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1. Introduction

Technologies that help prevent infectious diseases such as vaccines, condoms, and mosquito nets

can generate positive health externalities. While standard economic models provide a justification

for public subsidies of such preventive technologies, existing models provide little guidance on the

appropriate magnitude of these subsidies. This gap in understanding makes it difficult for economists

to provide guidance—even at a conceptual level—on both the optimal level of government subsidies

for infectious disease control and the ways in which the level of such subsidies should vary across

diseases. Furthermore, most existing work by economists has been oriented toward endemic diseases

and policies which play out over years or decades such as vaccination campaigns to eradicate polio

or circumcision to reduce the spread of HIV. However, the Covid-19 pandemic has underscored

the urgency of understanding short-run policy responses to the epidemics that can result from the

emergence of novel diseases or from localized outbreaks of otherwise dormant diseases such as

Ebola or MERS.

To address these questions, we construct a tractable model integrating epidemiological and eco-

nomic considerations. For concreteness, the discussion is focused on the market for a vaccine, but

the analysis applies to any technology (circumcision, bed nets, social distancing) preventing con-

sumers from contracting a disease. Consumers and producers base their economic decisions on

rational expectations of disease dynamics based on a susceptible-infected-recovered (SIR) model

standard in the epidemiology literature. Section 2 adopts a long-run perspective suited to an en-

demic disease. Consistent with this perspective, we incorporate population turnover into the SIR

model and analyze the steady-state equilibrium of the vaccine market. Section 3 shifts to a short-run

perspective of a vaccine campaign introduced at a single point in time into an SIR epidemic without

population turnover. Absent preventive measures, such an epidemic can rapidly peak before ulti-

mately burning out, leaving some untouched. Consumers in the short-run analysis make vaccination

decisions based on their probability of being infected before the disease burns out, while consumers

in the long-run analysis base their decisions on the probability of infection in the steady state.

For a continuum of market structures—including perfect competition, monopoly, and Cournot

competition nesting these extremes—the long-run analysis generates a closed-form solution for the

marginal vaccine externality in steady-state equilibrium as a function of estimable parameters in-

cluding disease infectiveness, recovery rate, vaccine cost, and efficacy. A key finding is that this

marginal externality is nonmonotonic in the disease’s basic reproductive ratio R0, a widely used

measure of infectiveness. For sufficiently low values of R0 (technically, R0 ≤ 1), the disease dies
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out in the steady state even without a vaccine, so there is no vaccine market and no marginal ex-

ternality. For sufficiently high values of R0, vaccinating a given consumer does not provide much

protection to others since they are almost certain to contract the disease from another source any-

way. To be sure, a consumer’s vaccination provides a substantial social benefit when R0 is extremely

high, but most of that benefit is internalized by the consumer themselves. The marginal externality

on others is greatest not for extreme but for intermediate values of R0. The optimal vaccine subsidy

(minimum subsidy needed to obtain the first-best quantity) is likewise nonmonotonic in R0. Hold-

ing constant disease burden (the product of prevalence and harm), our results suggest that the best

candidates for vaccine subsides are rarer but more serious diseases.

Our crude calibrations suggest that optimal subsidies may be very large relative to current lev-

els in the case of competitively supplied products. For example, the external benefit from using

circumcision to prevent HIV in developing countries could justify subsidies of more than $1,000,

while programs studied to date paid participants no more than $15 beyond procedure costs. For

products produced by a monopoly selling directly to consumers, a per-dose subsidy may not always

be a viable policy option since the minimum subsidy achieving the first best can be enormous: in

our measles calibration, for example, fifteen times the harm from actually having the disease. Given

plausible values for the social cost of public funds, such subsidies would be prohibitively expensive.

Bulk purchase of the optimal quantity coupled with subsidized distribution may be a cheaper route

to the first best.

Moving from the long-run to the short-run analysis, the latter is technically more difficult because

equilibrium variables no longer have closed-form expressions, requiring the Lambert W function

to express analytically. Still, we are able to recover the result from the long-run analysis that the

marginal externality and optimal subsidy are nonmonotonic in R0 for market structures ranging from

perfect competition, to Cournot, to monopoly. The featured calibration of the short-run analysis is

to the Covid-19 pandemic.

A major point of departure between the long- and short-run analyses regards the viability of

universal vaccination as a business strategy. In the long-run analysis, a perfectly effective vaccine

would never be universally purchased if sold at a positive price because, with all other consumers

protected, the marginal consumer obtains no private benefit. A number of previous game-theoretic

analyses of vaccine uptake make exactly this point (Geoffard and Phillipson 1997, May 2000, Bauch

and Earn 2004). In our short-run analysis, however, universal vaccination with a perfectly effective

vaccine may be a profitable business strategy. The risk of contracting the disease from those infected
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before the arrival of the vaccine but not yet recovered preserves a positive willingness to pay for the

marginal consumer even if all other susceptibles are protected. Not only is universal vaccination

with a perfectly effective vaccine a possible equilibrium for some parameters for some market struc-

ture, this outcome is guaranteed in equilibrium even under monopoly for sufficiently low cost and

sufficiently high infectiousness.

Another point of departure regards capacity constraints. The long run leaves little room for

capacity constraints, but they may be relevant in the short run. We can thus apply the short-run

analysis to understand how to allocate a limited capacity across states, countries, or other regions

with separate epidemiologies, owing, say, to travel restrictions. We show that if the product of R0 and

Ŝ0 (the susceptible proportion of the population upon vaccine rollout) exceeds 2, there are initially

increasing social returns to vaccination, meaning that a small capacity would be more efficiently

concentrated in a single region than spread evenly across them. The condition R0Ŝ0 > 2 has intuitive

appeal, which can be understood by analogy to forest fires. Infectiousness R0 promotes disease

spread much as prime weather conditions (low moisture, hot temperature, high winds) promote

fires’ spread; the stock of susceptibles Ŝ0 acts like the stock of flammable material providing fuel

for the fire. For an epidemic to grow initially rather than diminishing from the outset requires a

certain level of both factors in the absence of a vaccine, technically R0Ŝ0 > 1. When R0Ŝ0 exceeds

the higher threshold of 2, the epidemic is so explosive that a small amount of vaccine does little to

slow it. To make a measurable dent in the epidemic requires concentrating supplies in one region.

If R0Ŝ0 exceeds a yet higher threshold than 2 that we specify, vaccination exhibits increasing social

returns for all capacity levels, meaning that would be efficient to serve all susceptibles in a region

before moving to the next region.

Section 4 extends the model to allow for consumer heterogeneity, conducting several exercises.

We show that the nonmonotonicity in the marginal externality, observed for both long- and short-run

analyses and for all market structures is robust to the addition of consumer heterogeneity (in, say,

disease harm). We illustrate how even imprecise targeting can help an otherwise expensive program

subsidizing consumers’ heterogeneous adoption costs to pass a cost-benefit test. We provide con-

ditions under which a naïve researcher who estimates the marginal externality using aggregate data

ignoring heterogeneity in infectiousness across groups can arrive at an unbiased estimate of the av-

erage marginal externality across consumers; in other cases, a simple adjustment is all that is needed

to remove the bias.

To the various ways in which the vaccine’s epidemiological externality impacts the market, Sec-
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tion 5 compares the results to a market for a drug is similar in all ways to the vaccine except that it

treats symptoms but does nothing to reduce disease spread from treated individuals. We show that a

monopolist would always prefer to develop the drug but parameters exist in both the long- and short-

run analyses for which social welfare is higher with the vaccine. Consistent with nonmonotonicities

found elsewhere, the monopolist’s bias toward a drug is greatest for intermediate values of R0.

While the SIR model we use is standard in the epidemiology literature by design, our novel

contribution to that literature is to incorporate an epidemiological model into a welfare economics

framework, facilitating the analysis of market equilibrium and optimal policy. Much of the epi-

demiology literature focuses on characterizing when disease eradication is feasible, whereas our

framework admits nontrivial analysis even in settings in which eradication is impossible (long-run

equilibrium with a perfectly effective vaccine) or certain (the disease always dies out in our short-run

analysis). An important exception is Althouse, Bergstrom, and Bergstrom (2010), who also consider

welfare analysis of vaccination, calibrating a simple model for four prominent diseases to estimate

optimal subsidies under perfect competition and perfectly effective vaccination. We view our paper

as building on their work, allowing for imperfect vaccines, including a supply-side model of firm be-

havior, and generating comparative statics which allow theoretical insights into how epidemiological

and economic parameters impact market outcomes and optimal policy.

The epidemiology literature previously recognized the possibility that the nonlinear nature of

epidemics may dictate optimal policy concentrating a scarce stockpile in one population rather

spreading across them. Keeling and Shattock (2012) provided an early contribution, subsequently

refined by work including Keeling and Ross (2015), Nguyen and Carlson (2016), and Enayati and

’́Ozaltin (2020). This literature has the advantage of studying increasingly rich epidemiological

models, the results are simulated in numerical examples. We contribute a formal conceptualization

of initial and eventual increasing social returns and aid understanding by providing a necessary and

sufficient condition for these outcomes in analytical form.

Economists have long observed that vaccines may provide positive externalities that could affect

consumers’ and firms’ decisions (see, among others, Brito, Sheshinski, and Intrilligator 1991; Chen

and Toxvaerd 2014; Francis 1997; Geoffard and Philipson 1997; Gersovitz 2003; Gersovitz and

Hammer 2004, 2005).1 Boulier, Datta, and Goldfarb (2007) use a standard epidemiological model

alone (i.e., neither interacted with consumer decisions nor a supply-side model of firm behavior)

1Recent work in behavioral epidemiology implicitly incorporates externalities, considering, for example, game-
theoretic analyses of decisions around whether to vaccinate or to free ride on herd immunity. (Funk et al. 2010; Manfredi
and D’Onofrio 2013)
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to examine properties of vaccination externalities that arise solely due to epidemiological concerns.

Geoffard and Philipson (1997) use an epidemiological model similar to ours to show that a vaccine

producer with market power will not choose to eradicate the disease in the steady-state. Galeotti

and Rogers (2013) model vaccination choices in a heterogenous population, and consider the effect

of network structures in determining optimal vaccine allocation.2 Economists have attempted to

provide well-identified empirical estimates of vaccine externalities (Cook et al. 2009, Ward 2014,

Bethune and Korinek 2020). Given the difficulty of using randomized controlled trials to estimate

externalities, Manski (2017) provides theoretical guidance on how to optimize the decision to man-

date a vaccine when the extent of externality is unknown. We make a number of contributions to

this economics literature. First, we incorporate a model of firm behavior and explicitly characterize

equilibrium solutions for both positive and normative outcomes—specifically, externalities and op-

timal subsidies—in terms of estimable parameters. Second, our short-run analysis provides what to

our knowledge is the first treatment of vaccination externalities and subsidies oriented to the initi-

tial stages of a novel disease or localized outbreak and the first to characterize increasing returns to

vaccination in this setting.

2. Long-Run Analysis of Endemic Disease

This section analyzes the market for vaccine against an endemic disease such as HIV that persists in

the population over the long run. We begin by outlining a standard epidemiological model into which

we introduce an economic model of the vaccine market. Reflecting our long-run perspective, we

focus on the steady-state equilibrium. We solve for the equilibrium under various market structures

ranging from perfect competition to monopoly, analyzing comparative statics, welfare implications,

and optimal subsidies.

2.1. Epidemiological Model

The foundation of our analysis is the standard susceptible-infected-removed (SIR) epidemiological

model due to Kermanck and McKendrick (1927). See Martcheva (2015) for a textbook treatment

of the basic model as well as the enhanced version with vaccination and demographic flows (births

and deaths) that we specifically employ. Time is continuous, indexed by t. Let µ ∈ (0,1) denote the

2Mecholan (2007) provides some analysis of treatments (conditional on infection) for communicable diseases in
the context of a monopoly manufacturer, but provides no analytical results, instead focusing on numerical simulations,
primarily related to issues of drug resistance.
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mortality rate from causes other than the disease, referred to as “natural causes.” For simplicity, we

will study the case of a non-fatal disease and set the birth rate to equal to µ, leaving the population

size constant over time. Anticipating their role in the vaccine market, we call members of this

population “consumers.” Normalize the mass of consumers to 1. Consumers are partitioned into

four compartments: susceptible to infection St , currently infected It , recovered from an infection Rt ,

or immunized Vt .

Since the compartments partition the mass of consumers (i.e., the compartments are mutually

exclusive and exhaustive),

St + It + Rt +Vt = 1. (1)

With the total mass on the right-hand of (1) normalized to 1, the compartments on the left-hand side

can be interpreted as either masses or proportions.

Turn next to the equations determining the evolution of compartments over continuous time,

starting with Vt . Let Q ≥ 0 be the quantity of vaccine purchased each instant. For now take Q as

given; later, we will solve for its equilibrium value using the economic model and substitute this

value back into the epidemiological model. In principle, Q could vary over time, but we omit a time

subscript anticipating that we will solve for its equilibrium value in the steady state. Let θ ∈ (0,1)

denote vaccine efficacy. Assume that vaccinations are adminstered to newborns3 and that if the

initial dose is not effective for a person, further doses will not be effective for that person either. The

mass of newborns that are immunized (i.e., successfully vaccinated) each instant is θQ. The rate of

change of the immunized population, ∂Vt/∂t ≡ V̇t , is

V̇t = θQ −µVt , (2)

the number of newborns who are immunized minus the number of immunized individuals who die

(of causes other than the disease).

The rate of change of the infected population is

İt = βItSt − (α+µ)It . (3)

The first term captures the flow of new infections. A susceptible consumer contracts the disease

3Given the Poisson structure of the model, and hence the stationarity of consumers’ life cycles, assuming vaccines
are adminstered only to newborns is without loss of generality; we could equivalently have assumed that the vaccine is
administered to any subset of susceptible consumers who have not yet been vaccinated.
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from an infected consumer at rate β > 0, embodying the rate of contact between people and the

rate at which a contact leads to infection. Assuming the infection rate is linear in the number of

infected consumers, a single susceptible consumer is infected with probability βIt , and the mass of

susceptibles generates βItSt new infections. The mass of infected consumers is reduced by the mass

αIt of them who recover, where α ∈ (0,1) denotes the recovery rate, and by the number of infected

consumers who die. Consistent with our assumption that the disease is non-fatal, the mortality rate

is the same µ for infected consumers as for other compartments.

Assume that recovered people cannot be reinfected. Then the rate of change of the recovered

population is

Ṙt = αIt −µRt , (4)

the number of infected people who recover that instant minus the number of recovered vaccinated

individuals who die.

Newborns enter the population at rate as susceptibles. To maintain a stationary population size,

the birth rate must equal the mortality rate, µ. A fraction θQ of newborns are immunized at birth.

Mass βItSt of susceptibles become infected each instant, and a further µSt die. Thus, the rate of

change of the susceptible population is

Ṡt = µ− θQ −βItSt −µSt . (5)

Because the compartment masses must sum to 1, one of the equations (2)–(5) is redundant given the

others. For instance, (5) can be derived by substituting from (1)–(4) into the derivative of (1) with

respect to t.

That completes the specification of the SIR model. In lieu of the transmission parameter β, epi-

demiologists often work with a related parameter called the basic reproductive ratio R0, traditionally

defined as the expected number of secondary infections generated by adding an infected individual

to a fully susceptible population.4 One can see that the disease eventually dies out in an unvaccinated

population if R0 < 1 and remains endemic if R0 > 1.

In our model,

R0 =
β

α+µ
. (6)

To understand this expression, each instant the individual remains infected, he or she infects a num-

4The modern definition of R0 due to Dikemann, Heersterbeek, and Metz (1990) is the dominant eigenvalue of the
next-generation operator in the epidemiological system. Martcheva (2015, p. 51) shows that equation (6) provides the
value of R0 implied by this definition.
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ber of others equal to β times the size of the susceptible population, which is approximately 1 over

the period since the infected individual is introduced into a fully susceptible population. The individ-

ual remains infected for an expected duration of 1/(α+µ). To see this, note that there are two com-

peting risks for exiting the infected state: recovery, which has hazard λR(t) =α, and mortality, which

has hazard λM(t) = µ. The combined hazard of exiting the infected state is λEI(t) = λR(t) +λM(t).

As is well known for Poisson duration models, the duration of a spell equals the reciprocal of the

hazard, here 1/λEI(t) = 1/(α+µ).

The subsequent analysis takes R0 as the key exogenous parameter, capturing the disease’s infec-

tiveness. Estimates of R0 vary considerably across disease—from 1.1 for SARS at the low end to

16–18 for measles and pertussis at the high end—as well as across time and region. A systematic

review of R0 estimates is deferred to Section 2.9, where we calibrate our results to the parameters

of a variety of actual diseases.

Let variables without time t subscripts (S, I, R, V , Q, etc.) denote steady-state values. For

example, S = limt↑∞ St . For a given value of Q, the steady-state values of the compartments can

be found by solving the system of equations formed by setting V̇t = İt = Ṙt = Ṡt = 0 in equations

(2)–(5). The unique stable solution is5

S(Q) = min
(

1 −
θ

µ
Q,

1
R0

)
(7)

I(Q) = max
[

0,
µ

α+µ

(
1 −

1
R0

−
θ

µ
Q
)]

(8)

R(Q) =
α

µ
I(Q) (9)

V (Q) =
θ

µ
Q. (10)

By equation (8), if R0 ≤ 1, then I = 0 for all Q≥ 0. The disease dies out in the steady state with

or without a vaccine, confirming a claim from the previous subsection. For a non-trivial vaccine

market to exist, R0 > 1. In that case, whether the disease dies out in the steady state depends on

Q: I(Q) = 0 if and only if Q≥ (µ/θ)(1 − 1/R0). Combining the various cases in a way that will be

convenient for the subsequent analysis, we can rewrite

I(Q) =


0 Q≥ Q0

µ

α+µ

(
1 −

1
R0

−
θ

µ
Q
)

Q< Q0,
(11)

5A trivial solution involving I = 0 always exists, but it is unstable when R0 > µ/(µ−θQ).
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where

Q0 = max
[

0,
µ

θ

(
1 −

1
R0

)]
(12)

is the threshold vaccine quantity above which the disease dies out and below which the disease

remains endemic.

2.2. Consumer Demand

Having specified the epidemiological features of the model, we next turn to economic features of

the vaccine market, starting with demand. Assume consumers are risk neutral. For now, assume in

addition that consumers are homogeneous; later sections and appendices will extend the results to

different dimensions of consumer heterogeneity. To avoid computing transition paths, focus on the

steady-state in the limiting case without discounting.

A consumer demands the vaccine if his or her marginal private benefit MPB(Q) from the vaccine

exceeds its price. For a risk-neutral consumer, MPB(Q) = θHΦI(Q), where efficacy parameter θ is

the probability that the vaccine allows the consumer to avoid harm, H denotes the expected harm

over the infection’s spell conditional on being infected, and ΦI(Q) denotes the probability that a

susceptible person becomes infected.

To compute H, harm measured as a stock over the infection spell, let h be flow harm to a con-

sumer each instant he or she is infected. The consumer experiences that flow harm from the initial

date of infection until he or she exits the infected state. Section 2.1 showed that the expected duration

of the infected state equals 1/(α+µ). Hence,

H =
h

α+µ
. (13)

To compute ΦI(Q), consider the competing risks that can lead a susceptible to exit that state.

A susceptible consumer who has chosen not to be vaccinated faces two remaining competing risks:

infection, which has hazard λI(t,Q) = βI(Q) each instant, and mortality from natural causes, which

has hazard λM(t) = µ. The combined hazard of exiting the susceptible state is λES(t,Q) = λI(t,Q)+

λM(t). By standard results for competing Poisson risks, the consumer’s cumulative risk of exiting

the susceptible state by age t is ΛES(t,Q) =
∫ t

0 λES(τ ,Q)dτ , probability of surviving as susceptible to

age t is e−ΛES(t,Q), and likelihood of exit due to infection is φI(t,Q) = λI(t,Q)e−ΛES(t,Q). To compute

the probability that the consumer experiences an infection at some point over his or her lifetime, we
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integrate this cause-specific likelihood:

ΦI(Q) =
∫

∞

0
φI(t,Q)dt =

βI(Q)

βI(Q) +µ
=

(α+µ)R0I(Q)

(α+µ)R0I(Q) +µ
. (14)

Substituting for I(Q) from (11) yields

ΦI(Q) =


0 Q≥ Q0

1 −
1

(1 − θQ/µ)R0
Q< Q0.

(15)

The marginal private benefit inherits this branched structure from Φ(Q):

MPB(Q) =


0 Q≥ Q0

θH
[

1 −
1

(1 − θQ/µ)R0

]
Q< Q0.

(16)

It can be verified that the second branch of MPB(Q) is strictly decreasing in Q, ensuring the demand

curve derived next is well defined and weakly downward sloping.

Let P be the vaccine’s price. Consumers strictly prefer to purchase the vaccine if P < MPB(Q).

Substituting the quantity Q = µ that results when all consumers who are eligible to purchase—all

newborns—end up purchasing into the preceding inequality, we have D(P) = µ if P < MPB(µ).

Consumers strictly prefer not to purchase if P > MPB(Q). Substituting Q = 0 into the preceding

inequality, we have D(P) = 0 if P > MPB(0). For P strictly between MPB(µ) and MPB(0), some

but not all consumers purchase. Given they are homogeneous, consumers must be indifferent be-

tween purchasing and not, implying P = MPB(Q). Given they are indifferent, any fraction of them

purchasing is an equilibrium; demand is pinned down by the value of Q satisfying (16) when the

right-hand side is set equal to P. Demand in that case is given by

d(P) =
µ

θ

[
1 −

1
(1 − P/θH)R0

]
. (17)

Combining these facts yields the demand curve

D(P) =


0 P>MPB(0)

d(P) P ∈ [MPB(µ),MPB(0)]

µ P<MPB(µ).

(18)
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Equivalently, the demand curve is given by d(P) unless this violates a boundary condition d(P) ∈
[0,µ], in which case demand is given by the violated boundary.

Demand considerations alone allow us to establish that an important result due to Geoffard and

Philipson (1997)—that nontrivial equilibria cannot entail the disease’s eradication in the steady

state—holds quite generally in our model as well. The result holds independent of market struc-

ture and holds whether or not the government subsidizes vaccines.

Proposition 1. Suppose that the disease is eradicated in steady-state equilibrium of a market with
or without government subsidies, i.e., I∗ = 0. Then either the vaccine is free to consumers (P∗ = 0)
or no vaccine is purchased (Q∗ = 0).

The proof is provided in Appendix A. Intuitively, if the disease is eradicated in steady-state equilib-

rium, then ΦI(Q) = 0, implying MPB(Q) = 0. But consumers with no marginal private benefit will

not purchase the vaccine at a positive price.

2.3. Firm Supply

We analyze two different market structures in the text: perfect competition and monopoly. Ap-

pendix B provides results from a more general model of Cournot competition among N firms that

nests these extremes.

Assume firms produce at constant marginal and average cost c > 0 per vaccine course (where

a course involves multiple doses when needed to provide immunity). Under perfect competition,

vaccine supply is perfectly elastic at price c. Under monopoly, the firm sets a price maximizing

industry profit Π, measured as a flow each instant in the steady state.

2.4. Normative Measures

Define the total social benefit from the vaccine in the steady state as SB(Q) = h[1− I(Q)], the product

of flow health benefit h to an individual and the number of healthy individuals 1− I(Q) at any instant

in steady-state equilibrium.6 Substituting from (8) yields

SB(Q) =

(α+µ)H Q≥ Q0

(α+ θQ +µ/R0)H Q≤ Q0.
(19)

6A natural alternative measure of social benefit would be SB(Q) = h[I(0)− I(Q)]. We use the maximum conceivable
infection rate 1 rather than the rate in the absence of a vaccine I(0) as the benchmark against which the equilibrium
outcome is compared to generate more natural comparative statics. The alternative measure could lead to the odd
conclusion that an increase in R0 is socially beneficial if the increase in R0 increases I(0) sufficiently to increase SB(Q).
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Let W (Q) denote social welfare on the vaccine market, i.e., the difference between total social

benefit and total vaccine production costs:

W (Q) = SB(Q) − cQ. (20)

Let MSB(Q) = ∂SB(Q)/∂Q denote marginal social benefit from a vaccine course. Differentiating

(19),7

MSB(Q) =

0 Q≥ Q0

θH Q< Q0.
(21)

Let MEX(Q) = MSB(Q)−MPB(Q) denote the marginal externality from a vaccine course. Subtract-

ing the formulas provided yields

MEX(Q) =


0 Q≥ Q0

θH
(1 − θQ/µ)R0

Q< Q0.
(22)

A comprehensive analysis of these normative measures is postponed until after we have solved

for the equilibrium value of Q, on which the measures depend. Some observations can be made even

at this preliminary stage. For Q ≥ Q0, enough vaccine is available to eradicate the disease in the

steady state, eliminating the marginal benefit of vaccine. Hence, MPB(Q) = MSB(Q) = MEX(Q) =

0 for Q≥ Q0.

For Q < Q0, MSB(Q) = θH, which is the expected benefit of treating the an infected person

with a drug that does not prevent disease transmission but has efficacy θ in preventing harmful

symptoms. It may be at first puzzling that vaccinating an individual not certain to contract the disease

amounts to the same social benefit as treating a certainly infected individual. The puzzle is resolved

upon recognizing the positive externality associated with the vaccine’s preventing a whole chain of

possible infections in the unvaccinated population. Conditional on the vaccine’s being effective for

individual, an event with probability θ, his or her direct benefit plus the chain of expected external

benefits sum exactly to H in the model.

Also remarkable is the fact that, for Q < Q0, MSB(Q) is a constant that does not vary with the

infectiveness of the disease as measured by R0. When R0 increases, the vaccinated individual’s

direct benefit MPB(Q) increases; but, perhaps counterintuitively, the marginal externality MEX(Q)

7The derivative ∂SB(Q0)∂Q does not exist, but the left and right derivatives, respectively ∂SB(Q0)/∂Q− and
∂SB(Q0)/∂Q+, do. We set MSB(Q0) = ∂SB(Q0)/∂Q+.
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decreases. An individual’s vaccination provides less external benefit to contacts because they are

increasingly likely to pick up the disease from someone else. The increase in MPB(Q) and decrease

in MEX(Q) exactly offset so that their sum MSB(Q) is independent of R0.

As a benchmark, we will characterize the first-best quantity Q∗∗, which maximizes social wel-

fare. To accommodate cases in which a possibly open set of quantities maximize social welfare,

we take Q∗∗ to be the infimum of the set. Comparing the marginal social benefit of a vaccine in

(21)—which we see is either 0 or a positive constant—with its marginal social cost—given simply

by c—it is immediate that Q∗∗ = 0 if c≥ θH. To rule out this trivial case, we assume throughout the

remainder of the paper that the disease is harmful enough that the vaccine’s social benefit exceeds

its cost: θH > c. Rescaling cost as c̃ = c/θH, the assumption can be equivalently written

c̃< 1. (23)

When (23) holds, we can see from (21) that Q∗∗ = Q0 unless this entails vaccinating more than the

flow of newborns each instant, in which case Q∗∗ = µ. Thus,

Q∗∗ = min(Q0,µ). (24)

2.5. Perfectly Competitive Equilibrium

Equilibrium values of steady-state variables will be distinguished with asterisks, with an added

subscript indicating the relevant market structure. Thus, for example, P∗c denotes the perfectly com-

petitive equilibrium price.

Under perfect competition P∗c = c. The remaining equilibrium variables can be computed using

straightforward algebra applied to the supplied formulas taking due care to ensure the appropriate

branch of each formula is used in the relevant case. The relevant cases turn out to depend on the

interval in which R0 falls.

First consider R0 ≤ 1. Infectiveness is so low in this case—labeled (LR1)—that the disease

disappears in the steady state even without a vaccine. The vaccine has no marginal social or private

value, and no vaccine is sold.

For values of R0 just above 1, the disease is infective enough not to disappear in the steady state

but not infective enough to justify its purchase at the competitive price. Although the vaccine has a

positive marginal social and private benefit, the marginal private benefit is below c even if no other
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consumer purchases. The upper bound on R0 for this case—labeled (LR2)—is determined by the

condition MPB(0)≤ c, which using (16) yields R0 ≤ 1/(1 − c̃).

For R0 in an intermediate range—labeled case (LR3)—some but not all newborns purchase.

The interior solution for equilibrium quantity Q∗c can be found by substituting P∗c = c into demand

expression (17). The values of other equilibrium variables can be found by substituting Q∗c into the

relevant equations—(8), (21), etc.

For extreme values of R0, the disease can conceivably be so infective that all µ newborns pur-

chase at the competitive price. The existence of this case requires an imperfectly effective vaccine,

θ< 1. Vaccinating all consumers with a perfectly effective vaccine would eliminate the infection and

demand, which would be inconsistent with all newborns purchasing. Enough unsuccessfully vacci-

nated consumers must remain to generate an infection rate that justifies purchase at the competitive

price. The relevant condition determining this case—labeled (LR5)—is MPB(µ) ≥ c, implying

R0 ≥ 1/(1 − θ)(1 − c̃). Since all consumers purchase in this case, there is no underconsumption

distortion; the first best is obtained.

Table 1 reports the steady-state equilibrium values of selected variables under perfect competi-

tion as a function of R0. See Appendix A for formal derivations of table entries. To visualize how

the variables in Table 1 vary with R0, Figure 1 graphs a selection of them, one per panel, as func-

tions of R0. Focus for now on the dotted curves representing equilibrium under perfect competition.

Vaccine quantity Q∗c , graphed in the first panel, equals 0 in case (LR1) because there is no infection

in equilibrium. It continues to be 0 in case (LR2) despite positive disease prevalence because the

prevalence is too low for any consumer to justify spending c on it. In case (LR3), we start to see a

positive vaccine quantity that increases in R0 until case (LR4) is reached and all µ purchase.

It is unsurprising that equilibrium quantity is weakly increasing in the infectiveness of the di-

isease measured by R0. Other equilibrium variables also display expected comparative statics in R0.

MPB∗c is weakly increasing and W ∗c is weakly decreasing in R0. It is noteworthy that MPB∗c levels

off at c in case (LR3). Given that some but not all consumers purchase in this case, consumers must

be indifferent between purchasing and not, implying that the equilibrium price P∗c = c must extract

the entire marginal private benefit, implying MPB∗c = c over the whole interval.

Other variables display interesting non-monotonicities. Initially at zero in case (LR1), disease

prevalence I∗c begins to increase in case (LR2) due to the epidemiological effects of the higher R0

with no vaccine purchases in that case to offset it. In case (LR3), when consumers begin purchasing

vaccine, I∗c reverses course and begins to slope downward in R0. The direct, epidemiological effect
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of an increase in R0 continues to be to increase I∗c . Working in the oppositive direction is an indirect,

economic effect of an increase in R0, inducing consumers to purchase more vaccine. In (LR3), the

indirect effect is strong enough to dominate the direct effect, so that I∗c decreases in R0. Mathe-

matically, to maintain the constant marginal private benefit (MPB∗c = c) observed throughout (LR3),

the increase in infectiveness R0 must be offset by the exact reduction in prevalence I∗c to maintain

a constant probability of contracting the disease. In cases (LR4) and (LR5), I∗c again rises with R0

because the direct effect of an increase in infectiveness cannot be offset by an increase in Q∗c given

that all newborns are already purchasing in these cases.

The marginal externality MEX∗c also exhibits an interesting nonmonotonicity. Although MEX∗c
is monotonic over the subinterval (R0 > 1) for which it is positive, it is nonmonotonic over the

entire range of R0, starting out at 0 for R0 < 1 and jumping to its highest level for R0 just above 1.

Lower levels of R0 eliminate the disease in the steady state. Higher levels of R0 than 1 increase the

infectiveness of the disease, but this leads consumers to internalize an increasing share of the social

benefit of their own vaccination.

The next proposition, proved in Appendix A, summarizes the comparative-static effects of an

increase in R0 on the steady-state equilibrium under perfect competition observed from Figure 1.

Proposition 2. Consider the comparative-static effect of R0 on steady-state equilibrium under per-
fect competition.

• Price and industry profit are constant for R0 > 0, with P∗c = c and Π∗c = 0.

• Q∗c and MPB∗c are weakly increasing in R0 for all R0 > 0.

• I∗c is nonmonotonic, reaching a local maximum I∗c = µc̃/(α+µ) at R0 = 1/(1 − c̃), which is a
global maximum if c̃> 1 − θ.

• Marginal social benefit is constant for all R0 > 1, with MSB∗c = θH.

• The marginal externality is nonmonotonic over R0 > 0, approaching the supremum MEX∗c =
θH as R0 ↓ 1.

• W ∗c is weakly decreasing in R0 for all R0 > 0.

The weak changes in Q∗c , MPB∗c , and W ∗c are strict for a nonempty interval of R0 for each variable.

2.6. Monopoly Equilibrium

Since a monopolist charges a markup above cost, P∗m ≥ c = P∗c , implying Q∗m ≤ Q∗c . Thus, in cases

(LR1) and (LR2) in which Q∗c = 0, we have Q∗m = 0. Cases (LR1) and (LR2) are thus trivially
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identical across perfect competition and monopoly. In the remaining cases, competitive firms are

able to make positive sales at price c. By continuity, the monopolist can make positive sales at some

small markup above c, implying Q∗m > 0 for R0 in case (LR3) and above.

To solve for Q∗m in these other cases, it is convenient to express the monopoly’s maximization

problem so that the choice variable is quantity rather than price. Letting P(Q) denote inverse de-

mand, monopoly profit can be written Π = [P(Q)−c]Q = [MPB(Q)−c]Q, where the second equality

follows since the monopolist optimally charges a price extracting the private benefit of the marginal

consumer. The monopoly maximizes profit subject to the constraint that no more than the popula-

tion of newborn consumers can be served: Q ≤ µ. Applying the Kuhn-Tucker method yields the

following solution. If R0 < 1/(1 − θ)2(1 − c̃), then the constraint Q ≤ µ does not bind, yielding

solution

Q∗m =
µ

θ

[
1 −

√
1

(1 − c̃)R0

]
. (25)

Otherwise, the constraint holds with equality, implying Q∗m = µ. For the constraint to bind requires

the vaccine to be imperfectly effective (θ< 1). The monopolist would never sell a perfectly effective

vaccine to all consumers because this would eradicate the disease, leaving the monopolist with zero

steady-state profit according to Proposition 1.

Substituting Q∗m into the formulas supplied for the other variables yields the entries in Table 2.

The analysis is straigthforward, so we omit formal verification.

To visualize how the variables in Table 2 vary with R0, focus on the solid curves in Figure

1. The two market structures overlap in cases (LR1) and (LR2), neither generating any vaccine

output. The two market structures overlap again in (LR5), both generating the first-best quantity

Q∗∗ = µ. In between—in (LR3) and (LR4)—the two market structures diverge, with monopoly

generating strictly lower output. The strictly lower output under monopoly in these cases leads to a

weakly higher infection rate and marginal private benefit and weakly lower welfare under monopoly.

Perhaps counterintuitively, the marginal externality is also lower under monpoly. This follows from

the fact that MPB∗m ≥ MPB∗c , implying MEX∗m = MSB∗m − MPB∗m ≤ MSB∗c − MPB∗c = MEX∗c since

MSB∗m = MSB∗c = θH.

While it is not surprising that welfare is lower under monopoly than competition as this is true

in typical markets, our model shuts down the typical channel for monopoly deadweight loss by

taking consumers to be homogeneous. In our model, the epidemiological externality confers market

power: starting from a price that extracts purchasers’ entire marginal private benefit, a positive

albeit reduced fraction of consumers will continue to purchase at a higher price since the reduction
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in vaccine quantity increases their marginal private benefit through an increase in disease prevalance.

The monopolist’s exercise of this market power generates deadweight loss. The large gap between

W ∗c and W ∗m for an intermediate range of R0 in the bottom panel of Figure 1 suggests that monopoly

distortions may be worst for moderate levels of infectiveness. Market power generates little welfare

loss for the lowest values of R0 and—with an imperfect vaccine—for the highest values of R0.

Figure 1 illustrates the consequences of Proposition 1 for the market structures we study. Under

both perfect competition and monopoly, the disease has zero prevalence if and only if R0 falls in

case (LR1). Consistent with Proposition 1, no vaccine is purchased in (LR1) under both market

structures.

The comparative statics for Q∗, MPB∗, and MEX∗ are similar across the two market structures,

but the comparative statics for I∗ are considerably more complex for monopoly than perfect compe-

tition. The direct, epidemiological effect leading an increase in infectiveness R0 to increase preva-

lence I∗m is still present as is the indirect, economic effect of increasing vaccine purchases. However,

the monopolist can leverage its market power to absorb some of the indirect effect in the form of

price increases. The balance between the two forces need not tip in the same direction as under

perfect competition. As the next proposition indicates, states, for some parameters, I∗m is decreas-

ing throughout cases (LR3) and (LR4); for other parameters, I∗m is increasing throughout (LR3) and

(LR4); and for yet other parameters—including those chosen for Figure 1, I∗m is nonmonotonic,

attaining a local maximum at a point such as A in the figure.

The graph of W ∗ under monopoly illustrates the remarkable possibility that increasing R0 can

increase welfare. One would think that society would always be harmed by an increase in infective-

ness. While the direct, epidemiological effect of an increase in R0 harms society, the indirect effect

of increasing vaccinations can counteract the direct effect, increasing welfare over some parameter

ranges. In the bottom panel of Figure 1, we see this possibility emerging for the interval of R0 be-

tween point C and the boundary of (LR4). Under monopoly, not only do consumers fail to consider

the external benefit their vaccination provides other consumers, but the monopolist compounds this

by placing negative value on consumption to the extent it reduces others’ willingness to pay for a

vaccine. Mitigating this compounded underconsumption problem via an increase in R0 can provide

such a large indirect benefit that it swamps the direct harm from an increase in R0, leading to an

increase in social welfare.

The next proposition, proved in Appendix A, summarizes the comparative-static effects of an

increase in R0 on the steady-state equilibrium under monopoly observed from Figure 1.
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Proposition 3. Consider the comparative-static effect of R0 on steady-state equilibrium under
monopoly.

• Q∗m, MPB∗m, and Π∗m are weakly increasing in R0 for all R0 > 0.

• A sequence of equilibrium prices exists for which P∗m is weakly increasing in R0 for all R0 > 0.

• If c̃ < 1/2 and c̃ ≤ (1 − 2θ)/2(1 − θ), then I∗m is weakly increasing in R0 for all R0 > 0.
Otherwise, I∗m is nonmonotonic, reaching a local maximum at R0 = 1/(1− c̃) if c̃≥ 1/2, which
is a global maximum if c̃≥ 1 − θ, and reaching a local maximum at R0 = 4(1 − θ) if c̃ < 1/2,
which is a global maximum if c̃≥ (3 − 4θ)/4(1 − θ).

• Marginal social benefit is constant for all R0 > 1, with MSB∗m = θH.

• The marginal externality is nonmonotonic for R0> 0, approaching the supremum MEX∗m = θH
as R0 ↓ 1.

• If θ≤ 1/4, then W ∗m is weakly decreasing in R0 for all R0 > 0. Otherwise, W ∗m is nonmonotonic
in R0, reaching a local minimum at R0 = 4/(1 − c̃), which is a global minimum if θ ≥ 3/4.

The weak changes in Q∗c , MPB∗c , Π∗m, and P∗m are strict for a nonempty interval of R0 for each
variable.

To help parse the complicated conditions behind the nonmonotonicity of I∗m and W ∗m, the next

proposition provides simple sufficient conditions for those variables to achieve local and global

interior optima. Appendix A derives these sufficient conditions as a corollary of Proposition 3.

Proposition 4. If θ> 1/2, I∗m reaches a local maximum and W ∗m a local minimum over R0 > 0. These
local optima are global optima if θ > 3/4.

According to the proposition, if the vaccine is at least 75% effective, then I∗m and W ∗m attain global

optima for interior values of R0. In practice, agencies such as the U.S. Food and Drug Administration

(FDA) do not typically license vaccines with efficacy below 80% (Brennan 2009). For realistic

parameter values we therefore have the surprising result that if a vaccine is sold by a monopolist

directly to consumers, disease prevalence will be greatest and social welfare lowest not for diseases

with the most extreme infectiveness as indexed by R0 but for moderate infectiveness.

The next proposition, proved in Appendix A, measures how substantial the nonmonotonicity in

both variables can be by comparing the interior optimum to the limiting value of each.

Proposition 5. There exist values of parameters besides R0 such that the interior maximum for I∗m
over R0 can be made arbitrarily higher in percentage terms than limR0↑∞ I∗m. The interior minimum
for W ∗m over R0 can be up to 25% larger than limR0↑∞W ∗m.

18



2.7. Government Subsidies

We have that the positive externality associated with vaccine consumption can lead to undercon-

sumption relative to the first best for both perfectly competitive and monopoly market structures.

This naturally raises the question of whether the government can intervene to correct the market fail-

ure. In this section, we characterize the optimal government subsidy and determine its comparative-

static properties.

Assume a benevolent government with the objective of maximizing social welfare commits to

a per-dose subsidy GS ≥ 0 at the outset of the game. Adopting the accounting convention that the

subsidy is paid to firms, the subsidy is equivalent to a reduction in firms’ marginal cost from c to

c − GS. Since social welfare is maximized by the first-best quantity Q∗∗, the first-best subsidy GS∗∗

is that implementing Q∗∗. To accommodate cases in which the government is indifferent among a

possibly open set of subsidies maximizing social welfare, we take GS∗∗ to be the infimum of the

set. Focusing on the infimum could be justified by assuming that the government has lexicographic

preferences with economizing on the subsidy being its next priority after social welfare.

Before analyzing particular market structures, we provide some general principles behind the

optimal subsidy that apply to any market structure, presented in the next proposition.

Proposition 6. Consider any market structure in which a subsidy increase weakly reduces the equi-
librium price induced. If R0 ≤ 1, then GS∗∗ = 0; the disease is eradicated in the steady state without
a vaccine or subsidy. If R0 ∈ (1,1/(1 − θ)), then GS∗∗ induces equilibrium quantity Q∗∗ = Q0 and
price P∗∗ = 0, resulting in eradication of the disease in the steady state. If R0 > 1/(1−θ), then GS∗∗

induces equilibrium quantity Q∗∗ = µ and price

P∗∗ = θH
[

1 −
1

(1 − θ)R0

]
, (26)

resulting in universal vaccination but not eradication.

Appendix A provides a proof. Intuitively, the government would like to eradicate the disease in

all circumstances if this were possible. When R0 ≥ 1/(1 − θ), however, the disease is so infective

relative to vaccine efficacy that eradication cannot be achieved even if all newborns are vaccinated.

The government settles for the goal it can achieve, universal vaccination. Equation (26) characterizes

the highest price at which all consumers are still willing to purchase, which is associated with the

lowest subsidy required for universal vaccination under the maintained assumption that equilibrium

price is weakly decreasing in the subsidy.

With these general principles in hand, we turn to an analysis of specific market structures. Under

perfect competition, the firms pass the subsidy directly to consumers, implying P∗∗ = c − GS∗∗c and
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thus GS∗∗c = c − P∗∗. Substituting the relevant values of P∗∗ from Proposition 6 yields GS∗∗c = 0 if

R0 ≤ 1, GS∗∗c = c if R0 ∈ (1,1/(1 − θ)), and

GS∗∗c = c − θH
[

1 −
1

(1 − θ)R0

]
(27)

if R0 ≥ 1/(1 − θ).

For an imperfectly effective vaccine, (27) becomes negative for sufficiently large R0. Had we not

ruled out negative subsidies by assumption, these negative values of (27) would indeed constitute

GS∗∗c . Given the nonnegativity constraint on subsidies, we have GS∗∗c = 0 for R0 ≥ 1/(1 − θ)(1 − c̃).

It is no coincidence that this is same threshold for the perfectly competitive equilibrium to obtain

the first best in the absence of a subsidy. No subsidy is needed if equilibrium generates the first best

without one. For R0 strictly above this threshold, the government would like to tax vaccines since

some revenue can be raised without impairing universal vaccination. Table 3 lists these results for

reference.

Next turn to computing the optimal subsidy under monopoly. By Proposition 6, GS∗∗m = 0 if

R0 ≤ 1. If R0 ∈ (1,1/(1 − θ)), Proposition 6 implies Q∗∗ = Q0. Setting the quantity in (25) derived

from the monopoly’s first-order condition equal to Q0, substituting the effective marginal cost c−GS

under a subsidy for c in the formula, and rearranging yields GS∗∗m = c+θH(R0 −1). If R0≥ 1/(1−θ),

calculations that are similar except that the monopoly quantity in (25) needs to equated with the

relevant first-best quantity in this case, Q∗∗ = µ, yielding

GS∗∗m = max
{

0,c + θH
[

1
(1 − θ)2R0

− 1
]}

, (28)

where the max operator has been added to reflect the nonnegativity constraint on subsidies. The

nonnegativity constraint binds in case (LR5)—not coincidentally the case in which the first-best

would be obtained in monopoly equilibrium without a subsidy. Table 3 reports these results for

reference, suitably rescaled.

Figure 2 graphs GS∗∗ as a function of R0 for the two market structures. As the figure documents,

the optimal subsidy is weakly lower under competition than monopoly. The optimal subsidy is not

monotonically increasing in R0 as might be inferred based solely on epidemiological considerations

but is hump shaped.8 The difficulty in addressing a disease depends not only on its infectiousness

8While GS∗∗ has the same general hump shape in R0 as MEX∗, the two are not identical for several reasons. Since
consumers are homogeneous, the first best is a corner solution involving eradication or universal vaccination, which may
be achieved with a subsidy less than MEX∗. This point can be seen most clearly in case (LR5), in which the first best
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but also on consumers’ response to this infectiousness. Consumers respond to extremely infectious

diseases by getting vaccinated even if many others also do. Moderately infectious diseases provide

consumers more leeway to free ride on the vaccination of others.

The next proposition catalogs relevant observations concerning GS∗∗. The proof in Appendix A

fills in the few details that cannot be directly gleaned from Table 3.

Proposition 7. The following results characterize optimal subsidies, attaining the first best at mini-
mum government expenditure.

• GS∗∗m ≥ GS∗∗c , with strict inequality for all R0 ∈ (1,1/(1 − θ)2(1 − c̃)).

• GS∗∗c and GS∗∗m are weakly increasing in c and θ.

• GS∗∗c and GS∗∗m are nonmonotonic in R0 > 0. GS∗∗c reaches its global maximum, c, for all
R0 in the interval (1,1/(1 − θ)]; GS∗∗m reaches its global maximum, c + Hθ2/(1 − θ), for R0 =
1/(1 − θ).

2.8. Relevant Limiting Results

While Tables 1 and 2 help organize the results, they still have numerous entries, some of which

contain complex formulas. Further clarity can be obtained by taking limits of certain parameters

justified by pedagogical or practical considerations.

For vaccine efficacy, we take the limiting case of a perfectly effective vaccine, θ ↑ 1. This limit

is interesting on pedagogical grounds because it allows disease eradication to be technologically

feasible. This limit is also interesting on practical grounds, reflecting the high efficacy of many

existing vaccines.9 For rescaled cost, c̃ = c/θH, we take the limiting case of a costless vaccine,

c̃ ↓ 0, reflecting the low cost c for existing vaccines, especially in comparison to the potential disease

harm H.10 For the recovery rate, we take the limiting case of no recovery, α ↓ 0, meaning that the

is obtained without a subsidy under both market structures. Even though all consumers are vaccinated in equilibrium,
eliminating the familiar positive externality of vaccination on the unvaccinated, MEX∗ is still positive, reflecting the
externality on those who purchased vaccine but for whom it was ineffective. Other factors can point in the opposite
direction, leading lead MEX∗ to exceed GS∗∗. The benevolent government regards transfers as neutral, so it is willing to
pay any amount—more than MEX∗ if need be—to increase consumption. There is no danger that exorbitant subsidies
would induce overconsumption because the first best is a corner solution. An additional wedge between the optimal
subsidy and marginal externality under monopoly is that firms with market power may only incompletely pass through
the subsidy.

9The US Centers for Disease Control and Prevention (2020b) report efficacies from the recommended vaccine
courses of 95% for hepatitis B and tetanus, 97% for measles and shingles, 98% for pertussis, and 99% for polio.

10Taking the example of a hepatitis B vaccine, the US Centers for Disease Control and Prevention (2002a) lists a
price of $25 per dose, totalling $75 for the recommended three-dose course. In the study of the cost effectiveness of a
vaccine program against the disease, Hoerger et al. (2013) estimate that 4,527 infections would be avoided, generating
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person continues to experience harm and can transmit the disease over his or her remaining lifespan,

characteristic of diseases such as HIV, syphillis, and malaria.11

Imposing these limits and restricting attention to R0 > 1 considerably simplifies the analysis.

Only case (LR3) remains from Tables 1 and 2 and case (LR2′) from Table 3. The following propo-

sition is then immediate from inspection of the tables.

Proposition 8. Suppose R0 > 1 and consider the limits θ ↑ 1, c̃ ↓ 0, and α ↓ 0.

• Under perfect competition, P∗c = MPB∗c = Π∗c = I∗c = GS∗∗c = 0, Q∗c = µ(1 − 1/R0), and
MEX∗c = H.

• Under monopoly, P∗m = MPB∗m = H(1−1/
√
R0), Q∗m = µ(1−1/

√
R0), Π∗m = µH(1−1/

√
R0)2,

I∗m = (1/
√
R0) − (1/R0), MEX∗m = H/

√
R0, and GS∗∗m = H(R0 − 1).

According to the proposition, under perfect competition, for all R0 > 1, enough consumers are

vaccinated to eradicate the disease, attaining the first best. Price, profit, and the infection rate are

all 0. Under monopoly, price, profit, and the share of consumers vaccinated approach 0 in the

limit R0 ↓ 1, while price approaches 100% of the harm from contracting the disease and quantity

approaches 100% share of newborns in the limit R0 ↑∞. Equilibrium prevalence is nonmonotonic in

R0 under monopoly. Maximizing the formula given for I∗m, one can show that equilibrium prevalence

is greatest for a disease with R0 = 4.

2.9. Calibrations

This section provides a series of calibrations to help understand the implications of the analysis

for existing vaccines. The calibrations are meant more as illustrations than forecasts. Our present

model is too stylized on many fronts to provide accurate forecasts. We abstract from heterogeneity

in infectiousness, heterogeneity in costs of prevention among consumers, and mortality effects of

disease. Certain parameters are set to convenient limiting values rather than being estimated from

data. A host of political-economy considerations lead real-world vaccine markets to depart from our

theoretical construct of firms selling directly to individual consumers without third-party funding.

1,218 quality adjusted life years (QALYs), implying a loss per infection of 0.27 QALYs. Scaling by the $200,000 per
QALY standard for cost effectiveness advocated for U.S. health programs by Ubel, Hirth, and Chernew (2003) yields
estimate H = $54,000 of the health benefit from avoiding the certainty of a hepatits B infection, implying c̃ = c/θH =
$75/(0.95)($54,000) = 0.0045.

11This normalization is not crucial but slightly simplifies one formula.
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2.9.1. R0 Estimates

Table 4 presents estimates of R0 from the epidemiology literature that can be substituted into the

formulas in Proposition 8 to calibrate equilibrium outcomes for various diseases. As previously

noted, R0 varies considerably across diseases, from 1.1 for SARS at the low end to 16–18 for

measles and pertussis at the high end. Since estimates of R0 can also vary widely across time and

region, the table lists the relevant time period and region from which each estimate comes.

2.9.2. HIV Calibration

Our first calibration considers a disease, HIV, with a moderate R0. Table 4 provides a range of

estimates for R0 for HIV. For convenience, we take the round number R0 = 4 from this range.

Incidentally, recall that this is the value of R0 for which disease prevalence is greatest in equilibrium

under monopoly.

Substituting R0 = 4 into the formulas provided by Proposition 8, the model suggest that a mo-

nopolist selling an HIV vaccine to consumers would price it at half the harm from contracting the

disease. At this price, half of consumers purchase the vaccine and the other half free ride. Half of the

free riders become infected, resulting in an overall HIV prevalence rate of 1/4. This is much lower

than the 3/4 prevalence rate that would emerge in the absence of a vaccine for a disease with R0 = 4.

The monopolist captures one third of the potential social surplus from a vaccine. Consumers capture

one third, and the remaining third is lost to monopoly distortion.

As noted in the previous subsection, for all R0 > 1, including R0 = 4 assumed here, the first best

for this essentially costless vaccine involves vaccinating enough people to eradicate the disease in the

steady state. The first best is realized under perfect competition. The minimum subsidy that would

have to be paid to the monopolist to attain the first best is GS∗∗m = 3H. In other words, the monopolist

would have to receive a per-course subsidy of at least three times the lifetime harm experienced from

certainly contracting HIV, easily running into many thousands of dollars per course. The model

abstracts from any distortion involved in raising government funds. With any deadweight loss of

taxation, such enormous subsidies would be prohibitively expensive, forcing governments to use

other instruments, such as bulk purchases, to attain the first-best level of vaccination or give up on

reaching the first best.

The situation is brighter if the HIV vaccine were competitively supplied since, as mentioned, the

first best is obtained in the perfectly competitive equilibrium without a subsidy. Unfortunately, as

discussed in Section 2.3, it may be unrealistic to suppose that competition would emerge even in the
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long run for high-tech product like a potential HIV vaccine that are extremely difficult for a generic

competitor to reverse engineer.

Certain other health interventions apart from vaccines may be appropriately modeled as being

competitively supplied. Consider the use of adult male circumcision as an HIV preventive. Far

from universal adoption predicted by the model for a costless, perfectly effective intervention, in the

meta-analysis by Kennedy et al. (2020), adult circumcision rates in control samples were negligible.

Thus the assumptions of zero cost and perfect efficacy are far-fetched for circumcision and need to

be relaxed.

Consider the introduction of a small program subsidizing costly circumcision in a country with

little current uptake.12 The relevant theoretical case is (LR2), the only case with a positive infection

rate but negligible adoption. The subsidy required to induce the initial participants in the small

program to become circumcized in case (LR2) equals c − MPB∗c = c − θH(1 − 1/R0). A planner

would be willing to provide such a subsidy up to the level of MEX∗c = θH/R0. Substituting R0 = 4

assumed in this subsection for HIV, θ = 0.6, the estimate of efficacy in randomized controlled trials

in several studies including Bailey et al. (2007), and H = 7,000, the estimated lifetime cost of first-

line drug treatments for HIV (UNAIDS/WHO/SACEMA Expert Group on Modelling the Impact

and Cost of Male Circumcision for HIV Prevention 2009), a lower bound on the health benefit from

avoiding an HIV infection, yields MEX∗c = 1,050, implying that the required subsidy is somewhere

between $0 and $1,050. Of the eight studies surveyed by Kennedy et al. (2020), none paid a subsidy

beyond the cost of the procedure of more than $15. While most of these studies obtained statistically

significant estimates for the effect of subsidies on circumcision, Kennedy et al. (2020, p. 11) note

that “the overall uptake . . . in these studies was low, and the absolute differences between groups

were small,” suggesting that the subsidies were far below the optimum.

2.9.3. Measles Calibration

As a contrast to the HIV calibration, we next calibrate the market for a vaccine for measles, a disease

with a much higher value of R0 than HIV. For convenience, take the round number R0 = 16 from

the range offered by Table 4. The model suggests that a monopolist selling a measles vaccine to

consumers would price it at fully 75% of the harm from contracting the disease. Of consumers, 75%

purchase the vaccine, and 25% free ride. A substantial majority, 75%, of free riders contract the

12Since male circumcision is only relevant for half the population, analyzing a program targeting universal adoption
would require modifying the model to allow for gendered subpopulations. We avoid this complication by supposing the
program is small. Thus, instead of computing the optimal subsidy GS∗∗c achieving universal adoption, this calibration
analyzes a subsidy provided to the initial adopter.
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disease, resulting in an overall measles prevalence rate of about 19%, less than the 25% prevalence

calibrated for HIV—as expected given the prevalence rate is maximized at the value of R0 used in

the HIV calibration.

The minimum subsidy required to attain the first best under monopoly is GS∗∗m = 15H. In other

words, the monopolist would have to receive a per-course subsidy of at least 15 times the life-

time harm experienced from certainly contracting measles. This enormous expense highlights even

more strongly than the HIV calibration that the optimal subsidy, while providing a useful theoretical

benchmark, would not be a realistic policy alternative in practice for diseases with estimated values

of R0 toward the higher end.

2.9.4. SARS Calibration

Just as the measles calibration provided a useful contrast to HIV, the next calibration for SARS

provides a useful contrast but in the other direction. The value R0 = 1.1 for SARS in Table 4 is

considerably lower than for the other diseases, almost lying on the boundary (R0 = 1) at which

the disease disappears in the steady state without a vaccine. The model suggests that a monopolist

selling a SARS vaccine to consumers would price it at less than 5% of the harm from contracting

the disease. Less than 5% of consumers purchase the vaccine. Almost all consumers free ride. They

have the luxury to do so since, despite the low immunization rate, the low infectiousness of SARS

means equilibrium prevalence remains low at about 4%.

3. Short-Run Analysis of Disease Outbreak

This section analyzes the market for a vaccine against a disease like Covid that rises and falls as an

epidemic in a much shorter spell than a human generation. We seek to model a campaign that rolls

out the vaccine to substantial fraction of the population quickly to mitigate the harm experienced

by the current generation rather than continued sales to each new cohort of newborns as with vac-

cines against typical childhood diseases. Future generations may be spared much damange by the

epidemic’s natural decline.

Rather than modeling a continuous flow vaccine rate each instant, in this section we take the

polar opposite approach that a stock of vaccine is administered to the population in a short span. For

pedagogical purposes, we adopt the extreme assumption that all doses of vaccine that will ever be

administered are administered in a single instant. If feasible, this would be the profit-maximizing

approach for firms selling to the single, relevant generation of consumers. It would also be the
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welfare-maximizing approach for a social planner. Logistical constraints would prevent such rapid

vaccine rollout in practice, but the model may still be a reasonable approximation to an intensive

vaccine campaign against Covid or other epidemic disease.

3.1. Epidemiological Model

We seek to maintain as much of the machinery from the earlier analysis as possible, including the

SIR framework, adapting it to incorporate a discrete vaccination event. Continuous time indexed

by t is divided into the ex ante period, before the vaccine’s arrival, and the ex post period, after the

vaccine’s arrival. Fixing the arrival date at t = 0, negative values of t index time in the ex ante period,

the earlier the date, the greater the absolute value of the index. Positive values of t index time in the

ex post period.

During the ex post period, the disease evolves according to SIR conditions similar to those laid

out in Section 2.1:

St + It + Rt +Vt = 1 (29)

V̇t = 0 (30)

İt = βItSt −αIt (31)

Ṙt = αIt (32)

Ṡt = −βItSt . (33)

There are only two differences between these equations and the system (1)–(5) underlying the long-

run analysis. First, to reflect the short span of the epidemic, occurring within a generation, we

assume there are no births and deaths by setting µ = 0. Second, no further vaccine is administered

after the initial tranche at date T . Hence, the vaccine compartment does not change, reflected by

equation (30).13

Let hats distinguish the compartment values during the ex ante period Ŝt , Ît , and R̂t (there is no

need for the compartment V̂t since there is no vaccine ex ante). Compartments follow the same SIR

dynamics ex ante as they do ex post. It remains to specify how compartments transition from the ex

ante period to determine the initial conditions for the ex post period. Letting Q denote the vaccine

13Epidemiology texts label the vaccination process involved in our short-run analysis “vaccination at recruitment”
(Martcheva 2015, Section 9.2.1), contrasting the process of “continuous vaccination” involved in our long-run analysis
(Martcheva 2015, Section 9.2.2).
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quantity administered at date 0, the initial conditions for the ex post period are

V0 = θQ (34)

S0 = Ŝ0 − θQ (35)

I0 = Î0 (36)

R0 = R̂0 = 1 − Ŝ0 − Î0. (37)

Equation (34) implies that the mass of successfully immunized at the start of the ex post period

equals vaccine efficacy θ ∈ (0,1) times the number of courses Q purchased. Equation (35) implies

that the ex post period starts with discretely fewer susceptibles than the ex ante period ended with,

the difference given by the mass V0 = θQ who are immunized at date 0. Equations (36) and (37)

imply that there are no discrete change to either the mass of infected or the mass of recovered

individuals from the ex ante to ex post period. To ensure S0 ≥ 0, we must have

Q≤ Ŝ0. (38)

We treat Î0 and Ŝ0 as exogenous parameters, allowing them to take on any admissible values

Î0 ∈ (0,1), Ŝ0 ∈ (0,1 − Î0].14 As before, we will work with the basic reproductive ratio R0 instead

of the transmission rate β. Substituting the short-run value µ = 0 into (6) yields the following

expression for the basic reproductive ratio in the short-run model:

R0 =
β

α
. (39)

The short-run analysis will require some different methods than the long-run analysis, warranting

explanation given the analyses are based on similar SIR frameworks. In the long-run analysis, social

benefit was measured as SB(Q) = h[1 − I(Q)]. Recall the notational convention that dropping the

subscript t on a time-varying variables indicates its steady-state value: e.g., I(Q) = limt↑∞ It(Q).

Also notice that we have started adding argument Q to indicate variables’ dependence on that key

variable, a convention that we will continue from now on.

14An alternative approach would treat them as endogenous and derive them from ex ante initial conditions Ŝ−T and
Î−T and the duration T of the ex ante period. Our approach has two advantages. It is more parsimonious, involving
the two parameters Î0 and Ŝ0 rather than the three Î−T , Ŝ−T , and T . The parameters involved in our approach are also
easier to measure. Pinning down the exact start of an epidemic is notoriously difficult to say nothing of estimating the
proportions of susceptibles and infecteds before surveillance protocols have been instituted.
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A constant, positive infection could be maintained in the long-run model since it involved a

continuous flows of births and deaths. The flow harm at any instant over the long run thus constituted

a natural measure of social benefit. In the short-run analysis, with a single generation experiencing

no demographic flows, the previous measure of social benefit is not useful since, as will be seen in

Lemma 4, the disease eventually dies out in fixed population for all Q≥ 0, i.e., I(Q) = 0. In a short-

run model, a better measure of illness is not the infection rate to which the population converges,

which is always 0 by Lemma 4, but the mass of people who contract the disease at some point

during the epidemic, captured by the limiting value of the recovered population, R(Q). The measure

of social benefit we will use in the short-run analysis is harm avoided in the population who never

contract the disease:

SB(Q) = H[1 − R(Q)] = H[S(Q) + θQ], (40)

where the second equality follows from equation (29) and Lemma 4. Besides using R(Q) in place

of I(Q), (40) differs from the previous expression for SB(Q) in that it involves the stock of harm

parameter H rather than flow h. Assuming, as we do for simplicity, that there is no discounting and

noting, by (32), that recovery follows a Poisson process, (40) properly measures the total potential

harm avoided in the population over the entire epidemic.

The following series of lemmas characterize St(Q) and It(Q) both for finite and limiting values

of t. Appendix A provides proofs.

Lemma 1. It(Q)> 0 and St(Q)> 0.

Lemma 2. St(Q) is strictly decreasing in t.

Lemma 3. If R0S0(Q) ≤ 1, then It(Q) is strictly decreasing in t for all t > 0. Otherwise, It(Q) is
hump-shaped, peaking at time T > 0 satisfying ST (Q) = 1/R0, strictly increasing for t < T , and
strictly decreasing for t > T .

Lemma 4. The limits I(Q) and S(Q) exist. In particular, I(Q) = 0 and S(Q) ∈ (0,S0(Q)).

Lemma 5. S(Q)< 1/R0.

To explain the lemmas in intuitive terms, they tell us that the infection rate is always positive in finite

time because, if not increasing, infections are at worst declining at a proportional rate less than 100%

each instant, which can never force the infection rate to 0. The infection rate does asymptote to 0 as

the stock of susceptibles is depleted and recovery takes over as the dominating force, reducing the

stock of infecteds. Turning to results for the population of susceptibles, with an imperfectly effective
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vaccine (θ < 1), even a universal vaccination campaign cannot eliminate the stock of susceptibles at

date 0. The stock of susceptibles is never forced to 0 after because the proportional decline is less

than 100% each instant. The stock of susceptibles strictly decreases over time since it is subject to

outflows but not inflows.

According to Lemma 3, there are two possible shapes for infection rate over the ex post period.

One possibility is that the infection rate continuously diminishes from its initial level. Another possi-

bility is that infections have a hump-shaped path, expanding up to a peak and declining thereafter.15

For infections to initially expand rather than contract requires both infectiveness (i.e., high R0) and

substantial fuel (i.e., high S0(Q)). We will call R0S0(Q)> 1 the condition for epidemic expansion.

While no closed-form solution exists for the steady-state number of susceptibles S(Q), the next

lemma, proved in Appendix A, expresses S(Q) as an implicit function of other model parameters

(though the notation continues to emphasize only the variable to be endogenized later, Q, as an

argument of S). The lemma also provides an expression for S(Q) in terms of the principal branch of

the Lambert W function, here denoted L̄.16

Lemma 6. S(Q) satisfies

lnS(Q) −R0S(Q) = ln(Ŝ0 − θQ) −R0(Î0 + Ŝ0 − θQ) (41)

and can be written
S(Q) =

1
R0

∣∣∣L̄(−R0(Ŝ0 − θQ)e−R0(Î0+Ŝ0−θQ)
)∣∣∣ . (42)

Equations (41) and (42) can be used to derive the steady-state population of susceptibles in

the extremes of uninfective or infinitely infective diseases. If a disease cannot be transmitted, ini-

tial susceptibles never contract the disease, so remain as susceptibles in the steady state, implying

limR0↓0 S(Q) = S0(Q) = ŜQ − θQ. This can be proved by substituting R0 = 0 into (41).

Lemma 7. limR0↓0 S(Q) = Ŝ0 − θQ and limR0↓0[R0S(Q)] = 0.

The second limit, recorded for reference, follows from limR0↓0[R0S(Q)] = (Ŝ0 −θQ) limR0↓0R0 = 0.

In the opposite extreme of an infinitely infective disease, all susceptibles eventually become in-

fected, implying that the steady-state susceptible population vanishes in the limit. This result can be

15Some epidemiologists take the hump-shaped path as the defining feature of an epidemic.
16The Lambert W function L frequently arises in epidemiological applications. By definition L(x) is the implicit

solution to the exponential equation L(x)eL(x) = x. The principal branch L̄ is the sole solution to the implicit equation
or, if two solutions exist, the higher of the two. The lower branch

¯
L is defined when two solutions exist as the lower of

the two. Though L̄ and
¯
L do not have a closed-form solutions, they can be computed with built-in functions included in

Matlab, R, and other standard software packages.
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derived formally from Lemma 5: 0≤ limR0↑∞ S(Q)≤ limR0↑∞(1/R0) = 0, implying limR0↑∞ S(Q) =

0. A more subtle question regards the rate at which the steady-state susceptible population vanishes.

The next lemma, proved in Appendix A, states that S(Q) vanishes faster than R0 increases.

Lemma 8. limR0↑∞ S(Q) = limR0↑∞[R0S(Q)] = 0.

Comparative-static results can be obtained by applying the Implicit Function Theorem to (41).

For instance,
∂S(Q)

∂Q
=
θS(Q)

S0(Q)

[
R0S0(Q) − 1
1 −R0S(Q)

]
. (43)

Since its denominator is positive by Lemma 5, the sign of (43) is determined by whether the condi-

tion for epidemic expansion holds. The immediate effect of an increase in Q is to move an individual

from the currently susceptible to the vaccinated compartment. If infections are waning, this imme-

diate effect persists as a reduction in susceptibles that remain in the steady state. If the disease meets

the condition for an epidemic, however, the reduction in current susceptibles has such a strong feed-

back effect in the form of reduced “fuel” for infections that a greater proportion of susceptibles

remain in the steady state despite the immediate reduction in susceptibles.

3.2. Consumer Demand

We maintain the assumptions about consumers made in Section 2.2 for the long-run analysis. Con-

sumers are homogeneous and risk neutral. Consistent with the present short-run perspective, assume

agents do not discount the future. Consumers suffer harm H from contracting the disease over the

expected spell before recovery.

Individuals in the susceptible compartment when the vaccine is introduced, numbering Ŝ0, are

potential consumers. They make their demand decisions by comparing the vaccine’s price P to their

marginal private benefit. As in the long-run analysis, MPB(Q) = θHΦI(Q), recalling ΦI(Q) is the

probability a susceptible contracts the disease over his or her lifespan.

The expression for ΦI(Q) here differs from the long-run analysis. Since there is no mortality

here, a person’s lifespan is the duration of the ex post period. The probability an unvaccinated

individual does not contract the disease equals S(Q)/S0(Q), the number of people who remain sus-

ceptible over the model’s horizon divided by the number of people who are susceptible at the start

of the ex post period. The probability of infection is the complementary probability

ΦI(Q) = 1 −
S(Q)

S0(Q)
= 1 −

S(Q)

Ŝ0 − θQ
, (44)
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which Lemma 4 guarantees is positive. Thus,

MPB(Q) = θHΦI(Q) = θH
[

1 −
S(Q)

Ŝ0 − θQ

]
. (45)

Differentiating, substituting from (43) and (44), and rearranging yields

∂MPB(Q)

∂Q
=

−θR0S(Q)MPB(Q)

S0(Q)[1 −R0S(Q)]
, (46)

which is negative by Lemma 5, confirming the intuition that vaccinating more consumers lowers

their marginal private benefit.

Proceeding to derive the demand curve, all Ŝ0 consumers purchase the vaccine if P<MPB(Ŝ0),

and none purchase if P > MPB(0). For P strictly between MPB(Ŝ0) and MPB(0), some but not all

consumers purchase. Given they are homogeneous, consumers must be indifferent between purchas-

ing and not, implying P = MPB(Q). Given they are indifferent, any fraction of them purchasing is

an equilibrium; demand is pinned down by the value of Q satisfying (45) when the right-hand side is

set equal to P. Rearranging the resulting equation yields S(Q) = (1 − P/θH)(Ŝ0 − θQ). Substituting

this into (41) and solving for Q gives the following expression for demand when a subset purchase:

d(P) =
1
θ

{
Ŝ0 +

θH
P

[
1
R0

ln
(

1 −
P
θH

)
+ Î0

]}
. (47)

Combining these facts yields the demand curve

D(P) =


0 P>MPB(0)

d(P) P ∈ [MPB(Ŝ0),MPB(0)]

Ŝ0 P<MPB(Ŝ0).

(48)

Equivalently, the demand curve is given by d(P) unless this violates a boundary condition d(P) ∈
[0, Ŝ0], in which case demand is given by the violated boundary.

3.3. Firm Supply

Firm behavior is the same as that assumed in the long-run analysis. Firms produce at constant

marginal and average cost c ∈ (0,θH) per vaccine course. Perfectly competitive firms supply the

vaccine at price c. A monopoly sets a price maximizing industry profit, Π, now earned from sales

made at date 0.
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3.4. Normative Measures

Equation (40) provided the expression for social benefit relevant for the present short-run analy-

sis. The expression for welfare in the long-run analysis given in (20) continues to be relevant for

the short-run analysis: W (Q) = SB(Q) − cQ. Marginal social benefit is the derivative MSB(Q) =

∂SB(Q)/∂Q. Differentiating(40), substituting from (43) and (44), and rearranging yields

MSB(Q) =
θHΦI(Q)

1 −R0S(Q)
. (49)

Substituting (45) and (49) into the definition MEX(Q) = MSB(Q) − MPB(Q) yields

MEX(Q) =
θHΦI(Q)R0S(Q)

1 −R0S(Q)
. (50)

Combining (44), (45), and (50) yields an equivalent expression for the marginal externality pro-

viding some useful intuition:

MEX(Q) = R0S(Q)MSB(Q) = R0S0(Q)

[
S(Q)

S0(Q)

]
MSB(Q). (51)

The external benefit from vaccinating individual A equals the social benefit of vaccinating everyone

who would not be infected but for their interaction with A. By definition of the basic reproductive

ratio, A causes R0S0(Q) direct infections in the susceptible population. However, some of those

would have been infected by someone else later; only the fraction S(Q)/S0(Q) would have survived

as susceptibles to the end but for their interaction with A. The marginal externality equals the

marginal social benefit cumulated over these “but for” infections.

As before, let Q∗∗ denote the first-best quantity, maximizing W (Q). In the long-run analysis,

MSB(Q) was a constant, leading Q∗∗ to be a corner solution, involving universal vaccination (unless

a lower quantity eradicates the disease). Here, MSB(Q) is not a constant, so Q∗∗ can be an interior

value, in which case it solves the social planner’s first-order condition MSB(Q∗∗) = c.

3.5. Perfectly Competitive Equilibrium

Under perfect competition, the equilibrium price is P∗c = c and profit is Π∗c = 0. The remaining equi-

librium variables can be computed using straightforward algebra applied to the supplied equations.

Table 5 reports the equilibrium values of selected variables as a function of R0. The expressions

have been simplified and their mathematical structure clarified via the change of variables indicated
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with tildes as described in the table notes. We again use lower-case roman numerals to identify

cases, but the cases do not correspond to the same ones as in the long-run analysis.

Although similar in many respects to its analogue, Table 1, that lists equilibrium variables under

perfect competition for the long-run analysis, Table 5 has some notable differences. One difference

is that R∗c rather than I∗c is reported. In the short-run analysis, the disease always dies out without a

population inflow to sustain it within the single generation considered, implying I∗c = 0. We track the

total number of infections that ever happen, embodied in R∗c . Another difference is that R0 = 1 is no

longer an important threshold determining whether the disease dies out in the steady state without a

vaccine. In the short-run analysis, as just explained, the disease always dies out in the steady state,

leaving us to track the sum of infections over the epidemic, which is positive for positive R0 no

matter how low.

The fact that R0 = 1 is no longer an important threshold leaves three relevant intervals for R0 to

report in Table 5: case (SR1) in which R0 is so low that no consumer finds it worthwhile to purchase

the vaccine, case (SR2) in which moderate values of R0 lead some but not all of the Ŝ0 susceptibles

to purchase, and case (SR3) in which R0 is so high that all susceptibles find purchasing the vaccine

worthwhile. The first best is obtained in this case: Q∗c = Q∗∗.

The threshold dividing cases (SR1) and (SR2) is the value of R0 for which the interior solution

for demand in (47) equals 0 (since no consumers purchase) at the equilibrium price P∗c = c. Solving

d(c) = 0 for R0 yields R0 = | ln(1− c̃)|/(Î0 + c̃Ŝ0), where c̃ = c/θH. Similarly, the threshold dividing

cases (SR2) and (SR3) is the value of R0 for which (47) equals Ŝ0 (since all susceptibles purchase)

at P∗c = c. Solving d(c) = Ŝ0 for R0 yields R0 = | ln(1 − c̃)|/[Î0 + (1 − θ)c̃Ŝ0]. Appendix A provides

derivations of the table entries.

The next proposition summarizes the comparative-static effects of an increase in R0 on the equi-

librium under perfect competition. Among other notable results, we have that the nonmonotonic

behavior of infections and the marginal externality uncovered in the long-run analysis persists in the

short-run analysis.

Proposition 9. Consider the comparative-static effect of R0 on equilibrium under perfect competi-
tion in the short-run analysis.

• Price and industry profit are constant, with P∗c = c and Π∗c = 0.

• Q∗c and MPB∗c are weakly increasing in R0.

• R∗c , MSB∗c , and MEX∗c are nonmonotonic in R0. R∗c attains a single interior local maximum,
which is a global maximum if and only if c̃ ≥ 1 − θ. Each of MSB∗c and MEX∗c attain no more
than two interior local maxima, one of which is a global maximum.
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• W ∗c is weakly decreasing in R0.

For each Q∗c , MPB∗c , and W ∗c , there exists a nonempty interval of R0 such that the weak change is
strict.

Appendix A provides proofs for results not obvious from Table 5. The proofs for the nonmono-

tonic variables are particularly intricate since they involve characterizing complex shapes of func-

tions without closed-form solutions. Our approach uses the concavity of the sign of the function’s

derivative to count the derivative’s roots, coupled with an examination of the limiting value of the

derivative. Graphs of equilibrium variables closely resemble Figure 1, so for space considerations

have been relegated to an online appendix (Appendix D).

3.6. Monopoly Equilibrium

Similar insights that guided the analysis of monopoly in the long-run model guide it here in the short-

run model. It continues to be true that monopoly output is zero in any case it would be zero under

perfect competition. Case (SR1) is thus trivially identical across perfect competition and monopoly.

In the remaining cases, competitive firms are able to make positive sales at price c. It continues to

be true that, by continuity, the monopolist can make positive sales at some small markup above c,

implying Q∗m > 0 in cases (SR2)–(SR4).

To solve for Q∗m in these other cases, we again convert the monopolist’s maximization problem so

that the choice variable is quantity rather than price. The monopolist optimally sets a price to extract

the entire private benefit of the marginal consumer, leading to inverse demand P(Q) = MPB(Q). The

monopolist chooses Q to maximize [P(Q) − c]Q = [MPB(Q) − c]Q subject to Q ≤ Ŝ0, a constrained

maximization problem which can be solved using the Kuhn-Tucker method.

Differentiating the profit function with respect to Q yields

θH
[

1 −
S(Q)

S0(Q)

]{
1 −

θQR0S(Q)

S0(Q)[1 −R0S(Q)]

}
− c. (52)

If the constraint Q≤ Ŝ0 does not bind, the monopoly quantity can be found by setting (52) equal to

zero, which after manipulation yields

MPB(Q∗m) = P(Q∗m) =

{
1 −

θQ∗mR0S(Q∗m)

S0(Q∗m)[1 −R0S(Q∗m)]

}−1

c. (53)

Several useful insights are immediate consequences of (53). Since the expression in braces is less

than 1, its reciprocal is greater than 1, implying P∗m = P(Q∗m)> c = P∗c . If Q∗c is an interior solution—
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i.e., Q∗c ∈ (0, Ŝ0), which is true in case (SR2) of Table 5—then the price relationship has a direct

implication for quantities, namely, Q∗m < Q∗c .

Equation (53) can also be used to establish the existence of parameters for which the first best

is attained under perfect competition but monopoly falls short. To see this, consider R0 on the

boundary between cases (SR2) and (SR3) in Table 1, i.e., R0 = | ln(1 − c̃)|/[Î0 + (1 − θ)Ŝ0]. The

entries for MPB∗c in Table 1 imply P(Ŝ0) = c at this value of R0, but (53) implies P(Q∗m) > c.

Hence, P(Q∗m) > P(Ŝ0), implying Q∗m < Ŝ0 at this boundary value of R0. By continuity, there is

a neighborhood of R0 above this boundary value for which the first best is not obtained under

monopoly but is produced under perfect competition.

If the monopoly quantity is not an interior solution, then the constraint holds with equality,

implying Q∗m = Ŝ0. According the the Kuhn-Tucker conditions, the constraint holds with equality

when the parameters are such that the derivative (52) is nonnegative when evaluated at the constraint

quantity. Substituting Q = Ŝ0 into (52) and rearranging, this condition is

ΦI(Ŝ0)

[
1 −

(
θ

1 − θ

)
R0S(Ŝ0)

1 −R0S(Ŝ0)

]
≥ c̃. (54)

The left-hand side equals 1 in the limit R0 ↑ ∞ by Lemma 8, exceeding the right-hand side since

c̃ < 1 by assumption (23). Therefore, for sufficiently high R0, a monopoly produces the first-best

quantity: Q∗m = Ŝ0 = Q∗∗.

The values of equilibrium variables resulting from the preceding analysis are recorded in Table 6.

The results reported in the column for cases (SR2) and (SR3) are not provided in analytic form, let

alone in closed form. This need not preclude definitive comparative-statics results; one could apply

the Implicit Function Theorem to the first-order condition (52) to determine how Q∗m changes with

R0 in (SR2) and (SR3). However, this approach does not deliver a definitive sign. We can be sure

that Q∗m increases in R0 for some R0 in (SR2) and (SR3)—since Q∗m must rise from 0 to the first-

best quantity Ŝ0 somewhere in that set by continuity—but we cannot rule out the possibility that the

monopolist responds to an increase in R0 in some subintervals by reducing output in order to extract

an even larger price increase than otherwise.

Despite these challenges, we are able to derive definitive comparative-statics results for Π∗m by

the envelope theorem. In addition, we are able to show that the nonmonotonic behavior of R∗, MSB∗,

and MEX∗ extends from perfect competition to monopoly. The key insight behind the proof is that

perfect competition and monopoly generate the same output at both extremes of the lowest and
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the highest values of R0. Certain nonmonotonicies can be inferred from the behavior of variables

in those extremes, already characterized in the analysis of perfect competition. We report these

comparative-statics results in the next proposition, proved in Appendix A.

Proposition 10. Consider the comparative-static effect of R0 on equilibrium under monopoly in the
short-run analysis.

• Π∗m = 0 for R0 ≤ | ln(1 − c̃)|/(Î0 + c̃Ŝ0); Π∗m is positive and strictly increasing for higher R0.

• If c̃≥ 1 − θ, R∗c is nonmonotonic in R0 and attains an interior global maximum.

• MSB∗c and MEX∗c are nonmonotonic, attaining interior global maxima.

3.7. Government Subsidies

As in Section 2.7, define GS∗∗ as the infimum of the set of government subsidies implementing the

first best quantity Q∗∗ in equilibrium. We continue to constrain GS∗∗ to be nonnegative.

It is easy to establish some broad results for any market structure. Since MEX(Q) ≥ 0, equilib-

rium output cannot exceed the first best: Q∗ ≤Q∗∗. If, in addition, Q∗∗ = 0, then 0≤Q∗ ≤Q∗∗ = 0,

implying Q∗ = Q∗∗, in turn implying GS∗∗ = 0 since the first best can be achieved without a subsidy.

The proof of the next proposition shows that Q∗∗ = 0 for all R0 in a neighborhood above 0. For

sufficiently small R0, then, GS∗∗ = 0 for any market structure.

We can also draw broad conclusions about the optimal subsidy for high values of R0. Suppose

monopoly output is the corner solution Q∗m = Ŝ0. Then Ŝ0 = Q∗m ≤Q∗∗ ≤ Ŝ0, implying Q∗m = Q∗∗, in

turn implying GS∗∗ = 0 since the first best can be achieved without a subsidy under monopoly. By

Table 6, monopoly attains the first best for all R0 in case (SR4), which the text argued includes an

interval of sufficiently high values of R0. We conclude that for sufficiently high R0, GS∗∗m = 0. This

result also immediately extends to perfect competition or any market structure involving weakly

higher output than monopoly.

Having established that GS∗∗ = 0 for intervals of low and high values of R0 for general market

structures, if it can be shown that GS∗∗ > 0 for some intermediate value of R0, it is immediate that

GS∗∗ is nonmonotonic, attaining a maximum for some interior R0 ∈ (0,∞) as the next proposition

states. The proof provided in Appendix A fills in this and other omitted details.

Proposition 11. For monopoly—or any market structure involving weakly lower output including
perfect competition—GS∗∗ is nonmonotonic in R0, equaling 0 for sufficiently low and sufficiently
high R0, and attaining a positive maximum for some R0 ∈ (0,∞).
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Turn to a more precise characterization of the optimal subsidy under perfect competition. Sup-

pose the first best is given by an interior solution, i.e., Q∗∗ ∈ (0, Ŝ0). Then Q∗∗ must satisfy the first-

order condition for welfare maximization MSB(Q∗∗) = c, implying MPB(Q∗∗) + MEX(Q∗∗) = c, in

turn implying P∗∗c = MPB(Q∗∗) = c − MEX(Q∗∗). Since competitive firms pass the subsidy through

to consumers, P∗∗c = c − GS∗∗c . Combining the preceding equations yields GS∗∗c = MEX(Q∗∗), the

familiar result that setting the subsidy equal to the marginal externality is optimal. If Q∗∗ is a corner

but Q∗c is not, i.e., Q∗c < Ŝ0 = Q∗∗, then the highest price at which output Ŝ0 is purchased satis-

fies P∗∗c = MPB(Ŝ0). Combined with competitive pass through, P∗∗c = c − GS∗∗c , we have GS∗∗c =

c − MPB(Ŝ0). If Q∗c = Q∗∗ = Ŝ0, then the preceding proposition implies GS∗∗c = 0. The various

results for Q∗∗ = Ŝ0 can be nested as GS∗∗c = max[0,c − MPB(Ŝ0)].

Next, turn to a more precise characterization of the optimal subsidy under monopoly. The

monopolist regards the subsidy as a reduction in marginal cost, maximizing [P(Q) − c + GS]Q =

[MPB(Q)−c+GS]Q. To generate the first best, the optimal subsidy GS∗∗m must force the monopoly’s

first-order condition to be satisfied by Q∗∗:

MPB(Q∗∗) − c + GS∗∗m + Q∗∗
∂MPB(Q∗∗)

∂Q
= 0. (55)

If Q∗∗ ∈ (0, Ŝ0), then the analysis of perfect competition showed MPB(Q∗∗) = P∗∗c = c − GS∗∗c =

c − MEX(Q∗∗). Substituting into (55) yields, after rearranging,

GS∗∗m = MEX(Q∗∗)

(
Ŝ0

Ŝ0 − θQ∗∗

)
. (56)

Equation (56) also uses the fact that ∂MPB(Q)/∂Q = −θMEX(Q)/S0(Q) for all Q, as can be seen

by combining (46) and (50). Equation (56) shows that the monopoly subsidy is proportional to the

marginal externality, scaled up by the factor in parentheses, which adjusts for the monopoly markup.

This scale factor grows without bound as the first best approaches successful vaccination of all initial

susceptibles. Equation (56) also implies that GS∗∗m > GS∗∗c since GS∗∗c = MEX(Q∗∗).

If Q∗∗ = Ŝ0, then GS∗∗m must force (55) to hold at that corner value of quantity. The next propo-

sition summarizes the analysis for the two market structures.

Proposition 12. If Q∗∗ = 0, then GS∗∗c = GS∗∗m = 0. If Q∗∗ ∈ (0, Ŝ0), then GS∗∗c = MEX(Q∗∗) and
GS∗∗m = MEX(Q∗∗)Ŝ0/(Ŝ0 − θQ∗∗). If Q∗∗ = Ŝ0, then GS∗∗c = max[0,c − MPB(Ŝ0)] and

GS∗∗m = max
[

0,c − MPB(Ŝ0) +

(
θ

1 − θ

)
MEX(Ŝ0)

]
. (57)
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Across all cases, GS∗∗m ≥ GS∗∗c with strict inequality if Q∗∗ > 0 and Q∗m < Ŝ0.

3.8. Increasing Social Returns

Typical products exhibit concave social benefits. The underlying logic is that initial units provide

higher marginal social benefits than subsequent units since highest-value uses are served first, with

subsequent units allocated to lower-value uses. Epidemiological externalities may lead this logic to

fail with vaccines. Vaccinating a few individuals may do little to slow the spread of an epidemic

if susceptibles are likely contract the disease from the many remaining unvaccinated people in any

event. Doubling coverage may more than double the social benefit if the additional coverage is

needed to make a dent in the infection rate.

In this section, we analyze conditions under which vaccines exhibit increasing rather than dimin-

ishing social returns. This issue is particularly relevant to the short-run analysis. For simplicity, the

model assumes that any amount of vaccine can be produced at the constant marginal cost c, while

in reality, capacity constraints may prevent production up to the point that marginal social bene-

fit equals production cost. Rationing may be required. With the population divided into regional

subunits experiencing relatively independent epidemiological processes because of restricted travel

flows, it is natural to ask whether vaccine should be spread across regions in proportion to their pop-

ulations (as considerations of fairness or heterogeneity in value within each region might dictate)

or whether the benefits would be larger if vaccine were concentrated in fewer regions (chosen by

lottery if urgency of need in certain regions does not provide sufficient reason for concentrating vac-

cine there). Capacity constraints and rationing were not as relevant to the long-run analysis because

the long run presumably provides sufficient time to overcome capacity constraints.

Formally, a vaccine exhibits increasing social returns if MSB(Q) is increasing in Q. Differenti-

ating (49), substituting from (43), and rearranging yields

∂MSB(Q)

∂Q
=
θ2HR0S(Q)S0(Q)ΦI(Q)

[1 −R0S(Q)]3
{R0[S0(Q) + S(Q)] − 2} . (58)

By Lemma 5, all the factors on the right-hand side are definitively positive except for the last. Thus,

the sign of the last factor in braces determines whether the vaccine exhibits increasing social returns.

Rearranging gives the following proposition.
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Proposition 13. The Qth unit of vaccine exhibits increasing social returns if and only if

R0

[
S0(Q) + S(Q)

2

]
> 1. (59)

Earlier, we identified the inequality R0S0(Q) > 1 as the condition for epidemic expansion, re-

quiring a combination of sufficient infectiveness, R0, and sufficient fuel, S0(Q), for the disease to

spread. Condition (59) is more stringent, requiring that the product of R0—not with the initial num-

ber of susceptibles—but with the average of the initial and eventual number of susceptibles exceed

1. One can see this is more stringent since S(Q) < S0(Q) by Lemma 4. Proposition 13 can thus be

interpreted as saying that unit Q of the vaccine exhibits increasing social returns if the potential for

epidemic expansion is sufficiently high at the current output level.

The next proposition provides simpler sufficient conditions for the vaccine to exhibit increas-

ing social returns at initial output levels and at all output levels. It is proved in Appendix A as a

straightforward corollary of Proposition 13.

Proposition 14. The vaccine exhibits initial increasing social returns (i.e., at an output level of
Q = 0) if R0Ŝ0 ≥ 2. The vaccine exhibits everywhere increasing social returns (i.e., at all output
levels Q ∈ (0, Ŝ0)) if R0Ŝ0 ≥ 2/(1 − θ).

According to Proposition 14, if a federal authority only has access to a small stockpile of a vac-

cine to allocate across several similar states with independent epidemiological processes, allocating

the entire stockpile to one state would produce more social benefit than spreading it evenly across

them if R0Ŝ0 > 2. If, for example, Ŝ0 = 0.8 in each state, then concentrating the vaccine would be

efficient for any R0 > 2.5. If the more stringent condition R0Ŝ0 > 2/(1−θ) holds, then even a starker

form of concentration is efficient: not just for very small stockpiles but for any size, the federal au-

thorities should vaccinate all susceptibles in one state before moving to the next. The starkness of the

policy hinges on the modeled consumer homogeneity: if each state has some vulnerable consumers

with a high benefit from vaccinating, a higher bar on R0 would need to be cleared for concentrating

vaccines in one state to be more efficient than serving high-value consumers everywhere first.

Proposition 14 hints that efficacy θ plays a role in determining whether social returns are every-

where increasing. The next proposition, also proved in Appendix A as a straightforward corollary

of Proposition 13, draws a clearer connection.

Proposition 15. A perfectly effective vaccine (θ = 1) cannot exhibit everywhere increasing social
returns.
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The result is intuitive. Protecting all but the last consumer with a perfectly effective vaccine elim-

inates the externality from vaccinating the marginal consumer, the force behind increasing social

returns. Thus, social returns must start to diminish with a perfectly effective at some point before

universal vaccination is reached.

Proposition 15 does not automatically imply that a vaccine with θ < 1 should be spread across

regions. Marginal social benefits may be diminishing in a region yet still be above that in other

regions not yet receiving a vaccine.

3.9. Relevant Limiting Results

This section undertakes the same exercise as undertaken in Section 2.8 for the long-run analysis:

examining limits of certain parameters to clarify the results. We take the same limits as before for

the subset of parameters carried over from the long-run analysis: θ ↑ 1 and c ↓ 0. Taking these limits

simplifies the results considerably. Only cases (SR3) and (SR4) remain from Tables 5 and 6, and

analytic expressions can be obtained for table entries only defined implicitly for general parameters.

It is immediate that the first best is always obtained under perfect competition for the limits

considered here since the first best is obtained in (SR3) and (SR4) in Table 5, and these are the

only cases remaining in the limits considered here. Under monopoly, the first best is obtained if

and only if condition (54) holds. We show in the proof of the next proposition that (54) holds for a

disconnected set of the highest and lowest values of R0:

R0 ∈

(
0,
|L̄(−Î0/Ŝ0)|

Î0

)
∪

(
|
¯
L(−Î0/Ŝ0)|

Î0
,∞

)
, (60)

where L̄ is the principal branch of the Lambert W function and
¯
L is the lower branch (see footnote 16

for definitions). It is no surprise that the first best is obtained under monopoly for sufficiently high

R0; we argued this above for general parameters. The surprise in (60) is that for the limiting value

of parameters considered here, the first best is also obtained for sufficiently low R0. Intuitively, for

sufficiently low R0, the disease is not infective enough to break out into an epidemic no matter how

many susceptibles are left unvaccinated to fuel the epidemic. The disease peters out with just a few

susceptibles mostly catching the disease from the stock of infected individuals at the date of vaccine

introduction. With no complicated epidemiological factors at play, the monopolist maximizes profit

by vaccinating all the susceptibles. If susceptibles were heterogeneous, the monopolist would raise

price by restricting output, but they are homogenous in the model. If the monopolist faced substantial
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costs, consumers’ willingness to pay for a vaccine against such a low-R0 disease would not cover

costs; but here in the limiting case of costless production the monopolist earns a profit (however

slight) by producing.

If (60) does not hold, then output is positive under monopoly but less than the first best. We are

able to derive an analytical expression for output and other variables stated in the next proposition.

Proposition 16. Suppose R0 > 1 and consider the limits θ ↑ 1 and c ↓ 0.

• Under perfect competition, the first best is obtained. We have P∗c = Π∗c = GS∗∗c = 0, Q∗c = µ,
MPB∗c = MSB∗c = H(1 − e−R0 Î0), and MEX∗c = 0.

• Under monopoly, if (60) holds, the first best is obtained, delivering the same outcomes as
those listed for perfect comeptition, except the monopoly charges a higher price P∗m = MPB∗m =

H(1 − e−R0 Î0). Otherwise, monopoly falls short of the first best, with P∗m = H(R0Ŝ0 − 1)/R0Ŝ0,

Q∗m =
µ[R0(Î0 + Ŝ0) − 1 − ln(R0Ŝ0)]

R0Ŝ0 − 1
, (61)

GS∗∗m ↑∞, and closed-form expressions for other equilibrium variables provided in Appendix A.

As before in the long-run analysis, perfect competition delivers the first best when the vaccine is

costless here in the short-run analysis. In contrast, monopoly can now also deliver the first best, and

as explained does so for both very low and very high R0. Even if all other susceptibles purchase a

perfectly effective vaccine, the marginal susceptible is induced to purchase by the threat of contract-

ing the disease from those who were infected before the vaccine was introduced. That group is not

a source of infections in the long-run analysis because they exit the population by time steady-state

sales are being made.

Extreme nonmonotonicity emerges for GS∗∗m . For the lowest and highest values of R0, (60) holds,

implying that monopoly obtains the first best and hence that GS∗∗m = 0. For intermediate values of

R0, GS∗∗ approaches infinity. Thus, as R0 increases on (0,∞), GS∗∗m gyrates from its lowest possible

value to its highest possible value back to its lowest possible value.

3.10. COVID Calibration

This section provides an illustrative calibration using parameters drawn from the current COVID-

19. Section 2.9 issues a number of caveats about using the calibrations as a forecast, and the same

caveats apply here.
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Taking limits θ ↑ 1 and c ↓ 0 from the previous section leaves three important model parameters

to be filled in: R0, Î0, and Ŝ0. We will take current estimates of those parameters, calibrating the

counterfactual effect of the arrival of a vaccine at the present moment. We use estimates from U.K.

government agencies, which provide some of the best estimates for a developed country currently

available. Based on U.K. Government Office for Science (2020), we set R0 = 1.5. Based on U.K.

Office for National Statistics (2020), we take the proportion of currently infected to be Î0 = 0.19%

and the proportion of recovered to be R̂0 = 6.2%, implying Ŝ0 = 1 − Î0 − R̂0 = 93.61%.

Substituting these parameters into the formulas in Proposition 16, we have that the first best is

obtained under perfect competition. Universal vaccination results in all current susceptibles being

protected through the end of the pandemic. The condition (60) ensuring that monopoly attains the

first best reduces to R0 < 1.1 or R0 > 4,378, which for practical purposes can be further reduced

to R0 < 1.1 since the upper interval is outlandishly high. Since the observed value R0 = 1.5 > 1.1,

monopoly does not attain the first best in this calibration. Instead, the monopoly price is set to 41%

of harm of contracting the disease. At this price, only 29% of susceptible consumers buy, generating

welfare equal to 68% of the available health benefit. The calibrated parameters are in the range in

which, according to Proposition 16, it is impossible to induce the first best under monopoly with a

finite subsidy.

Since R0Ŝ0 = 1.9, the simple necessary condition for initially increasing social returns given in

Proposition 14, R0Ŝ0 > 2, is not met. However, the more complicated but weaker condition (59)

provided by Proposition 13 does indicate initially increasing returns, as R0[Ŝ0 + S(0)]/2 = 1.16> 1.

Examing (59) for a range of quantities shows that increasing returns persists through output equal

to 36% of the susceptible population. Supposing that a stockpile has to be allocated to two identical

states with independent epidemiological processes, concentrating the entire stockpile in one state

generates higher welfare than dividing equally until the stockpile exceeds 46% of the population of

one state. Larger stockpiles than this are more efficiently divided equally between the states.

4. Consumer Heterogeneity

The models used in the long- and short-run analyses thus far have assumed that consumers are

homogeneous. This section introduces consumer heterogeneity. The next subsection demonstrates

that key results continue to hold when consumers experience heterogeneous benefits from a vaccine.

Subsequent subsections discuss issues including the importance of targeting subsidies and biases

in the naïve estimation of the average marginal externality when aggregate data masks underlying
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consumer heterogeneity.

4.1. Heterogeneity in Benefits

For concreteness, assume consumers, indexed by i, differ in disease harm, Hi. Similar analysis

applies if consumers experience different efficacies θi or have different lifespans.17 Denote the

probability density function (pdf) by f (Hi), the cumulative distribution function (cdf) by F(Hi), and

the complementary cdf by F̄(Hi) = 1 − F(Hi), and the expected value by E(Hi) =
∫

∞

0 Hi f (Hi)dHi.

Assume Hi has full support on (0,∞).

Assume further that the population distribution of Hi is common knowledge but the specific

realization of Hi is consumer i’s private information. The model requires consumers to be aware of

their heterogeneity, for example, differences in income leading to different willingnesses to pay to

avoid harm, or a family history of disease. Undiagnosed conditions that lead harm to vary but are

unknown to the consumer are better accommodated in the homogeneous-harm model.

In both long- and short-run analyses with homogeneous consumers, we wrote the marginal

private benefit as MPB(Q) = θHΦI(Q), the product of efficacy, harm, and probability of con-

tracting the disease. With consumer heterogeneity, consumer i’s marginal private benefit becomes

MPBi(Q) = θHiΦI(Q).

Incorporating heterogeneity in some of the normative measures requires additional work to keep

track of the high-value consumers who end up purchasing. We have

SB(Q) = C

{[
1 − ΦI(Q)

]∫ Ĥ

0
Hi f (Hi)dHi +

[
1 − ΦI(Q) − θΦI(Q)

]∫ ∞

Ĥ
Hi f (Hi)dHi

}
. (62)

The first integral reflects the expected health experienced by those whose harm is below the thresh-

old Ĥ for purchase. With no vaccine to protect them, consumer i in this group obtains Hi with

probability 1 − ΦI(Q). The second integral reflects the expected health experienced by those who

purchase. Consumer i in this group obtains Hi if either they would not have been infected anyway

(probability 1 − ΦI(Q)) or would have been infected without a vaccine but receive the vaccine pro-

tection (probability θΦI(Q)). The leading factor C allows the per-consumer surplus given by the

integrals to be scaled up to the population of potential consumers: C = µ in the long-run analysis

17We conjecture that the analysis is also similar if consumers contract the disease at different rates, but modeling
heterogeneity in that dimension requires delicacy to avoid changing the epidemiological process.
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and C = Ŝ0 in the short-run analysis. Differentiating (62) yields

MSB(Q) = C

{
−
∂ΦI(Q)

∂Q

[
E(Hi) − θ

∫
∞

Ĥ
Hi f (Hi)dHi

]
+ θΦI(Q)Ĥ f (Ĥ)

∂Ĥ
∂Q

}
. (63)

To compute ∂Ĥ/∂Q, note threshold consumer type Ĥ is given as an implicit function of Q by

Q = CF̄(Ĥ). Totally differentiating this identity with respect to Q and rearranging yields ∂Ĥ/∂Q =

1/C f (Ĥ). After substituting this derivative into (63), we see that the last term equals θĤΦI(Q). This

is the private benefit of the threshold consumer, equal to MPB∗ when evaluated at the equilibrium

Q∗. Subtracting to compute MEX∗ = MSB∗ − MPB∗ leaves just the first term of (63), as stated in the

following lemma.

Lemma 9. In the model with heterogeneity in consumer harm Hi, the marginal externality in both
the long- and short-run analyses equals

MEX∗ = −
∂ΦI(Q∗)
∂Q

[
E(Hi) − θ

∫
∞

Ĥ(Q∗)
Hi f (Hi)dHi

]
C. (64)

Intuitively, Lemma 9 says that the marginal externality is proportional to −∂ΦI(Q∗)/∂Q, the

decline in the equilibrium probability of infection for an unvaccinated individual when one addi-

tional susceptible is vaccinated. The proof of the next proposition shows that that leading factor

approaches 0 as R0 ↓ 0 in both long- and short-run analyses since a noninfectious disease presents

no danger of infection in either analysis. The factor also approaches 0 as R0 ↑ ∞ in both analyses

since the individual will almost certainly contract the infinitely infectious disease in any event—

from someone who was vaccinated but for whom the vaccine was ineffective if no one else. The

remaining factors are obviously positive and finite for all R0. Thus, MEX∗ approaches 0 for extreme

values of R0, implying it is nonmonotonic in R0, as the following proposition states. The proof in

Appendix A fills in omitted details.

Proposition 17. In the model with heterogeneity in consumer harm Hi, MEX∗ is nonmonotonic in
both the long- and short-run analyses, under both perfect competition and monopoly.

4.2. Targeting Subsidies

While various forms of consumer heterogeneity raise common issues, they can have subtle differ-

ences. When consumers differ in benefits obtained from a purchased product, the support of het-

erogeneity is bounded between zero and the threshold benefit for the marginal purchaser. A modest

44



subsidy covering purchase price may be sufficient to induce universal consumption. When con-

sumers differ in personal costs of mitigation measures, non-adopters may have unboundedly high

personal costs, requiring an inordinate subsidy to induce consumption. Targeting and other measures

may help restrain program expenditures.

Consider an example in which vaccines are supplied for free by perfectly competitive firms

producing at zero marginal cost. The only remaining cost is a personal cost ci of receiving a vacci-

nation. Such heterogeneity is plausible. The average cost of receiving a polio vaccine, for instance,

is probably low; but for those remaining unvaccinated, since they decline the vaccine despite severe

disease consequences, revealed preference suggests ci may be high, perhaps reflecting travel diffi-

culties, low tolerance for pain, or “anti-vax” sentiment. Using a uniform subsidy to induce more

of these high-cost consumers to become vaccinated could require paying a high subsidy to infra-

marginal consumers, amplifying program expense, perhaps explaining the reluctance of authorities

to endorse this approach more widely. In our model, the subsidy should be provided regardless of

program expense as long as it moves quantity in the direction of the first best. In practical settings,

authorities may face unmodeled frictions in raising or dispersing public funds making program ex-

penses a relevant consideration.

While heterogeneity in ci combined with practical program frictions could weaken the case for

subsidies, it seems unlikely to overturn it. Calibration suggests that subsidies would be warranted,

if they could be targeted, even very imprecisely, to people or areas with low vaccine take-up. Con-

sider a “lentils for vaccination” program along the lines studied in India by Banerjee et al. (2010),

here calibrated with conservative, round numbers for parameters for ease of analysis. Suppose the

program provides $10 worth of lentils per child immunized (much more than the amount actually

provided in India). Suppose that for every marginal child immunized, nine inframarginal children

receive the subsidy and that either this subsidy is a pure social cost or that an additional dollar of

deadweight loss is incurred for every dollar of lentils distributed. Thus, $100 of subsidy must be

paid out for each new immunization induced. Even in this case, the program would still be justified

as long as the social benefit of vaccination exceeds $100 (plus several dollars of marginal manufac-

turing and delivery costs of the vaccine plus any disutility of vaccination). Vaccine campaigns can

be so cost effective that they remain so even if their costs are magnified, as one can argue in the

case of the rollout of pneumococcal conjugate vaccine in countries eligible for support from GAVI

(formerly the Global Alliance for Vaccines and Immunizations).18 Similar exercises could be con-

18Sinha et al. (2007) put the purchase and program administration cost of a three-dose course of a 13-valent pneumo-
coccal conjugate vaccine (PCV13) at $18 per course. They estimate a total cost in the 72 GAVI-eligible countries, after
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ducted to determine the acceptable “leakage” rate in programs subsidizing mosquito nets or chlorine

for water purification.

4.3. Aggregation Estimation on Heterogeneous Groups

This section discusses conditions under which a naïve estimate that does not take into account pop-

ulation heterogeneity can recover the population means of the marginal externality and other equi-

librium variables.

To derive formal results, consider a simple setting of a population consisting of epidemiologi-

cally distinct subgroups indexed by g∈G. Assume the subgroups sharing all parameters in common

except for subgroup size, denoted wg, with ∑g∈G wg = 1, and disease transmissibility βg, generating

different values of the basic reproductive ratio, R0g according to the relevant formula in the long- or

short-run analysis. A researcher, unaware of the subgroup heterogeneity, seeks to estimate R0 and

MEX using aggregate data. Assume no vaccine is yet available—skirting a potentially awkward sit-

uation in which the expert knows less about the disease than ordinary consumers, who are required

to by our economic model to have rational expectations about the epidemiology of the disease when

making their consumption decisions. The researcher seeks an estimate of the externality associated

with a first dose of possible vaccine to be developed.

In the long-run variant of the analysis, the researcher estimates R0—in what would be a model-

consistent way absent consumer heterogeneity—by substituting an observation of aggregate, steady-

state disease prevalence I and known values of parameters besides R0 into equation (8) and solving

for R0. In the short-run variant of the analysis, the researcher derives their estimating equation from

(31), which upon rearranging and substituting t = Q = 0 yields

R0 =
β

α
= 1 +

1
αŜ0

(
İ0

I0

)
. (65)

In this case, the research estimates R0 by substituting an observation of the percentage change in

prevalence shortly after date 0, along with known values of parameters α and Ŝ0, into (65). The

estimates of R0 can be translated into an estimate of MEX using the formulas from relevant tables.

netting out estimated $1.22 billion savings in averted medical costs, of $9.16 billion. The program would save 119.6
million disability adjusted life years (DALYs) at a cost of $77 per DALY (see their Table 5). After adding $100 to the
cost of each course from an imperfectly targeted vaccines-for-lentils program, one can show the cost per DALY is $558
per DALY, about a quarter of the World Health Organization (WHO) threshold for highly cost effective intervention (as
outlined in Marseille et al. 2015, one times per capita GDP, currently about $2,000 in India) and a tenth of the WHO
threshold for a cost effective intervention (three times per capita GDP).
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We relegate the analysis to Appendix C. Among other details, to isolate the effect of consumer

heterogeneity, the original epidemiological model needs to be normalized to avoid the outcome that

separation itself—even of a homogeneous population—has real effects on R0. If the per-capita

contact rate is not adjusted, a reduction in the size of the interacting population in an SIR model

reduces per-capita contacts.

To summarize the results, the researcher obtains an estimate of the mean of MEX across groups

in both long- and short-run analysis with some caveats. In the long-run analysis, the researcher

obtains an unbiased estimate of the weighted arithmetic mean of MEX across groups but only if

R0g > 1 for all g ∈ G. If R0g < 1 for some g, then the researcher will overestimate mean MEX.

The discontinuity in the functional relationship between R0g and MEXg at R0g = 1 throws off the

calculation of the mean. Appendix C relates the overestimate to the share of the population in

subgroups g with R0g ≤ 1, providing a simple bias correction if that share is known.

In the short-run analysis, the researcher obtains an unbiased estimate of the weighted mean of

MEXg with no restrictions on R0g. However, the relevant mean is not the arithmetic mean of MEXg

but the harmonic mean.

5. Vaccines Versus Drugs

Commentators on the pharmaceutical industry frequently suggest that firms are biased in favor of de-

veloping drugs rather than vaccines. Kremer and Snyder (2016) list a variety of reasons for this bias,

ranging from vaccines’ complexity relative to drug molecules, to the scale often needed for vaccine

clinical trials, to the evaporation of consumers’ private disease-risk information when making drug

purchases (that paper’s focus).

The epidemiological externality analyzed in this paper provides another rationale. By preventing

individuals from becoming infected, vaccines curtail their transmission of the disease to others. The

reduction in others’ disease risk is a public good that reduces others’ willingness to pay for a vac-

cine. This public-good feature distinguishes vaccines from some drugs that treat symptoms without

curing the underlying disease or inhibiting transmission. Firms would have more of incentive to de-

velop a drug that does not have this demand-reducing public-good feature than a similarly effective

vaccine.19

19If one takes the focus on steady states in the long-run analysis as literally implying that the discount rate is zero,
then there would not be any bias in development decisions. All products producing any positive flow profit would be
developed regardless of how large is the up-front development cost; the flow always swamps the up-front cost at a zero
discount rate. We are taking the steady-state profit and welfare differentials as approximations of the present discounted
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To quantify a monopoly’s bias toward a drug and against a vaccine, consider a drug that is

similar in all ways to the vaccine analyzed to this point except that the drug does not reduce disease

transmission. Finding the right normalization to make drug and vaccine costs equivalent is somewhat

delicate since at equal marginal production costs c the total cost of serving a population with a drug

is lower if it only needs to be administered to infected consumers rather than the whole population

in advance as with a vaccine. We finesse this normalization issue by assuming both products are

costless to produce and administer, i.e., c = 0. Assume the drug is effective with probability θ.

Efficacy for the drug means it eliminates any harm from the symptoms experienced by infected

individuals but does not prevent them from transmitting the disease to susceptible individuals. One

course of the drug is sufficient to eliminate symptoms for the rest of the consumer’s life. If this first

course is ineffective for an individual, further courses will be ineffective for that individual as well.

We start by computing monopoly profit and welfare from a drug, respectively Π∗md and W ∗md , in

steady-state equilibrium in the long-run analysis. If R0 ≤ 1, the disease naturally dies out in the

steady-state, implying Q∗md = Π∗md = 0. If R0 > 1, the monopolist can charge P∗md = θH for the

drug to all newly infected consumers each instant. According to equation (3), new infections, βIS,

and removals from the infected population, (α+µ)I, must balance each instant to maintain İ = 0 in

the steady state. Hence, we can compute new infections as (α+µ)I(0), where the argument added

to I(0) indicates that the drug does nothing to curtail infections, as in the vaccine model with no

vaccine sales. Equilibrium drug quantity is thus Q∗md = (α +µ)I(0) = µ(1 − 1/R0) by (8). Given

production is costless,

Π∗md = P∗mdQ∗md = µθH
(

1 −
1
R0

)
. (66)

Welfare is

W ∗md = h[1 − I(0) + θI(0)] = H
[
α+µ−µ(1 − θ)

(
1 −

1
R0

)]
. (67)

Comparing these expressions against the analogous entries in Table 2 for a vaccine leads to the next

proposition. The proposition uses the notation ∆Π∗m = Π∗md − Π∗mv and ∆W ∗m = W ∗md −W ∗mv for dif-

ferences between equilibrium variables for the two products and ∆W ∗∗ = W ∗∗d −W ∗∗v for difference

between first-best welfare.

Proposition 18. Consider the long-run analysis with c = 0. For all R0 > 0, ∆W ∗∗≤ 0 and ∆Π∗m≥ 0,
with strict inequality if and only if R0 > 1. ∆Π∗m is quasiconcave in R0, with limR0↓0 ∆Π∗m =
limR0↑∞ ∆Π∗m = infR0>0 = 0, reaching an maximum of θ2H/(1 − θ) at R0 = (1 + θ)2. W ∗m < 0 if and
only if R0 > [θ/(1 − θ)]2.

value of streams with a positive discount rate.
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The proposition states that the monopoly prefers to develop the drug over the vaccine as long

as there is a nontrival market for the products (R0 > 1). However, if R0 > [θ/(1 − θ)]2, social

welfare is higher with a vaccine, implying that the monopoly is biased toward the “wrong” product

for sufficiently high R0. While the drug has the advantage that the monopolist sells the first-best

quantity in equilibrium, a drug dose is socially inferior to a vaccine dose because the drug offers no

positive externality. Like other variables studied so far that capture the impact of the epidemiological

externality on economic outcomes (including the marginal externality and government subsidy),

here the magnitude of the monopoly’s bias toward the “wrong” product, as quantified by ∆Π∗m, is

nonmonotonic in R0, greatest for some interior value. The externality disappears if the disease is

noninfective and is swallowed by consumers’ private benefit if the disease is infinitely infective.

Moving to the short-run analysis, for all R0 > 0, the drug monopoly can charge P∗m = θH to the

Î0 individuals infected at the moment the drug is developed as well as the Ŝ0 − S(0) individuals who

become infected at some point afterwards, yielding drug profit

Π∗md = θH
[
Î0 + Ŝ0 − S(0)

]
. (68)

To compute equilibrium welfare with a drug, the Î0 individuals infected initially along with the

Ŝ0 −S(0) infected later obtain health benefit H with probability θ from the drug. The S(0) remaining

susceptibles are never infected and obtain health benefit H with certainty, yielding the following

expression for equilibrium welfare after rearranging:

W ∗md = H
[
(1 − θ)S(0) + θ(Î0 + Ŝ0)

]
. (69)

Comparing these expressions against the analogous entries in Table 6 for a vaccine leads to the

next proposition. Details are provided in the proof of this and the previous proposition, provided in

Appendix A.

Proposition 19. Consider the short-run analysis with c = 0. For all R0 > 0, ∆Π∗m > 0. ∆Π∗m
is nonmonotonic in R0, with limR0↓0 ∆Π∗m = limR0↑∞ ∆Π∗m = infR0>0 = θHÎ0. For all parameters
besides R0, limR0↓0W ∗m > 0 and limR0↑∞W ∗m > 0. There there exist parameters including R0 for
which W ∗m < 0.

According to the proposition, many of the points of comparison between a drug and vaccine

from the long-run analysis carry over to the short-run analysis. The monopoly is biased toward the

drug for all parameters, and this bias leads the firm to choose the socially inferior product for some
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parameters.

A new feature of the short-run analysis is that equilibrium welfare never falls below θHÎ0 for

a drug monopoly, even for extreme values of R0. Administering a drug to the Î0 initially infected

provides a social benefit even if R0 is so low that the infection does not spread to others. A vaccine

cannot provide this social benefit because it is useless unless administered prior to infection in the

model. Thus, equilibrium welfare is higher with a drug than vaccine in the limit R0 ↓ 0. Equilibrium

welfare is also higher with a drug than vaccine in the limit R0 ↑ ∞. The externality associated with

vaccine disappears because susceptibles are certain to contract the disease, if no one else, from an

unsuccessfully vaccinated person with an infinitely infective disease. Hence, apart from the drug’s

remaining social benefit of treating the Î0 initially infected, the drug and vaccine provide equal

welfare in the limit R0 ↑ ∞. The opposing welfare factors—the drug helps initially infected but

the vaccine reduces subsequent spread to others—prevent many firm conclusions from being drawn

about the sign of the equilibrium or first-best welfare differentials.

6. Conclusion

We analyzed the market for technologies preventing individuals from contracting a disease. Such

products are interesting since, by preventing the consumer from contracting a disease, they exert

a positive externality, reducing the spread to others. Though the analysis applies to a variety of

technologies such as circumcision, bed nets, or social distancing, the discussion focused on vaccines

for concreteness. Vaccines (and other aforementioned technologies) are not pure public goods since

they are physical products that exhibit rivalry and excludability in consumption, yet they share with

public goods the feature that one’s consumption reduces others’ demand for that product, a feature

that can potentially lead to large distortions in firms’ supply decisions.

Such distortions and policy correctives were the focus of this paper. To study them, we con-

structed and analyzed a theoretical model of the vaccine market involving economic agents that

base their consumption and production decisions on rational expectations of the disease’s evolution

consistent with a standard SIR epidemiological model. We provided two separate analyses. Our

long-run analysis studied of the steady-state equilibrium for an endemic disease such as HIV. Our

short-run analysis studied a vaccine campaign launched at one point in time along the path of an

epidemic disease such as Covid-19 that is expected to wane before population turnover becomes a

relevant issue. We sought to provide a comprehensive account of equilibrium variables such as price,

quantity, profit, and welfare across a variety of market structures ranging from perfect competition

50



to Cournot to monopoly and to study how those variables changed in response to parameter changes.

A key variable was the equilibrium marginal externality. We consistently found—across both

long- and short-run analyses, across a range of market structures, and across models with either

homogeneous or heterogeneous consumers—that the equilibrium marginal externality is nonmono-

tonic in the infectiousness of the disease as measured by R0. For low levels of R0, one consumer’s

vaccination provides little benefit to others because there is little chance the consumer would have

infected them anyway. For high levels of R0, one consumer’s vaccination provides little benefit to

others because they will most likely contract it from a different source anyway. The marginal exter-

nality is greatest for intermediate values of R0. This nonmonotonicity carries over to other outcome

variables such as GS∗∗ (the minimal subsidy necessary to obtain the first-best vaccine quantity) and

∆Π∗m (the difference between monopoly profit from a drug that does not exert the epidemiological

externality and from a vaccine that does). Diseases with moderate infectiousness may exhibit the

greatest distortions and be prime targets for subsidy.

In calibrations, we found that strong cases can be made for subsidizing competitively supplied

technologies such as the example of circumcisions to prevent HIV. However, with a monopoly sup-

plier, the per-unit subsidy needed to obtain the first best can be prohibitively expensive. For example,

in a calibration of the long-run analysis to measles, we found that the subsidy required to obtain the

first best would be fifteen times the harm from certainly contracting the disease. With even a small

deadweight loss of taxation, such a subsidy would fail a cost-benefit test. In the short-run analysis,

Proposition 16 showed that in the limit of a costless and perfectly effective vaccine, if a monopo-

list would not produce the first best in equilibrium without government intervention, it cannot be

induced to produce the first best by any finite per-unit subsidy. Our analysis thus suggests that, in

many cases, governments may either need to give up on the first best as a feasible target for a per-unit

subsidy or need to consider other policies such as purchasing vaccines in bulk at a negotiated price

building in a lump-sum subsidy.

If the negotiated price reflects the threat point of decentralized vaccine sales to individuals on

the private market, our results on the relative profitability of vaccines versus drugs gain relevance.

If the positive epidemiological externality causes a vaccine to be less lucrative than a drug lacking

that externality, the monopoly’s threat point may be worse with a vaccine, implying that the hold-up

problem and consequent underinvestment may be worse with a vaccine than a drug. To address

the hold-up problem, governments may have to consider negotiating with vaccine manufacturers ex

ante, prior to substantial investment in R&D and production capacity.
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While the long- and short-run analyses shared many key qualitative findings, there were points of

contrast. Many of these points of contract can be traced to the presence of the Î0 infected individuals

had yet recovered at vaccine rollout and thus capable of transmitting disease to unvaccinated. This

group is irrelevant in the long-run analysis because recovery and population turnover removes them

from the steady state. The presence of this group leads to the possibility that universal vaccination

of susceptibles with a perfectly effective vaccine can be a viable business strategy. Indeed, in the

limiting case of a costless vaccine, Proposition 16 showed this strategy is optimal for a monopoly for

both sufficiently low and sufficiently high R0. The presence of this group raises the possibility that

a vaccine with a positive epidemiological externality can be welfare-dominated by a drug without

it: if the externality is small, welfare may be driven by the advantage of the drug in treating the Î0

infecteds for whom the vaccine arrives too late to help, assuming the vaccine must be administered

prior to infection to be effective.

The short-run analysis provides fertile ground for understanding when vaccination exhibits in-

creasing social returns. According to Proposition 13, a vaccine exhibits initially increasing social

returns if R0Ŝ0 ≥ 2 and everywhere increasing social returns if R0Ŝ0 ≥ 2/(1 − θ). If the first condi-

tion holds, a small capacity should be concentrated in a single region; and if the second condition

holds, a first region should be completely served before moving to a second regardless of capacity

size. These stark implications for concentrating supplies hinge on the homogeneity of consumers in

the model but raise the possibility o equitable allocation leading to inefficiency.

In our calibration to a Covid-19 vaccine, we found that the first best would be approached by

a competitively supplied vaccine but a monopoly (selling to individuals on the private market, not

bulk sales to governments) would set such a high price that only 29% of susceptibles would buy.

A vaccine would have increasing social returns not everywhere but through 36% of the susceptible

population. The presence of increasing social returns argues for subsidizing aggressive investment

to boost capacity beyond this point if concentrating supplies in few countries is either unpalatable

or outweighed in by the benefit of vaccinating vulnerable subpopulations in every country.
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Appendix A. Proofs
This appendix supplies proofs not included in the text.

Proof of Proposition 1
Suppose I∗= 0 and Q∗> 0. We will show P∗= 0. Substituting I∗= 0 into (8) and rearranging yields
Q∗ ≥ (µ/θ)(1 − 1/R0). This inequality together with Q∗ > 0 implies Q∗ ≥ Q0 by (12), implying
MPB∗ = 0 by (16). Since MPB(Q) is weakly decreasing in Q, MPB(µ) ≤MPB∗ = 0. Then Q∗ =
D(P∗) cannot be determined by the third branch of equation (18); if it were, P∗ < MPB(µ) = 0,
violating the nonnegativity of prices. Since Q∗ > 0, Q∗ cannot be determined by the first branch of
(18) either. Therefore,

Q∗ = d(P∗) =
µ

θ

[
1 −

1
(1 − P/θH)R0

]
. (A1)

Since 0 = MPB∗ = MPB(Q∗), we have

Q∗ ≥ Q0 ≥
µ

θ

(
1 −

1
R0

)
, (A2)

where the first inequality follows from equation (16) and the second from (12). Combining (A1)
with (A2) and rearranging yields P∗ ≤ 0, implying P∗ = 0 by the nonnegativity of prices. Q.E.D.

Verification of Table 1 Entries
As a preliminary step, we will verify that the intervals in the column headings are ordered as given.
The fact that c > 0 implies c̃ > 0. Assumption (23) implies c̃ < 1. Hence c̃ ∈ (0,1), implying
1/(1 − c̃)> 1, implying the case (LR2) interval for R0 is to the right of the case (LR1) interval. The
ordering of the cases is obvious if θ < 1. If θ = 1, then cases (LR4) and (LR5) fail to exist.

Turning to the individual cases, in case (LR1), R0 ≤ 1 implies Q0 = 0 by equation (12). Hence,
MPB(Q) = MSB(Q) = MEX(Q) = 0 for all Q ≥ 0 by equations (16), (21), and (22). The fact
that MPB(Q) = 0 for all Q ≥ 0 implies Q∗c = D(c) = 0 for c > 0 by (18). Equilibrium welfare is
W ∗c = SB∗c − cQ∗c = (α+µ)H by (19).

In case (LR2), R0 > 1 implies Q0 > 0 by (12). Thus, by (16),

MPB(0) = θH(1 − 1/R0)< θHc̃ = c, (A3)

where the inequality follows from R0 < 1/(1 − c̃). We can verify the claim in the text that MPB(Q)
is weakly decreasing in Q by differentiating (16):

−
θ2H
µR0

(
1 −

θQ
µ

)−2

< 0, (A4)

implying that MPB(Q) is weakly decreasing in Q. Therefore, MPB(Q) ≤ MPB(0) < c, implying
Q∗c = D(c) = 0 by (18).

Skipping over case (LR3) to cases (LR4) and (LR5), assume θ < 1, so that these cases exist. We
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have
R0 > 1/(1 − θ)(1 − c̃)> 1/(1 − c̃), (A5)

implying Q0 > µ by (12). Since Q ≤ µ < Q0, MPB(Q) is given by the second branch in (16),
implying

MPB(Q)≥MPB(µ)≥ θH
[

1 −
1

(1 − θ)R0

]
≥ θH[1 − (1 − c̃)] = c, (A6)

where the first step follows from the fact that MPB(Q) is weakly decreasing, the second from sub-
stituting Q = µ into (16), the third step from (A5), and the last from of c̃ = c/θH. Thus, Q∗c = µ by
(18). Since Q< Q0, the relevant branch in equations (19)–(22) for SB(Q), MSB(Q), and MEX(Q) is
the second. Substituting Q∗c = µ into these equations gives SB∗c , MSB∗c , and MEX∗c . Substituting Q∗c
and SB∗c into the welfare formula gives W ∗c .

In case (LR3), R0 ≥ 1/(1 − c̃) implies MPB(0) ≥ c by (A3). Further, R0 ≤ 1/(1 − θ)(1 − c̃)
implies MPB(µ) ≤ c by (A6). Hence, by (18), Q∗c = d(c). Substituting c into (17) yields the table
entry for Q∗c . Using (12), one can show Q∗c < Q0, implying that the relevant branch in equations
(19)–(22) for SB(Q), MSB(Q), and MEX(Q) is the second. The equilibrium value of the remaining
variables can be derived as in the previous paragraph.

Since P∗c = c in all cases, Π∗c = 0 in all cases. Q.E.D.

Proof of Proposition 2
The proof for variables P∗c , Π∗c , and MSB∗c , which are constant over relevant intervals of R0, are
obvious from Table 1.

The reader can verify that Q∗c is continuous at the boundaries between cases in Table 1. The
table entries for Q∗c are constant for all cases except (LR3). In this non-empty case, Q∗c is strictly
increasing in R0. Variables MPB∗c and W ∗c are analyzed similarly.

The reader can verify that I∗c is continuous at the boundary between cases in the table and further
verify that I∗c is constant in R0 in case (LR1), increasing in case (LR2), decreasing in case (LR3), and
increasing in cases (LR4) and (LR5). A local optimum is thus attained at the boundary between cases
(LR2) and (LR3). Substituting R0 = 1/(1 − c̃) in the case (LR2) table entry yields I∗c = c̃µ/(α+µ).
The only other candidate for a global maximum is

lim
R0↑∞

I∗c =
(1 − θ)µ

α+µ
. (A7)

This is less than the local optimum on the boundary between cases (LR2) and (LR3) if and only if
c̃> 1 − θ.

The reader can verify that MEX∗c is continous at the case (LR2)–(LR3) boundary and at the case
(LR3)–(LR4) boundary and further verify that MEX∗c is decreasing or constant in R0 in cases (LR2)–
(LR5). Hence, MEX∗c approaches its supremum limR0↓1 MEX∗c = 1 at the boundary between cases
(LR1) and (LR2). Q.E.D.

Proof of Proposition 3
Preliminaries: The proof for MSB∗m, which is constant within relevant intervals of R0, is obvious
from Table 2. We omit the comparative-static analysis of Q∗m as it is similar to that for Q∗c in the
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previous proof. We also omit the comparative-static analysis of MPB∗m and Π∗m, which are similar
to that for Q∗m. We also omit the comparative-static analysis of MEX∗m, which is similar to that for
MEX∗c in the previous proof.

Results for P∗m: Form a price function out of the correspondence in Table 2 by taking the determi-
nate prices in cases (LR3)–(LR5) and extending this function by taking P∗m = c in cases (LR1) and
(LR2) in which the equilibrium monopoly price is indeterminate. One can then proceed to analyze
the comparative statics of this price function in a similar way to variables in the preceding paragraph.

Results for I∗m: The reader can verify that I∗m is continuous at the boundary between cases in Table 2
and further verify that I∗m is constant in R0 in case (LR1), increasing in case (LR2), and increasing
in case (LR5). This leaves cases (LR3) and (LR4). Differentiating the table entry for those cases,

∂I∗m
∂R0

=
µ

(α+µ)R2
0

(
1 −

1
2

√
R0

1 − c̃

)
. (A8)

Equation (A8) is decreasing in R0. It is negative for all R0 in cases (LR3) and (LR4) if it is nonpos-
itive at the lower boundary of case (LR3). Evaluating (A8) at this lower boundary R0 = 1/(1 − c̃),
we see it is nonpositive if and only if c̃ ≥ 1/2. But then I∗m is nonmonotonic, for it is increasing in
case (LR2) and decreasing in cases (LR3) and (LR4). It reaches a local maximum of c̃µ/(α+µ) at
the boundary between cases (LR2) and (LR3). This weakly exceeds limR0↑∞ I∗m = (1 − θ)µ/(α+µ)
if c̃≥ 1 − θ, in which case the local maximum is a global maximum.

Assume c̃ < 1/2. Then (A8) is nonnegative for all R0 in cases (LR3) and (LR4) if and only if
(A8) is nonnegative at the upper boundary of case (LR4). Evaluating (A8) at this upper boundary
R0 = 1/(1 − θ)2(1 − c̃), we see it is nonnegative if and only if c̃ ≤ (1 − 2θ)/2(1 − θ). Under these
conditions, I∗m is nondecreasing in R0 for all R0 > 0.

For the remaining parameters, I∗m reaches a local maximum in the interior of cases (LR3) and
(LR4). Setting (A8) to 0 and solving implies that the local maximum is at R0 = 4(1 − c̃). This
local maximum equals µ/4(α+µ)(1 − c̃), which exceeds limR0↑∞ I∗m = (1 − θ)µ/(α+µ) if c̃ ≥ (3 −

4θ)/4(1 − θ), in which case the local maximum is a global maximum.

Results for W ∗m: The reader can verify that W ∗m is continuous at the boundary between cases in
Table 2 and further verify that W ∗m is constant in R0 in case (LR1), decreasing in case (LR2), and
decreasing in case (LR5). This leaves cases (LR3) and (LR4). Differentiating the table entry for
those cases,

∂W ∗m
∂R0

=
µH
R2

0

(
1
2

√
(1 − c̃)R0 − 1

)
. (A9)

The sign of (A9) depends on the factor in parentheses, which is increasing in R0. It is nonpositive
for all R0 in cases (LR3) and (LR4) if and only if it is nonpositive at the upper boundary of case
(LR4). Evaluating (A8) at this upper boundary R0 = 1/(1−θ)2(1− c̃), we see it is nonpositive if and
only if θ ≤ 1/4. Otherwise, W ∗m reaches a local minimum in the interior of cases (LR3) and (LR4).
Setting (A9) to 0 and solving yields a local minimum at R0 = 4/(1 − c̃). This local minimum equals
H[α+(3/4)(1− c̃)µ], which weakly exceeds limR0↑∞W ∗m = H[α+µθ(1− c̃)] if θ≥ 3/4, in which case
the local minimum is a global minimum. Q.E.D.
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Proof of Proposition 4
Suppose c̃≥ 1/2. Then I∗m achieves an interior maximum regardless of θ by Proposition 3. So sup-
pose c̃< 1/2. Then Proposition 3 states that I∗m achieves an interior maximum if c̃> (1−2θ)/2(1−θ),
or rearranging, θ > (1 − 2c̃)/2(1 − c̃). The right-hand side of this last inequality is decreasing in c̃.
Substituting c̃ = 0 gives the sufficient condition θ > 1/2 for I∗m to achieve an interior maximum.
Proposition 3 states that θ > 1/4 is sufficient for W ∗m to achieve an interior minimum. Thus, θ > 1/2
is sufficient for both I∗m and W ∗m to achieve interior optima.

Suppose c̃ ≥ 1/2. Proposition 3 states that I∗m achieves a interior global maximum if c̃ ≥ 1 − θ,
or rearraning, if θ ≥ 1 − c̃ ≥ 1/2. Suppose instead that c̃ < 1/2. Proposition 3 then states that I∗m
achieves an interior global optimum if c̃≥ (3 − 4θ)/4(1 −θ), or rearranging, if θ ≥ (3 − 4c̃)/4(1 − c̃).
The right-hand side of this last inequality is decreasing in c̃. Substituting c̃ = 0 gives the sufficient
condition θ> 3/4 for I∗m to achieve an interior global maximum in this case. Combining the sufficient
condition derived supposing c̃ ≥ 1/2 with that derived supposing c̃ < 1/2, θ ≥ 3/4 is a sufficient
condition for I∗m to attain an interior global maximum. By Proposition 3, θ ≥ 3/4 is also sufficient
for W ∗m to achieve an interior global minimum. Q.E.D.

Proof of Proposition 5
The proof of Proposition 3 showed that when c̃ < 1/4, the interior global maximum of I∗m over R0
equals µ/4(α+µ)(1 − c̃). The proof also showed that limR0↑∞ I∗m = (1 − θ)µ/(α+µ). Dividing the
two expressions yields the ratio

1
4(1 − θ)(1 − c̃)

≥ 1
4(1 − θ)

, (A10)

which grows arbitrarily high as θ ↑ 1.
The proof of Proposition 3 showed that the interior global minimum of W ∗m over R0 equals

H[α+ (3/4)µ(1 − c̃)]. (A11)

The proof also showed
lim
R0↑∞

W ∗m = H[α+ θµ(1 − c̃)]. (A12)

Dividing (A11) by (A12) yields the ratio

α+ (3/4)µ(1 − c̃)

α+ θµ(1 − c̃)
. (A13)

Equation (A13) is minimized over θ ∈ [0,1] by setting θ = 1. After substituting θ = 1, the resulting
ratio can be shown to be increasing in c̃ and decreasing in α. It is thus minimized for c̃ = 0 and
minimized over α ∈ (0,1] for α = 1. Substituting these values into (A13), the minimized ratio
reduces to 3/4. Q.E.D.
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Proof of Proposition 6
Suppose R0 ≤ 1. Then Q∗∗ = min(Q0,µ) = min(0,µ) = 0, where the first equality follows from
equation (24), the second from substituting R0 ≤ 1 into (12), and the third from µ> 0. No subsidy
is needed to generate zero quantity, implying GS∗∗ = 0.

Suppose 1 < R0 < 1/(1 − θ). Substituting 1 < R0 into (12) yields Q0 > 0, implying Q∗∗ =
min(Q0,µ)> 0. Substituting R0 < 1/(1 − θ) into (12) yields Q0 < µ, implying Q∗∗ = min(Q0,µ) =
Q0, in turn implying I∗∗ = 0 by (8). By Proposition 1, I∗∗ = 0 and Q∗∗ > 0 imply P∗∗ = 0.

Suppose R0 ≥ 1/(1 − θ). Then Q0 ≥ µ by (12), implying Q∗∗ = min(Q0,µ) = µ. To find the
lowest subsidy delivering Q∗∗ = µ, we need to find the highest P∗∗ satisfying D(P∗∗) = µ since the
equilibrium price is weakly decreasing in the subsidy.

Consider a price P′ such that P′>MPB(µ). Then D(P′)≤ d(P′) since only the first two branches
of (18) are relevant in the computation of D(P′). Combining the inequality

P′ >MPB(µ) =
θH

1 − θ

(
1 − θ −

1
R0

)
(A14)

with (17) yields d(P′) < µ. Thus, D(P′) ≤ d(P′) < µ = Q∗∗ = D(P∗∗), implying P∗∗ 6= P′. But
since P′ was an arbitrary price greater than MPB(µ), we have P∗∗ ≤ MPB(µ). The highest price
satisfying P∗∗ ≤MPB(µ) is P∗∗ = MPB(µ). To verify that this price yields the desired quantity, we
have µ = d(MPB(µ)) = D(MPB(µ)) = D(P∗∗), where the first equality follows from substituting
from (A14) into (17) and the second equality from the fact that only the middle branch is relevant in
(18) at a price of MPB(µ).

The previous paragraph shows d(P∗∗) = d(MPB(µ)) = µ, implying P∗∗= d−1(µ). Inverting (17)
yields equation (26). Q.E.D.

Proof of Proposition 7
We will prove the second bullet point regarding comparative statics of GS∗∗ in c and θ. Gleaning
the remaining results from Table 3 is relatively straightforward. In case (LR1) of the table, GS∗∗c =
GS∗∗m = 0, in which case the comparative statics hold trivially. The remaining cases can be combined
in a single expression for each market structure,

GS∗∗c = min
{

c,max
{

0,c + θH
[

1
(1 − θ)R0

− 1
]}}

(A15)

GS∗∗m = min
{

c +R0 − 1,max
{

0,c + θH
[

1
(1 − θ)2R0

− 1
]}}

, (A16)

which are obviously weakly increasing in c and θ. Q.E.D.

Proof of Lemma 1
We begin by proving the claims about It(Q). Substituting (39) into (31) yields

İt(Q) =
1
α

It(Q)[R0St(Q) − 1], (A17)
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or, rearranging,
İt(Q)

It(Q)
=

1
α

[R0St(Q) − 1]. (A18)

Recognizing the left-hand side as ∂ ln It(Q)/∂t and integrating yields∫ t

0

∂ ln Iτ (Q)

∂τ
dτ =

∫ t

0

1
α

[R0Sτ (Q) − 1]dτ . (A19)

Invoking the Fundamental Theorem of Calculus, taking exponentials, and rearranging yields, for all
t ≥ 0,

It(Q) = I0(Q)exp
(∫ t

0

1
α

[R0Sτ (Q) − 1]dτ
)
. (A20)

Since I0(Q) = Î0 > 0 by assumption, It(Q) is the product of two positive factors.
Turn next to proving the claims about St(Q). Rearranging (32), It(Q) = Ṙt(Q)/α. Substituting

into (33) and rearranging yields Ṡt(Q)/St(Q) = −(β/α)Ṙt(Q) = −R0Ṙt(Q) by (39). Recognizing
Ṡt(Q)/St(Q) = ∂ lnSt(Q)/∂t and integrating between t ′ ≥ 0 and t ′′ ≥ t ′ yields∫ t ′′

t ′

∂ lnSτ (Q)

∂τ
dτ = −

∫ t ′′

t ′

1
α

Ṙτ (Q)dτ . (A21)

Invoking the Fundamental Theorem of Calculus, taking exponentials, and rearranging yields

St ′′(Q) = St ′(Q)eR0[Rt′(Q)−Rt′′(Q)]. (A22)

Substituting t ′ = 0 and t ′′ = t into (A22) yields

St(Q) = S0(Q)eR0[R0(Q)−Rt(Q)]. (A23)

Now S0(Q) = Ŝ0 − θQ> Ŝ0 − Q≥ 0, where the first step holds by (35), the second by θ < 1, and the
third by Q ∈ [0, Ŝ0]. The right-hand side of (A23) is thus the product of two positive factors. Q.E.D.

Proof of Lemma 2
Substituting It(Q) > 0 into (32) yields Ṙt(Q) > 0, implying Rt ′′(Q) > Rt ′(Q) for t ′′ > t ′, implying
eR0[Rt′(Q)−Rt′′(Q)] < 1. Since St ′(Q)> 0 by Lemma 1, St ′′(Q)≤ St ′(Q) by (A22). Q.E.D.

Proof of Lemma 3
Since It(Q) > 0 by Lemma 1, by (A17), the sign of İt(Q) is determined by the value of R0St(Q)
relative to 1.

First, suppose R0S0(Q) ≤ 1. Consider any t > 0. Lemma 2 implies St(Q) < S0(Q), in turn
implying R0St(Q)< R0S0(Q)≤ 1. Substituting R0St(Q)< 1 into (A17) implies İt(Q)< 0.

Next, suppose R0S0(Q)> 1. Substititing into (A17) for t = 0 implies İ0(Q)> 0. By Martcheva
(2015, p. 13), I(Q) = 0. Therefore, we must have İt(Q) < 0 for some t > 0. Thus, by continuinity,
İT (Q) = 0 for some T > 0. Since St(Q) is strictly decreasing by Lemma 1, T is unique, given by
the value of t for which (A17) equals 0, implying T satisfies ST (Q) = 1/R0. Since St(Q) is strictly
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decreasing we have İt(Q) > 0 for all t ∈ [0,T ), İt(Q) < 0 for all t > T , and IT (Q) is the maximum
infection rate. Q.E.D.

Proof of Lemma 4
See Martcheva (2015, p. 13) for a proof that I(Q) = 0. Martcheva (2015, p. 12) argues that the fact
that St(Q) is positive and montone implies that the limit S(Q) exists.

To prove the remaining claim in the lemma, take the limit t ↑ ∞ in (A23):

S(Q) = S0(Q)eR0[R0(Q)−R(Q)]. (A24)

By Lemma 1, S0(Q)> 0. The proof of Lemma 2 showed that Rt(Q) is strictly increasing in t. Thus
R(Q)> R0(Q), implying S(Q)< S0(Q) by (A24). Q.E.D.

Proof of Lemma 5
First, suppose S0(Q) ≤ 1/R0. Then S(Q) < 1/R0 because St(Q) is strictly decreasing in t by
Lemma 2.

Next, suppose S0(Q) > 1/R0. In the last paragraph of the proof of Lemma 3, we proved the
existence of T > 0 such that ST (Q) = 1/R0. Since St(Q) is strictly decreasing by Lemma 2, we
have S(Q)< ST (Q) = 1/R0. Q.E.D.

Proof of Lemma 6
Substituting (33) and (39) into (31) yields

İt(Q) =
Ṡt(Q)

R0St(Q)
− Ṡt(Q). (A25)

Integrating (A25) over t ∈ [0,∞) and applying the Fundamental Theorem of Calculus,

I(Q) − I0(Q) =
1
R0

[lnS(Q) − lnS0(Q)] − S(Q) + S0(Q). (A26)

Substituting I0(Q) = Î0 by (36), noting I(Q) = 0 by Lemma 4, and rearranging yields

lnS(Q) −R0S(Q) = lnS0(Q) −R0[Î0 + S0(Q)]. (A27)

Further substituting S0(Q) = Ŝ0 − Q from (35) yields (41).
To derive (42), exponentiating both sides of (A27) and rearranging yields

S(Q) =
{

S0(Q)e−R0[Î0+S0(Q)]
}

eR0S(Q), (A28)

or, equivalently,
x = beax, (A29)
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where x = S(Q), a = R0, and b = S0(Q)e−R0[Î0+S0(Q)]. It is well-known that (A29) has solution
x = −L̄(−ab)/a = |L̄(−ab)|/a, where the second equality holds if a,b > 0 implying L̄(−ab) < 0.
Substituting the values of x, a, and b into this solution and further substituting S0(Q) = Ŝ0 − Q from
(35) yields (42).

Equation (A29) also has a solution in terms of the lower branch of the Lambert W function,
x = −

¯
L(−ab)/a. We reject this solution because it exceeds 1, which is out of bounds for S(Q).

Q.E.D.

Proof of Lemma 8
We will prove limR0↑∞[R0S(Q)] = 0. The claim that limR0↑∞ S(Q) = 0 follows as a direct conse-
quence (and a separate proof was also proved in the text). We have

lim
R0↑∞

[R0S(Ŝ0)] = lim
R0↑∞

∣∣∣L̄(−R0(1 − θ)Ŝ0e−R0[Î0+(1−θ)Ŝ0]
)∣∣∣ (A30)

=

∣∣∣∣L̄(−(1 − θ)Ŝ0 lim
R0↑∞

R0

eR0[Î0+(1−θ)Ŝ0]

)∣∣∣∣ (A31)

= |L̄(0)|. (A32)

Equation (A30) follows by taking limits in (42), (A31) is a simple rearrangement, and (A32) follows
from application of l’Hôpital’s Rule. Standard results for the Lambert W function imply L̄(0) = 0.
Q.E.D.

Verification of Table 5 Entries
The equilibrium condition is P∗c = c. Firms earn no profit under perfect competition: Π∗c = 0. No
consumers purchase in case (SR1), implying Q∗c = 0. All susceptibles purchase in case (SR3),
implying Q∗c = Ŝ0. In case (SR2), Q∗c can be found by substituting P∗c = c in equation (47).

To find R∗c , note R∗c = 1 − I∗c − S∗c −θQ∗c = 1 − S(Q∗c)−θQ∗c since I∗c = 0. Substituting Q∗c = 0 gives
the entry for R∗c in case (SR1), and substituting Q∗c = Ŝ0 gives the entry for R∗c in case (SR3). To find
R∗c in case (SR2), set c = MPB(Q∗c) in equation (45) and rearrange, yielding

S(Q∗c) = (1 − c̃)(Ŝ0 − θQ∗c) (A33)

Substituting (A33) into R∗c = 1 − S(Q∗c) −θQ∗c and rearranging yields R∗c = 1 − (1 − c̃)Ŝ0 − c̃θQ∗c . Sub-
stituting from the table entry for Q∗c = Ŝ0Q̃∗c yields the table entry for R∗c .

Substituting Q∗c = 0 in (45) gives MPB∗c in case (SR1), and substituting Q∗c = Ŝ0 in (45) gives
MPB∗c in case (SR3). For some but not all consumers to purchase in case (SR2) requires MPB∗c = c.

Substituting Q∗c = 0 in (49) gives MSB∗c in case (SR1), and substituting Q∗c = Ŝ0 in (49) gives
MSB∗c in case (SR3). Substituting from (A33) into (49) yields MSB∗c in case (SR2).

The table entries for MEX∗c can be obtained by subtracting other table entries: MEX∗c = MSB∗c −

MPB∗c . To derive the table table entries for W ∗c , by definition W ∗c = SB∗c − cQ∗c = H(1 − R∗c) − cQ∗c ,
where the second equation follows from (40). Substituting other table entries into this equation gives
the table entries for W ∗c . Q.E.D.
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Proof of Proposition 9
Preliminaries: For conciseness, let R′0 denote the boundary value of R0 between cases (SR1) and
(SR2) and R′′0 between cases (SR2) and (SR3), i.e.,

R′0 =
| ln(1 − c̃)|

Î0 + c̃Ŝ0
(A34)

R′′0 =
| ln(1 − c̃)|

Î0 + (1 − θ)c̃Ŝ0
(A35)

The results for P∗c and Π∗c are obvious from Table 5. To show Q∗c is weakly increasing, it can be
verified that it is continuous at thresholds R′0 and R′′0 . In case (SR2), ∂Q∗c/∂R0 = − ln(1− c̃)/θc̃R2

0 >
0. Hence, Q∗c is weakly increasing in R0 for all R0 > 0 and strictly increasing for R0 in the interior
of case (SR2).

Results for MPB∗c: To show MPB∗c is weakly increasing, start with case (SR1). Differentiating the
table entry,

∂MPB∗c
∂R0

= −

(
θH

Ŝ0

)
∂S(0)

∂R0
. (A36)

Applying the Implicit Function Theorem to (41) yields derivative

∂S(Q)

∂R0
=

−S(Q)

1 −R0S(Q)
[Î0 + S0(Q) − S(Q)]. (A37)

The first factor is negative by Lemma 5. The factor in square brackets is positive since Î0 + S0(Q) −

S(Q)> S0(Q)−S(Q)> 0, where the first inequality follows from Î0 > 0 and the second by Lemma 4.
Since equation (A37) is negative for all Q ∈ [0, Ŝ0], including Q∗c = 0, (A36) is positive. In case
(SR2), MPB∗c is constant. Differentiating the table entry in cases (SR3) and (SR4),

∂MPB∗c
∂R0

= −

[
θH

(1 − θ)Ŝ0

]
∂S(Ŝ0)

∂R0
, (A38)

which is negative since (A37) is negative for all Q ∈ [0, Ŝ0], including Q∗c = Ŝ0.
The last step in deriving comparative statics for MPB∗c is to show it is continuous at both end-

points of case (SR2). Now MPB(Q) is continuous in Q because it is differentiable in Q by (46).
Further, MPB(Q) is continuous in R0 because S(Q) is differentiable in R0 by (A37). Since Q∗c is
continuous at both endpoints of case (SR2) as argued in the first paragraph of this proof, we have
that MPB∗c is continous at R′0 and R′′0 .

Results for R∗c: To derive the comparative statics for R∗c , combining the table entries with (A37)
shows R∗c is increasing in R0 in case (SR1) as well as cases (SR3) and (SR4). The table entry is
obviously decreasing in R0 in case (SR2). We thus have that R∗c attains a local maximum at R′0 if we

61



can establish that R∗c is continuous at R′0. Using the table entry for R∗c in case (SR1),

lim
R0↑R′0

R∗c = 1 − lim
R0↑R′0

S(0) = 1 −

(
1 − lim

R0↑R′0

MPB∗c
θH

)
Ŝ0 = 1 − (1 − c̃)Ŝ0. (A39)

The second equality follows from the table entry for MPB∗c in case (SR1): MPB∗c = θHΦI(0) =
θH[1 − S(0)/Ŝ0] by (44). The third equality follows from the continuity of MPB∗c at R′0, allowing us
to substitute the table entry for MPB∗c = c in case (SR2). Using the table entry for R∗c in case (SR2),

lim
R0↓R′0

R∗c = 1 − Ŝ0 − Î0 +
1
R′0
| ln(1 − c̃)|= 1 − (1 − c̃)Ŝ0. (A40)

The equality between (A39) and (A40) proves the continuity of R∗c at R′0.
Since R∗c is increasing in R0 in cases (SR3) and (SR4), the other candidate for a supremum is

lim
R0↑∞

R∗c = 1 − θŜ0. (A41)

This equality follows from taking the limit R0 ↑ ∞ of the table entry in cases (SR3) and (SR4) and
noting that limR0↑∞ S(Ŝ0) = 0 by Lemma 8. The local maximum is thus a global maximum if and
only if 1 − (1 − c̃)Ŝ0 ≥ 1 − θŜ0. Rearranging gives c̃≥ 1 − θ.

Results for MSB∗c: To provide a roadmap for the comparative-statics analysis of MSB∗c , we first
look at cases (SR1) and (SR2) and show that MSB∗c has a unique local maximum over R0 ≤ R′′0 .
Furthermore, this restricted local maximum is the restricted global maximum over R0≤R′′0 . We then
look at cases (SR3) and (SR4) and show that MSB∗c has at most one restricted local maximum over
R0 > R′′0 . If no restricted local maximum exists there, then we show that the restricted maximum
over R0 ≤ R′′0 is the global maximum over all R0 > 0. If a restricted local maximum exists in
cases (SR3) and (SR4), then either it or the restricted local maximum over R0 ≤ R′′0 is the global
maximum. This establishes, in sum, that MSB∗c has at most two local maxima, one of which is the
global maximum.

To prove that MSB∗c has a unique local restricted maximum over R0 ≤ R′′0 , we will show that
MSB∗c is increasing in a neighborhood around 0, quasiconcave for all R0 ∈ (0,R′0], continuous at
R′0, and decreasing for all R0 ∈ (R′0,R

′′
0). The arguments are made in reverse order. It is clear from

inspection of Table 5 that MSB∗c is decreasing for R0 ∈ (R′0,R
′′
0). To show MSB∗c is continuous at

R′0, using the table entry for MSB∗c in case (SR1),

lim
R0↑R′0

MSB∗c =
limR0↑R′0 MPB∗c

1 −R′0(1 − limR0↑R′0 MPB∗c/θH)Ŝ0
=

θHc̃(Î0 + c̃Ŝ0)

Î0 + c̃Ŝ0 + (1 − c̃)Ŝ0 ln(1 − c̃)
. (A42)

The first equality follows from substituting the table entry for MPB∗c in case (SR1) directly as well
as substituting the implication of that table entry that S(0) = Ŝ0(1−MPB∗c/θH). The second equality
follows from limR0↑R′0 MPB∗c = c by continuity and from substituting from (A34). Using the table
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entry for MSB∗c in case (SR2),

lim
R0↓R′0

MSB∗c =
θHc̃2

c̃ + (1 − c̃)[ln(1 − c̃) +R′0Î0]
=

θHc̃(Î0 + c̃Ŝ0)

Î0 + c̃Ŝ0 + (1 − c̃)Ŝ0 ln(1 − c̃)
. (A43)

The equality of (A42) and (A43) proves the continuity of MSB∗c at R′0.
We next show MSB∗c is quasiconcave for all R0 in case (SR1). Differentiating the relevant table

entry, substituting from (A37), and eliminating positive constants shows that ∂MSB∗c/∂R0 has the
same sign as [

Ŝ0 − S(0)
][

1 −R0S(0)
]

+
[
Î0 + Ŝ0 − S(0)

](
1 −R0Ŝ0

)
. (A44)

The second derivative of (A44) with respect to R0—after substituting from (A37), and rearranging
considerably—can be shown to equal

2
∂S(0)

∂R0

[
Î0 + Ŝ0 − S(0)

]
, (A45)

which is negative—as can be shown using arguments similar to those used to prove (A37) is neg-
ative. Hence, (A44) is concave. In the limit R0 ↓ 0, (A44) approaches 2[Ŝ0 − S(0)] + Î0, which is
positive by Lemma 4 and Î0 > 0. Having established that (A44) is concave throughout (SR1) and
initially positive, we have that (A44) can change sign at most once. Therefore, ∂MSB∗c/∂R0 is ei-
ther nonnegative throughout case (i) or positive then negative. In either event, this proves that MSB∗c
is quasiconcave in (SR1). We have already established MSB∗c is increasing in a neighborhood of
R0 above 0, the last step needed to prove that MSB∗c has a unique restricted local maximum over
R0 ≤ R′′0 , which is a global maximum on that restricted set.

We next look at the behavior of MSB∗c in cases (SR3) and (SR4), showing it has a most one
restricted local maximum over R0 >R′′0 . Similar calculations used in the previous paragraph can be
used here to establish the concavity of the following function,[

(1 − θ)Ŝ0 − S(Ŝ0)
][

1 −R0S(Ŝ0)
]

+
[
Î0 + (1 − θ)Ŝ0 − S(Ŝ0)

][
1 − (1 − θ)R0Ŝ0

]
, (A46)

which determines the sign of ∂MSB∗c/∂R0 in (SR3) and (SR4). Thus, (A46) has at most two roots in
those cases, which cannot both be local maxima, implying that MSB∗c has at most one local maximum
over R0 > R′′0 . The limit as R0 ↑ ∞ of (A46) equals

Î0 + 2(1 − θ)Ŝ0 − (1 − θ)Ŝ0[Î0 + (1 − θ)Ŝ0] lim
R0↑∞

R0 (A47)

after substituting limR0↑∞ S(Ŝ0) = limR0↑∞[R0S(Ŝ0)] = 0 by Lemma 8. Expression (A47) approaches
−∞ since it involves R0 multiplied by negative constant. Since the limit R0 ↑ ∞ cannot produce a
restricted supremum over R0 > R′′0 , the restricted supremum is either the lower boundary of (SR3),
i.e., R′′0 , or is the interior restricted maximum. If R′′0 provides the restricted supremum over R0 >R′′0 ,
this cannot be a global maximum since MSB∗c is decreasing in (SR2); the restricted maximum over
R0 ≤ R′′0 must then be the global maximum.

Results for MEX∗c: We use the same roadmap for the comparative-statics analysis of MEX∗c as
for MSB∗c . We begin by proving that MEX∗c has a unique local restricted maximum over R0 ≤ R′′0 .
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We do this by showing that MEX∗c is increasing in a neighborhood around 0, quasiconcave for all
R0 ∈ (0,R′0], continuous at R′0, and decreasing for all R0 ∈ (R′0,R

′′
0). The arguments are made in

reverse order. Differentiating the table entry for case (SR2) yields

∂MEX∗c
∂R0

=
−θHc̃2(1 − c̃)Î0{

c̃ + (1 − c̃)[ln(1 − c̃) +R0Î0]
}2 , (A48)

which is negative. The proof that MEX∗c is continuous at R′0 is similar to that for MSB∗c and omitted.
We next show MEX∗c is quasiconcave for all R0 in case (SR1). Differentiating the relevant table

entry, substituting from equation (A37), and eliminating positive constants shows that ∂MEX∗c/∂R0
has the same sign as[

Ŝ0 − S(0)
][

1 −R0(Î0 + Ŝ0)
]

+R0S(0)
[
1 −R0S(0)

][
Î0 + Ŝ0 − S(0)

]
. (A49)

All of the factors in (A49) are definitively positive except for 1 −R0(Î0 + Ŝ0). If this is also nonneg-
ative, then ∂MEX∗c/∂R0 is positive in (SR1), implying MEX∗c is quasiconcave in (SR1), as desired.

So suppose instead that
R0(Î0 + Ŝ0)> 1. (A50)

We will show that (A50) implies that (A49) is concave. The second derivative of (A49) with respect
to R0—after substituting from (A37), rearranging considerably, and removing positive factors—can
be shown to have the same sign as

S(0)
[
1 −R0(Î0 + Ŝ0)

]
− [1 −R0S(0)

]
(Î0 + Ŝ0) − S(0)

[
2(Î0 + Ŝ0) − S(0)

]
− S(0)

{
1 −R0

[
Î0 + Ŝ0 − S(0)

]}[
Î0 + Ŝ0 − 2S(0)

]
. (A51)

By (A50) and familiar arguments, all the terms in (A51) are negative except possibly the last. If the
last term is also nonpositive, the whole expression is negative, establishing (A49) is concave. So
suppose instead that the last term is positive. For this to be the case, one of its last two factors must
be positive and the other negative. That is, one of the following two sets of conditions must hold:

1 −R0
[
Î0 + Ŝ0 − S(0)

]
> 0, Î0 + Ŝ0 − 2S(0)< 0 (A52)

1 −R0
[
Î0 + Ŝ0 − S(0)

]
< 0, Î0 + Ŝ0 − 2S(0)> 0 (A53)

Suppose (A52) holds. Then

(A51)< −S(0)
[
2(Î0 + Ŝ0) − S(0)

]
− S(0)

{
1 −R0

[
Î0 + Ŝ0 − S(0)

]}[
Î0 + Ŝ0 − 2S(0)

]
(A54)

< −S(0)
[
2(Î0 + Ŝ0) − S(0)

]
− S(0)

[
Î0 + Ŝ0 − 2S(0)

]
(A55)

= −3S(0)
[
Î0 + Ŝ0 − S(0)

]
. (A56)

Equation (A54) follows from eliminating the first two negative terms of (A51). Equation (A55)
follows from substituting 1, which is greater than the factor in braces, for the factor in braces. The
fact that this substitution results in an increase in (A55) follows from (A52). Straightforward algebra
yields (A56), which is negative by familiar arguments.
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Suppose (A53) holds. Then

(A51)< S(0)
[
1 −R0(Î0 + Ŝ0)

]
− S(0)

{
1 −R0

[
Î0 + Ŝ0 − S(0)

]}[
Î0 + Ŝ0 − 2S(0)

]
(A57)

< S(0)
[
1 −R0(Î0 + Ŝ0)

]
− S(0)

{
1 −R0

[
Î0 + Ŝ0 − S(0)

]}
(A58)

= −R0S(0)2. (A59)

Equation (A57) follows from eliminating the second and third two negative terms from (A51). Equa-
tion (A58) follows from substituting 1 for the last factor, Î0 + Ŝ0 − 2S(0). To see that this increases
the expression, note Î0 + Ŝ0 − 2S(0) < Î0 + Ŝ0 ≤ 1, where the last inequality holds since the size of
the infected and susceptible subpopulations at date 0, Î0 + Ŝ0, cannot exceed the size of the entire
population, normalized to 1. The fact that substituting 1 for Î0 + Ŝ0 − 2S(0) increases (A57) follows
from (A53). Straightforward algebra yields (A59), which is obviously negative.

In sum, we have shown (A51) is negative for R0 < R′0, implying (A49) is concave. In the limit
R0 ↓ 0, (A49) approaches Ŝ0 − S(0), which is positive by Lemma 4. These facts are sufficient to
establish that MEX∗c is quasiconcave in case (SR1) by the same arguments used for MSB∗c above.
These are all the facts needed to prove that MEX∗c has a unique restricted local maximum over
R0 ≤ R′′0 , which is a global maximum on that restricted set.

We next investigate the behavior of MEX∗c in (SR3) and (SR4). Calculations similar to those
used above can be used to show a function determining the sign of ∂MEX∗c/∂R0 in cases (SR3) and
(SR4),[

(1 − θ)Ŝ0 − S(0)
]{

1 −R0[Î0 + (1 − θ)Ŝ0]
}

+R0S(Ŝ0)
[
1 −R0S(Ŝ0)

][
Î0 + (1 − θ)Ŝ0 − S(Ŝ0)

]
. (A60)

is concave. Thus, (A60) has at most two roots in cases (SR3) and (SR4), at most one of which is a
local maximum for MEX∗c . Taking the limit of the table entry for MEX∗c in cases (SR3) and (SR4) and
substituting the limit limR0↑∞ S(Ŝ0) = limR0↑∞[R0S(Ŝ0)] = 0 by Lemma 8 yields limR0↑∞ MEX∗c = 0.
Since the limit R0 ↑∞ produces an infimum for MEX∗c , not a supremum, the restricted supremum of
MEX∗c over R0 > R′′0 is either the lower boundary of case (SR3), i.e., R′′0 , or the interior restricted
maximum. If R′′0 provides the restricted supremum over R0 >R′′0 , this cannot be a global maximum
since MSB∗c is decreasing in case (SR2); the restricted maximum over R0 ≤ R′′0 must then be the
global maximum.

Final Results: The comparative statics for W ∗c are obvious from inspection of the table in view of
(A37). Q.E.D.

Proof of Proposition 10
Results for Π∗m: The result is a consequence of the Envelope Theorem. Monopoly profit can be
written

Π∗m = θH
[

1 −
S(Q∗m)

S0(Q∗m)
− c̃
]

Q∗m. (A61)

This is a function of R0 indirectly through its dependence on Q∗m, which in turns depends on R0. It
also depends on R0 because S(Q) is a function of R0 (although the argument is omitted for brevity).
If Q∗m is an interior solution, as in case (SR2) and (SR3), the first-order condition ensures that the
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indirect effect of R0 on Π∗m through Q∗m equals 0. Only the direct effect remains. Hence,

∂Π∗m
∂R0

=

[
−θHQ∗m
S0(Q∗m)

]
∂S(Q∗m)

∂R0
, (A62)

which is positive since the derivative on the right-hand side is negative by (A37).

Results for R∗m: Since R∗m = R∗c for all R0 in case (SR1),

lim
R0↓R′0

R∗m = lim
R0↓R′0

R∗c = 1 − (1 − c̃)Ŝ0, (A63)

where the first equality follows by continuity since R′0 is the upper bound on case (SR1) by (A34)
and the second equality follows from (A39).

We proceed to compare (A63) to the limits of R∗m for extreme values of R0. We have

lim
R0↓0

R∗m = lim
R0↓0

R∗c = 1 − lim
R0↓0

S(0) = 1 − Ŝ0, (A64)

where the first equality follows since R∗m = R∗c for all R0 in case (SR1), the second equality follows
from the entry for R∗c in case (SR1) in Table 5, and the third equality follows from Lemma 7.
Equation (A64) is less than (A63). At the other extreme,

lim
R0↑∞

R∗m = lim
R0↑∞

R∗c = 1 − θŜ0, (A65)

where the first equality follows by continuity since R∗m = R∗c for all R0 in case (SR4), the second
equality follows from the entry for R∗c in cases (SR3) and (SR4) in Table 5, and the third equality
follows from (A41). Equation (A65) is weakly less than (A63) if c̃ ≥ 1 − θ. Since R∗m is greater at
the interior R′0 than at extreme values of R0, R∗m must have an interior maximum.

Results for MSB∗m: We show that the limits of MSB∗m for extreme values of R0 are exceed by
interior values. We have

lim
R0↓0

MSB∗m = lim
R0↓0

MSB∗c = θH
[

1 −
1
Ŝ0

lim
R0↓0

S(0)

]
= θH

(
1 −

Ŝ0

Ŝ0

)
= 0, (A66)

where the first equality follows since MSB∗m = MSB∗c for all R0 in case (SR1), the second equality
follows from the entry for MSB∗c in case (SR1) in Table 5, and the third equality follows from
Lemma 7. To examine the upper limit, the proof of Proposition 9 showed that MSB∗c asymptotes
downward toward limR0↑∞ MSB∗c = 1. Since MSB∗m = MSB∗c in case (SR4), and all R0 above a
sufficiently high value are contained in case (SR4), MSB∗m must also slope downward toward its
asymptote. Thus MSB∗m is higher at interior values of R0 than the extremes.

Results for MEX∗m: Arguments similar to the preceding can be used to show limR0↓0 MEX∗m =
limR0↑∞ MEX∗c = 0. Hence, MEX∗m is higher for interior values of R0 than extreme values and thus
attains an interior maximum. Q.E.D.
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Proof of Proposition 11
The sketch of the proof in the text omitted two details filled in here. We first prove Q∗∗ for R0 in a
neighborhood above 0. Taking limits in (49),

lim
R0↓0

MSB(Q) = θH
[

1 −
S0(Q)

S0(Q)

]
= 0. (A67)

Hence, there exists R0 in a neighborhood above 0 and ε ∈ (0,c) such that MSB(Q) < ε. For R0 in
this neighborhood, W (Q) =

∫ Q
0 [MSB(x)− c]dx< (ε− c)Q< 0 = W (0). Thus, Q∗∗ = 0 for R0 in this

neighborhood.
We next prove GS∗∗ > 0 for some R0 ∈ (0,∞). Since Q∗∗ = 0 for all R0 in neighborhood of

0, Q∗ ≤ Q∗∗ = 0 implies Q∗ = 0 for all R0 in a neighborhood of 0. The text argued Q∗m = Ŝ0 for
sufficiently high R0, implying Ŝ0 = Q∗m ≤ Q∗∗ ≤ hS0, implying Q∗∗ = Ŝ0 for sufficiently high R0.
By the Theorem of the Maximum, since Q∗∗ is a maximizer of continuous function W (Q), Q∗∗ is
continuous, implying the existence of R0 ∈ (0,∞) such that Q∗ ∈ (0, Ŝ0). This Q∗∗ must satisfy the
first-order condition MSB(Q∗∗) = c, implying MPB(Q∗∗)+MEX(Q∗∗) = c, implying MPB(Q∗∗)< c
since MEX(Q)> 0 for all Q ∈ (0, Ŝ0) by (50). Q.E.D.

Proof of Proposition 14
Suppose R0Ŝ0 > 2. Then 1 < R0Ŝ0/2 < R0[Ŝ0 + S(0)]/2 = R0[S0(0) + S(0)]/2, where the second
step follows from S(0)> 0 by Lemma 4. This chain of inequalities implies that (59) holds at Q = 0
and thus that the vaccine exhibits initially increasing social returns.

At a general output level Q ∈ (0, Ŝ0),

R0

[
S0(Q) + S(Q)

2

]
> R0

(
S0(Q)

2

)
= R0

(
Ŝ0 − θQ

2

)
≥ R0

(
(1 − θ)Ŝ0

2

)
. (A68)

If R0Ŝ0 ≥ 2/(1 − θ), then the last expression weakly exceeds 1, implying (59) holds for all feasible
Q, implying the vaccine exhibits everywhere increasing social returns. Q.E.D.

Proof of Proposition 15
Universal vaccination with a perfectly effective vaccine implies S0(Ŝ0) = (1 − θ)Ŝ0 = 0. We thus
have

R0

[
S0(Ŝ0) + S(Ŝ0)

2

]
= R0

(
S(Ŝ0)

2

)
<

1
2
. (A69)

Hence, (59) does not hold for Q = Ŝ0, implying the vaccine does not exhibit increasing social returns
for Q = Ŝ0 by Proposition 13. Q.E.D.

Proof of Proposition 16
Results for Perfect Competition: As noted in the text, after substituting c = 0 (implying c̃ = 0)
into the intervals of R0 determining cases, only cases (SR3) and (SR4) in the last column of Table 5
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remain. Many of these entries involve S(Ŝ0). To compute limθ↑1 S(Ŝ0), note 0 ≤ S(Ŝ0) < S0(Ŝ0) =

(1−θ)Ŝ0 where the inequality follows from Lemma 4. Thus, 0≤ limθ↑1 S(Ŝ0)≤ limθ↑1(1−θ)Ŝ0 = 0,
implying

lim
θ↑1

S(Ŝ0) = 0. (A70)

The limits of some table entries follow from direct substitution of (A70). This is not the case for
MPB∗c since the limit involves a 0/0 form. We will compute this limit with the aid of (A24). We
have

S(Ŝ0)

S0(Ŝ0)
= eR0[R0−R(Ŝ0)] = e−R0[Î0+(1−θ)Ŝ0−S(Ŝ0)]. (A71)

The first equality follows from rearranging (A24) and substituting Q = Ŝ0. The second equality
follows from substituting for R0 from (37) and for R(Ŝ0) from the entry for R∗c in Table 5. Taking
the limit of (A71) using (A70) gives

lim
θ↑1

S(Ŝ0)

S0(Ŝ0)
= e−R0 Î0, (A72)

implying limθ↑1 MPB∗c = θH(1 − e−R0 Î0). The limit of MSB∗c can then be computed as

lim
θ↑1

MSB∗c = lim
θ↑1

[
1

1 −R0S(Ŝ0)

]
lim
θ↑1

MPB∗c =

(
1

1 − 0

)
θH
(

1 − e−R0 Î0
)

= θH
(

1 − e−R0 Î0
)
. (A73)

Subtracting, show limθ↑1 MEX∗c = limθ↑1 MSB∗c − limθ↑1 MPB∗c = 0.

Condition for First Best under Monopoly: Monopoly attains the first best if and only if (54)
holds. Substituting c = 0 and taking the limit θ ↑ 1 using (A70) and (A72), the condition becomes

(
1 − e−R0 Î0

)[
1 −R0 lim

θ↑1

S(Ŝ0)

1 − θ

]
≥ 0. (A74)

The limit on the left-hand side can be computed using (A72). Noting S0(Ŝ0) = (1 − θ)Ŝ0 in the
denominator of (A72), we have limθ↑1[S(Ŝ0)/(1 − θ)Ŝ0] = e−R0 Î0 , implying limθ↑1[S(Ŝ0)/(1 − θ)] =

Ŝ0e−R0 Î0 . Substituting into (A74), the limiting condition for first best under monopoly becomes(
1 − e−R0 Î0

)(
1 −R0Ŝ0e−R0 Î0

)
≥ 0. (A75)

The first factor is positive for all R0 > 0. Hence, (A75) is nonnegative if and only if the second
factor is nonnegative, which upon manipulating is equivalent to

−R0Î0e−R0 Î0 ≥ −
Î0

Ŝ0
. (A76)

We have manipulated the condition to facilitate application of Lambert W function. The principal
branch of the Lambert W function is increasing, so applying it to both sides of (A76) does not change
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the direction of the inequality:
−R0Î0 ≥ L̄(−Î0/Ŝ0), (A77)

equivalent to R0 ≤ |L̄(−Î0/Ŝ0)|/Î0. The lower branch of the Lambert W function is decreasing, so
applying it to both sides of (A76) changes the direction of the inequality:

−R0Î0 ≤
¯
L(−Î0/Ŝ0), (A78)

R0 ≥ |
¯
L(−Î0/Ŝ0)|/Î0. Combining these two inequalities in R0 gives (60).

Interior Monopoly Optimum: If (60) does not hold, then Q∗m is the interior solution to (53).
Equation (53) can only hold for positive price at the limiting value c = 0 if and only if the factor in
braces equals 0. Setting that factor equal to 0 and solving for S(Q∗m) yields

S(Q∗m) =
S0(Q∗m)

R0[Q∗m + S0(Q∗m)]
. (A79)

Taking the limit θ ↑ 1 and simplifying,

S(Q∗m) =
Ŝ0 − Q∗m
R0Ŝ0

. (A80)

Substituting from (42) and simplifying,

L̄
(

−R0(Ŝ0 − Q∗m)e−R0(Î0+Ŝ0−Q∗m)
)

= −
Ŝ0 − Q∗m

Ŝ0
, (A81)

which implies, by definition of the Lambert W function,

−R0(Ŝ0 − Q∗m)e−R0(Î0+Ŝ0−Q∗m) = −
Ŝ0 − Q∗m

Ŝ0
e−(Ŝ0−Q∗m)/Ŝ0. (A82)

Solving,

Q∗m =
Ŝ0

R0Ŝ0 − 1
[R0(Î0 + Ŝ0) − 1 − ln(R0Ŝ0)]. (A83)

Substituting from (A79) into the relevant entries in the middle column of Table 6 yields P∗m =
MPB∗m = θH(R0Ŝ0 − 1)/R0Ŝ0. Implicit in this expression is a necessary condition for an interior
monopoly solution:

R0Ŝ0 > 1. (A84)

It can be shown that (A84) holds if (60) is violated, which must be the case for an interior monopoly
optimum. If (60) does not hold, then R0 ≥ |L̄(−Î0/Ŝ0)|/Î0, implying −R0Î0 ≤ L̄(Î0/Ŝ0), implying
−R0Î0e−R0 Î0 ≤ −Î0/Ŝ0, implying R0Ŝ0 ≥ e−R0 Î0 > 1.

Other equilibrium variables can be computed by substituting for Q∗m and P∗m = MPB∗m into the
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other relevant table entries and further substituting for S(Q∗m) from (A79). We have

Π∗m = P∗mQ∗m = θHŜ0

{
Î0 + Ŝ0 −

1
R0

[1 + ln(R0Ŝ0)]

}
(A85)

MSB∗m =
MPB∗m

1 −R0S(Q∗m)
=

θH(R0Ŝ0 − 1)2

R0Ŝ0[R0(Î0 + Ŝ0) − 1 − ln(R0Ŝ0)]
(A86)

MEX∗m = R0S(Q∗m)MSB∗m = θH
R0Ŝ0 − 1
R0Ŝ0

[
ln(R0Ŝ0) −R0Î0

R0(Î0 + Ŝ0) − 1 − ln(R0Ŝ0)

]
. (A87)

Since Q∗∗ = Ŝ0 in the limiting case under consideration, by Proposition 12,

lim
θ↑1

GS∗∗m = c − MPB(Ŝ0) + lim
θ↑1

(
θ

1 − θ

)
MEX(Ŝ0) = ∞. (A88)

Q.E.D.

Proof of Proposition 17
It remains to show that the limits of ∂ΦI(Q∗)/∂Q as R0 approaches either extreme equal 0—and to
show this for both market structures and for both long- and short-run analyses.

Completing Proof for Long-Run Analysis: Return for the moment to the model with homoge-
neous consumers in which θHΦI(Q) = MPB(Q), implying ΦI(Q) = MPB(Q)/θH. By equation
(16),

ΦI(Q) =

0 Q≥ Q0

1 −
1

(1 − θQ/µ)R0
Q< Q0.

(A89)

The same expression could have been obtained (with more work) by direct computation in the
model with heterogeneous consumers. For R0 ≤ 1, Q0 = 0, implying Φ(Q) = 0 for all Q, implying
∂ΦI(Q)/∂Q = 0 for all Q, implying limR0↓0∂ΦI(Q∗)/∂Q = 0 for both Q∗ = Q∗c and Q∗ = Q∗m.

For R0 ↑ ∞, Q0 = µ/θ > µ for θ < 1, implying the second branch of (A89) is the relevant one.
Differentiating,

∂ΦI(Q)

∂Q
=

θ

µR0(1 − θQ/µ)2 . (A90)

Since Q ∈ [0,µ],
θ

µR0
≤ ∂ΦI(Q)

∂Q
≤ θ

µR0(1 − θ)2 . (A91)

Taking limits,

lim
R0↑∞

θ

µR0
≤ lim

R0↑∞

∂ΦI(Q)

∂Q
≤ lim

R0↑∞

θ

µR0(1 − θ)2 . (A92)

The limits on the far left and far right-hand sides of (A92) equal 0, implying limR0↑∞∂ΦI(Q)/∂Q = 0
for all Q ∈ [0,µ], including Q = Q∗c and Q = Q∗m.
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Completing Proof for Short-Run Analysis: Differentiating (44) and substituting from (43) yields

∂ΦI(Q)

∂Q
=

−θΦI(Q)R0S(Q)

S0(Q)[1 −R0S(Q)]
. (A93)

Lemma 7 states limR0↓0[R0S(Q)] = 0, implying limR0↓0∂ΦI(Q)/∂Q = 0 by (A93). Lemma 8 states
limR0↑0[R0S(Q)] = 0, implying limR0↑∞∂ΦI(Q)/∂Q = 0 by (A93). These limits both hold for all Q,
including Q = Q∗c and Q = Q∗m. Q.E.D.

Proof of Proposition 18
Suppose R0 ≤ 1. Then Q∗md = Q∗mv = 0, implying Π∗md = Π∗mv = 0 and W ∗md = W ∗mv = W ∗∗d = W ∗∗d =
(α + µ)H, implying ∆Π∗m = ∆W ∗m = ∆W ∗∗ = 0. The fact that ∆Π∗m = 0 for all R0 < 1 implies
limR0↓0 ∆Π∗m = 0.

Suppose R0 > 1. The assumption c = 0 implies c̃ = 0, leaving two cases in Table 1: (LR3)–(LR4)
and (LR5). In case (LR3)–(LR4), defined by

R0 ∈
(

1,
1

(1 − θ)2

)
, (A94)

substituting from (66) for Π∗md and from the table entry for Π∗mv yields, after rearranging,

∆Π∗m =

√
R0 − 1
θR0

[
1 + θ − (1 − θ)

√
R0

]
. (A95)

The first factor is positive since
√
R0 > 1 by (A94); the second is positive since

√
R0(1 − θ)< 1 by

(A94). In case (LR5), ∆Π∗m = θ/(1 − θ)R0, implying limR0↑∞ ∆Π∗m = 0. Combined with the results
for R0 ≤ 1, we have that ∆Π∗m ≥ 0 for all R0 > 0 with strict inequality if and only if R0 > 1. Further,
infR0>0 = 0.

To verify the quasiconcavity of ∆Π∗m, ∆Π∗m is a constant 0 in (LR1). In case (LR3)–(LR4),

∂∆Π∗m
∂R0

=
H
R2

0

(
1 + θ −

√
R0

)
, (A96)

implying that ∆Π∗m is first increasing, reaches a critical point at R0 = (1+θ)2, and then is decreasing.
One can verify that the critical point is in the interior of case (LR3)–(LR4), as (1 +θ)2 < 1/(1 −θ)2.
At the boundary of (LR5), ∆Π∗m is continuous and continues to decline throughout case (LR5),
proving ∆Π∗m is quasiconcave for all R0 > 0.

Turning to ∆W ∗m, in case (LR5), substituting from (67) for W ∗md and from the relevant table entry
for W ∗mv yields ∆W ∗m = −θh/R0, which is negative. In case (LR3)–(LR4), substituting the relevant
table entry for W ∗mv in case (LR3)–(LR4) yields

∆W ∗m =
h
R0

[
(θ − 1)(

√
R0)2

+

√
R0 − θ

]
. (A97)

The sign is determined by the factor in brackets, a quadratic equation in
√
R0, which is negative if√

R0 lies outside the roots 1 and θ/(1 −θ). Since R0 > 1, the relevant condition is
√
R0 > θ/(1 −θ),
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implying R0 > [θ/(1 − θ)]2, the stated condition for ∆W ∗m < 0.
Turning to ∆W ∗∗, the first-best quantity is sold in equilibrium with a drug, implying W ∗∗d = W ∗md .

By (24), the first-best vaccine quantity is Q∗∗ = Q0 = (µ/θ)(1 − 1/R0) if R0 ∈ (1,1/(1 − θ)] and
Q∗∗ = µ if R0 > 1/(1 − θ). Suppose R0 ∈ (1,1/(1 − θ)]. Then W ∗∗v = (α +µ)H. Substituting this
value along with the value of W ∗d = W ∗∗d from (67) and rearranging yields ∆W ∗∗ = W ∗∗d −W ∗∗v =
−µH(1 − θ)(1 − 1/R0)< 0. Next, suppose R0 > 1/(1 − θ). Then, according to the case (LR5) entry
in Table 2 setting c̃ = 0, W ∗∗v = H(α+ θµ+µ/R0). Substituting this value along with the value of
W ∗d = W ∗∗d from (67) and rearranging yields ∆W ∗∗ = W ∗∗d −W ∗∗v = −θµH/R0. Thus, ∆W ∗∗ ≤ 0 for
all R0 > 0 with strict inequality for R0 > 1. Q.E.D.

Proof of Proposition 19
The assumption c = 0 implies c̃ = 0, leaving two cases in Table 1: (SR2)–(SR3) and (SR4). Nesting
those cases, we can write

∆Π∗m = θH
{

Î0 + Ŝ0ΦI(0) − Q∗mvΦI(Q∗mv)
}
, (A98)

where Q∗mv solves maxQ∈[0,Ŝ0] QΦI(Q). Since Q∗mv> 0, we have Q∗mvΦI(Q∗mv)<Q∗mvΦI(0)≤ Ŝ0ΦI(0),
where the first inquality follows from ∂ΦI(Q)/∂Q < 0 by (A93) and the second inequality from
Q∗mv ∈ [0, Ŝ0]. Substituting the preceding inequality into (A98) yields ∆Π∗m > θHÎ0. Thus, ∆Π∗m > 0
for all R0 > 0.

To derive the results on limits of ∆Π∗m, we have that limR0↓0 ΦI(Q) = limR0↓0[1−S(Q)/S0(Q)] =

1 for all Q∈ [0, Ŝ0] since limR0↓0 S(Q) = Ŝ0 −θQ = S0(Q) by Lemma 7. Hence, limR0↓0 ∆Π∗m = θHÎ0.
For all Q ∈ [0, Ŝ0], limR0↑∞ ΦI(Q) = 1 since limR0↑∞ S(Q) = 0 by Lemma 8. Hence,

lim
R0↑∞

Q∗mvΦI(Q∗mv) = lim
R0↑∞

{
max

R0∈[0,Ŝ0]
QΦI(Q)

}
= max

Q∈[0,Ŝ0]
Q lim

R0↑∞
ΦI(Q) = Ŝ0 ·1. (A99)

from (A99) into (A98) along with limR0↑∞ ΦI(0) = 1 yields limR0↑∞ ∆Π∗m = θHÎ0. Now ∆Π∗m >

θHÎ0 for all R0 > 0 implies θHÎ0 ≤ infR0>0 ∆Π∗m ≤ limR0↓0 ∆Π∗m = θHÎ0, which in turn implies
infR0>0 ∆Π∗m = θHÎ0.

Combining the results from the previous paragraph, limR0↓0 ∆Π∗m = limR0↑∞ ∆Π∗m = infR0>0 =

θHÎ0. But the first paragraph showed ∆Π∗m > θHÎ0. Hence, ∆Π∗m must be nonmonotonic in R0,
higher in the interior than for either limiting value of R0.

Turning to limiting values of ∆W ∗m as R0 ↓ 0 and R0 ↑ ∞, one can show that (54) holds in these
limits. Thus, the relevant case for computing W ∗mv is (SR4). Substituting c̃ = 0 into the relevant entry
of Table 6 and multiplying by θHŜ0 to reverse the rescaling yields W ∗mv = H[S(Ŝ0)+θŜ0]. Subtracting
from (69) and rearranging yields

∆W ∗m = H
[
θÎ0 + (1 − θ)S(0) − S(Ŝ0)

]
. (A100)

By Lemma 7, limR0↓0[(1 − θ)S(0)] = (1 − θ)Ŝ0. The lemma also implies limR0↓0 S(Ŝ0) = (1 − θ)Ŝ0.
Substituting these limits into (A100) yields limR0↓0 ∆W ∗m = θHÎ0. By Lemma 8, limR0↑∞ S(0) =

limR0↑∞ S(Ŝ0) = 0. Substituting these limits into (A100) yields limR0↑0 ∆W ∗m = θHÎ0.
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The final step is to provide parameters for which ∆W ∗m < 0. Using Matlab, we verified that
for R0 = 2, θ = 0.5, Î0 = 0.1, Ŝ0 = 0.8, (54) holds, implying that the vaccine monopolist supplies
first-best quantity Ŝ0, putting us in case (SR4). Subtracting the relevant Table 6 entry from (69)
and simplifying yields ∆W ∗m = H[(1 − θ)S(0) + θÎ0 − S(Ŝ0)], which Matlab calculations show equals
−0.09 for the specified parameters. Q.E.D.

Appendix B. Cournot Competition
This appendix provides further details behind the analysis under Cournot competition. Under this
market structure, the vaccine is manufactured by n≥ 1 homogeneous Cournot firms, which choose
quantities each period simultaneously.

B1. Long-Run Analysis
Cases (LR1) and (LR2) from Table 1, which involved no sales under perfect competition, will also
involve no sales under Cournot since firms mark up marginal costs. Thus the entries in cases (LR1)
and (LR2) from both Tables 1 and 2 will also apply to Cournot.

For the remainder of this section, suppose R0 > 1/(1 − c̃). Letting qi denote firm i’s output and
Q−i is the output of i’s rivals, i’s profit equals [P(qi + Q−i) − c]qi = [MPB(qi + Q−i) − c]qi. Taking the
first-order condition with respect to qi and then imposing symmetry by substituting q∗i = Q∗/n and
Q∗

−i = (n − 1)Q∗/n yields equilibrium market output

Q∗n =
µ

θ

[
1 −

√
ψ

(1 − c̃)R0

]
, (B1)

where

ψ =
(n − 1)2

4n2(1 − c̃)R0

[
1 +

√
1 +

2n(1 − c̃)R0

(n − 1)2

]2

. (B2)

Substituting Q∗n for Q in the relevant equations yields

P∗n = MPB∗n = θH

(
1 −

√
1 − c̃
ψR0

)
(B3)

I∗n =
µ

α+µ

[√
ψ

(1 − c̃)R0
−

1
R0

]
(B4)

Π∗n =
µH(1 − c̃)

θ

[
1 −

√
1

ψ(1 − c̃)R0

][
1 −

√
ψ

(1 − c̃)R0

]
(B5)

MEX∗n = µH

√
1 − c̃
ψR0

(B6)

W ∗n = H

[
α+µ

(
1 − c̃ +

1
R0

−

√
1 − c̃
ψR0

)]
. (B7)
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The preceding analysis is valid if

R0 ≤
ψ

(1 − θ)2(1 − c̃)
. (B8)

Otherwise, Q∗n > µ for the Q∗n in (B1). Producing more than the number of consumers would result
in a market price of zero and zero profits for all firms. Instead, firms produce an equal share of
industry output Q∗n = µ. The rest of the equilibrium variables have the same formula as in case
(LR5) of Table 2. Note that the threshold between cases (LR4) and (LR5) is different, given by the
right-hand side of (B8).

It is easily seen that ψ = 1 for n = 1, and thus that the preceding expressions for the equilibrium
variables collapse to their monopoly values given in Table 2. It is also easily seen that limn↑∞ψ =
1/(1 − c̃)R0, and thus that the preceding expressions for the equilibrium variables collapse to their
values under perfect competition given in Table 1.

B2. Short-Run Analysis
Case (SR1) from Table 5, which involved no sales under perfect competition, will also involve no
sales under Cournot since firms mark up marginal costs. Thus the entries in case (SR1) from both
Tables 5 and 6 will also apply to Cournot.

For the remainder of this section, suppose R0 > | ln(1− c̃)|/(Î0 + c̃Ŝ0). As in the long-run analysis,
firm i’s profit equals [P(qi + Q−i)− c]qi = [MPB(qi + Q−i)− c]qi. Taking the first-order condition with
respect to qi and then imposing symmetry by substituting q∗i = Q∗/n yields an equation for the
interior equilibrium market output analogous to (53) for a monopoly:

MPB(Q∗n) = P(Q∗n) =

{
1 −

θQ∗nR0S(Q∗n)

nS0(Q∗n)[1 −R0S(Q∗n)]

}−1

c. (B9)

The only difference is the appearance of n in the denominator of the factor in curly braces. One can
see this nests monopoly, setting n = 1, and perfect competition, taking the limit n ↑ ∞.

This interior solution is the equilibrium market output under Cournot if Q∗n < Ŝ0. Otherwise,
Q∗n = Ŝ0, and all firms produce an equal share q∗n = Ŝ0/n in the symmetric equilibrium.

Appendix C. Consumer-Group Heterogeneity
This appendix provides the formal analysis behind the results in Section 4.3 on the conditions under
which the researcher recovers an unbiased estimate of mean MEX using aggregate data and which
mean (arithmetic or harmonic) if so. The the long- and short-run analyses are divided into two
subsections.

C1. Long-Run Analysis
We begin by discussing the renormalization of the SIR model to ensure that mere separation of a
population into subgroups does not drive a change in R0 or MEX. Consider a subgroup g∈G having
a population of size wg≤ 1. Modify SIR equations (1)–(5) determining disease epidemiology within
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the subgroup as follows:

Stg + Itg + Rtg = wg (C1)

İtg =
βgItgStg

wg
− (α+µ)Itg (C2)

Ṙtg = αItg −µRtg (C3)

Ṡtg = wgµ−
βgItgStg

wg
−µStg. (C4)

This system of equations exhibits several differences from the original. First, the compartments
evolve independently for each group so are indexed by the group g. Group size wg and disease
transmissibility βg are also indexed by g. The remaining parameters (µ, α) are common across
groups so not subscripted. Another difference is that there is no vaccine in this thought experiement,
so Q = Vt = 0. Another difference is that the population size on the right-hand side of (C1) is wg,
not 1. This shows up again in (C4) in that the inflow of newborn susceptibles is wgµ not µ as before.
The key difference is the division of the βgItgStg term by wg in (C2) and (C4), in effect increasing the
per-person contact rate in a smaller population so that total contacts remains constant for a person
separated from a larger population into a subgroup.

Let R0g = βg/(α+µ). Setting İtg = Ṙtg = Ṡtg = 0 in (C1)–(C4) and solving for the steady-state
infection rate yields

Ig = max
[

0,
µ

α+µ

(
1 −

1
R0g

)]
wg, (C5)

implying

Ig =
wgµ

α+µ

(
1 −

1
R0g

)
(C6)

if R0g > 1.
Tables 1 and 2 state that MEX∗ = θH/R0 under both perfect competition and monopoly for

R0 ∈ (1,1/(1 − c̃)]. In fact, one can show that the different values MEX∗ takes on for yet higher
R0 are due to changes in vaccine consumption behavior at higher R0, not the increase in R0 itself.
Constraining Q = 0, which shuts down changes in consumer behavior, one can show via direct
calculation that MEX(0) = θH/R0 for all R0 > 1. This relationship can also be shown to hold at the
group level. Hence, for all R0g > 1,

MEXg(0) =
θH
R0g

. (C7)

The researcher believes (C5) applies to the population as a whole with a homogeneous basic
reproductive ratio R0. Dropping the group subscript, setting wg = 1, and assuming that the research
observes a positive aggregate infection rate gives the following estimating equation for R0:

R0 =

[
1 −

(
α+µ

µ

)
∑

g∈G
Ig

]−1

. (C8)

Combining this with the relationship MEX(0) = θH/R0 that the researcher believes applies at the
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aggregate level yields the following estimating equation for the aggregate marginal externality:

MEX(0) = θH

[
1 −

(
α+µ

µ

)
∑

g∈G
Ig

]
= ∑

g∈G

(
wg

θH
R0g

)
= ∑

g∈G
wgMEXg(0). (C9)

The second equality follows from substituting from (C6), and the last equality follows from sub-
stituting from (C7). Thus, if R0g > 1 for all g ∈ G, the naïve estimate of aggregate MEX(0) is the
weighted arithmetic mean of MEXg(0).

Suppose R0g ≤ 1 for g ∈ G′ and R0g > 1 for g ∈ G′′, where G′,G′′ 6= /0. Then Ig = 0 for g ∈ G′,
implying (C9) becomes

MEX(0) = θH

[
1 −

(
α+µ

µ

)
∑

g∈G′′
Ig

]
(C10)

= θH

[
1 − ∑

g∈G′′
wg

(
1 −

1
R0g

)]
(C11)

= θH

(
1 − ∑

g∈G′′
wg

)
+ ∑

g∈G′′
MEXg(0) (C12)

= θH ∑
g∈G′

wg + ∑
g∈G

MEXg(0). (C13)

Equation (C13) shows that the researcher’s estimate of MEX(0) is biased upward by a term propor-
tional to the share of the population in groups with R0g ≤ 1. Implicit in the researcher’s ability to
compute MEX(0) from an estimate of R0 is knowledge of θH. If the researcher also knows ∑g∈G′wg,
an unbiased estimate of ∑g∈G MEXg(0) can be computed simply by subtracting θH ∑g∈G′wg from
the naïve estimator MEX(0).

C2. Short-Run Analysis
For the short-run analysis, we again need to renormalize the basic SIR model to ensure that mere
separation of a population into subgroups does not drive a change in R0 or MEX. Modify the relevant
SIR equations (29)–(33) as follows:

Stg + Itg + Rtg = wg (C14)

İtg =
βgItgStg

wg
−αItg (C15)

Ṙtg = αItg (C16)

Ṡtg = −
βgItgStg

wg
. (C17)

These are similar to (C1)–(C4) except that terms involving µ capturing births and deaths are omitted
from short-run model. See the previous section for an explanation of how the original system of
equations maps into the renormalized system. Since Q = 0 because there is no vaccine in this
thought experiment, we have S0g = Ŝ0g. Consistent with our approach in the long-run analysis,

76



where we assumed all parameters were common across groups but βg, here assume the initial share
of susceptibles and infecteds are common across groups: Ŝ0g = wgŜ0 and I0g = Î0g = wgÎ0 = wgI0.

For the short-run analysis, redefine R0g = βg/α. Since Q = 0, S0g = Ŝ0g. Substituting these
equations into (C15) expressed at t = 0 yields

İ0g

I0g
= α

(
R0gŜ0g

wg
− 1

)
, (C18)

approximated by the discrete change in Itg over the short interval from t = 0 to t = 1 by

I1g − I0g

I0g
= α

(
R0gŜ0g

wg
− 1

)
. (C19)

Substituting I0g = wgI0 and rearranging yields

I1g = wgI0(1 −α+αR0gŜ0). (C20)

The same argument used to show that (C7) holds in the long-run analysis can be used to show it
holds in the short-run analysis as well.

The researcher believes (C19) applies to the population as a whole with a homogeneous basic
reproductive ratio R0. Dropping the group subscript, setting wg = 1, and rearranging gives the
following estimating equation for R0:

R0 =
1
Ŝ0

[
1 +

1
α

(
I1 − I0

I0

)]
. (C21)

Combining this with the relationship MEX(0) = θH/R0 that the researcher believes, in accordance
with (C7), applies at the aggregate level yields the following estimating equation for the aggregate
marginal externality:

MEX(0) = θHŜ0

[
1 +

1
α

(
I1 − I0

I0

)]−1

= θHŜ0

[
1 +

1
α

(
1
I0

∑
g∈G

I1g − 1

)]−1

. (C22)

Substituting from (C20) and rearranging yields

MEX(0) =

(
∑

g∈G
wg

R0g

θH

)−1

=

[
∑

g∈G

wg

MEXg(0)

]−1

, (C23)

where the second equality follows from substituting from (C7). This last expression is the weighted
harmonic mean of MEXg(0).
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Table 1: Long-Run Equilibrium Variables under Perfect Competition as Functions of R0

Case

(LR1) (LR2) (LR3) (LR4), (LR5)

Variable R0 ∈ [0,1] R0 ∈
(
1, 1

1−c̃

]
R0 ∈

(
1

1−c̃ ,
1

(1−θ)(1−c̃)

]
R0 ∈

(
1

(1−θ)(1−c̃) ,∞
)

P∗c c c c c

Q∗c 0 0 µ
θ

[
1 −

1
(1−c̃)R0

]
µ

Π∗c 0 0 0 0

I∗c 0 µ
α+µ

(
1 −

1
R0

)
µ

α+µ

[
c̃

(1−c̃)R0

]
µ

α+µ

(
1 −θ −

1
R0

)
MPB∗c 0 θH

(
1 −

1
R0

)
c θH

[
1 −

1
(1−θ)R0

]
MSB∗c 0 θH θH θH

MEX∗c 0 θH
R0

θH(1 − c̃) θH
(1−θ)R0

W ∗c H(α+µ) H
(
α+

µ
R0

)
H [α+µ(1 − c̃)] H

[
α+θµ(1 − c̃) +

µ
R0

]
Notes: The distinction between cases (LR4) and (LR5) in the last column, relevant for monopoly in the next table, is
irrelevant for perfect competition here.
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Table 2: Long-Run Equilibrium Variables under Monopoly as Functions of R0

Case

(LR1) (LR2) (LR3), (LR4) (LR5)

Variable R0 ∈ [0,1] R0 ∈
(
1, 1

1−c̃

]
R0 ∈

(
1

1−c̃ ,
1

(1−θ)2(1−c̃)

]
R0 ∈

(
1

(1−θ)2(1−c̃)
,∞
)

P∗m † † θH
(

1 −

√
1−c̃
R0

)
θH
[
1 −

1
(1−θ)R0

]
Q∗m 0 0 µ

θ

[
1 −

1√
(1−c̃)R0

]
µ

Π∗m 0 0 µH(1−c̃)
θ

[
1 −

1√
(1−c̃)R0

]2

µθH
[
1 − c̃ −

1
(1−θ)R0

]
I∗m 0 µ

α+µ

(
1 −

1
R0

)
µ

α+µ

[
1√

(1−c̃)R0
−

1
R0

]
µ

α+µ

(
1 −θ −

1
R0

)
MPB∗m 0 θH

(
1 −

1
R0

)
θH
(

1 −

√
1−c̃
R0

)
θH
[
1 −

1
(1−θ)R0

]
MSB∗m 0 θH θH θH

MEX∗m 0 θH
R0

θH
√

1−c̃
R0

θH
(1−θ)R0

W ∗m H(α+µ) H
(
α+

µ
R0

)
H
[
α+µ

(
1 − c̃ +

1
R0

−

√
1−c̃
R0

)]
H
[
α+µθ(1 − c̃) +

µ
R0

]
Notes: The distinction between cases (LR3) and (LR4) in the penultimate column, relevant for perfect competition in
previous table, is irrelevant for monopoly here. †Any value P∗m ≥ c is consistent with zero sales in equilibrium.
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Table 4: Estimates of R0 from the Epidemiology Literature

Disease Time period Location R0 Source

SARS 2002 Singapore 1.1 Chowell et al. (2003)
HIV 1981–85 United Kingdom 2–5 Anderson and May (1991)
Rubella 1960–70 United Kingdom 6–7 Anderson and May (1991)
Chicken pox 1944–68 United Kingdom 10–12 Anderson and May (1991)
Mumps 1960–80 United Kingdom 11–14 Anderson and May (1991)
Measles 1950–68 United Kingdom 16–18 Anderson and May (1991)
Pertussis 1944–78 United Kingdom 16–18 Anderson and May (1991)

Notes: All Anderson and May (1991) estimates are from their Table 4.1, reporting estimates from studies of England
and Wales within the United Kingdom. The HIV estimate is for Type 1 in the subpopulation of men who have sex with
men (MSM).
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Table 5: Short-Run-Equilibrium Variables under Perfect Competition as Functions of R0

Case

(SR1) (SR2) (SR3), (SR4)

Variable R0 ∈
(

0, | ln(1−c̃)|
Î0+c̃Ŝ0

]
R0 ∈

(
| ln(1−c̃)|

Î0+c̃Ŝ0
, | ln(1−c̃)|

Î0+(1−θ)c̃Ŝ0

]
R0 ∈

(
| ln(1−c̃)|

Î0+(1−θ)c̃Ŝ0
,∞
)

P∗c c c c

Q∗c 0 1
θ

{
Ŝ0 +

1
c̃

[
1
R0

ln(1 − c̃) + Î0

]}
Ŝ0

Π∗c 0 0 0

R∗c 1 − S(0) 1 − Ŝ0 − Î0 +
1
R0
| ln(1 − c̃)| 1 − S(Ŝ0) −θŜ0

MPB∗c θHΦI(0) c θHΦI(Ŝ0)

MSB∗c
θHΦI(0)
1−R0S(0)

θHc̃2

c̃+(1−c̃)[ln(1−c̃)+R0 Î0]

θHΦI(Ŝ0)

1−R0S(Ŝ0)

MEX∗c
θHΦI(0)R0S(0)

1−R0S(0)
θHc̃(1−c̃)[| ln(1−c̃)|−R0 Î0]

c̃+(1−c̃)[ln(1−c̃)+R0 Î0]

θHΦI(Ŝ0)R0S(Ŝ0)

1−R0S(Ŝ0)

W ∗c HS(0) HŜ0(1 − c̃) H
[
θŜ0(1 − c̃) + S(Ŝ0)

]
Notes: Computable expressions for S(0) and S(Ŝ0) can be derived from equation (42): defining ε̂I = e−R0 Î0 and ε̂S =

e−R0Ŝ0 , we have S(0) = |L̄(−R0Ŝ0ε̂I ε̂S)|/R0 and S(Ŝ0) = |L̄(−R0(1 − θ)Ŝ0ε̂I ε̂
1−θ
S )|/R0. Infection probabilities can be

computed using (44): ΦI(0) = 1 − S(0)/Ŝ0 and ΦI(Ŝ0) = 1 − S(Ŝ0)/(1 − θ)Ŝ0. The distinction between cases (SR3) and
(SR4) in the last column, relevant for monopoly in the next table, is irrelevant for perfect competition here.
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Table 6: Short-Run-Equilibrium Variables under Monopoly as Functions of R0

Case

(SR1) (SR2), (SR3) (SR4)

R0 ∈
(

0, | ln(1−c̃)|
Î0+c̃Ŝ0

]
R0 > | ln(1 − c̃)|/(Î0 + c̃Ŝ0) R0 satisfies (54)

Variable but does satisfy (54)

P∗m † θH
[
1 −

S(Q∗m)

Ŝ0−θQ∗m

]
θH
[
1 −

S(Ŝ0)

(1−θ)Ŝ0

]
Q∗m 0 ‡ Ŝ0

Π∗m 0 θH
[
1 −

S(Q∗m)

Ŝ0−θQ∗m
− c̃
]

Q∗m θH
[
(1 − c̃)Ŝ0 −

S(Ŝ0)
(1−θ)

]
R∗c 1 − S(0) 1 − S(Q∗m) −θQ∗m 1 − S(Ŝ0) −θŜ0

MPB∗m θHΦI(0) θHΦI(Q∗m) θHΦI(Ŝ0)

MSB∗m
θHΦI(0)
1−R0S(0)

θHΦI(Q∗m)
1−R0S(Q∗m)

θHΦI(Ŝ0)

1−R0S(Ŝ0)

MEX∗m
θHΦI(0)R0S(0)

1−R0S(0)
θHΦI(Q∗m)R0S(Q∗m)

1−R0S(Q∗m)
θHΦI(Ŝ0)R0S(Ŝ0)

1−R0S(Ŝ0)

W ∗m HS(0) H
[
(1 − c̃)θQ̃∗m + S(Q∗m)

]
H
[
θŜ0(1 − c̃) + S(Ŝ0)

]
Notes: Equation (42) provides a formula for computing S(Q∗m) given Q∗m, and the previous table provides simpler
expressions for computing S(0) and S(Ŝ0). Infection probabilities can be computed using (44): ΦI(0) = 1 − S(0)/Ŝ0,
ΦI(Ŝ0) = 1 − S(Ŝ0)/(1 − θ)Ŝ0, and ΦI(Q∗m) = 1 − S(Q∗m)/(Ŝ0 − θQ∗m). The distinction between cases (SR2) and (SR3)
in the middle column, relevant for perfect competition in previous table, is irrelevant for monopoly here. The set of
R0 satisfying equation (54) need not form an interval. †Any value P∗m ≥ c is consistent with zero sales in equilibrium.
‡Entry is the Q∗m solving (53).

87



Figure 1: Graphs of Long-Run Equilibrium Variables as Functions of R0
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Notes: Graph of formulas provided in Tables 1 and 2, illustrated for specific parameter values (θ = 0.6, α = 0, µ = 1,
c = 0.1, H = 1). Where the dotted and solid curves overlap, the solid curve represents both industry structures. Panel
illustrating equilibrium prices omitted since P∗m = MPB∗m in all cases in which the monopolist serves some consumers
and since P∗c = c does not require illustration. Also omitted is a panel illustrating equilibrium profit since the graph for
Π∗m resembles that for Q∗m or MPB∗m and since Π∗c = 0 does not require illustration.
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Figure 2: Graphs of Long-Run Optimal Subsidy GS∗∗ as Function of R0
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Notes: Graph of formulas provided in Table 3, illustrated for the specific parameter values indicated in previous figure.
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Online Appendix D: Supplementary Figures

Figure D1: Graphs of Short-Run Equilibrium Variables as Functions of R0
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Notes: Graph of formulas provided in Tables 5 and 6, illustrated for specific parameter values (θ = 0.7, α = µ = 0,
c = 0.3, H = 1, Î0 = 0.1, Ŝ0 = 0.8). Where the dotted and solid curves overlap, the solid curve represents both industry
structures. See Figure 1 for additional notes.
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