead of saying that worst-case deadweight loss lies somewhere

in the interval [6%,100%], we can now pinpoint it at 62%.

The fit of our demand calibration appears to be good. Based on the calibrated global demand

for an HIV drug, we calculate that—in the absence of international price discrimination, subsi-

dies in low-income countries, or regulatory threats to intellectual property—a profit-maximizing

monopolist would charge such a high drug price that only about 4% of infected individuals world-

wide would buy the treatment. These price and quantity estimates are remarkably close to actual

price and quantity of antiretroviral therapies (ARTs) in 2003, the baseline year for our analysis,

arguably approximating the “state of nature” before subsidies or other policy interventions became

widespread. The deadweight loss associated with this high price (the area of the Harberger (1954)

triangle) amounts to nearly half of the global benefit from curing HIV.

Since the calibrations require assumptions about particular parameter values, we gauge the ro-

bustness of the results by providing calibrations for a range of values of these parameters. The key

parameter turns out to be the income elasticity of healthcare expenditure, ε. We first consider the

baseline case of unit income elasticity, which happens to be close to leading estimates using inter-

national data (e.g., Newhouse (1977) estimates ε = 1.3). We provide calibrations for a wide range

of ε spanning these values as well as ε = 0, which is equivalent to a model in which consumers

vary only in disease risk. Because the disease-risk distribution is even more Zipf similar than the

distribution of the product of risk and income, the potential for deadweight loss is enormous in

the model with only disease risk, for example, reaching 70% of the overall disease burden in the
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vaccine market.

We also use the calibrations to perform a variety of counterfactual exercises, assessing the

welfare gains and losses from government interventions such as a subsidy, reference pricing, and

price-discrimination ban. Regarding a subsidy, owing to the Zipf-similar shape of demand in the

baseline vaccine calibration, a small subsidy is enough to swing the equilibrium from a high price

at which few consumers are served to universal vaccination. Thus universal vaccination may be a

more robust public policy than previously thought, possible to rationalize even in the absence of

epidemiological externalities, and possible to effectuate without a mandate. Regarding reference

pricing, supposing all other countries peg their prices to some proportion, u, of the United States’,

a monopoly manufacturer of either a vaccine or a drug would prefer to serve the United States even

if the ceiling were as low as u = 0.2, i.e., 20% of the U.S. price. This result highlights the pivotal

U.S. role in the pharmaceutical market, explaining why other countries may be emboldened to free

ride. Regarding price discrimination, cross-country price discrimination can be quite lucrative in

our model because each country’s consumers are homogeneous, so one different price per coun-

try is all that is needed to accomplish perfect price discrimination and attain the social optimum.

Hence, banning price discrimination can be quite distortionary, leading to a 56% decline in vac-

cine producer surplus and a 62% decline in drug producer surplus, declines equal to the potential

increase in deadweight loss in these markets.

As discussed, the most closely related paper in the past literature is Kremer and Snyder (2015).3

Other of our past related work includes Kremer, Snyder, and Williams (2012), which focuses on

epidemiological externalities, and Kremer and Snyder (2016), which generalizes the bounds on

deadweight loss to product markets beyond pharmaceuticals.4

A detailed discussion of the connection between this line of our research and other authors’

work is provided in Kremer and Snyder (2015). Here we highlight just two key connections. The

present paper contributes to the literature on incentives for innovation in R&D-intensive industries

(see, e.g., Newell, Jaffee, and Stavins 1999; Acemoglu and Linn 2004; Finkelstein 2004; and

3Kremer and Snyder (2015) was initially circulated as a series of National Bureau of Economic Research working

papers (Kremer and Snyder 2003, 2013). The international calibration provided in Section 6 of the 2013 working

paper but cut from the 2015 published version became the germ of the present paper. Besides Figure 4, the other

calibrations as well as all the theoretical results are new developments.
4Kremer and Snyder (2016) also include calibrations of international demand. Since they analyze general product

markets, their calibrations include only income, not disease risk. Unlike the present calibrations, theirs accounts for
within-country heterogeneity by allowing each country to have a different lognormal distribution of income.
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Budish, Roin, and Williams 2015). Most closely related are studies of innovation in healthcare

markets by Lakdawalla and Sood (2013) and especially Garber, Jones, and Romer (2006). The

latter paper relates static and dynamic deadweight loss to the shape of the demand curve as we

do. They focus on a different distortion, that coinsurance can induce overconsumption and excess

entry by defraying a fraction of the pharmaceutical price, whereas distortion in our model is due

to underconsumption and too little entry. The present paper also contributes to the literature on the

revenue and welfare consequences of government interventions in the international pharmaceutical

market. See, e.g., Kyle (2007), Sood et al. (2008), and a series of papers by Patricia Danzon and

coauthors, including Danzon and Ketcham (2005) and Danzon, Wang, and Wang (2005).

The paper is organized as follows. The next section presents the model. Section 3 provides

the propositions tightening the bound on deadweight loss from our previous work. The rest of the

paper focuses on the calibrations. Section 4 describes the methods and (5) the data used in the

calibrations. Section 6 presents the results from calibrations for the baseline scenario and Sec-

tion 7 for scenarios involving price discrimination. Section 8 presents calibrations for alternative

parameterizations to explore robustness. Section 9 concludes. Proofs of propositions are provided

in the appendix.

2. Model

We base our analysis on the most general model in Kremer and Snyder (2015). This model, ap-

pearing in their Section V, is general in several respects. First, it allows for general values of

the parameters c j, s j, and e j defined below. Second, it allows for multiple sources of consumer

heterogeneity embodied in the random variables X ∈ [0,1], representing disease risk, Y ≥ 0, rep-

resenting willingness to pay to avoid a unit of disease harm (for simplicity, this can be thought

of as income or wealth), and H ≥ 0, representing the consumer’s draw of disease harm con-

ditional on contracting it, where H has unit mean and is mean-independent of X and Y , i.e.,

E(H) = E(H|Y = y) = E(H|X = x) = 1. Ex ante, the consumer draws realizations x and y of

random variables X and Y . Ex post, the consumer’s disease status is a draw from a Bernoulli dis-

tribution with probability x of contracting it. Conditional on contracting the disease, the consumer

draws a realization h of harm H . Letting B denote total disease burden from an ex ante perspective
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and N be the mass of consumers, we have B = NE(XY H) = NE(XY ), where the last equality

follows from the assumptions on H . Proposition 14 in Kremer and Snyder (2015) shows that the

three random variables X , Y , and H are sufficient to capture quite general models of consumer

heterogeneity.

A monopoly pharmaceutical manufacturer can develop two products indexed by j to sell on

the private market to consumers: a vaccine ( j = v) and/or a drug ( j = d). If the firm chooses

to develop product j, it must pay fixed cost k j ≥ 0, reflecting expenditures on research, capacity,

etc. Let c j ≥ 0 denote product j’s constant marginal production cost and s j ≥ 0 the harm from its

side effects. Let e j ∈ [0,1] denote its efficacy or conversely r j = 1 − e j denote its failure rate. To

simplify the notation, we ignore discounting (or take all values to reflect ex ante present discounted

values).

For consistency with Kremer and Snyder (2015), throughout most of the discussion we main-

tain the interpretation of demand as reflecting the individual purchase decisions on a private market

in the absence of government intervention, insurance, or epidemiological externalities.5 There is

an alternative interpretation of demand that allows these factors to be integrated into the analysis.

Rather than assuming consumers are homogeneous within each country, one can assume national

governments (or large national insurers) decide whether to order a pharmaceutical on behalf of

heterogeneous citizens enrolled their health systems. This interpretation handles epidemiological

externalities under the assumption that they mostly flow within country borders and would be in-

ternalized by the national agent. We return to a discussion of this alternative interpretation in the

conclusion, mentioning caveats required for it to apply.

The key distortion in the model is not a government interventions, externality, or consumer

behavioral bias but rather the problem of surplus appropriability. The key difference between the

products in the model is that a vaccine is purchased before the consumer has contracted the disease

and so still faces an uncertain disease risk; a drug is purchased after disease risk has been resolved

into binary disease status (infected or not). This difference can generate different shapes for the

5We do not deny the importance of epidemiological externalities—indeed some of our other work (Kremer, Snyder,

and Williams 2010) focuses exclusively on such externalities—but want to focus on other distortions in this paper.

Epidemiological externalities can be shut down as a source of distortion by assuming that the pharmaceuticals, while

preventing individuals from experiencing disease symptoms, do not slow transmission of an infectious disease. An

alternative way to shut down epidemiological externalities would be to consider non-infectious conditions such as

heart attacks. The alternative interpretation of demand reflecting purchases by a national agent discussed next can
incorporate some forms of epidemiological externality.
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pharmaceuticals’ demand curves, leading to differences between the producer’s ability to appro-

priate surplus with the two products. It is well known since Arrow (1962) that the monopolist’s

inability to appropriate consumer surplus and Harberger deadweight loss results in suboptimal in-

novation incentives. An additional distortion here is created by the producer’s bias toward the more

lucrative product. Obviously, the producer will prefer the product with lower values of the R&D

cost (k j), marginal production cost (c j), side effects (s j), and ineffectiveness (r j), but we do not call

this preference a bias because it is shared by the social planner: both agree low values are better.

Our analysis focuses on the wedge between private and social innovation incentives, arising here

due to factors affecting surplus appropriability. Maximizing the wedge between private and social

innovation incentives will not be as simple as maximizing the difference between, say, kv and kd .

We proceed with the specification of the model by introducing notation for the firm’s decisions.

Letting σ denote the firm’s product-development strategy, it has four possibilities: producing the

vaccine alone (σ = v), the drug alone (σ = d), both products (σ = b), or neither product (σ = n).

Consider the continuation game following its having developed exactly one of the products, i.e.,

σ = j for j ∈ {v,d}. Let p j denote price and Q j(p j) the demand curve for product j. (De-

mand is also a function of s j and r j, but arguments besides p j are suppressed in the notation for

brevity.) Let PS j(p j) = (p j −c j)Q j(p j) denote producer surplus, CS j(p j) =
∫ ∞

p j
Q j(x)dx consumer

surplus, and TS j(p j) = PS j(p j) + CS j(p j) total surplus. Note PS j and TS j are surpluses from an

ex post perspective—i.e., treating k j as a sunk cost and thus ignoring it. Profit from an ex ante

perspective—i.e., treating k j as an economic cost—is denoted Π j(p j) = PS j(p j) − k j. Ex ante

social welfare is denoted W j(p j) = TS j(p j)− k j.

Next consider the continuation game following the firm’s having developed both products, i.e.,

σ = b. Let pbv denote the price it sets for the vaccine and pbd for the drug. With both prod-

ucts available, the demand for vaccines Qbv(pb) and for drugs Qbd(pb) in general are functions of

the vector of both prices, pb = (pbv, pbd). These demands can be tied back to the single-product

demand curves: Q j(p j) = Qb j(p j,∞). Denote the vector-valued demand function when both prod-

ucts are produced as Qb(pb) = (Qbv(pb),Qbd(pb)). Letting cb = (cv,cd), we can write producer

surplus from both products as the dot product PSb(pb) = (pb − cb)
′Qb(pb). Consumer surplus is

CSb(pb) =

∫ ∞

pbv

Qbv(pv, pbd)d pv +

∫ ∞

pbd

Qbd(pd , pbv)d pd,
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and total surplus is TSb(pb) = CSb(pb)+ PSb(pb).

Next consider the continuation game following the firm’s developing no product, i.e., σ = n.

Nothing can be sold if nothing has been developed. Thus, for all pn ≥ 0, Qn(pn) = 0, implying

PSn(pn) = CSn(pn) = TSn(pn) = 0. (1)

Equilibrium values are denoted with a single star. For example, p∗
σ

= argmaxp PSσ(p) denotes

the monopoly price, q∗
σ

= Qσ(p∗
σ
) monopoly quantity, PS∗

σ
= PSσ(p∗

σ
) monopoly producer surplus,

W∗
σ

denote monopoly welfare, etc. (Note that p∗
σ

and q∗
σ

are vectors if σ = b.) Rather than an

arbitrary product strategy σ, we will often be interested in equilibrium values associated with the

equilibrium product strategy σ
∗. To streamline notation, we denote these values by starring the

relevant variable but dropping the product-strategy subscript: i.e., p∗ = p∗
σ
∗, q∗ = q∗

σ
∗, PS∗ = PS∗

σ
∗ ,

W∗ = W∗
σ
∗ , etc. Variables with two stars denote socially optimal values. For example, p∗∗

σ
denotes

the socially optimal price. We have p∗∗j = c j if a single product j is produced and p∗∗b =(cv,cd), the

vector of marginal costs, if both are produced. Furthermore, for any product strategy σ, we have

PS∗∗
σ

= 0 and TS∗∗
σ

= CS∗∗
σ

. Rather than an arbitrary product strategy, σ, we will often be interested

in socially optimal values under the socially optimal product strategy, σ
∗∗. To streamline notation,

we denote these values by double starring the relevant variable but dropping the product-strategy

subscript: i.e., p∗∗ = p∗∗
σ
∗∗, q∗∗ = q∗∗

σ
∗∗ , PS∗∗ = PS∗∗

σ
∗∗ , W∗∗ = W∗∗

σ
∗∗, etc.

While the analysis allows for general values of the parameters c j, s j, and r j, the values c j = s j =

r j = 0, which we refer to as benchmark values, play a special role, allowing us to “level the playing

field” for the two products in all respects save for the timing of when they are sold.6 To denote

equilibrium under benchmark parameters, we replace the star with a zero in the superscript. For

example, p0 denotes the monopoly price under the equilibrium product strategy for benchmark

parameters, and PS0 denotes the resulting equilibrium producer surplus. To denote the social

optimum under benchmark parameters, we replace the two stars with two zeros in the superscript.

For example, p00 denotes the socially optimal price under the socially optimal product strategy for

6For example, allowing for positive values of cv and cd , the normalization cv = cd equalizes the cost of producing
a dose but introduces a bias in the aggregate cost of a universal pharmaceutical program. In particular, universal

vaccination would be more costly than universal drug treatment by a factor equal to the reciprocal of the prevalence

rate. In addition, the benchmark parameters are associated with the most extreme worst-case bounds under some

conditions; see Proposition 12 from Kremer and Snyder (2015).
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benchmark parameters, and W 00 denotes the resulting social welfare in this social optimum.

Suppose that the firm chooses a non-trivial product strategy σ ∈ {v,d,b} under benchmark

parameters. Since products are costless to manufacture, the socially optimal pricing policy is to

give the products away: p00
σ

= 0. Since products have no side effects, all consumers purchase;

and since products are perfectly effective, their consumption relieves the entire disease burden.

Therefore,

TS00
σ

= B for σ ∈ {v,d,b}. (2)

3. Bounding Deadweight Loss

The central results of this section are a series of propositions providing new bounds on deadweight

loss. Before presenting the propositions, we define several deadweight loss concepts that we work

with.

3.1. Harberger Deadweight Loss

We refer to the area of Harberger’s (1954) triangle, equal to the deadweight loss stemming from

prices above marginal cost, as Harberger deadweight loss, denoted HDWL∗
σ

, where σ indexes the

product strategy under consideration. We have HDWL∗
σ

= TS∗∗
σ

− TS∗
σ

= TS∗∗
σ

− PS∗
σ

− CS∗
σ

. Dead-

weight loss from all sources including distortions due to a possible mismatch between the product

strategy σ and the socially efficient one, σ
∗∗, is denoted DWL∗

σ
= W∗∗ −W∗

σ
. As before, we can

condition on the firm’s equilibrium product strategy σ
∗ rather than arbitrary product strategy σ,

writing HDWL∗ = TS∗∗
σ
∗ − TS∗ and DWL∗ = W∗∗ −W ∗.

It will be useful to work with relative versions of these deadweight loss measures, normalizing

by disease burden as a measure of the size of the market. Thus, relative Harberger and total dead-

weight losses are HDWL∗
σ
/B and DWL∗

σ
/B, respectively, when conditioned on an arbitrary product

strategy σ; and HDWL∗/B and DWL∗/B, respectively, when conditioned on the equilibrium prod-

uct strategy σ
∗.7

The analysis proceeds by trying to find simple characterizations of these relative deadweight

7Tirole (1988) proposes slightly different expressions for relative deadweight loss, dividing by first-best social

surplus rather than disease burden. By equation (2), our relative concepts coincide with his for benchmark parameters.
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loss concepts. Substituting for HDWL∗
σ

, we have

HDWL∗
σ

B
=

TS∗∗
σ

B
−

PS∗
σ

B
−

CS∗
σ

B
=

TS∗∗
σ

B
−ρ

∗
σ

−γ
∗
σ
, (3)

where ρ
∗
σ

= PS∗
σ
/B is relative producer surplus and γ

∗
σ

= CS∗
σ
/B is relative consumer surplus.

Allowing the firm to pursue the equilibrium product strategy σ
∗, it follows from equation (3) that

HDWL∗

B
=

TS∗∗
σ
∗

B
−ρ

∗ −γ
∗, (4)

where relative surpluses are defined in the obvious way: ρ
∗ = PS∗/B and γ

∗ = CS∗/B. Assuming

benchmark parameter values and further that the equilibrium product strategy is non-trivial (i.e.,

σ
0 ∈ {v,d,b}), equation (2) implies

HDWL0

B
= 1 −ρ

0 −γ
0. (5)

3.2. Comprehensive Deadweight Loss

No such simple formulas are available for the more comprehensive measure of relative deadweight

loss, DWL∗/B, which involves both pricing and product-choice distortions. The approach of Kre-

mer and Snyder (2015) was to focus instead on finding a simple formula for the worst case—the

supremum—on this relative deadweight loss. Though they did not find an exact expression for the

supremum, they found a lower bound on it, reported in their Proposition 15.

In this subsection, we provide a series of propositions that tighten that bound. The series of

propositions apply to increasingly rich environments. The first proposition assumes benchmark

parameters and considers the market for one product j in isolation. The second proposition allows

for multiple products to be developed. The third proposition generalizes the parameters beyond

benchmark values.8

8To trace out the precise connection between the series of propositions provided here and our past results, Propo-

sition 1 here superficially resembles Proposition 2 of Kremer and Snyder (2015) but they are subtly different. The

previous result applied to the case in which both products could be produced but there is heterogeneity in X alone.

Proposition 1 here allows for heterogeneity in both X and Y but assumes only product j can be produced. In fact,
Proposition 1 here is a corollary of Theorem 1 of Kremer and Snyder (2016) for the special case of benchmark param-

eters. The translation of that result into the present context is somewhat involved, so instead we provide a direct proof

here. Propositions 2 and 3 are new results. The assumptions behind Proposition 3 are identical to those behind Propo-
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Under benchmark parameters, we can derive exact expressions for the supremum on relative

deadweight loss. The first proposition restricts attention to the market for a single product j in

isolation, putting aside the possibility of developing the other product alone or both. The worst

case for deadweight loss arises when k j exceeds PS0
j . The firm develops nothing in equilibrium, so

the whole of first-best social welfare constitutes deadweight loss. In the limit as k j approaches PS0
j

from above, deadweight loss approaches TS00
j −PS0

j = B−PS0
j. Dividing by B to express in relative

terms gives the expression for the supremum in the next proposition. A formal proof is provided

in the appendix.

Proposition 1. Suppose that only product j = v or j = d can be developed, not both. Fix the

parameters at their benchmark values c j = s j = r j = 0. The supremum on relative deadweight loss

is exactly 1 −ρ
0
j:

sup
{k j≥0}

(

DWL0

B

)

= 1 −ρ
0
j . (6)

The next proposition allows for the development of a second product, requiring some additional

notation to state. Let PS∗min = min{PS∗v ,PS∗d} and PS∗max = max{PS∗v,PS∗d}, respectively, be the

minimum and maximum producer surpluses from the two individual products; and let ρ
∗
min =

PS∗min/B and ρ
∗
max = PS∗max/B be the corresponding relative measures. Let PS0

min, PS0
max, ρ

0
min, and

ρ
0
max be the corresponding variables in equilibrium under benchmark parameters.

The proof, provided in the appendix, establishes that the greatest distortion again arises when

nothing is produced because development costs are too high. The whole of first-best social welfare

again constitutes deadweight loss. The supremum on deadweight loss is approached in the limit as

the development cost in the market for the less lucrative product approaches producer surplus in

that market from above (keeping the development cost above producer surplus in the other market).

Suppose for concreteness that the vaccine is the less lucrative of the two products. Then the

supremum on deadweight loss is approached in the limit kv ↓ PS0
min for kd sufficiently high (taking

the limit kd ↑ ∞ suffices). Expressed relative to B, this supremum equals 1 − ρ
0
v . More generally,

the supremum is associated with whichever of the two isolated product markets is less lucrative.

In such a market, a low development cost can generate a large equilibrium distortion without

dissipating too much first-best social welfare, leaving the greatest potential for deadweight loss.

sition 15 of Kremer and Snyder (2015), so the results are directly comparable. Proposition 3 tightens the previous

bound.
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The supremum on deadweight loss when there are two products equals the greater of the suprema

in equation (6) for the two isolated markets: max(1 −ρ
0
v ,1 −ρ

0
d) = 1 − min(ρ0

v ,ρ
0
d) = 1 −ρ

0
min.

Proposition 2. Consider a model of the pharmaceutical market with multiple sources of consumer

heterogeneity, still fixing the parameters at their benchmark values c j = s j = r j = 0 but allowing

the firm to produce either or both of the products. The supremum on relative deadweight loss is

exactly 1 −ρ
0
min:

sup
{kv,kd≥0}

(

DWL0

B

)

= 1 −ρ
0
min. (7)

The final proposition generalizes the parameters beyond benchmark values. The proof is im-

mediate from the previous proposition. The supremum restricting parameters to take benchmark

values is weakly lower than that allowing those parameters to be free. Thus the supremum for

benchmark parameters from the previous proposition is a lower bound on the supremum over gen-

eral parameters in the next proposition.

Proposition 3. Consider a model of the pharmaceutical market with multiple sources of consumer

heterogeneity and general values of the parameters c j, s j, r j ≥ 0. The supremum on relative dead-

weight loss is at least 1 −ρ
0
min:

sup
{k j,c j,s j,r j≥0| j=v,d}

(

DWL∗

B

)

≥ 1 −ρ
0
min. (8)

This bound is directly comparable to the bound we derived for the case of multiple products

and general parameters in our earlier work, Kremer and Snyder (2015) Proposition 15. The earlier

result stated that the supremum on relative deadweight loss is no less than ρ
0
max −ρ

0
min. We derived

that bound by focusing on just one possible distortion, that arising from the firm’s developing

the “wrong” product, the less socially efficient but more lucrative one. The supremum on that

distortion equals ρ
0
max − ρ

0
min in relative terms. The new bound focuses on a potentially larger

source of deadweight loss. Society stands to lose more when the firm develops not just a different

product but nothing in place of the socially efficient product. The new bound 1 −ρ
0
min reflects the

larger gap between no product and the efficient one.

It is obvious that the new bound is weakly tighter since ρ
0
max ≤ 1 implies 1−ρ

0
min ≥ ρ

0
max −ρ

0
min.

To understand how much tighter it can be in practice, consider a scenario in which neither the

vaccine nor the drug is particularly lucrative, i.e., ρ0
v ≈ ρ

0
d ≈ 0. Using the old bound, ρ0

max −ρ
0
min ≈ 0,

we arrive at the tautological conclusion that the supremum on deadweight must be positive. The

12



new bound, 1 − ρ
0
min ≈ 1, raises the real prospect that nearly the whole disease burden can be

dissipated in this scenario. Just such a scenario will play out in the calibrations.

3.3. Zipf Worst Case

The analysis so far asked what fixed costs and other parameters generate the worst deadweight

loss for a given demand curve. Kremer and Snyder (2015) proceed to ask what demand curve

shapes generate the worst deadweight loss among those with the same area underneath (the same

B in our setting). The answer is what they term the symmetrically truncated Zipf (STRZ) demand.

A Zipf distribution is the special case of a power-law distribution with an exponent equal to 1,

which in the disease context intuitively means that each doubling of disease risk cuts the number of

consumers with at least that risk in half. The resulting demand curve is unit elastic, implying that all

feasible prices generate the same revenue, and hence the same producer surplus under benchmark

parameters. Put another way, no price is especially lucrative with this demand curve; all generate

the same (low) producer surplus. Example STRZ demands are provided later in Figures 4 and 6;

they can be visualized as rectangular hyperbolas truncated at the top and bottom. The truncations

are technical features keeping both the highest conceivable consumer value and the area under the

curve constant.

Kremer and Snyder (2015) proposed a measure of how close a demand curve comes to the

STRZ worst case, called the Zipf similarity of demand. Kremer and Snyder (2016) extended this

result, providing the necessary adjustments to apply this formula to general settings with arbitrary

scaling of the price and quantity axes. Adapting the formula from equation (16) of Kremer and

Snyder (2016) to reflect the present notation, the Zipf similarity of the demand for pharmaceutical

j under benchmark parameters, Z0
j , is

Z0
j =

1 −ρ
0
j

1 −
¯

ρ(µ0
j)

, (9)

where
¯

ρ(µ0
j) is the producer-surplus ratio of the associated STRZ demand. By Proposition 1, Zipf

similarity is simply the supremum on deadweight loss for pharmaceutical j relative to the supre-

mum on deadweight loss for the associated STRZ demand. If the supremum on deadweight loss

for pharmaceutical j is 50% that of the STRZ worst case, then we say the demand for pharma-
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ceutical j is 50% Zipf similar. To have a supremum on deadweight loss close to the STRZ worst

case, all points on the demand curve for pharmaceutical j must lie in a neighborhood around the

STRZ demand curve. We will use equation (9) to measure the Zipf similarity of calibrated demand

curves in Section 6.

To fill in some technical details behind equation (9), by the “associated” STRZ demand curve,

we mean the STRZ demand in the same class as the demand for pharmaceutical j, where the class

is indexed by the so-called mean-to-peak ratio, µ
0
j , equal to the ratio of the mean consumer value

for product j in the social optimum to the highest value in the population.9 By Proposition 3 of

Kremer and Snyder (2016), the producer-surplus ratio for this STRZ demand curve equals

¯

ρ(µ0
j) =

−1

LW−1(−µ
0
j/e)

, (10)

where LW is the Lambert W function, the inverse relation W(z) of the function z = WeW . The −1

subscript on LW denotes the lower branch of this relation.10

4. Calibration Methodology

This section describes the methods used to calibrate the new bounds on potential deadweight loss in

the market for HIV pharmaceuticals.11 There are a number of advantages to assuming benchmark

values of the parameters: c j = s j = r j = 0 for j = v,d. In addition to those discussed in footnote 6,

another advantage is that for benchmark parameters Proposition 2 gives an exact expression for

9Adapting the formula for from Lemma 1 of Kremer and Snyder (2015) to the present context, for the vaccine

market we have

µ0
v =

∑
I
i=1 NiXiYi

N(XY )(I)
,

where N = ∑
I
i=1 Ni is total population size and (XY )(I) denotes the maximum order statistic for the product of Xi and

Yi, i.e., the maximum value that XiYi takes on across countries. For the drug market,

µ0
d =

∑
I
i=1 NiXiYi

Y(I) ∑
I
i=1 NiXi

,

where Y(I) denotes the maximum value of Yi across countries.
10The branches of LW are built-in functions in standard mathematical software packages including Mathematica,

Matlab, and R. Other ways to compute
¯
ρ(µ0

j) besides equation (10) include reading the value from the graph in Kremer

and Snyder’s (2015) Figure 4 or taking the value from the tabulation in Kremer and Snyder’s (2016) Table 2.
11We call this a “calibration” rather than an “estimation” exercise because we assume convenient forms for demand

and cost and we fix certain important parameters (including c j, s j, r j, and the income elasticity) rather than estimating

them from price and quantity data.
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the supremum on deadweight loss rather than a bound. We thus maintain benchmark parameters

throughout the remainder of the analysis. Following our earlier notation, we use a zero superscript

(instead of a star) to indicate equilibrium values evaluated at the benchmark parameters and two

zeros in the superscript (rather than two stars) to indicate socially optimal values under benchmark

parameters.

By Proposition 2, calibration of the supremum on deadweight loss under benchmark param-

eters reduces to calibration of ρ
0
min, which by the definition ρ

0
min = min(ρ0

v ,ρ
0
d) in turn reduces

to calibration of demand for a vaccine alone and a drug alone. We are exempted from having to

calibrate the more complicated demands that apply when both products are offered because they

do not show up in the formula. To calibrate demand for a vaccine alone and drug alone, we need

to return to the random variables X , Y , and H introduced at the outset of Section 2 and specify

their distributions in the consumer market. We take the consumer market to consist of the en-

tire world population. Country i ∈ {1, . . ., I} has a population of Ni > 0 risk-neutral consumers.

Consumers within a country are homogeneous, each having the same disease risk Xi ∈ (0,1] and

income Yi > 0. We have no reason to believe that the medical consequences of HIV infection differ

across countries—indeed, untreated HIV is fatal everywhere. Thus, we abstract from cross-country

variation in Hi, adopting the normalization Hi = 1. We defer to the conclusion a discussion of a

reinterpretation of the model allowing for heterogeneous consumers within a country assuming the

national government makes purchases on their behalf.

As an intermediate step in deriving pharmaceutical demands, consider the counterfactual sit-

uation of a consumer who surely becomes infected. Assume that the elasticity of an individual’s

healthcare demand with respect to income is a constant ε across income and across individuals.

For this to be the case, his willingness to pay to avoid harm from the disease as a function of his

income Yi must take the form Y ε

i .12 Now move from the counterfactual case in which the consumer

12The most general form preserving the property of constant income elasticity is AiY
ε

i , allowing the leading coeffi-
cient to vary across consumers by taking it to be a random variable. We do not allow for that source of heterogeneity

because doing so would introduce a third random variable characterizing consumers in a country, contradicting the

maintained assumption that consumers are fully characterized by just Xi and Yi. A form that is more general but does

not introduce a third source of heterogeneity is AY ε

i , with a leading coefficient A that is constant across consumers. Our

specification of willingness to pay normalizes A = 1. For most of our analysis, this normalization is without loss of

generality since all of our surplus calculations will be expressed as a proportion of disease burden; A is a scale factor
which divides out of the proportion. In our analysis of prices, which is done in levels, the combined normalizations

A = 1 and Hi = 1 comport with World Health Organization procurement thresholds as discussed below.
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is surely infected to the factual case in which he has disease risk Xi. His expected benefit from a

vaccine is the product of this risk and the benefit of avoiding sure harm, i.e., XiY
ε

i . If the firm’s

product strategy is to produce the vaccine alone, global vaccine demand is

Qv(pv) =
I

∑
i=1

1(XiY
ε

i ≥ pv)Ni, (11)

where 1(·) is the indicator function, equal to 1 if the statement in parentheses is true and 0 oth-

erwise. Turning to demand for a drug, because it is sold ex post, after disease status has been

realized, any consumer who has contracted the disease buys a drug sold at price pd as long as

Y ε

i ≥ pd . In expectation, NiXi consumers in country i end up contracting the disease. Thus global

drug demand is

Qd(pd) =
I

∑
i=1

1(Y ε

i ≥ pd)NiXi. (12)

Demands when the firm produces both products are more complicated. As mentioned above,

the supremum on deadweight loss can be calibrated without having to solve for the σ
0 = b contin-

uation equilibrium. We report these demands for completeness but relegate them to a footnote.13

Equations (11) and (12) provide the foundation for our calibrations. To translate these formulas

into demand units, the only additional elements required are country-level data on Ni, Xi, and Yi

(described in the next section) and an assumption about the income elasticity, ε. The practical

implementation details are best discussed in the context of a simple example. Consider the toy

example in Table 1 of a world with two countries. We first show how (11) can be used calibrate

vaccine demand. Setting ε to the value we take for our baseline scenario, ε = 1, and maintaining

benchmark parameters (no side effects and perfect efficacy), country i’s willingness to pay for a

vaccine equals the product XiYi. As shown in the last column, country 1 has lower willingness to

13With benchmark values of the parameters s j = r j = 0, one can show

Q̃v(pbv, pbd) =
I

∑
i=1

1(Xi ≥ pv/pd)1(XiY
ε

i ≥ pv)Ni

Q̃d(pbd , pbv) =
I

∑
i=1

1(Xi ≤ pv/pd)1(Y ε

i ≥ pd)NiXi.

With general values of s j and r j , the expressions become considerably more complicated. Among other things, with

imperfect efficacy, a consumer who purchases a vaccine than turns out to be ineffective may later purchase the drug as

well.
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pay, X1Y1 = 100, than country 2, at X2Y2 = 400. These willingness-to-pay numbers are the only

relevant pricing points for a monopolist wishing to extract as much surplus as possible. According

to equation (11), vaccine demand equals the cumulative population of countries having consumers

with a willingness to pay at least as high as the given price: Qv(400) = N2 = 1,500 and Qv(100) =

N1 + N2 = 2,500. The resulting demand curve is the step function shown in Panel A of Figure 1.

Under the benchmark assumption of costless production, vaccine producer surplus equals vaccine

revenue, PSv(400) = 400 · 1,500 = 675,000 and PSv(100) = 100 · 2,500 = 250,000, implying

PS0
v = 675,000, the area of the shaded rectangle in Panel A.

Next, we use (12) to calibrate drug demand. Willingness to pay for this product equals Yi.

The only two relevant pricing points for a monopolist are thus 10,000 and 9,000. Demand at

these pricing points equals the cumulative infected population, NiXi, of countries with at least that

willingness to pay: Qd(10,000) = N1X1 = 10 and Qd(9,000) = N1X1 + N2X2 = 85. The resulting

demand curve is shown in Panel B of Figure 1. Drug producer surplus is PSd(10,000) = 100,000

and PSd(9,000) = 765,000, implying PS0
d = 765,000, the area of the shaded rectangle in Panel B.

In this toy example, the drug is more lucrative than the vaccine. Intuitively, most of the het-

erogeneity across consumers in this toy example can be traced to Xi, which is five times higher

in country 2 than 1. This heterogeneity disappears by time the drug is sold because disease risk

resolves into disease status, allowing the monopolist to extract almost all the available surplus—

PS0
d = 765,000 is 99% of the total disease burden, B = 775,000—from drug consumers, who as

Panel B of Figure 1 shows are virtually homogeneous. More formally, a comparison of demand

formulas (11) and (12) reveals that they are identical except for the shifting of Xi outside of the

indicator function’s argument in drug demand (12). This shift of course changes the shape of the

demand curve as the move from Panel A to B in Figure 1 illustrates. Whether this shape change

leads to a more or less lucrative demand curve in general is impossible to say—cases can be con-

structed in which ρ
0
v > ρ

0
d and and other cases in which the reverse inequality holds—depending

on the joint distribution of Ni, Xi, and Yi. More concrete conclusions are available when there is

little heterogeneity in Yi. An immediate corollary of Kremer and Snyder’s (2015) Proposition 3

is that if income is homogeneous across countries, i.e., if Yi = Ȳ , and at least two countries have

different positive values of Xi, then ρ
0
d > ρ

0
v . By continuity, this inequality still holds if Yi varies

across countries as long as the variance is sufficiently small. This is the case in the toy example, in
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which Y1 is only 11% higher than Y2.

We use the same methods to calibrate demand with actual cross-country data as used here in

the toy example. The demand curve will still be a step function but with finer steps due to the large

number of actual countries. As in the toy example, the number of relevant pricing points for the

monopolist is no greater than the number of countries. Only this manageable number of prices

need to be checked to compute equilibrium (producer surplus maximizing) prices. Equilibrium

prices and quantities can be combined with the calibrated demand curves to calculate surpluses,

ratios of surpluses to disease burden, and the deadweight loss supremum.

5. Data

This section discusses the data sources for Ni, Xi, and Yi used in the calibrations. A preliminary

question is what year would provide the best snapshot of the market for HIV pharmaceuticals.

While the best year is the current one for most applications, this is not necessarily the case here.

To calibrate demand for HIV pharmaceuticals, we would like some measure of the burden of the

disease in the state of nature without any pharmaceuticals. Referring to the lower dotted curve

in Figure 2, a growing percentage of people living with HIV have been receiving antiretroviral

treatment (ART), from the negligible percentage in 2000 to nearly half in the most recent data.

This expansion of treatment may have reduced transmission, and coupled with other initiatives to

curtail the spread of HIV and other epidemiological trends resulted in a decline in HIV prevalence

after its peak in 2003 (see the upper solid curve in Figure 2). The dip turned out to be short lived,

rising again after 2010. This more recent rise may belie good news, reflecting a decline in HIV

mortality resulting from the expansion of ART treatment. We select 2003 as our target year for

data collection, a time when HIV prevalence reached a local peak while ART coverage was still

fairly negligible.

The key inputs into our policy simulations are calibrations of the demand for a vaccine in (11)

and a drug in (12). These equations contain three variables for which we need data: population Ni,

disease risk Xi, and income Yi for countries i = 1, . . ., I. We obtained Ni and Yi from the World Bank

Open Data website, using gross domestic product (GDP) per capita for Yi. We obtained Xi from a

UNAIDS publication (UNAIDS 2004a).14 Table 2 provides more details on the data sources and

14The UNAIDS website used as the source for the aggregate trends displayed in Figure 2 would be a natural source
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descriptive statistics for the main variables. Our dataset includes 158 countries.15

Figure 3 maps the geographical distribution of Xi and Yi. The top panel shows the well-known

concentration of HIV risk in sub-Saharan Africa. This would lead these countries to be the highest

demanders of HIV pharmaceuticals in the calibration but for the fact, shown in the lower panel,

that many are among the lowest income in the world, reducing their willingness to pay in the

calibration. Table 2 reports a negative correlation between Xi and Yi of −0.19. Some countries such

as the United States and South Africa are above the median in both Xi and Yi and presumably will

be centers of high demand for HIV pharmaceuticals in the calibration.

6. Calibrations for Baseline Scenario

This section presents calibrations for the baseline scenario in which countries are heterogeneous in

both disease risk Xi and income Yi, the income elasticity is taken to be ε = 1, and the parameters are

set at benchmark values c j = s j = r j = 0. Under these assumptions, a consumer in country i has ex

ante willingness to pay XiYi for a vaccine and ex post willingness to pay Yi for a drug conditional on

being infected. Our analysis of the baseline calibration proceeds by first considering the vaccine

market in isolation and then the drug market in isolation. We then combine these separate results to

compute a comprehensive bound on deadweight loss using Proposition 2. We conclude the section

with an analysis of whether and how equilibrium in the baseline calibration can be improved with

government subsidies.

This baseline specification has some practical appeal beyond its use of round numbers. Inter-

pret the normalization of harm Hi = 1 as meaning that the pharmaceutical saves one Disability

Adjusted Life Year (DALY). This is roughly the case for HIV drugs, as taking a year’s course of

ARTs roughly extends an infected person’s life for that year. (Applying this interpretation to an

HIV vaccine requires more care: we either have to assume that a yearly booster shot is needed

or, if the vaccine provides more permanent protection, have to scale up the health benefit by the

discounted flow of DALYs saved.) Under this interpretation, the baseline assumption that a con-

for country-level HIV data. However, the website seems to have expunged current and historical data for a substantial

number of countries including the United States. We thus relied on a historical publication (UNAIDS 2004a) to recover

country-level HIV data.
15Our data includes all countries with substantial populations except for Iraq, North Korea, Saudi Arabia, and

Turkey, which are excluded because of missing HIV data. Other sources (UNAIDS 2004b) report very low prevalence
rates for these countries, so their omission likely has little effect on our results.
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sumer is willing to pay annual per-capita GDP Yi to avoid Hi is the same as saying that he or she

is willing to spend a year of income to save a year of life. The standard of the World Health Or-

ganization (WHO) is that a highly cost effective health intervention saves a disability adjusted life

year (DALY) at a cost less than the country’s GDP per capita (see Hutubessy, et al., 2003). Thus

our baseline assumption is simply that consumers purchase according to WHO standards.

As discussed, the calibrations can reinterpreted as applying to the purchase of pharmaceuti-

cals by national governments on behalf of their citizens. This interpretation has the appeal of

incorporating possible consumer heterogeneity and epidemiological externalities within countries.

According to this interpretation, the baseline assumption is simply that WHO standards guide na-

tional purchases.

6.1. Vaccine Market

The top panel of Figure 4 shows the calibrated (inverse) demand curve for a vaccine alone. Follow-

ing the methodology laid out in Section 4, it is constructed by ordering countries by the product

XiYi and then sequentially plotting that value on the vertical axis after stepping off a quantity given

the country’s population Ni on the horizontal axis.

Since we have assumed production is costless (cv = 0), the price that maximizes producer

surplus for the vaccine monopolist equivalently maximizes its revenue. Finding the price that

maximizes producer surplus boils down to the geometric problem of finding the rectangle of largest

area that can be inscribed underneath the demand curve. Holding the total area underneath the

demand curve constant, some shapes are of course more conducive to inscribing large rectangles

underneath than others. As discussed in Section 3.3, the worst shape is the symmetrically truncated

Zipf (STRZ) demand, drawn in the figure as the grey curve. Notice that the calibrated demand

curve largely overlaps the STRZ curve except where the United States appears, leading the demand

curve to “belly out” there. The reason for the outsize influence of the United States on the market is

that its consumers have very high incomes relative to most others, coupled with a not insubstantial

HIV risk. These factors generate a large value of the product XiYi for the large population of U.S.

consumers. U.S. consumers turn out to be the marginal ones in the calibration: the producer-

surplus-maximizing price just induces them to buy and strictly induces purchases by consumers in

Botswana, South Africa, Swaziland, Bahamas, Namibia, Trinidad and Tobago, and Gabon. While
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consumers in these other countries are poorer than in the United States, their extremely high HIV

prevalence rates result in their being higher demanders.

Further details of the calibration are provided in Table 4. The vaccine sells at a price of $130

to 344 million consumers. These numbers require some context, the price in particular since,

as discussed in footnote 12, it depends on an arbitrary constant scaling the willingness to pay

function. The price at almost eight times the mean vaccine-consumer value is quite high, leading

to a quantity that is quite low, less than 6% of the global population is served. All but 10 million of

buyers live in South Africa and the United States. Producer surplus is 44% of the social surplus B

from completely relieving the disease burden. This 44% is the ratio of the shaded rectangle to the

area under the inverse demand curve in the top panel of Figure 4. Consumers obtain 16% of B. The

residual, 41%, is Harberger deadweight loss HDWL0
v . The supremum on DWL0

v is achieved in the

limit as kv approaches producer surplus—44% of B—from above. The formula in Proposition 1

yields that this supremum equals 100 − 44 = 56% of B. A lack of adequate incentives to enter the

market could dissipate more than half of the social surplus from completely relieving the disease

burden.

Using the formula for the Zipf similarity, Z0
j , of the demand for product j provided by equation

(9), we obtain Z0
v = 0.66, i.e., the calibrated vaccine demand curve is 66% similar to the STRZ

worst case in that it generates 66% of the deadweight loss bound generated by the STRZ curve.

This measure quantifies the moderately Zipf similar shape of the calibrated vaccine demand curve.

6.2. Drug Market

We next turn to the market for the drug alone. The calibrated (inverse) demand curve for a drug

is shown in the lower panel of Figure 4. Given that a drug is only sold to consumers who contract

the disease, it would not be surprising to see it sell at a much higher price to a much smaller group

of consumers than a vaccine. The scale for drug price on the vertical axis is 100 times that for

vaccine price, but the scale for drug quantity on the horizontal axis is only 1/100 that for vaccine

quantity. The combined scaling of the axes maintains the property that a unit of area reflects the

same revenue and same surplus in both panels. Following the methodology laid out in Section 4,

the drug demand curve is constructed by ordering countries in terms of Yi (i.e., GDP per capita),

reflecting consumers’ ex post willingness to pay for a drug conditional on contracting the disease.
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We then sequentially plot that value on the vertical axis after stepping off quantity NiXi, equal to

the expected number of people in the country who contract the disease.

The producer-surplus-maximizing price is $27,400. To provide some context for this price

(which as explained in the previous subsection depends on an arbitrary scaling constant), it is

extremely high, over ten times the mean of positive drug-consumer values. At this price, marginal

consumers in Italy and inframarginal consumers in the 17 other higher-income countries (including

the United States) purchase. Although these countries have a combined population of 783 million,

only 1.4 million units end up being sold. These rich countries have a relatively low HIV prevalence

rate (an average of 0.12%), so relatively few people end up contracting the disease and needing an

HIV drug. The 1.4 million consumers served represent a small fraction, less than 4%, of the 38

million infected individuals in the world market for the drug.

The difference in the shape of the distribution of consumer values for a drug versus a vaccine

leads the drug to be less lucrative than the vaccine. The drug producer obtains only 38% of the

social surplus B from completely relieving the disease burden, six percentage points less than with

a vaccine, corresponding to the smaller area of the shaded producer-surplus rectangle in the lower

compared to the upper panel. The shape of the drug demand curve is quite close to the STRZ worst

case, drawn as a grey curve. Formally, the index of Zipf similarity is Z0
d

= 0.74. Its shape is not

conducive to inscribing a rectangle of substantial area underneath. Consumers obtain only 13% of

B. The residual 49% is Harberger deadweight loss HDWL0
d . Nearly half of B is lost because the

firm’s most lucrative strategy is to target the high-income market, which results in the exclusion

of countries like South Africa with a slightly lower income but a tremendous disease burden. But

HDWL0
d understates the potential for deadweight loss from all sources, DWL0

d . Given the market

is not very lucrative, the manufacturer may not have an incentive to enter at all. The supremum on

DWL0
d

is achieved in the limit as kd approaches producer surplus—38% of B—from above. Using

the formula in Proposition 1, this supremum equals 100 − 38 = 62% of B.

6.3. Goodness of Fit

The predictions from our vaccine calibration cannot be compared to actual since an HIV vaccine is

yet to be developed. We can perform the comparison for the ARTs that were developed. Our cali-

bration, though simple, is able to match actual ART price and quantity quite closely. As discussed
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at the beginning of Section 6, we can interpret $27,400 as the model prediction of consumer expen-

diture per DALY for the HIV drug. Freedberg, et al. (2001, Table 2) estimate an actual expenditure

per DALY in developed countries of $23,000. If the $23,000 number reflects price concessions in

response to public pressure described by Reich and Bery (2005), our $27,400 estimate could be

close to the counterfactual price without public pressure.

The calibrated quantity of 1.4 million can be compared to the actual quantity of 1.3 million,

computed from Figure 2 as the reported 4% ART coverage in 2003 times the 0.5% HIV prevalence

times 6.4 billion population. The predicted drug price and quantity from our calibrations both

match the corresponding actual variables remarkably closely.

6.4. Comprehensive Bound

To obtain a comprehensive bound on deadweight loss, we move from calibrations of the vaccine

and drug market in isolation to a calibration allowing for the possibility that either or both could be

produced. Proposition 2 provides an exact expression for the supremum on deadweight loss in this

comprehensive situation. As argued in Section 3, it simply equals the greater of the deadweight-

loss suprema from the isolated product markets, i.e., the greater of 56% and 62%, thus equal to

62%, reported in the last row of Table 4. This supremum can be approached in the limit as kv

approaches infinity, so the vaccine market is certainly non-viable, and kd approaches 38% of B, so

the drug market falls just short of the margin of viability.16

6.5. Government Subsidies

Kremer and Snyder (2016) note in Section 6 that Harberger deadweight loss can be highly unstable

with a Zipf-similar demand curve. The monopolist may be almost indifferent between the equilib-

rium strategy that targets a small segment of high demand consumers and one that targets the bulk

of consumers with a low price. A small subsidy may be enough to flip the equilibrium from one to

the other, eliminating most of the Harberger deadweight-loss triangle.

16To see the improvement that Proposition 2 entails over previous results, compare the tight bound of 62% reported
here to the bound from Proposition 15 of Kremer and Snyder (2015), equal to ρ0

max − ρ0
min = 44 − 38 = 6%. The

new bound point-identifies worst-case deadweight loss at 62% of B. The old bound tells us that the deadweight-

loss supremum lies somewhere in the interval between 6% and 100% of B, a fairly uninformative statement in this

calibration.
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Our baseline calibrations display exactly this property. Consider the calibrated vaccine market.

Less than 6% of potential consumers are served at the high equilibrium price, leading to a large

Harberger triangle, amounting to 41% of B. Introducing a government subsidy—a per-unit subsidy,

which for accounting purposes assume is paid directly to the firm—and gradually raising it in

penny increments has no effect on equilibrium price or quantity until it reaches $7.69. The next

penny increment to $7.70 causes the firm to cut the price from $130 to zero. This relatively modest

subsidy, just 6% of the pre-subsidy equilibrium price, is enough to eliminate the Harberger triangle

entirely. The subsidy is socially efficient for a wide range of parameters. Even with a social cost

of public funds as high as 1.8 (so raising $1 of taxes costs society $1.80), social welfare would

be higher under the $7.70 subsidy than in the equilibrium without it. Interestingly, what was

intended to be a subsidy policy with the target of mitigating Harberger deadweight loss ends up

being equivalent to a universal vaccination program.

The effect of a subsidy on the drug market is similar. Introducing a government subsidy (again,

a per-unit subsidy paid directly to the firm) and gradually raising it in penny increments has no

effect on equilibrium price or quantity until it reaches $941.34. The next penny increment to

$941.35 causes the firm to cut the price from $27,387 to $265. While a subsidy of over $900

might seem high, since drug prices are much higher than vaccine prices, in fact it is only 3% of

the pre-subsidy equilibrium drug price. Though the subsidy does not fully eliminate the Harberger

triangle, it reduces it to less than 1% of first-best social surplus as the 11% of consumers who

remain unserved have very low incomes and thus very low drug demand.17 The subsidy would be

socially efficient even if the social cost of public funds were as high as 2.5.

While the subsidy policy nearly eliminates Harberger deadweight loss conditional on the devel-

opment of the product, it does little to eliminate the potential for deadweight loss at the extensive

margin regarding whether the product is developed at all. Intuitively, the subsidies are too small

to have much effect on incentives to enter the market. In the vaccine market, the $7.70 subsidy

reduces the supremum on deadweight loss by just two percentage points, from 56% to 54% of B.

In the drug market, the $941.35 subsidy also reduces the worst-case bound on deadweight loss by

just two percentage points, from 62% to 60%. Substantially improve entry incentives—thus sub-

stantially reducing deadweight loss at the extensive margin—would call for much larger subsidies.

17Eliminating the Harberger triangle entirely would require almost double the subsidy, $1,867.
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7. International Price Discrimination

Pharmaceutical manufacturers currently have considerable ability to price discriminate across coun-

tries, but there is an active policy debate on whether this ability should be curtailed—for example,

in the contexts of parallel trade for pharmaceuticals within the European Union (Danzon 1998) or

re-importation of Canadian pharmaceuticals in the United States (Pecorino 2002). In contrast to

the baseline calibration, which assumed the monopolist charges a uniform price across countries,

the calibrations in this section allow for some form of international price discrimination, whether

perfect or within limits set by reference pricing. Comparing the results across the two sections will

allow us to assess the welfare effects of policies impeding price discrimination.

The results for various scenarios involving international price discrimination are presented in

Table 5. For brevity, the table just presents relative producer-surplus ratios ρ
0
v and ρ

0
d for each

scenario. The producer-surplus ratios are summary indicators of how lucrative the respective mar-

kets for a vaccine and drug are, and can easily be converted into bounds on deadweight loss using

the formula in Proposition 1. The larger of the two of these gives a comprehensive bound on

deadweight loss by Proposition 2. For reference, the first row of the table repeats the relative

producer-surplus ratio from the baseline calibration assuming uniform pricing.

The second row of the table presents results for a calibration allowing the firm full freedom

to charge different prices across countries. Since our model takes consumers to be homogeneous

within a country, this pricing strategy is equivalent to perfect price discrimination, allowing the

producer to extract 100% of first-best social surplus regardless of the pharmaceutical it produces.

It can extract 100% of first-best social surplus from the vaccine market by selling to all individuals

in country i at a price of p0
vi = XiY

ε

i and 100% from the drug market by selling to all infected

individuals in country i at a price of p0
di = Y ε

i . Thus, as reported in Table 5, ρ
0
v = ρ

0
d = 100%.

This would eliminate any possibility of deadweight loss, whether due to inefficient pricing or entry

decisions.

Governments have a variety of policies that can interfere with firms’ ability to perfectly price

discriminate. An international ban could shut down price discrimination entirely. A policy allow-

ing pharmaceutical imports with no trade frictions could lead to the same result. Whether directly

or indirectly implemented, a ban on price discrimination re-introduces the potential for substantial
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deadweight loss we found in the calibrations for uniform pricing. Comparing the first two rows of

Table 5. In the vaccine market, the deadweight-loss supremum rises from 0% to 56% when price

discrimination is banned; and in the drug market, the supremum rises from 0% to 62%.

Kyle (2007) documents the range of other policies adopted by countries that impede perfect

price discrimination in pharmaceutical markets. Some countries control prices directly. Others use

international reference pricing, tying domestic prices to prices in peer countries. Other policies

include volume rebates, profit controls, reimbursement rate adjustments, etc. Space considerations

prevent us from analyzing all of these policies. We focus on just one, international reference

pricing, pursued to a greater or lesser extent by nearly 80% of the countries for which Kyle (2007)

could obtain dispositive evidence. We model this simply, assuming that all the countries in the

world use the United States as the reference country, capping prices in their countries to be no

greater than some proportion u ∈ (0,1) of the U.S. price.

Calibrating this scenario is complicated by the endogeneity of the reference price. The firm

may increase the reference price to relax the ceiling in other countries even at the sacrifice of some

reference-country profits. This endogeneity is easily addressed in our simple model. There are

only two relevant prices to consider charging in the United States. The firm can either decide to

serve some U.S. consumers, in which case it should charge their maximum willingness to pay for

product j and serve all of them. If it charges a penny more, no U.S. consumers would buy. In that

case, it may as well exclude the United States entirely, or equivalently set the U.S. price to infinity,

allowing the firm to perfectly price discriminate across all remaining countries. We proceed by

calibrating the outcome from these two strategies, one serving the United States and the other

excluding it, comparing the producer surplus from each, and selecting the more lucrative one as

the equilibrium.

The resulting producer-surplus ratios ρ
0
v and ρ

0
d

are shown in Table 5 for u increasing in 0.5

increments from 0 to 2. The u = 0 case corresponds to the case in which the United States is

the sole commercial market for the good; the producer either ignores all other countries or gives

the product away there. Given costless production, c j = 0, the producer is indifferent between

ignoring these other countries and freely supplying them (of course consumer surplus is much

higher with the latter option). Producer surplus is 37% of B in this scenario whether a vaccine

or drug is produced. The firm can perfectly extract the whole surplus from the U.S. market with
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either product because consumers in the country are homogeneous. This is a huge reduction in

producer surplus compared to the 100% from perfect price discrimination. Yet it is not much less

than the producer surplus in the uniform-pricing baseline. In other words, the firm does just about

as well if it has to rely on the United States as its sole revenue source as it would if it served the

whole world at a uniform price. This conclusion is particularly true in the drug market, where

calibrated producer surplus ratios ρ
0
d only differ by one percentage point between the uniform-

pricing scenario and scenario with u = 0. One can see the basis for this result in Figure 4. In either

panel, the shaded rectangle, indicating equilibrium producer surplus under uniform pricing, is not

much bigger than the rectangle that could be drawn under just the slice of U.S. consumers.

Relaxing the relative-pricing constraint by increasing u causes producer surplus to asymptote

to the 100% maximum for perfect price discrimination, a pattern that can be seen graphically in

Figure 5. Because the United States is such a high-demand country, constraining price to be half

that in the U.S. (u = 0.5) still allows the firm to extract 80% of B with a vaccine and 95% with a

drug.

The last row of the table reports the producer-surplus ratio that results from excluding the

United States and perfectly price discriminating among the remaining countries. This strategy

allows the firm to extract 63% of B. That this falls well short of 100% indicates the relative

importance of the U.S. market. Comparing the strategic options available to the firm, we see that

the producer would prefer excluding the United States to serving only the United States. However,

as long as the reference price is u ≥ 0.2, the producer earns more from serving than excluding the

United States whether it produces a vaccine or a drug.

8. Alternative Parameterizations

This section conducts a series of comparative-statics exercises, analyzing how the calibrations

respond to alternative parameterizations. We see how the calibrations change allowing for hetero-

geneity in just disease risk or just income, incorporating an alternative data series for disease risk,

and varying the income elasticity. The results are presented in Table 6. For brevity, again, the table

just presents relative producer-surplus ratios ρ
0
v and ρ

0
d . For reference, the first row of the table

repeats the relative producer-surplus ratios from the baseline calibration.
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The first comparative-statics exercise examines what happens if countries have the same in-

comes, differing only in disease risk. This change makes the vaccine market much less lucrative.

The top panel of Figure 6, which plots the inverse demand for this calibration, shows why. Whereas

the high income and moderate HIV risk compounded to make the United States a substantial source

of demand in the main calibration, the United States has now been pushed down the demand curve,

removing the curve’s “belly” that helped generate revenue before. Global disease risk Xi closely

follows a power law with exponent 1, the so-called Zipf distribution. Vaccine demand inherits this

property, leading to an almost perfect STRZ shape. This is the worst possible shape for trying

to inscribe a rectangle underneath capturing surplus for the producer. As reported in the second

row of Table 6, the vaccine producer only obtains 30% of the social surplus B from completely

relieving the disease burden. The firm’s strategy is to serve Uganda and higher-risk countries.

The opposite picture emerges with a drug. As disease risk is resolved into disease status ex

post, consumers with the same incomes have no heterogeneity. The resulting inverse demand

curve for the drug, shown in the lower panel of Figure 6, is a rectangle. The drug monopolist is

able to extract 100% of B with a price set at consumers’ homogeneous willingness to pay. There

is no deadweight loss from any source, pricing or product strategy, on this market. Unfortunately,

Propositions 2 and 1 tell us that the potential for deadweight loss in the comprehensive setting in

which either or both products can be developed depends not on the best but on the worst outcome

in the two isolated markets. Here, the comprehensive bound on relative deadweight loss equals

100 − 30 = 70%. The bound can be approached in the limit as kv approaches 30% of B and kd

approaches infinity. More than two thirds of total surplus could be dissipated because of inadequate

incentives to develop the less lucrative product, the vaccine, in this calibration.

The next comparative-statics exercise gives all countries the same HIV risk and has them just

vary by income, Yi. We omit the graph of the demand curves from now on for brevity and just look

at the relative producer-surplus ratio. In this calibration, both products generate the same producer

surplus. There is no change in the nature of consumer heterogeneity from the ex ante to the ex post

period. The market for both products is fairly lucrative, with the producer able to capture 57% of

B.

The next comparative-statics exercise returns to the baseline with heterogeneity in both Xi

and Yi but uses the revised data for 2003 HIV prevalence for Xi. Our goal is to see how robust
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our calibrations are to variation in HIV risk, which is measured with considerable error. In this

alternative calibration, we use the revised data published in UNAIDS (2006) rather than the initial

data published in UNAIDS (2004a). The correlation between the initial and revised HIV prevalence

series is quite high, at 0.985. There is a noticeable change in the relative producer-surplus ratios,

but they remain within four percentage points of the baseline.

The next comparative-statics exercise varies the income elasticity appearing in the formulas for

the willingness to pay for a vaccine (XiY
ε

i ) and a drug (Y ε

i ). Given that ε is an exogeneous rather

than estimated parameter in our calibrations, and it may have important effects on demand, it is

important to examine the robustness of the results to variation in ε. Table 6 reports calibrations for

0.5 increments in ε from ε = 0 to ε = 2. Figure 7 shows what the pattern looks like graphically (as

well as showing finer increments). The calibration for ε = 0 is a repetition of the earlier one with

heterogeneity only in disease risk. The calibration for ε = 1 is a repetition of the baseline.

Looking at the overall pattern in Figure 7, ρ
0
v is fairly flat in ε over the range ε ∈ [0.0,0.7],

hovering around ρ
0
v = 0.30, falling to ρ

0
v = 0.28 for ε = 0.5. On the other hand, ρ0

d falls precipitously

over the interval ε∈ [0.0,0.7], from ρ
0
d = 1.00 to ρ

0
d = 0.35. Both ρ

0
v and ρ

0
d turn upward for ε > 0.7

and eventually overlap each other. Intuitively, for large ε, heterogeneity in income starts to matter

more than heterogeneity in disease risk. But we know from Kremer and Snyder (2015) (see the first

paragraph of Section V.B) that the two products are similarly good at generating producer surplus

when there is heterogeneity in income alone. Indeed, for very large values of ε, the very highest

income country starts to dominate demand as its income is raised to an increasingly large power.

Which ε is empirically most plausible? We are interested in pharmaceutical sales on the private

market, so in the state of nature absent government procurement or insurance coverage. Such a

state is far from modern conditions at least in the United States. Getzen (2000) provides a survey of

empirical studies of the income elasticity of health expenditures, locating a handful of studies using

U.S. micro data from an historical period when most of the population was uninsured. Getzen finds

estimates from these studies in the [0.2,0.7] range. The midpoint of this interval, 0.4, was estimated

by Anderson, Collette, and Feldman (1960) using 1953 data. Micro studies using U.S. data from

the modern era with more insured consumers surveyed by Getzen (2000) find income elasticities

near zero, corresponding to the calibration with only disease-risk heterogeneity. Cross-country

studies typically produce higher estimates of ε. The handful of cross-country studies surveyed by
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Getzen (2000) estimated values of ε in the [1.2,1.4] range. The 1.3 midpoint was estimated by

Newhouse (1977). Figure 7 shows that relative producer surplus is higher (and the potential for

deadweight loss consequently lower) at ε = 1.3 than ε = 1.0, though the estimates are fairly similar.

9. Conclusion

In most countries’ healthcare markets, government programs overlay a complicated public or pri-

vate insurance system. In this setting, it is difficult to assess how well an important market such as

that for pharmaceuticals would perform in a simpler “state of nature” in which firms sold directly to

consumers on a private market. This paper attempts such an assessment combining cross-country

data on disease risk and income with some simple modeling assumptions to calibrate global phar-

maceutical demand. As a proof of concept, we calibrate demand for an HIV vaccine and drug.

Using these calibrated demands, we can compare how lucrative the products are, bound dead-

weight loss from pricing and entry distortions, and simulate the welfare effects of government

policies.

Overall, the analysis revealed a worrisome potential for distortion in global pharmaceutical

markets owing simply to the shape of pharmaceutical demand. The global demand curves for both

a vaccine and a drug are Zipf similar, a shape shown in our earlier work (Kremer and Snyder 2015)

to have the greatest potential for deadweight loss at both the intensive/pricing margin (i.e., the

largest Harberger triangle) and the extensive/entry margin (i.e., the largest gap between private and

social incentives to develop the pharmaceutical).

Our baseline calibration assumed consumers in a country share the same disease risk (equal

to the prevalence of HIV in 2003, when the HIV epidemic was still growing but before antiretro-

viral treatments became widespread) and same income (equal to per-capital GDP) and have unit

income elasticity. These simple modeling assumptions allowed us to graph the demand curves for

a vaccine and a drug, inscribe the producer-surplus-maximizing rectangle underneath, derive price

and quantity for the simple monopoly equilibrium we assume, and compute deadweight loss. As

a reality check, we compared the predictions from the calibrations to actual in the case of HIV

pharmaceuticals, ARTs, that were available circa 2003. Predictions were close to actual for price

($27,400 versus $23,000) as well as quantity (1.4 million versus 1.3 million).
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In both the calibrated vaccine and drug markets, the monopolist ends up selling to a small frac-

tion of high-demand consumers. Deadweight loss from above-cost pricing in the vaccine market is

41% of the social surplus B from completely relieving the disease burden and in the drug market is

49%. Potential deadweight loss from inadequate entry incentives is 56% in the vaccine market and

62% in the drug market. We proved a new proposition showing that this 62% is an exact expression

for the deadweight-loss supremum in the comprehensive case in which either or both products can

be developed.

We also ran a suite of calibrations allowing for price discrimination. These results highlighted

the pivotal role played by the United States in global pharmaceutical demand. The firm finds

targeting just the United States almost as lucrative as selling to the world at a uniform price. If

other countries employ reference pricing pegged to the U.S., for most reasonable scenarios it is

more lucrative for the firm to serve the United States and accept the ceiling this imposes on other

prices than to exclude the United States and perfectly price discriminate across the remaining

countries. The U.S. Department of Commerce (2004) has complained that OECD countries behave

as free riders, relying on the high prices in relatively open U.S. markets to fund innovation while

enjoying low regulatory prices themselves. Our calibrations suggest that the United States would

have a pivotal role whether or not other countries regulated prices, explaining in part why other

countries may be emboldened to free ride.

Our baseline analysis abstracted from the involvement of governments and insurance compa-

nies as well as epidemiological externalities. These factors can be integrated back into the analysis

under a suitable reinterpretation of the model. Rather than assuming consumers are homogeneous

within each country, assume national governments (or large national insurers) decide whether to

order a pharmaceutical on behalf of heterogeneous citizens enrolled their health systems. Assume

further that the governments only purchase pharmaceuticals satisfying the WHO’s standard of high

cost effectiveness, i.e., saving a DALY at a cost less than the country’s GDP per capita. Assume

finally that taking either pharmaceutical saves one DALY (so, for example, taking an HIV drug

for a year extends the infected person’s life for a year). Country i’s pharmaceutical demands are

the same under these assumptions as in our baseline model with direct sales to homogeneous con-

sumers in the country with disease risk Xi, willingness to pay Yi given by GDP per capita, harm Hi

normalized to 1, and income elasticity set to ε = 1. The model of national-government purchases
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can also handle epidemiological externalities recognizing that externalities mostly flow within a

country and would be internalized by the government.18

In future work, we plan to derive a quantitative measure of a country’s pivotalness for inno-

vation incentives. We also plan to enrich the international calibration by accounting for the het-

erogeneity of consumers within each country. Kremer and Snyder (2016) calibrate global demand

for an arbitrary product assuming a lognormal distribution of income within each country, using

Pinkovskiy and Sala-i-Martin’s (2009) estimates of the two lognormal parameters for each country.

We are exploring the approach of calibrating global demand for a pharmaceutical by modeling dis-

ease risk and income as bivariate lognormal random variables and combining surveys and a variety

of other data sources to estimate the five requisite parameters for each country.

18Several caveats apply to the model of national-government purchases. First, governments must be assumed to
purchase at a uniform posted international price. If the firm were instead allowed to post country-specific prices, the

outcome would be equivalent to the scenario with perfect price discrimination. If governments were instead allowed

to bargain with the firm, this raises a new scenario not yet analyzed. It is easy to see that if parties engage in Nash

bargaining, they will arrive at the social optimum. Letting α be the firm’s bargaining share, the producer-surplus ratios

in the bargaining model would be ρ0
v = ρ0

d = α. Whether the deadweight-loss supremum is higher or lower in this
bargaining scenario than in the uniform-posted-price baseline depends on α: if α = 0.5, then the deadweight-loss

supremum is lower in the bargaining scenario, but the reverse is true for sufficiently low α. A second caveat is that the

national government’s purchase must be tied to a commitment to universal access for all citizens—as, for example,

Brazil committed to for ARTs in 1996 (Reich and Bery 2005)—rather than targeting the rich or otherwise higher

demand consumers. A third caveat regards the interpretation of harm relieved by the pharmaceuticals. As noted at
the beginning of Section 6, if we interpret the Hi = 1 normalization as a year’s course of the drug extending life by a

year, the parallel interpretation for the vaccine would involve a booster each year to maintain protection. If the vaccine

is assumed to provide permanent protection, relieved harm would have to be scaled up by the discounted stream of

expected DALYs saved.
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Appendix: Proofs

Proof of Proposition 1: Assume benchmark values of the parameters. Suppose the firm’s only

choice is to develop product j or nothing. We will show that the supremum on relative deadweight

loss is bounded by 1 −ρ
0
j above and below, proving the two are equal and thus (6) holds.

A series of steps can be used to bound the supremum from below:

sup
{k j≥0}

(

DWL0

B

)

≥ lim
k j↓PS0

j

(

DWL0

B

)

(A1)

= lim
k j↓PS0

j

(

W 00

B

)

(A2)

= lim
k j↓PS0

j

[

max(TS00
j − k j,0)

B

]

(A3)

=
TS00

j − PS0
j

B
(A4)

=
B − PS0

j

B
(A5)

= 1 −ρ
0
j . (A6)

Equation (A1) follows since the limit point on the right-hand side is just one element of the closure

of the larger set over which the supremum on the left-hand side is being taken. Equation (A2)

holds because nothing is developed in equilibrium in the limit, implying W 0 = 0 and thus DWL0 =
W 00 −W 0 = W 00 in the limit. To see (A3), note that either product j is developed, yielding social

first-best surplus TS00
j − k j, or nothing, yielding 0. The social optimum generates the maximum of

these two social surpluses. Equation (A4) follows from evaluating the limit, (A5) follows from (2),

and (A6) follows from the definition of ρ
0
j.

We next show the supremum is bounded above by 1 −ρ
0
j. If W 00

j = 0, then DWL0
j = 0 ≤ 1 −ρ

0
j ,

and we are done. So suppose W 00
j > 0 for the remainder of the paragraph. We have the following

series of steps:

DWL0 = W 00 −W 0 (A7)

= W 00
j −W 0 (A8)

≤ W 00
j −Π

0
j (A9)

= T S00
j − k j − (PS0

j − k j) (A10)

= B − PS0
j . (A11)

Equation (A7) holds by definition. Equation (A8) holds since W 00 = max(0,W00
j ) =W 00

j by main-

tained assumption that W 00
j > 0. Equation (A9) holds since W 0

j ≥ Π
0
j. Equation (A10) follows

from substituting relevant definitions and (A11) substituting from (2) and canceling terms. Divid-

ing (A7)–(A11) by B yields
DWL0

B
≤ 1 −ρ

0
j . (A12)
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Conditions (A6) and (A12) sandwich the supremum between 1 −ρ
0
j above and below, yielding (6)

as an exact equality. Q.E.D.

Proof of Proposition 2: Similar to the previous proof, we will show that the supremum on rel-

ative deadweight loss is bounded by 1 −ρ
0
min above and below, proving the two are equal and thus

(7) holds. For concreteness, suppose throughout the proof that

PS0
v ≤ PS0

d . (A13)

Arguments establishing the bound for the reverse inequality are similar and omitted for brevity.

A series of steps can be used to bound the supremum from below:

sup
{kv,kd≥0}

(

DWL0

B

)

≥ lim
kv↓PS0

v,kd↑∞

(

DWL0

B

)

(A14)

= lim
kv↓PS0

v

(

W 00

B

)

(A15)

= lim
kv↓PS0

v

[

max(W 00
v ,0)

B

]

(A16)

= lim
kv↓PS0

v

[

max(TS00
v − kv,0)

B

]

(A17)

= 1 −ρ
0
v (A18)

= 1 −ρ
0
min. (A19)

The arguments for (A14) and (A15) are similar to those for (A1) and (A2), respectively. Equation

(A16) holds because the socially efficient product strategy cannot involve development of a drug,

alone or together with a vaccine, for sufficiently large kd. Hence σ
00 ∈ {v,n}, implying W 00 =

max(W 00
v ,0). Equation (A17) holds by definition. Equation (A18) follows from steps similar to

(A3)–(A6), and (A19) holds by assumption (A13).

We next bound the supremum from above. We start by establishing the following inequality,

DWL0 ≤ B − PS0
min, (A20)

holds regardless of which value, σ
00 ∈ {v,d,b,n}, the socially optimal product strategy takes on.

First consider the trivial case in which σ
00 = n. Then DWL0 = W 00 −W 0 = 0 since W 00 = W 0 = 0.

But then (A20) trivially holds because B − PS0
min ≥ 0 = DWL0.

Next, consider the non-trivial case in which σ
00 ∈ {v,d,b}. We can establish the following

series of steps:

DWL0 = W 00 −W 0 (A21)

= TS00 − k
σ

00 − (Π0 + CS0) (A22)

≤ TS00 − k
σ

00 −Π
0 (A23)

≤ TS00 − k
σ

00 −Π
0
σ

00 (A24)

= TS00 − PS0
σ

00. (A25)

= B − PS0
σ

00 . (A26)
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Equations (A21) and (A22) follow from substituting the definitions of the relevant variables and

(A23) from CS0 ≥ 0. Equation (A24) holds because the equilibrium product strategy is the most

profitable, implying Π
0 ≥ Π

0
σ

00. Equation (A25) follows from Π
0
σ

00 = PS0
σ

00 − k
σ

00 and (A26) from

(2).

We next show

PS0
σ

00 ≥ PS0
min (A27)

for all σ
00 ∈ {v,d,b}. If σ

00 = v, then PS0
σ

00 = PS0
v ≥ PS0

min, implying (A27) holds. Similar

arguments show (A27) holds if σ
00 = d. Suppose σ

00 = b. The firm can replicate producer surplus

from a drug if both products have been developed by setting pbv = ∞ and pbd = p0
d. Hence PS0

b ≥

PS0
d ≥ PS0

min, implying (A27) holds, completing the proof that (A27) holds for all σ
00 ∈ {v,d,b}.

We can now complete the proof. Combining (A26) and (A27), we have DWL0 ≤ B − PS0
min for

all σ
00 ∈ {v,d,b}. Combining this fact with the argument in the text following (A20) implies that

(A20) holds for all σ
00 ∈ {v,d,b,n}. Dividing (A20) by B,

DWL0

B
≤ 1 −ρ

0
min (A28)

for all kv,kd ≥ 0, implying

sup
{kv,kd≥0}

(

DWL0

B

)

≤ 1 −ρ
0
min. (A29)

Conditions (A19) and (A29) sandwich the supremum between 1 −ρ
0
min above and below, yielding

(7) as an exact equality. Q.E.D.
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Tables and Figures

Table 1: Toy Example Illustrating Calibration Method

i Ni Xi Yi NiXi XiYi NiXiYi

1 1,000 0.01 10,000 10 100 100,000

2 1,500 0.05 9,000 75 400 675,000

Note: Fictitious data for a toy example of the calibration method.

Table 2: Descriptive Statistics for Cross-Country Data

Variable Notation Mean Std. dev. Min. Max.

Population (million) Ni 38.9 138.5 0.3 1,288.4

HIV prevalence Xi 0.014 0.032 0.000 0.202

GDP per capita Yi 7,653 12,375 106 64,670

Notes: Entries are descriptive statistics for 2003 data for sample of 158 countries. We compute HIV prevalence by

dividing “Estimated number of people living with HIV, adults and children, end 2003” from UNAIDS (2004), by

population. GDP per capita from “GDP per capita (current US$)” entry of World Bank Open Data, downloaded May

10, 2017 from http://data.worldbank.org/indicator/NY.GDP.PCAP.CD. Population from “Population, total” entry of
World Bank Open Data, downloaded May 10, 2017 from http://data.worldbank.org/indicator/SP.POP.TOTL.

Table 3: Correlations in Cross-Country Data

Ni Xi Yi

Ni 1.00

Xi −0.07 1.00

Yi −0.04 −0.19 1.00
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Table 4: Baseline Calibration Results

Description Formula Result

Vaccine alone

Price p0
v $130

Quantity q0
v 344 million

Consumer surplus
CS0

v

B
= γ0

v 0.16

Producer surplus
PS0

v

B
= ρ0

v 0.44

Harberger DWL
HDWL0

v

B
= 1 −γ0

v −ρ0
v 0.41

DWL supremum sup
(

DWL0
v

B

)

= 1 −ρ0
v 0.56

Zipf similarity Z0
v 0.66

Drug alone

Price p0
d $27,387

Quantity q0
d 1.4 million

Consumer surplus
CS0

d

B
= γ0

d 0.13

Producer surplus
PS0

d

B
= ρ0

d 0.38

Harberger DWL
HDWL0

d

B
= 1 −γ0

d −ρ∗d 0.49

DWL supremum sup
(

DWL0
d

B

)

= 1 −ρ0
d

0.62

Zipf similarity Z0
d 0.74

Both products possible

DWL supremum sup
(

DWL0

B

)

= 1 −ρ0
min 0.62

Notes: Baseline calibration in which consumers are heterogeneous in both disease risk (Xi) and income (Yi), have

unit income elasticity, and are willing to pay up to one year’s income to avoid disease harm. All surpluses expressed
as proportion of first-best social surplus (equivalently, as proportion of disease burden). The suprema are taken over

kv,kd ≥ 0.
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Table 5: Calibrations of Producer-Surplus Ratios for Various Price-Discrimination Scenarios

Scenario Vaccine market ρ0
v Drug market ρ0

d

Uniform-pricing baseline 0.44 0.38

Perfect price discrimination 1.00 1.00

Price ceiling tied to varying proportion of U.S. price

u = 0.0 0.37 0.37

u = 0.5 0.80 0.95

u = 1.0 0.84 1.00

u = 1.5 0.88 1.00

u = 2.0 0.91 1.00

Excluding U.S. to evade price ceiling 0.63 0.63

Notes: All entries are producer surplus as proportion of first-best social surplus (equivalently, as proportion of disease

burden). Scenarios have the same parameters and functional form as the baseline, just changing the pricing strategy

from uniform to one allowing prices to differ across countries.
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Table 6: Calibrations of Producer-Surplus Ratios for Alternative Parameterizations

Scenario Vaccine market ρ0
v Drug market ρ0

d

Baseline parameterization 0.44 0.38

Just disease-risk heterogeneity 0.30 1.00

Just income heterogeneity 0.57 0.57

Revised disease-risk data 0.48 0.42

Varying income elasticity

ε = 0.0 0.30 1.00

ε = 0.5 0.28 0.40

ε = 1.0 0.44 0.38

ε = 1.5 0.67 0.59

ε = 2.0 0.69 0.70

Notes: All entries are producer surplus as proportion of first-best social surplus (equivalently, as proportion of dis-

ease burden). Scenarios return to baseline assumption of uniform pricing. Scenarios return to baseline in all other
dimensions as well except for the stated alternative.
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Figure 1: Demand Curves in Toy Example
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Notes: Pharmaceutical demands derived from fictitious data in Table 1. Axes scaled so that a unit of area represents

the same producer surplus in both panels. Producer surplus equal to area of shaded region.
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Figure 2: Trends in Global HIV Prevalence and Treatment
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Sources: Left-axis variable equals HIV cases (from UNAIDS data on “Number of people living with HIV,” down-
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downloaded from http://data.worldbank.org/indicator/SP.POP.TOTL). Right-axis variable from UNAIDS data re-

ported by the World Bank in “Antiretroviral therapy coverage (% of people living with HIV),” downloaded from

http://data.worldbank.org/indicator/SH.HIV.ARTC.ZS. All downloads on May 8, 2017.
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Figure 3: Geographical Distribution of Main Variables
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Figure 4: Demand Curves for HIV Pharmaceuticals in Baseline Calibration
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aid visualization. Shaded rectangle represents equilibrium pricing decision; its area equals producer surplus. Grey line

is STRZ demand curve with same area underneath (and thus same total surplus) as calibrated demand.
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Figure 5: Effect of Reference Pricing Pegged to the United States on Producer-Surplus Ratio
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Figure 6: Demand Curves for HIV Pharmaceuticals in Calibration with Heterogeneity in Disease

Risk Alone
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Notes: Calibration with heterogeneity in disease risk (Xi) alone. As in previous figure, income elasticity is ε = 1.

Income set to the constant Ȳ = ∑
I
i=1 NiXiYi/∑

I
i=1 NiXi such that the social surplus B from completely relieving the

disease burden is same as in the previous figure. One can show Ȳ is the weighted harmonic mean of income, where

country i’s weight is its share of the world disease burden, Bi/∑
I
k=1 Bk . Axes have same scales as previous figure;

as there, a unit of area represents the same producer surplus in both panels. Both axes truncated to aid visualization.

Shaded rectangle represents equilibrium pricing decision; its area equals producer surplus. Grey line is STRZ demand

curve with same area underneath (and thus same total surplus) as calibrated demand.
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Figure 7: Effect of Income Elasticity on Producer-Surplus Ratio
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