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1. Introduction

The increasing demand for rigor in empirical economics has led to the increasing use of auxiliary

tests (balance, specification, over-identification, falsification, placebo, etc.) to assess the credibility

of a paper’s main results. We dub these tests “sniff tests” because rejection is bad news for the

author and standards for passing are informal.

Sniff tests undeniably provide valuable information that, when combined with the paper’s main

test results, allows readers to better update their priors about the researched subject. Sniff tests may

not be completely benign, however, if the publication process uses them as a screen. It is natural

to want to discard misspecified studies that would pollute the literature and waste scarce journal

space. By chance, 5% of well-specified studies will have probability values (p-values) significant

at the 5% level, 10% of them at the 10% level, and so forth, making them appear to be misspecified

when judged by those respective thresholds. If the publication process screens out these studies,

valuable research is lost. Articles having bad luck with their sniff tests, presumably otherwise of

average quality, end up in what Rosenthal (1979) termed the “file drawer,” replaced by articles of

marginal quality having better luck with their sniff tests. This cost may be worth bearing if enough

misspecified studies are also caught by the screen. To understand whether the publication process

is operating efficiently, it is useful to measure how many papers are screened out on the basis of

sniff tests and the proportions that are well-specified versus misspecified. How much wheat is

being thrown out with the chaff?

It would be difficult to answer this question by analyzing a small sample of published papers.

We contribute to the literature by painstakingly collecting a sample of 29,755 sniff tests from 892

articles published in 59 economics journals. Under the null hypothesis of no misspecification and

absent screening by the publication process, sniff-test p-values should have a uniform distribution

on [0,1] by construction. Comparing the aggregate distribution of p-values from our large sample

of sniff tests to the uniform benchmark allows us to uncover the extent of screening on significant

p-values and the extent of misspecification in the underlying set of papers.

We start with a reduced-form analysis, amounting to visual inspection of kernel densities of

p-values from various subsamples. While we take an initial look at the full dataset, most of the

analysis focuses on what we call the “pure” sample of sniff tests, where we are sure the authors
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did not take measures (re-randomization, stratification, or matching) to lessen the p-values’ signif-

icance. We further break the pure sample down into balance tests in randomized controlled trials

(RCTs) and other tests. We expect that few RCTs suffer from flawed randomization procedures,

ruling out a substantial proportion of misspecified studies. Unless significant p-values have been

removed at some point in the publication process, the aggregate distribution of p-values for bal-

ance tests in RCTs should closely resemble the uniform distribution. For other tests, an unknown,

perhaps substantial, proportion of studies may suffer from misspecification, skewing the aggregate

distribution of p-values toward 0 in the absence of removal.

For the pure sample of balance tests in RCTs, the kernel density of p-values looks relatively

uniform, except for a block of missing mass in the [0,0.15) interval (confirmed by formal tests to

be a statistically significant departure from uniformity). This shape is consistent with the balance

tests in RCTs not suffering from much misspecification but being subject to a substantial rate of

screening for significant p-values. For the pure sample of non-balance tests, the kernel density of

p-values is highly non-uniform, with a large spike of p-values near 0. This shape is consistent with

substantial misspecification in the underlying population of studies, enough that considerable mass

of p-values is concentrated in the significant range even after some is removed by the publication

process.

Authors would like to claim that significant sniff tests are the result of bad luck rather than

misspecification, but such claims are easier to evaluate in the aggregate. Using information col-

lected on the narrative authors used to characterize their sniff tests collected from the articles’ text,

we show that, surprisingly, fewer authors attribute their failed sniff tests to random bad luck than

would be justified in doing so.

Moving from reduced-form to structural methods, we specify a two-stage model in which the

initial population is a mixture of well-specified studies, whose p-values are characterized by the

uniform distribution, and misspecified studies, whose p-values follow an alternative density ap-

proximated by a flexible beta distribution. In the second stage, the publication process removes

a proportion of studies with significant sniff tests. The model predicts a particular nonmonotonic

shape for the distribution of p-values, which turns out to fit the data quite well, lending credibility

to the structural estimates. For the pure sample of balance tests in RCTs, our structural estimates

imply that 46% of p-values below 0.15 are removed by the publication process, yet only 11% of
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p-values in this range are the result of misspecification (failed randomization). The remaining 89%

of p-values in this range are from well-specified studies that could have been resuscitated by con-

ditioning the main results on any unbalanced covariates rather than being screened out. For the

pure sample of other tests, 25% of p-values below 0.15 are removed by the publication process,

while 36% of p-values in this range are the result of misspecification.

Lacking information on the costs of publishing misspecified studies or removing well-specified

studies, we are not in a position to conduct a welfare analysis. We estimate that misspecified studies

account for fewer than 1% of balance tests in RCTs with p-values above 0.15 and 2% of other tests

with p-values above 0.15. Hence, using a 0.15 threshold for removal appears to be sufficient to

keep the published literature relatively free of misspecified studies. Given the contrasting outcomes

between balance and other tests, if the screening process is efficient for RCTs, it may be too liberal

for other studies. On the other hand, if the screening process is efficient for other studies, it may

be too severe for RCTs.

2. Literature Review

Our paper provides the first large-scale meta-analysis of sniff tests. The closest previous work is

Bruhn and McKenzie (2009). The authors investigate the practice used by leading development

economists to obtain and report balance in RCTs. The authors confirm in a Monte Carlo exercise

that the aggregate distribution of p-values from balance tests in RCTs is uniform on [0,1] even if

tables report many tests and their outcomes are correlated. The authors analyze a sample of balance

tests from articles in development economics. While their study examined 13 articles, our sample

includes nearly 900 articles across all fields of economics, allowing us to obtain a broader view of

the distribution of p-values in the economics literature and to run formal statistical tests.

A series of more recent papers apply econometric theory to determine whether sniff tests can

be appropriately used as a screen and to develop alternatives if not. Most of these papers focus on

testing for violation of parallel trends in difference-in-difference studies, but the results often have

more general implications. Kahn-Lang and Lang (2019) raised an early caution that an insignificant

result from a parallel-trends test may not adequately justify the research design. Borusyak and

Jaravel (2017) propose new tests for pre-trends in event studies. Andrews, Gentzkow, and Shapiro
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(2018) propose a measure relating the performance of sniff tests to the their informativeness on

the robustness of main results. Freyaldenhoven, Hansen, and Shapiro (2019) propose methods to

estimate causal effects in event studies when pre-trends are present in the outcomes. Insteading

of the null of no misspecification, Bilinski and Hatfield (2020) suggest flipping the perspective

and testing against the null that misspecification exceeds some threshold. Roth (2020) shows that

screening studies based on violation of parallel trends can exacerbate publication bias in the main

results of interest.

The sniff tests analyzed in our paper differ from tests of main effects on which the broader

literature on publication bias has focused. Despite this difference, our paper makes two contribu-

tions to this broader literature. First, though we highlight the loss of informative research as the

main cost of screening out well-specified studies that happen to have significant sniff-test results,

Roth (2020) points out that such screening can indirectly exacerbate the bias in test of main effects.

Whether this indirect form of publication bias should be a major concern depends on the propor-

tion of well-specified studies that are screened out relative to misspecified studies. Our estimates

suggest that the majority of screened studies are well-specified. Second, while the selection pres-

sure exerted by the publication process is the opposite for sniff test as for main tests—selecting

for high rather than low p-values—our results can shed light on the potential strength of selection

pressures, regardless of direction. We find strong pressure in some subsamples, removing nearly

half of tests from the journals for the pure sample of balance tests in RCTs.

The broader literature on publication bias in medical and science journals is too vast to survey

here. The literature on publication bias in economics, dating back at least to DeLong and Lang

(1992), has been surveyed in Stanley (2005), Ioannidis and Doucouliagos (2013), and Christensen

and Miguel (2018). Opportunities to identify the universe of unpublished and published studies is

rare for meta-researchers in economics because the majority of economics studies are observational

and pre-analysis plans for RCTs have gained traction only recently. More commonly, only the

selected set of published articles can be observed. To facilitate the detection of publication bias in

this selected set, meta-analyses have focused on isolated cases in which many studies of the same

pair of dependent and independent variables have been published, applying methods including

the funnel plot, rank correlation tests, and parametric selection models. Examples include meta-

analyses by Card and Krueger (1995) on the effect of minimum wage on employment; Ashenfelter,
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Harmon, and Oosterbeek (1999) on the effect of schooling on earnings; Görg and Strobl (2001) on

the effect of multinationals on domestic productivity; Doucouliagos (2005) on economic freedom;

Nelson (2014) on the price elasticity of beer; and Havranek (2015) on intertemporal substitution.

Our methods allow us to pool observations across a range of topics, as do Brodeur et al. (2016)

and Ioannidis, Stanley, and Doucouliagos (2017).

Regarding the methods used in our structural estimation, Iyengar and Greenhouse (1988) and

Hedges (1992) pioneered the approach of specifying a parametric model of publication removal,

estimated via maximum likelihood. Andrews and Kasy (2019) generalized the approach and ap-

plied it to replication studies and meta-analyses in economics and psychology. Since we study sniff

tests, not tests of main effects, estimation is simpler because we can work with a known uniform

distribution under the null of no misspecification, and this null is approximately true for a sub-

sample of our data (pure sample of balance tests in RCTs). We adapted the beta-uniform mixture

model, which we use in our structural model to decompose the aggregate distribution of p-values

into populations of nulls and alternatives, from the bioinformatics literature (see, e.g., Pounds and

Morris 2003, Datta and Datta 2005, and Do et al. 2005). Allison et. al. (2006) discuss the use of

the model to analyze tests from DNA microchips of the differential expression of a large number of

genes simultaneously. Estimating a beta-uniform mixture model on the pooled p-values from those

tests allows researchers to determine the relative proportion of related versus unrelated genes.

3. Data

We collected data on sniff tests by having a team of research assistants systematically examine

a large initial pool of journal articles in economics. We identified this pool from ScienceDirect,

Elsevier’s online database of journal articles. We collected PDF files for all economics articles that

were turned up by a search of related keywords such as “balance test,” “baseline comparison,” “fal-

sification test,” “placebo test,” “randomization,” “validation check,” and so on. We supplemented

the Elsevier journals with five top-tier, general-interest journals in economics archived on JSTOR

(American Economic Review, Econometrica, Journal of Political Economy, Review of Economic

Studies, Quarterly Journal of Economics), performing the same keyword search as on ScienceDi-

rect. As the keywords were relatively uncommon before 2005, we restricted our pool to articles
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published from 2005 to 2015.1

The research assistants browsed each article in this initial pool, determining whether it con-

tained a table reporting sniff tests. If so, the research assistant collected data on test statistics,

p-values, and significance levels reported in the table or tables containing the sniff tests along with

relevant table, article, and journal information. Only two-sided tests were included.2 All work was

re-checked by supervising research assistants. We dropped 764 observations that either were not

structured as well-defined hypothesis tests with associated p-values or did not provide sufficient

information to glean an exact p-value or an interval for it. Dropping two further observations with a

p-value exceeding 1 leaves a final dataset of 29,755 sniff-test observations. These observations are

reported in 1,367 different tables from 892 articles published in 59 journals. Appendix Table A1

lists the journals and the contribution each makes to the sample. The Journal of Health Economics

contributes the most observations (16% of the sample), followed by the Journal of Public Eco-

nomics (11%), the Journal of Development Economics (10%), Labour Economics (8%), and the

American Economic Review (8%).

Figure 1 graphs the number of observations in our dataset by year of publication of the con-

taining article. To the extent that the journals in our sample are representative, this figure provides

a picture of the growing use of sniff tests in the economics literature. Starting from a few sniff tests

in 2005, the number of sniff tests in our dataset grows at a 40% average annual rate.

Figure 2 presents the subsample breakdown by methodology for the dataset. It is important

to distinguish among methodologies because different types of tests can have very different dis-

1Quarterly Journal of Economics 2013-2015 and Review of Economic Studies 2015 are unavailable through JS-
TOR. We performed searches of the same keywords on Google Scholar to obtain the initial pool of articles for these
journal-years.

2We omitted one-sided tests given the difficulties of analyzing publication bias in the context of one-sided tests,
outlined by DeLong and Lang (1992). However, we did notice some peculiar cases in our data collection in which
authors used an inconsistent reporting convention, gauging significance levels for their sniff test according to the tight
thresholds of a two-sided test but then discussing the test as if it were one-sided. For example, the authors might test
for a pre-trend, discover its p-value is significant at the 5% level according to a two-sided test, but then argue that the
trend is in the opposite direction from their result of interest (say a downward trend working against a positive jump
at a regression discontinuity). If in fact the test cannot be rejected when a negative trend is found, it was a mistake to
have used two-sided rather than one-sided significance thresholds. Of course, the one-sided null would not be rejected
in this particular test regardless of significance level used because the trend was on the “accept” side of the inequality.
The problem raised by this selective use of one- and two-sided tests is in the interpretation of other sniff tests in the
article: one-sided tests may have been appropriate for these, too, but rejections glossed over by the use of tighter
two-sided thresholds. It is unclear how best to treat these peculiar cases of one-sided tests posing as two-sided. We
checked the robustness of all of our results including and excluding them. The results are very similar in magnitude
and significance. All results presented in this paper include these observations.
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tributions of p-values. Balance tests from randomized controlled trials (RCTs) will have a special

place in our analysis because we expect study flaws due to randomization failure are rare; so their

p-values should have little deviation from the uniform [0,1] distribution. We do not have good ex

ante knowledge of the amount of study flaws in other tests (balance tests from non-RCTs, placebo

tests, and various types of falsification and specification tests). The shape of the mixed distribution

will depend on the nature of the underlying data and model appearing in the articles in our sample.

For example, specification tests will exhibit a concentration of low p-values if many papers in our

dataset happen to suffer from misspecification.

Valid techniques exist to improve balance in RCTs relative to what we will label the “pure”

case of a single randomization. As discussed in Athey and Imbens (2017), these techniques in-

cluding re-randomization (randomizing treatment/control selection multiple times until a desired

balance in covariates between groups is achieved), stratification (randomizing treatment/control

selection within covariate strata), and matching (finding pairs of observations with the same co-

variates, making one a treatment and the other a control). Tautologically, application of balance-

improvement techniques raises the p-values of the subsequent balance tests. If we included balance

tests that have been run after balance improvement in our sample of RCT balance tests, the dis-

tribution of p-values would no longer be expected to be uniform in the absence of study flaws.

Balance-improvement techniques shift some of the mass of low p-values to higher values, creating

an upward bias in estimated amount of removal during the publication process. To avoid this prob-

lem, we construct a pure subsample for which we can rule out balance improvement, separating

items for which balance improvement cannot be ruled out into a different subsample.

Bruhn and McKenzie’s (2009) survey of leading researchers who conduct RCTs in developing

countries reveals a “mixed bag” of approaches toward balance. While it is not uncommon for re-

searchers to resort to a single randomization (80% did so for at least one past experiment; 40% did

so for their most recent experiment), balance-improvement techniques are also widely used. Their

review of selected publications suggests that when authors used re-randomization, the process was

not described in detail. To account for opaque or possibly missing mentions of re-randomization,

we are conservative in our formation of the pure subsample and only include items for which re-

randomization can be ruled out on a priori grounds. Among other examples, this includes cases in

which a public lottery determines treatment status and cases in which treatment has been assigned
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by a third-party. Our pure subsample contains 42% of RCT balance test items. For the remain-

ing 58% of RCT balance tests, either re-randomization is not mentioned in the article but cannot

definitively be ruled out because authors had access to the baseline data to re-randomize before

treatment assignment3 or balance was definitively improved by application of re-randomization,

stratification, and/or matching.4

Turning to the subsample of tests other than balance in RCTs, re-randomization and strat-

ification are irrelevant in this context since authors cannot control the experimental procedure.

Matching is the remaining, feasible method for p-value improvement, which authors employ by

restricting analysis to a matched subsample of their full sample. In 74% of these other tests, no

matching, and thus no p-value improvement method, was employed. The rest involve some match-

ing. For 11% of other tests, matching is employed and results of sniff tests prior to matching are

reported. For 16% of other tests, matching is likewise employed but results of sniff tests after

matching are reported.

For the test statistics collected, we tried to glean p-values whenever possible, whether directly

reported by the authors or whether the authors supplied enough ancillary information for us to

compute the p-value. We were able to find exact p-values for 41% of the observations. For 59% of

the observations, we were unable to glean an exact p-value but the authors did report the interval

in which the p-value fell, usually indicated by asterisks alongside the reported test statistic.

We also directed the research assistants to collect qualitative information on how authors char-

acterized the outcome of their sniff tests. We defer discussion and analysis of this variable to

Section 5.5.
3There is less concern about the opacity of the reporting of stratification and matching; perhaps owing to the delib-

eration involved in their application, they are thought to be reported whenever used. In sum, therefore, observations in
our possibly pure sample are definitively not stratified or matched.

4Stratification needs not compromise the uniform distribution of p-values under the null hypothesis of no study flaw
when there is no removal. Of course stratification improves treatment/control balance for the stratifying variables by
construction, but these variables are seldom included in subsequent balance tests. Instead, balance in other variables
is tested. If these other variables are uncorrelated with the stratifying variables, then balance-test p-values should
still follow a uniform distribution under the null. On the other hand, if these other variables are correlated with the
stratifying variables, balance in the stratifying variables may be inherited by correlated variables, reducing the mass
of significant p-values from balance tests compared to a uniform distribution.
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4. Reduced-Form Analysis

Our reduced form methods offer a simple descriptive analysis of the amount of deviation of ag-

gregate distributions of p-values away from the uniform benchmark. Section 4.1 presents kernel

density estimates for various subsamples. Section 4.2 describes the regression-based specifications

used. Section 4.3 presents the regression results and simple statistical tests of deviation from the

uniform distribution benchmark.

4.1. Kernel Density Plots

In this subsection, rather than focusing on the mass of p-values in a particular interval, we plot

kernel density estimates of the entire distribution. While kernel density estimation is typically

applied to random variables with unbounded supports, the support for p-values is [0,1], having

both lower and upper bounds. The kernel density estimator must be modified to account for these

bounds.5 The kernel densities are estimated using the subsample of exact p-values rather than

intervals. To account for the fact that different articles contribute different number of sniff tests,

we weight each p-value by the inverse of the number of observations in the containing article so

each article contributes equally to the aggregate distribution. A more detailed discussion of this

weighting scheme can be found in the next subsection where we present technical details behind

the regression specifications.

The kernel density plot in Panel (1) of Figure 3 shows all exact p-values in our full sample.

One immediately sees the distribution deviates considerably from the uniform, suggesting a sizable

number of published sniff tests pick up study flaws. The shape of the kernel density also follows a

peculiar nonlinear shape. The plot spikes for the lowest p-values. The mountain of extra mass for

p-values below 0.05 is taken from the (0.05,0.2) interval. Above 0.2, the density is nearly collinear

with the dotted horizontal line having height 1, the benchmark uniform density. We discuss the

shape of this distribution further in our structural model section and show that our model correctly

captures the forces resulting in this shape.

Panel (2) shows the kernel density plot for the pure RCT balance tests. As we discuss in

5We perform the kernel density estimation using Jann’s (2005) add-on module for Stata, kdens. The default
method in this module to account for bounds on supports is renormalization, which takes the standard kernel density
estimate and divides it by the amount of local kernel mass lying inside the bounds of the support. See Jones (1993) for
a detailed description. We use this default as well as the default Epanechnikov kernel.
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previous sections, we expect that, absent removal from the publication process, the distribution

should be close to uniform since study flaws arising from failures to appropriately randomize

treatment and control groups should be small. We observe a block of missing mass relative to the

uniform benchmark for p-values below 0.1, but other than that, the kernel density plot rises quickly

to the uniform benchmark, which it tracks closely except for the highest p-values in the interval

(0.9,1.0]. It appears that the block of mass missing from [0,0.1) has been shifted to (0.9,1.0].

Panel (3) shows the results from RCT balance tests when a balance improvement method (re-

randomization, stratification, and/or matching) was definitively employed or likely employed. The

proportion of significant p-values is higher than that in panel (2) and closely tracks the uniform

benchmark, indicating an absence of detectable study flaws in this subsample and little additional

removal of significant sniff tests.

Panel (4) shows kernel density plot of the pure subsample of other tests, which looks similar to

that for the full sample in panel (1), which is expected because this subsample constitutes the bulk

of the full sample. Below, structural estimation will allow us to distill the relative contributions of

study flaws and removal from publication process from the shape of this density.

Panel (5) shows the kernel density plot for other tests conducted on the pre-matched sample

by studies using matching. Authors usually show these p-values to motivate the use of matching

to improve balance and these tests are usually accompanied by p-values of the same tests on the

post-matched sample. It is unlikely the publication process would remove these sniff tests based on

their p-values. It also is unlikely the publication process would favor insignificance of pre-match

sniff tests. This subsample, therefore, represents a sample of sniff tests where the alternative is

true and pick up study flaws before matching is performed. We see a mountain of mass of p-values

in [0,0.1), after which the density dips well below the uniform benchmark. This density does not

exhibit the non-monotonicity evidenced in some preceding panels, consistent with our expectation

that there is little p-value removal in this subsample. This subsample may be as close as we come

to a canonical example in which the alternative assumption of misspecification holds for all studies.

The shape of the density function motivates our modeling p-values under the alternative hypothesis

as coming from a beta distribution.

Panel (6) shows kernel density plot of other tests, matched sample post-match. We see quite

the opposite of the pre-match sample. P-values below 0.5 have a density considerably below the
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uniform line, much of this mass shifted to a spike of p-values above 0.9, suggesting matching as

an overall effective method to improve balance.

4.2. Regression Specifications

In this subsection, we formalize observations we made from the kernel density plots of p-values

by conducting statistical analysis on the full sample of p-values and intervals.

To formalize ideas, let t ∈ T index tables, which we take as the unit of scholarly work, where

T denotes the population of tables. We sometimes emphasize the “containing” relation with func-

tional notation, letting t(i) denote the table containing sniff test i.

Tables differ in the precision at which they report p-values, some specifying an interval for pi,

others the exact value. To formalize these reporting conventions, let Rt denote the significance

intervals reported by table t. For example, if table t does not directly report p-values, only in-

dicating significance at the 5% level with a star, then Rt = {[0,0.05), [0.05,1], [0,1]}. If table t

directly reports p-values, abstracting from rounding issues, Rt equals the set of all possible subsets

of [0,1] (i.e., the power set, 2[0,1]). Let α ⊂ [0,1] denote the interval that we want to study. A

table’s reporting convention may or may not line up with α . Let Tα = {t ∈ T |α ∈ Rt} denote the

subpopulation of tables reporting significance in the interval α and Iα = {i ∈ I |α ∈ Rt(i)} denote

the subpopulation of sniff tests in that subpopulation of tables.

Let Siα = 1(pi ∈ α) be the indicator of whether sniff test i is contained in interval α . We are

interested in the proportion of sniff tests in the typical table falling into interval α , captured by the

following conditional expectation:

πα = Et∈Tα
(E(Siα | i ∈ t)). (1)

This corresponds to the sampling frame that first samples tables and then sniff tests within ta-

bles. An obvious alternative is to directly sample from the population of sniff tests, leading to

the expectation Ei∈Iα
(Siα). If different scholarly works contain different numbers of sniff tests

and the number of sniff tests presented in the work is correlated with their significance, then the

two sampling frames can generate different expectations at any arbitrary p-value cutoff between

[0,1], and hence different aggregate distributions. It is thus important to choose the appropriate
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sampling frame and focus the analysis on the expectation associated with that frame. We choose

equation (1) so each scholarly work has equal contribution to our aggregate distribution. The al-

ternative sampling frame that collects all the sniff tests together and uses a simple unweighted

aggregate causes articles with more sniff tests to be over-represented. Appendix B shows that the

unweighted aggregate is a biased estimate of (1) in a predictable direction.

An additional nuance in expectation (1) is that, rather than being taken over the entire popula-

tion of tables T , the expectation is restricted to the subpopulation Tα . This is done for two reasons.

First, in some cases it is impossible to compute Siα for t(i) ∈ T \ Tα . For example, in studying

the threshold α = [0,0.05), suppose we have a starred observation i from a table that only reports

significance at the 10% level; formally, Si,[0,0.10) = 1 and Rt(i) = {[0,0.1), [0.1,1], [0,1]}. We know

pi ∈ [0,0.1) for that observation but not whether pi ∈ [0,0.05) or pi ∈ [0.05,0.10). Hence, Siα

cannot be computed in this example. A second reason for conditioning on Tα rather than T can

be understood by returning to the previous example but modifying it so that i is now an unstarred

entry in its containing table. It is possible to compute Siα in this modified example: insignificance

at the 10% level implies insignificance at the 5% level, so Si,[0,0.1) = 0 implies Si,[0,0.05) = 0. How-

ever, such tables only supply insignificant observations, biasing the estimate of πα downward. The

bias can go the other way as demonstrated in an example in which we are studying the interval

α = [0,0.05) and have a table reporting significance at the 1% level; Siα can only be computed

from starred sniff tests from that table, leading to an upward selection bias. Restricting the popu-

lation to Tα eliminates these biases.

To derive the reduced-form specification used to consistently estimate πα , we slightly abuse

notation by letting T now represent the sample of tables and I the sample of sniff tests rather

than the respective populations. Similarly, we redefine Tα and Iα so that they are the subsamples

analogous to the subpopulations they were formerly defined as. Vertical bars denote the cardinality

of sets, so |T | denotes the number of tables in the sample, |I| the number of sniff tests in the sample,

and |t| the number of sniff tests in table t.

A consistent estimator of πα is obtained by replacing the expectations in (1) with sample aver-

ages:

π̂α =
1
|Tα | ∑

t∈Tα

(
1
|t|∑i∈t

Siα

)
. (2)

12



An equivalent expression for π̂α that is particularly convenient can be obtained by introducing

inverse frequency weights

wi =
|Iα |

|Tα ||t(i)|
. (3)

These weights are inversely proportional to the number of sniff tests |t(i)| in the including table,

scaled by the constant |Iα |/|Tα | that, as shown in Appendix B, ensures the weights to sum to |Iα |,

the number of relevant observations. Using (2) and (3), we have

π̂α =
1
|Iα | ∑i∈Iα

wiSiα , (4)

the inverse-frequency-weighted average of Siα for the subsample of sniff tests in tables reporting

interval α .6

Regression-based methods can be used to recover π̂α .7 In particular, in the inverse-frequency-

weighted least squares (IFWLS) regression of Siα on a constant using the subsample i ∈ Iα , the

coefficient on the constant term is is numerically identical to π̂α in equation (2):

Ŝiα = π̂α ·1 i ∈ Iα . (5)

Our analysis focuses on the intervals R∗= {[0,0.05), [0.05,0.1), [0.1,0.15), [0.15,0.2)}. Rather

than running separate regressions for each α , the estimates can be conveniently recovered from a

single regression in which multiple copies of each observation i are stacked, one copy for each

interval α ∈ R∗ ∩Rt(i) that constitutes a match between our study set and the containing table’s

reporting convention:

Ŝiα = ∑
r∈R∗

π̂r1(α = r) α ∈ R∗, i ∈ Iα . (6)

The IFWLS estimates π̂α in (5) and (6) are numerically equal, both equal to the proportion in (4).

The clustered standard errors are also identical across equations (5) and (6). We cluster all standard

6See Wooldridge (2010), chapter 20, for a textbook discussion of the need for weighting in various sampling
contexts. Equation (2) is an implementation of the estimator he suggests for cluster-sampling contexts (see his equation
(20.48)). Equation (4) is an implementation of the estimator he suggests for the standard-stratified-sampling context
(see his equation (20.13)). In our application, the two contexts are equivalent since, within each stratum (i.e., each
table), all observations (i.e., all sniff tests) are collected.

7IFWLS regressions can be run in Stata using the reg command, setting user-defined weights (iweights) equal
to 1/|t(i)|. Stata’s automatic scaling using this command generates weights wi.
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errors at the table (t) level; this clustering strategy correctly adjusts for the appearance of multiple

copies of each observation i in the stacked regression.

The null typically used for hypothesis testing, πα = 0, is not of interest here. Under that null,

there are no p-values in α , more consistent with the presence of extreme publication selection than

its absence. A more natural null hypothesis for this analysis is πα = |α|, where |α| denotes the

length of interval α , corresponding with the mass of p-values that would arise under a uniform

[0,1] distribution, the distribution of p-values in the absence of misspecification and removal in the

publication process. We will conduct separate tests of πα = 0.05 for each α ∈ R∗, which each have

length 0.05, as well as the joint test of πα = 0.05 for all α ∈ R∗.

The joint test provides a qualitative measure of the overall departure from uniformity across

thresholds α ∈ R∗. To quantify the common departure from uniformity, suppose first that the p-

value proportions exceed the uniform thresholds by a constant level λ : i.e., πα = |α|+λ for all α ∈

R∗. Substituting the analogous equation involving estimators into (6) and rearranging yields Ŝiα =

(|α|+ λ̂ )∑r∈R∗ 1(α = r) = |α|+ λ̂ . Defining Yiα = Siα−|α|, the significance indicator normalized

by its expected threshold value under a uniform distribution, and Ŷiα = Ŝiα to be its fitted value

from a regression, the preceding calculations yield the following regression specification:

Ŷiα = λ̂ ·1 α ∈ R∗, i ∈ Iα . (7)

According to this equation, an estimate of the common level departure from uniformity λ̂ can be

recovered from an IFWLS regression of the normalized significance indicator Yiα on a constant;

the coefficient on the constant term provides the desired estimate, λ̂ .

Suppose instead that the p-value proportions exceed the uniform thresholds by a constant pro-

portion ρ: i.e., πα = (1+ ρ)|α| for all α ∈ R∗. Substituting the analogous equation involving

estimators into (6) and rearranging yields Ŝiα = (1+ ρ̂)|α|∑r∈R∗ 1(α = r) = (1+ ρ̂)|α|, or upon

further rearranging,

Ŷiα = ρ̂|α| α ∈ R∗, i ∈ Iα . (8)

According to this equation, an estimate of the common proportional departure from uniformity ρ̂

can be recovered from regressing Ŷiα on |α| excluding a constant; the coefficient on |α| provides

the desired estimate, ρ̂ .
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4.3. Regression Results

Table 1 presents estimates π̂α of the proportion of p-values in various intervals. The estimates are

computed using the stacked IFWLS regression (6). Standard error clustered at the table (t) level

are reported in parentheses below the estimates. The size of the underlying subsample as well as

the number of stacked observations and clusters are also reported.

Column (1) presents aggregate results for the full sample. The first entry shows that 9.8% of

tests fall into the [0,0.05) interval, 3.8% fall into the [0.05,0.1) interval, and 3.7% fall into the

[0.10,0.15) interval. These results are all significantly different from the 0.05 expected for the

uniform benchmark. 4.7% of p-values fall into the [0.15,0.20) interval, which is not significantly

different from 0.05. The pattern confirms what we observe from the kernel density plot and sug-

gests study flaws and removal in the publication process are important forces in determining the

shape of the aggregate distribution of p-values.

A cleaner test of removal alone is provided by column (2) of Table 1, which focuses on RCT

balance tests, in particular the pure subsample in which balance-improving measures such as re-

randomization, stratification, or matching have not been used. For this subsample, in the absence

of removal, p-values should be closely resemble the uniform distribution with the percentage of

p-values significant in each interval equaling the size of the interval. This is the case with the

lowest interval, which has 4.1% of p-values, and the interval of [0.15,0.20), which has 5.4% of

p-values, both insignificantly different from 0.05. For the other two, the percentages are less

than 0.05. The estimate λ̂ = −0.013 implies that on average across the three low thresholds, the

empirical proportions fall short of their respective benchmarks by 1.3 percentage points in level

terms. The estimate ρ̂ = −0.334 implies that on average across the three low thresholds, the

empirical proportions fall short of their respective benchmarks by 33.4% in proportional terms.

Both estimates of common departures across thresholds are significant at the 1% level.

Column (3) shows the results from RCT balance tests when a balance improvement method (re-

randomization, stratification, and/or matching) was definitively employed or likely employed. The

departure from uniformity in column (3) is smaller than that in column (2), indicating either the

techniques are effective in correcting for imbalances, the publication process does not differentially

remove significant sniff tests in this subsample, or both.

The remaining columns (4)–(6) in Table 1 analyze tests other than RCT balance. Unlike pure
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RCT balance tests, for which we expect the amount of study flaws to be small, for the “mixed bag”

of other tests in columns (4)–(6), we do not know how much study flaws are present and would be

picked up by sniff tests.

Shown in column (4), the results for the pure subsample of non-RCT balance tests sharply

contrast those in column (2) for the pure subsample of RCT balance tests. Rather than observing

the proportion of p-values below the uniform in the [0,0.05) interval as we did in column (2), we

see the proportion to be far greater than the threshold value. Evidently, a substantial proportion of

studies are failing sniff tests because of specification or identification problems, enough to swamp

the removal process that would tend to reduce the proportion of these significant p-values.

Columns (5) and (6) present results from subsamples where a technique to improve p-values

was definitively employed in the paper. Specifically, this technique is matching since, as discussed,

this is the only technique of relevance for the sample of non-RCT-balance tests. Column (5) shows

a large proportion of significant p-values in matched samples before matching takes place. Column

(6) shows that, after matching, the proportion of significant p-values is greatly reduced, returning

to values much closer to the thresholds. Matching appears to be an effective method to improve

p-values in originally problematic studies, confirming the patterns observed in panels (5) and (6)

of Figure 3.

5. Structural Analysis

5.1. Theoretical Background

Before presenting our structural model, we provide some basic theoretical results on mixtures

distributions of p-values. We begin with the textbook result that p-values are uniformly distributed

in standard settings.

Proposition 1. The p-value of a test of a non-composite null hypothesis using a continuous test
statistic is uniformly distributed on [0,1] under the null.

See Lehmann and Romano (2005) for a textbook proof. The proposition places two qualifiers

on the generality of the uniform distribution of p-values, supposing the test statistic is continuous

and the null hypothesis is non-composite. The distribution of p-values is only approximately uni-

form if the test statistic is discrete (as Lehmann and Romano 2005, Example 3.3.2, illustrates).
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P-values need not be uniformly distributed for tests of composite null hypotheses, i.e., nulls in-

volving multiple distributions (Bayarri and Berger 2000).

These qualifiers are not material for our subsample of balance tests in RCTs since the differ-

ence in means between treatment and control groups is a continuous variable and the null that

this difference is zero is non-composite. The vast majority of our subsample of other tests also

involve continuous test statistics and non-compound nulls, being test of balance in quasi-natural

experiments, tests of parallel trends in difference-in-difference designs, or tests of continuous run-

ning variables in regression-discontinuity designs. It is possible that a few of the observations in

this subsample involve discrete test statistics or composite nulls, but such cases are sufficiently

rare that the mixture distribution for the pooled sample discussed in the next proposition will be

approximately uniform. To alleviate residual concerns, we analyze the subsample of balance in

RCTs separately from other tests and keep the caveat that the distribution of p-values in the latter

subsample may not be perfectly uniform under the null.

We next move from individual p-values to a pooled sample of them. The distribution of this

pooled sample is the mixture distribution with probability weight wi put on drawing sniff test i.

The next proposition states that uniformity extends to the pooled sample of p-values under standard

conditions.

Proposition 2. Consider tests of n non-composite null hypotheses using continuous test statis-
tics, which can be correlated or not. Let P be the mixture of the associated p-values from these
tests, where p-value pi is drawn with weight wi, for wi ≥ 0 and ∑

n
i=1 wi = 1. Then P is uniformly

distributed on [0,1] under the null.

Proof. By Proposition 1, each pi has a uniform distribution on [0,1]. Therefore, each probability

density function (pdfs) is fi(p) = 1 for p ∈ [0,1] and fi(p) = 0 otherwise. Since P is a mixture of

these random variables, its pdf is f (p) = ∑
n
i=1 wi fi(p) = 1 for p ∈ [0,1] and f (p) = 0 otherwise.

�

The following proposition, due to Pounds and Morris (2003), provides theoretical underpinning

for the decomposition of the aggregate p-value distribution into a mixture of null and alternative

densities.

Proposition 3. Let P be any continuous random variable with pdf f (p) and support in [0,1]. For
all ω ∈ [0,1] such that ω ≤ min{ f (p)|p ∈ [0,1]}, there exists a well-defined pdf g(p) such that
f (p) = ω +(1−ω)g(p).
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Combining the last two propositions, a mixture distribution of p-values from a set of sniff tests

can be decomposed into two components: one arising from sniff tests of well-specified studies

for which the null is true and one arising from sniff tests of misspecified studies for which the

alternative is true. By Proposition 2, the distribution for tests under true nulls is uniform on [0,1],

extracted as a unit density weighted by ω in Proposition 3. We will flexibly approximate the alter-

native density f̃ by a beta distribution, used elsewhere in the literature, and estimate the proportions

of well-specified and misspecified studies, ω and 1−ω , in the sample.

5.2. Model

Our structural model posits a two-stage process for generating p-values. In the first stage, p-values

are drawn from two populations of studies: a proportion ω of studies for which the null hypothesis

of no flaws is true and the complementary proportion, 1−ω , of studies exhibiting flaws for which

the alternative hypothesis is true. Building on Sellke, Bayarri, and Berger’s (2001) suggestion of

using a beta distribution with one free parameter as the alternative to a uniform distribution of

p-values, we assume that the initial draw of p-values from the alternative population follows a the

beta distribution with parameters 1/(1+µ) and 1. The associated density is

g(pi; µ) =

[
(1+µ)p

µ

1+µ

i

]−1

. (9)

The shape parameter µ ∈ [0,∞) reflects the severity of misspecfication. When µ = 0, there are

no flaws in the population of studies, and g reduces to the uniform density. When µ increases, g

becomes increasingly left-skewed, piling up mass on the lowest p-values.

The first-stage density function is a mixture of a proportion ω of well-specified studies with a

uniform distribution of p-values and 1−ω misspecified studies with p-values given by density g:

f1(pi; µ,ω) = ω +(1−ω)g(pi; µ). (10)

In the second stage, the publication process results in the removal of some sniff tests with

significant p-values. For simplicity, start with the case of a homogeneous removal rate ρ ∈ [0,1] in a

single removal region α = [0, α̂). Below we will generalize to multiple regions with heterogeneous
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removal rates. Applying Bayes Rule to the prior density in equation (10), the posterior density

emerging from the second stage for p-values in our sample is

f (pi; µ,ω,ρ) =
(1−Siαρ) f1(pi; µ,ω)

1−ρ

[
ωα̂ +(1−ω)α̂

1
1+µ

] . (11)

We will call this the beta-uniform mixture (BUM) model, in particular, the variant with a

single removal region, BUM(SR). Appendix B derives the density function for the extension of the

BUM model to multiple removal regions αk = [α̂k−1, α̂k) with different removal rates ρk in each,

labeled the BUM(MR) model. We will call the variant of the BUM model in which there is no

removal in the publication process BUM(NR). We will call the special case in which there are only

misspecified studies—with no mixture of uniformly distributed well-specified studies—the Beta

model. The variants with either no removal, a single removal region, or multiple removal regions

are labeled Beta(NR), Beta(SR), and Beta(MR), respectively. The density function can be obtained

from (11) by substituting ω = 0.

Some technical remarks about the BUM model are in order. First, we labeled µ as the severity

of misspecification. More precisely, it reflects the combination of latent misspecification and the

power of the sniff tests used in our sample studies to detect this latent misspecification. Our model

does not separately identify these two components of measured misspecification. Second, the

model assumes no removal outside of α . In reality, studies are removed in the publication process

for reasons unrelated to the performance of sniff tests that our model does not capture. Hence,

ρ is best interpreted as the marginal increase in the removal rate when the p-value from a sniff

test is in interval α . This interpretation accommodates the possibility that p-value pi outside of α

is removed as a side effect of other sniff tests in the same table falling into α . Third, the model

assumes the same ρ applies to well-specified and misspecified studies. In effect, participants in the

publication process do not have additional knowledge about the quality of studies’ specification

beyond the significance of sniff-test results.

Figure 4 illustrates the shape of the BUM(SR) density for various parameters. Panel (1) graphs

the density when there is removal (various removal rates ρ shown) but no misspecification, i.e., µ =

0. The removal interval is set to α = [0,0.15), consistent with patterns in reduced-form analysis.

These densities have less mass on p-values below 0.15 and more mass above 0.15 than does the
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uniform distribution. The larger is ρ , the lower the mass in [0,0.15). Panel (2) graphs the density

in the absence of removal (ρ = 0) but in the presence of study flaws (various values of µ shown).

For illustrative purpose, the proportion of well-specified studies is set to ω = 2/3. These densities

become increasingly left-skewed for higher µ . The last two panels graph BUM(SR) densities when

both removal and study flaws are present. Panel (3) varies µ holding ω constant; panel (4) varies ω

holding µ constant. Except for the degenerate cases of µ = 0 or ω = 1 (parameter restrictions that

eliminate misspecified studies), the twin forces of removal and misspecifiation lead the densities to

be non-monotonic, starting from a spike at the lowest p-values, declining over the interval (0,0.15)

until they fall below the uniform benchmark, then jumping above the uniform benchmark at a p-

value of 0.15, and declining from there to the end of the unit interval.

The densities from the BUM(SR) model in Figure 4 closely resemble the empirical densities

in Figure 3. Panel (1) of Figure 4, with removal but no study flaws, resembles panels (2) and (3)

of Figure 3, from subsamples of balance tests in RCTs, for which one should expect few study

flaws in the form of randomization failures. Panel (2) of Figure 4, with no removal but with study

flaws, resembles panel (5) of Figure 3, from a subsample that is sufficiently flawed for authors to

take actions to improve p-values. Since removal is likely based on the post-improvement rather

than the pre-improvement p-values, it would not be surprising for this subsample to exhibit little

removal. The last two panels of Figure 4, which exhibit both removal and misspecification, closely

resemble panels (1) and (4) of Figure 3 for samples that likely were exposed to those two forces.

The fact that the density from the model follows the same unusual non-monotonic pattern as these

empirical densities provides some confidence in the validity of our structural model.

5.3. Estimation

We will use the method of maximum likelihood to estimate the parameters of the BUM model.

The density function (11) provides the building block for the likelihood function. To derive the

log-likelihood function, we start with the simple case of a single removal region α = [0, α̂) with

removal rate ρ .

For any subsample under consideration, some of the observations i will have exact p-values

pi reported; for others all we can glean is the interval [`i,ui) containing pi. The following log-
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likelihood function includes components for both sorts of observations:

lnL = ∑
pi exact

ln f (pi; µ,ω,ρ)+ ∑
pi∈[`i,ui)

ln
∫ ui

`i

f (p; µ,ω,ρ)d p (12)

= Npi<α̂ ln(1−ρ)−N ln
(

1−ρ

[
ωα̂ +(1−ω)α̂

1
1+µ

])
+ ∑

pi exact
ln
(

ω +
1−ω

1+µ
p
−µ

1+µ

i

)
+ ∑

pi∈[`i,ui)

ln
(

ω {(1−ρ) [min(ui, α̂)−min(`i, α̂)]+max(ui, α̂)−max(`i, α̂)}

+(1−ω)

{
(1−ρ)

[
min(ui, α̂)

1
1+µ −min(`i, α̂)

1
1+µ

]
+max(ui, α̂)

1
1+µ −max(`i, α̂)

1
1+µ

})
,

(13)

where N denotes the number of observations in the subsample under consideration and Npi<α̂

denotes the number of those reporting an exact p-value that is less than α̂ .

Maximum likelihood estimates, which will be denoted with tildes, µ̃ , ω̃ , and ρ̃ , can be obtained

by maximizing lnL. The inverse-frequency weights wi used in the reduced-form analysis will also

be applied here in the maximum-likelihood procedure; see Section 4.1 for a discussion of the

rationale.

Appendix B provides the log-likelihood in the general case of the BUM model with multiple

removal regions. We will estimate the BUM(MR) model allowing for different removal rates ρ̃1,

ρ̃2, ρ̃3, and ρ̃4 in the intervals [0,0.05), [0.05,0.10), [0.10,0.15), and [0.15,0.20), respectively. To

economize on parameters, we also estimate the BUM(SR) variant with a single removal region.

Based on visual inspection of the kernel densities in Figure 3 and reduced-form regression results

in Table 1, we take the single removal region to be α̂ = [0,0.15) in that case.

5.4. Structural Results

The structural estimates are reported in Table 2. Column (1) reports results for the pure subsample

of RCT balance tests. RCT balance tests are good candidates for focused study for several reasons.

Since this is a test is of a non-compound hypothesis using a continuous statistic, the distribution

of p-values in the absence of removal and misspecification is uniform by Proposition 1. Further-

more, even allowing for misspecification, the mixture distribution should be close to uniform since
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misspecification comes in the form of randomization failure and such failures are likely to be rare.

Column (1) reports the most general BUM(MR) specification; columns (2) and (3) report more

restrictive specifications for the same subsample.

In column (1), we estimate a proportion misspecified of 1− ω̃ = 0.013, not significantly differ-

ent from zero. The small number of misspecified studies (1.3% in percentage terms) is expected

given the rarity of randomization failures, the source of misspecification in this subsample. The

few misspecified studies are severely misspecified, as we estimate µ̃ = 10.179, signficantly dif-

ferent from 0 at the one-percent level. The removal rates ρ̃1, ρ̃2, and ρ̃3 in the intervals [0,0.05),

[0.05,0.10), and [0.10,0.15) are significantly different from 0 at the 1% level, ranging from 32.2%

to 58.5% in percentage terms. By comparison, the removal rate ρ̃4 estimated for the interval

[0.15,0.20) is small at 3.2% and not statistically significant.

Column (2) presents results for the same sample but for the BUM(SR) model restricted to a

single removal region. Based on earlier reduced-form evidence as well as the structural evidence

here that removal dies out above 0.15, we take the removal region to be [0,0.15). A likelihood-ratio

test cannot reject the BUM(SR) in favor of the BUM(MR) model; though the BUM(MR) involves

three more parameters, the two models’ log-likelihoods are nearly identical. The estimates of 1−ω̃

and µ̃ are similar in column (2) to column (1). The removal rate ρ̃ over the interval [0,0.15) is an

estimated 45.7%.

Column (3) further restricts the model to involve just the beta alternative, eliminates the pa-

rameter ω allowing for a mixture of well-specified studies. Since there is so little misspecification

in this subsample, the model adapts by reducing µ̃ to close to 0 and estimating what is nearly a

uniform distribution; the removal rate is reduced to accommodate the uniform approximation. The

p-value for the likelihood-ratio test of Beta(SR) against BUM(SR) is 0.17, indicating that the fit of

the Beta is not substantially worse for this subsample. We will see below a subsample with more

misspecification for which the restriction from BUM to Beta is strongly rejected.

Columns (4)–(6) report results for the pure sample of tests other than balance in RCTs. A

handful of these tests may involve compound hypotheses or may be tested with discrete statistics,

so the distribution of p-values may not be exactly uniform. However, the vast majority of these tests

satisfy the conditions from Proposition 1 for uniformity, so any departure from uniformity absent

removal and misspecification should be small. The subsample in columns (4)–(6) still focuses on
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pure tests, excluding observations where matching was involved.8 We use the same convention

as the other subsample, starting with the most general BUM(MR) specification in column (4) and

moving to more restricted specifications in columns (5) and (6).

For other tests, we obtain larger values for 1− ω̃ than for tests of balance in RCTs: 9.0% in

the BUM(MR) and 9.4% in the BUM(SR) model. Both are significantly different from zero at

the one-percent level, suggesting a significant proportion of flawed studies in this subsample. The

estimates µ̃ = 9.505 and µ̃ = 9.225 in columns (4) and (5) are similar to those in columns (1) and

(2), suggesting similar shapes of alternative densities in the two subsamples. This suggests that the

severity of study flaws and the statistical power of sniff tests in picking up study flaws are similar

across the two samples. As with the subsample of tests of balance in RCTs, removal rates ρ̃1–ρ̃3 in

the lowest three intervals are statistically significant and fairly homogenous, but the removal rate

ρ̃4 is close to 0 (indeed negative) and not statistically significant. The main difference is that the

removal rate is only about half that for the previous subsample. In column (5), which estimates a

single removal rate over the interval [0,0.15), the estimate of ρ̃ is 25.1%, compared to 45.7% in

column (2).

The further restriction from BUM(SR) to Beta(SR) for the subsample of other tests turns out to

be rejected at the 1% level. The mixture fits much better than the single beta distribution. Across

the two samples, BUM(SR) with the removal region set to [0,0.15) fits the data relatively well and

parsimoniously.

Table 3 leverages the structural estimates to provide insight into whether the publication pro-

cess leads to too much or too little removal. Each panel is a contingency table, with boxed cells

showing the percentage of the subsample falling into that cell. Percentages in the boxed cells thus

sum to 100%. Panel A presents results for the subsample of pure RCT balance tests, panel B

presents results for pure other tests, and panel C presents formulas used to compute entries from

the structural estimates.

For the subsample of pure balance tests, panel A shows that a policy of refraining from remov-

8We excluded matched samples for several reasons. First, all the articles eventually substitute post-match for pre-
match data, so the pre-match p-values do not bear on data used for actual analysis in any article. Second, as shown
in Figure 3, the distribution of p-values for the pre-match subsample is wildly different from any other subsample.
Although the pre-match subsample is relatively small, including it might add undue noise, obscuring any clear findings.
Having excluded the pre-match subsample, it seemed natural to focus on a pure sample by excluding any matching
entirely.
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ing studies with p-values in the [0.15,1] region does little harm since very few misspecified studies

get through. Only 0.5%/83.5% = 0.6% of the studies are misspecified according to the structural

estimates. But the rate of misspecification is so low that even with a greater concentration in the

[0,0.15) region, only 1.8%/16.5% = 10.9% of these are misspecified. The remaining 89.1% are

well-specified but happened to have an unlucky sniff-test result. If, as the structural model assumes,

the publication process cannot aim well enough to target misspecified studies but just randomly re-

moves them, the literature loses about nine well-specified studies for every misspecified study

removed in the [0,0.15) region. The cost of misspecification would have to be enormous for this

tradeoff to be worthwhile. Recalling that the estimated removal rate is ρ̃ = 46.7%, if removal is

random rather than targeting misspecified studies, 46.7%×14.7% = 6.7% of all studies conducted

are well-specified but lost to the literature (or at least this set of journals). Even if no all misspec-

ified studies are missed by removal, the excess of the estimated removal rate ρ̃ = 45.7% over the

rate of misspecification (10.9%) in the [0,0.15) region means that more than three well-specified

studies are lost for each misspecified study removed in that region.

In the subsample of pure other tests analyzed in panel B, the concentration of misspecification

in low p-values means that, again, few studies with p-values in the [0.15,1] interval are misspeci-

fied, only 1.6%/78.6% = 2.0% of them. In the [0,0.15) interval, 7.8%/21.4% = 36.4% of studies

are estimated to be misspecified. This exceeds the removal rate, estimated to be ρ̃ = 25.1%.

Whether this is the efficient removal rate depends on how accurately misspecification can be

targeted and the cost of allowing misspecified studies through versus the loss of well-specificed

research. There are plausible parameters for which the removal rate could be efficient. If no

misspecified studies are missed for removal, the removal rate is insufficient, undershooting by

36.4%− 25.1% = 11.3 percentage points. However, if removal is not this accurate, and loss of

well-specified studies sufficiently costly, the removal rate could be justified.

5.5. Author Claims

Authors have incentives to attribute unfavorable sniff tests to random bad luck. Such claims are

difficult to dispute on an individual basis. In this subsection, we investigate whether authors—in

the aggregate—tend to over- or under-attribute unfavorable sniff tests to bad luck. To do so, we

combine our structural estimates of latent proportion of well-specified studies with hand-collected
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data on authors’ qualitative characterization of their own sniff-test results.

Our research assistants read the discussions of sniff tests in the articles and rated the authors’

confidence in the test result according to a rubric involving four categories: “strong claim”, “weak

claim”, “no claim” and “admit rejected.” The “strong claim” category includes cases in which

the authors express satisfaction with the test outcome. Authors express satisfaction—with good

reason—when the associated p-value under consideration is insignificant. We also consider authors

to be strongly satisfied whenever, faced with having to explain a significant p-value, they explicitly

attribute it to random chance rather than some systematic feature of the data. These cases are

often associated with tables reporting multiple sniff tests, only a few of which are significant. The

“weak claim” category includes cases in which, faced with some significant sniff-test results to

explain, perhaps too many to attribute to random chance, the authors are forced to acknowledge

possible problems while mounting some defense of their results. Typical of this category is for

authors to acknowledge that the test outcome indicates the existence of imbalance or pre-treatment

effects but then argue that it does not undermine the validity of their main results, often using the

argument that the significant sniff-test results follow no systematic patterns. When the authors

do not discuss the specific test statistic, we classify it as “no claim.” “Admit rejected” includes

cases when authors freely acknowledge that the significant p-value indicates rejection of the sniff

test and a potential problem for their study. The majority of observations (71%) are classified as

“strong claims,” reflecting in part the frequency of tables lacking problematic p-values to begin

with. “Weak claims” account for 9% of observations, “no claims” for 7%, and “admit rejected” for

13% of observations.

Figure 5 compares the proportion of claims that are strong for each p-value (estimated via local

polynomial smoothing) to the latent proportion of well-specified studies derived from our structural

estimates. Separate panels are provided for the pure subsamples of RCT balance tests and other

tests. The figure suggests that authors tend to be too conservative in attributing significant p-values

to random bad luck. Except for a tiny region of p-values extremely close to 0, the proportion of

p-values with strong claims is less than the proportion of well-specified studies implied by our

structural estimates. The gap between the two proportions is quite large for most of the p-values

displayed (for the interval [0,0.2]). Whether self-imposed or forced on authors by reviewers, excess

conservatism in claiming bad luck may be a symptom of the same force that leads the publication
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process to reject many well-specified studies.

6. Conclusion

This paper shifts the focus of the typical meta-analysis from standard statistical tests of results

of main interest—for which authors prefer rejecting null results—to ancillary tests, dubbed “sniff

tests”—for which authors prefer not to reject null results. We investigate the extent to which the

publication process uses sniff tests to screen out studies with questionble credibility rather than just

providing additional information that readers could to judge the credibility of published studies. If

they are used as a screen, we would expect sniff tests to exhibit too few significant p-values rather

than too many as in traditional studies of publication bias. Besides providing a meta-analysis of

a new type of test, a contribution of our paper is the painstaking collection of nearly 30,000 sniff

tests from 892 articles published in 59 economics journals, which we analyze.

Certain subsamples are sufficiently well-behaved that a missing mass of significant p-values

removed by the publication process can be identified from reduced-form methods alone. This is the

case in particular for the subsample of RCT balance tests that are pure in the sense of coming from

contexts precluding authors from applying balance-improvement techniques. Given that the only

source of misspecification for this subsample is ruined randomization, which should be expected to

be rare, the latent distribution of sniff-test p-values should be approximately uniform in the absence

of removal of significant p-values by the publication process. Instead, there appears to be a block

of missing mass in the [0,0.15) interval for this subsample. The picture for other subsamples is less

clean since an unknown proportion of misspecified studies may skew the distribution of sniff-test

p-values toward 0, filling in mass removed by the publication process. Still, the kernel density for

other relevant subsamples exhibit a non-monotonic pattern conforming to our structural model of a

mixture of well-specified and misspecified studies, some of which are removed by the publication

process if their sniff-test p-values fall into certain intervals.

Bolstered by the fit between the structural model and the kernel densities for various subsam-

ples, we proceed to estimate the parameters of the structrual model via maximum likelihood. We

find that a beta-uniform mixture model with a single removal region, the BUM(SR) model, fits

the data well and parsimoniously. For the pure sample of balance tests in RCTs, estimates from
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this model suggest that 46% of sniff tests with p-values in [0,0.15) are removed by the publication

process, while only about one in ten of them is misspecified. The rest have significant p-values

not due to randomization failure but due to random bad luck in the outcome of tests on the chosen

covariates. Instead of being screened out of the journals, the well-specified studies could have

been resuscitated by simply conditioning on the “offending” covariates. Given there was no real

randomization failure, there is no extra danger of correlation of outcomes with omitted covariates

polluting estimates of treatment effects.

For the pure sample of other tests, misspecification can arise from a wide variety of sources, so

the latent rate is likely much higher than with balance tests in RCTs. Indeed, we estimate the rate

of misspecification is nearly seven times higher for other tests than for balance tests in RCTs. Yet

the removal rate—around 25% in the [0,0.15) region of p-values in the BUM(SR) model—is only

about half that for balance tests in RCTs.

Comparing authors’ qualitative characterization of their own sniff tests to structural estimates

of the proportion of well-specified studies, we find that authors under-attribute significant sniff

tests to bad luck. Whether their own reluctance or imposed by reviewers, this finding appears to

be a symptom of the same force that leads the publication process to reject many well-specified

studies.

We do not perform a formal welfare analysis, lacking information on the cost of screening out a

well-specified study versus the cost of publishing a misspecified one. We can conclude that if other

tests besides balance in RCTs have been used as an efficient screen by the publication process, and

if the welfare tradeoffs are similar for other tests as for balance in RCTs, our results suggest that

too many RCTs are screened on the basis of significant results in balance tests. In any event, our

paper provides information that can help editors refine their use of sniff tests to screen papers, up

to now informed by anecdotal experience or gut feelings rather than a large sample of tests and

formal statistical analysis.
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Table 1: Proportion of Significant P-values in Various Subsamples

RCT balance tests Other tests

Full Possibly Matched, Matched,
sample Pure improved Pure pre-match post-match

(1) (2) (3) (4) (5) (6)

Proportion of p-values in different intervals, π̂α

• [0,0.05) 0.098∗∗∗ 0.041 0.056 0.091∗∗∗ 0.551∗∗∗ 0.041
(0.005) (0.007) (0.010) (0.005) (0.033) (0.009)

• [0.05,0.10) 0.038∗∗∗ 0.025∗∗∗ 0.037∗∗∗ 0.039∗∗∗ 0.070∗ 0.024∗∗∗

(0.002) (0.005) (0.005) (0.003) (0.011) (0.005)

• [0.10,0.15) 0.037∗∗∗ 0.033∗∗∗ 0.039∗∗ 0.039∗∗∗ 0.030∗∗∗ 0.031∗∗

(0.003) (0.006) (0.005) (0.004) (0.006) (0.009)

• [0.15,0.20) 0.047 0.054 0.038∗∗∗ 0.051 0.036∗∗ 0.044
(0.004) (0.009) (0.004) (0.007) (0.006) (0.008)

• Joint F-test 42.3∗∗∗ 10.1∗∗∗ 5.0∗∗∗ 20.5∗∗∗ 69.4∗∗∗ 8.3∗∗∗

Combining results across [0,0.15)

• Linear departure 0.012∗∗∗ −0.013∗∗∗ −0.004 0.012∗∗∗ 0.154∗∗∗ −0.014∗∗∗

from uniform, λ̂ (0.002) (0.003) (0.004) (0.003) (0.011) (0.004)

• Proportional departure 0.274∗∗∗ −0.334∗∗∗ −0.109 0.262∗∗∗ 3.89∗∗∗ −0.349∗∗∗

from uniform, ρ̂ (0.047) (0.076) (0.089) (0.060) (0.273) (0.105)

Observation counts

• Sample size 28,798 2,953 4,023 16,026 2,372 3,424

• Stacked observations 78,719 8,265 13,347 39,224 7,537 10,346

• Clusters 1,313 101 138 922 99 152

Notes: Results are the weighted proportions π̂α of observations i that have p-values in the interval α in the row
heading. Weights equal wi. Results can equivalently be obtained as coefficients from the stacked IFWLS regression
(6). Each sniff-test statistic i in the sample may contribute several observations to the stacked regression, depending on
the number of intervals under study α ∈ R∗ = {[0,0.05), [0.05,0.10), [0.10,0.15), [0.15,0.20)}. Column (3) combines
possibly pure and definitively improved samples. Standard errors, reported in parentheses below results, are clustered
at the table level. Clustering correctly adjusts standard errors for having multiple intervals stacked per observation.
Significantly different from 0.05 in a two-tailed test at the ∗ten-percent level, ∗∗five-percent level, ∗∗∗one-percent level.
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Table 2: Structural Estimates

RCT balance tests, pure Other tests, pure

BUM(MR) BUM(SR) Beta(SR) BUM(MR) BUM(SR) Beta(SR)

(1) (2) (3) (4) (5) (6)

• Proportion misspecified, 1−ω 0.013 0.023 0.090∗∗∗ 0.094∗∗∗

(0.008) (0.016) (0.026) (0.020)

• Severity of misspecification, µ 10.179∗∗∗ 7.192∗∗ 0.050 9.505∗∗∗ 9.225∗∗∗ 0.650∗∗∗

(3.733) (2.822) (0.082) (3.563) (3.096) (0.078)

• Removal parameters:

◦ Removal in [0,0.05), ρ1 0.322∗∗ 0.225∗∗

(0.128) (0.107)

◦ Removal in [0.05,0.10), ρ2 0.585∗∗∗ 0.261∗∗∗

(0.076) (0.066)

◦ Removal in [0.10,0.15), ρ3 0.355∗∗∗ 0.209∗∗

(0.124) (0.089)

◦ Removal in [0.15,0.20), ρ4 0.032 −0.027
(0.165) (0.150)

◦ Removal in [0,0.15), ρ 0.457∗∗∗ 0.351∗∗∗ 0.251∗∗∗ 0.391∗∗∗

(0.065) (0.064) (0.061) (0.023)

Log-likelihood −12.48 −12.56 −13.50 −349.81 −349.78 −384.95

Observations 2,974 2,974 2,974 16,528 16,528 16,528

Clusters 103 103 103 951 951 951

Notes: Results from inverse-frequency-weighted maximization likelihood (IFWML). Weights equal wi. For the small
number of observations whose p-values are smaller than machine double precision, producing an undefined natural
logarithm, we rounded up to machine double precision; results nearly identical if these few observations are dropped.
We report proportion misspecified 1−ω rather than proportion well-specified ω to facilitating testing against natural
null hypothesis that estimate equals 0. Standard errors clustered at the table t level reported in parentheses. Stars
indicate significant difference from 0 in a two-tailed test at the ∗ten-percent level, ∗∗five-percent level, ∗∗∗one-percent
level.
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Table 3: Latent Misspecification Prior to Removal Derived from Structural Estimates

A. RCT balance tests, pure

pi ∈ [0,0.15) pi ∈ [0.15,1] Row total

Misspecified studies 1.8% 0.5% 2.3%

Well-specified studies 14.7% 83.0% 97.7%

Column total 16.5% 83.5% 100%

B. Other tests, pure

pi ∈ [0,0.15) pi ∈ [0.15,1] Row total

Misspecified studies 7.8% 1.6% 9.4%

Well-specified studies 13.6% 77.0% 90.6%

Column total 21.4% 78.6% 100%

C. Formulas

pi ∈ [0, α̂) pi ∈ [α̂,1] Row total

Misspecified studies (1− ω̃)
∫

α̂

0
g(p; µ̃)d p (1− ω̃)

∫ 1

α̂

g(p; µ̃)d p 1− ω̃

Well-specified studies ω̃α̂ ω̃(1− α̂) ω̃

Column total
∫

α̂

0
f1(p; µ̃, ω̃)d p

∫ 1

α̂

f1(p; µ̃, ω̃)d p 100%

Notes: Panels A and B are contingency tables for the indicated subsamples. Boxed cells report percentage of
the subsample in that cell. Entries in boxed cells sum to 100% within each panel. Panel C provides formulas
for computing entries from structural parameters estimated for the BUM(SR) model with removal region
α = [0, α̂). In the first two panels, α̂ is set to 0.15.
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Figure 1: Trend in Sniff-Test Observations Over Time
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Note: Figure graphs the number of sniff-test observations in our dataset by the year that the containing article was
published.
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Figure 2: Subsample Breakdown by Methodology
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Figure 3: Kernel Density Estimates of Distribution of P-values
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(2) RCT balance tests, pure
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(3) RCT balance tests, possibly improved
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(4) Other tests, pure
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(5) Other tests, matched sample, pre-match
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(6) Other tests, matched sample, post-match
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Notes: Each panel plots the kernel density estimate for the subsample of p-values analyzed in the corresponding
column of Table 1. Solid curve is kernel density, estimated using Jann’s (2005) kdens Stata module, accounting
for lower and upper bounds on the support using the renormalization described in Jones (1993) and specifying an
Epanechnikov kernel. To maintain consistent axes across panels, disproportionately high curve in panel (5) truncated
at maximum label on the vertical axis. For comparison, dotted line is uniform [0,1] density.
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Figure 4: P-value Densities Generated by BUM Model
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(2) ρ = 0, various µ , ω = 2/3
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(3) ρ = 0.4, various µ , ω = 2/3
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(4) ρ = 0.4, µ = 1, various ω
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Notes: Plots of density f (p; µ,ω,ρ) from BUM model for single removal interval α = [0,0.15) and for indicated
parameters. With µ = 0 in panel (1), ω does not affect the shape of the curves. The panel would be the same setting
ω = 1 and letting µ be a free parameter. Several curves represent degenerate cases: the ρ = 0 curve in panel (1) (in
which µ = 0) and the µ = 0 curve in panel (2) (in which ρ = 0) are equivalent to the uniform density; the ω = 0 curve
in panel (4) is equivalent to the Beta model.
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Figure 5: Strength of Author Claims
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Note: Figures show the proportion of well specified test statistics according to the authors of papers in our sample and
the structural estimates from Table 2 columns (2) and (5).
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Appendix B: Supplementary Technical Details
This appendix fills in several technical details omitted from the text.

B1. Bias Without Frequency Weighting
This section provides additional justification for our method of inverse frequency weighting (weight-
ing observations by the inverse of the number of sniff tests in a table) used in our kernel-density and
reduced-form-regression estimation. Letting n̄α = Et∈Tα

(|t|), by the law of iterated expectations,
the unweighted expectation can be written as

Ei∈Iα
(Siα) = Et∈Tα

(
|t|
n̄α

E(Siα | i ∈ t)
)
. (B1)

It is immediate that if tables are all the same size, then (1) equals (B1) because |t|= n̄α .
To provide a more general comparison of the two expectations, we introduce the following

reduced-form model. By equation (1), Siα can be written

Siα = πα +uiα , (B2)

where uiα is an error term with conditional expectation

Et∈Tα
(E(uiα | i ∈ t)) = 0. (B3)

Assume the error term can be decomposed as uiα = νiα + εiα , where εiα is white noise with mean
zero both within a table and across all tables, i.e.,

E(εiα | i ∈ t) = 0, (B4)

whereas νiα is unobserved table effect, which has zero mean across tables but can have nonzero
mean within a table. Formally, letting ηtα denote expected value of the unobservable effect for
table t, i.e.,

ηtα = E(νiα | i ∈ t), (B5)

we allow ηtα to be nonzero.
Substituting (B2)–(B5) into (B1) and rearranging yields

Ei∈Iα
(Siα) =

1
n̄α

Et∈Tα
(E(|t|πα + |t|νiα + |t|εiα | i ∈ t)) (B6)

= πα +
1

n̄α

Covt∈Tα
(|t|ηtα). (B7)

We see that the alternative expectation is biased relative to πα , positively biased if ηtα covaries
positively with table size |t|, negatively biased if ηtα covaries negatively with |t|.

B2. Sum of Frequency Weights
Summing the weights in equation (3) yields

∑
i∈Iα

wi =
|Iα |
|Tα | ∑

t∈Tα

(
∑
i∈t

1
|t|

)
=
|Iα |
|Tα | ∑

t∈Tα

1 = |Iα |. (B8)
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B2. Extension of BUM Model to Multiple Removal Regions (BUMMR)
The density in (11) can be generalized to multiple regions with heterogeneous removal rates. To
this end, partition the unit interval into K subintervals: 0 = α̂0 < α̂1 < · · ·< α̂K = 1. Let ρk be the
removal rate in the subinterval αk = [α̂k−1, α̂k). Applying Bayes Rule,

f (pi; µ,ω,~ρ) =
(1−Siαkρk) f1(pi; µ,ω)

1−
K

∑
k=1

(ρk−ρk+1)

[
ωα̂k +(1−ω)α̂

1
1+m
k

] , (B9)

where ρK+1 = 0 by definition.
The denominator is the unconditional probability that a sniff test is note removed. This equals

K

∑
k=1

Pr(pi ∈ αk)
∫

α̂k

α̂k−1

(1−ρk)
f1(pi; µ,ω)

Pr(pi ∈ αk)
d pi

=
K

∑
k=1

(1−ρk)
∫

α̂k

α̂k−1

[ω +(1−ω)g(pi; µ)]d pi (B10)

=
K

∑
k=1

(1−ρk)

[
ω(α̂k− α̂k−1)+(1−ω)

(
α̂

1
1+µ

k − α̂

1
1+µ

k−1

)]
(B11)

= ωα̂K +(1−ω)α̂
1

1+µ

K −ω

K

∑
k=1

ρkα̂k +ω

K

∑
k=1

ρkα̂k−1

− (1−ω)
K

∑
k=1

ρkα̂

1
1+µ

k +(1−ω)
K

∑
k=1

ρkα̂

1
1+µ

k−1

(B12)

= 1−ω

K

∑
k=1

ρkα̂k +ω

K−1

∑
k=0

ρk+1α̂k

− (1−ω)
K

∑
k=1

ρkα̂

1
1+µ

k +(1−ω)
K−1

∑
k=0

ρk+1α̂

1
1+µ

k

(B13)

= 1−ω

K

∑
k=1

ρkα̂k +ω

K

∑
k=1

ρk+1α̂k

− (1−ω)
K

∑
k=1

ρkα̂

1
1+µ

k +(1−ω)
K

∑
k=1

ρk+1α̂

1
1+µ

k .

(B14)

Equation (B10) follows from cancelling factors and substituting from (10), and (B11) follows
from integrating. Equation (B12) follows from distributing 1 and cancelling a terms and from
distributing ρk. Equation (B13) follows from α̂K = 1 and from changing the indexing on two of
the sums. Equation (B14) follows from α̂0 = 0 and ρK+1 = 0 by definition. Rearranging (B14)
gives the denominator of (B9).

Generalizing the likelihood function from BUM(SR) in equations (12) and (13) to BUM(MR),
we have

lnL = ∑
pi exact

ln f (pi; µ,ω,~ρ)+ ∑
pi∈[`i,ui)

ln
∫ ui

`i

f (p; µ,ω,~ρ)d p (B15)
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=
K

∑
k=1

Npi∈αk ln(1−ρk)−N ln

(
1−

K

∑
k=1

(ρk−ρk−1)

[
ωα̂k +(1−ω)α̂

1
1+µ

k

])

+ ∑
pi exact

ln
(

ω +
1−ω

1+µ
p
−µ

1+µ

i

)
+ ∑

pi∈[`i,ui)

ln
( K

∑
k=1

(1−ρk)

{
ω [min(ui, α̂k)−max(`i, α̂k−1)]

+(1−ω)
[
min(ui, α̂k)

1
1+µ −max(`i, α̂k−1)

1
1+µ

]})
.

(B16)
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