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This document contains a series of online appendixes supplementing the published article. The
appendixes provide analytical proofs or extensions omitted for space considerations. Appendix A1
provides proofs, omitted from the text, of lemmas and propositions. The proofs are streamlined
by the inclusion of additional lemmas, stated and proved in Appendix A1. Appendix A2 provides
additional documentation for the assumption made in the calibration section for taking the limit c̃ ↓ 0.
Appendix A3 analyzes Cournot competition among n firms. This analysis nests perfect competition
studied in the article in the limit n ↑ ∞ and also nests monopoly studied in the article setting n = 1.
Appendix A4 extends the analysis of homogeneous consumers to allow consumers to vary in disease
harm Hi. Appendix A5 extends the model to allow for a second preventive technology, competitively
supplied, possibly interpreted as social distancing. We show that the basic comparative-static results
for vaccine-market equilibrium are essentially unchanged.

Appendix A1. Proofs

Proof of Lemma 1
We begin by proving the claims about It(Q). Substituting (10) into (3) and rearranging yields

İt(Q)

It(Q)
= α[R0St(Q) − 1]. (A1)

Recognizing the left-hand side as ∂ ln It(Q)/∂t and integrating yields∫ t

0

∂ ln Iτ (Q)

∂τ
dτ =

∫ t

0
α[R0Sτ (Q) − 1]dτ . (A2)

Invoking the Fundamental Theorem of Calculus, taking exponentials, and rearranging yields

It(Q) = I0(Q)exp
(∫ t

0
α[R0Sτ (Q) − 1]dτ

)
. (A3)

Since I0(Q) = Î0 > 0 by assumption, It(Q) is the product of two positive factors.
Turn next to proving the claims about St(Q). Rearranging (4), It(Q) = Ṙt(Q)/α. Substituting

into (2) and rearranging yields Ṡt(Q)/St(Q) = −(β/α)Ṙt(Q) = −R0Ṙt(Q) by (10). Recognizing
Ṡt(Q)/St(Q) = ∂ lnSt(Q)/∂t and integrating between t ′ ≥ 0 and t ′′ ≥ t ′ yields∫ t ′′

t ′

∂ lnSτ (Q)

∂τ
dτ = −

∫ t ′′

t ′

1
α

Ṙτ (Q)dτ . (A4)
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Invoking the Fundamental Theorem of Calculus, taking exponentials, and rearranging yields

St ′′(Q) = St ′(Q)eR0[Rt′(Q)−Rt′′(Q)]. (A5)

Substituting t ′ = 0 and t ′′ = t into (A5) yields

St(Q) = S0(Q)eR0[R0(Q)−Rt(Q)]. (A6)

Now S0(Q) = Ŝ0 − θQ > Ŝ0 − Q ≥ 0, where the first step holds by (6), the second by θ < 1, and the
third by Q ∈ [0, Ŝ0]. The right-hand side of (A6) is thus the product of two positive factors. Q.E.D.

Proof of Lemma 2

Substituting It(Q) > 0 into (4) yields Ṙt(Q) > 0, implying Rt ′′(Q) > Rt ′(Q) for t ′′ > t ′, implying
eR0[Rt′(Q)−Rt′′(Q)] < 1. Since St ′(Q)> 0 by Lemma 1, St ′′(Q)≤ St ′(Q) by (A5). Q.E.D.

Proof of Lemma 3

Since It(Q) > 0 by Lemma 1, the sign of İt(Q) is determined by the value of R0St(Q) relative to 1
by (A1). First, suppose R0S0(Q)≤ 1. Consider any t > 0. Lemma 2 implies St(Q)< S0(Q), in turn
implying R0St(Q)< R0S0(Q)≤ 1. Substituting R0St(Q)< 1 into (A1) implies İt(Q)< 0.

Next, suppose R0S0(Q) > 1. Substititing t = 0 into (A1) implies İ0(Q) > 0. By Martcheva
(2015, p. 13), I∞(Q) = 0. Since I0(Q)> 0 by Lemma 1, İt(Q)< 0 for some t > 0. By continuinity,
İT (Q) = 0 for some T > 0. Setting (A1) equal to 0 yields R0ST (Q) = 1. Since St(Q) is strictly
decreasing, R0St(Q)> R0ST (Q) = 1 for all t ∈ [0,T ), implying İt(Q)> 0 for all t ∈ [0,T ) by (A1).
One can similarly show İt(Q)< 0 for all t > T . Thus, IT (Q) is the maximum infection rate. Q.E.D.

Proof of Lemma 4
See Martcheva (2015, p. 13) for a proof that I∞(Q) = 0. Martcheva (2015, p. 12) argues that the fact
that St(Q) is positive and montone implies that the limit S∞(Q) exists.

To prove the remaining claim in the lemma, take the limit t ↑ ∞ in (A6):

S∞(Q) = S0(Q)eR0[R0(Q)−R∞(Q)]. (A7)

By Lemma 1, S0(Q)> 0. The proof of Lemma 2 showed that Rt(Q) is strictly increasing in t. Thus
R∞(Q)> R0(Q), implying S∞(Q)< S0(Q) by (A7). Q.E.D.

Proof of Lemma 5
First, suppose R0S0(Q) ≤ 1. Then R0S∞(Q) < 1 because St(Q) is strictly decreasing in t by
Lemma 2. Next, suppose R0S0(Q) > 1. The proof of Lemma 3 established the existence of
T > 0 such that R0ST (Q) = 1. Since St(Q) is strictly decreasing by Lemma 2, we have R0S∞(Q)<
R0ST (Q) = 1. Q.E.D.
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Proof of Lemma 6
Substituting (2) and (10) into (3) yields

İt(Q) =
Ṡt(Q)

R0St(Q)
− Ṡt(Q). (A8)

Integrating (A8) over t ∈ [0,∞) and applying the Fundamental Theorem of Calculus,

I∞(Q) − I0(Q) =
1
R0

[lnS∞(Q) − lnS0(Q)] − S∞(Q) + S0(Q). (A9)

Substituting I0(Q) = Î0 by (7), noting I∞(Q) = 0 by Lemma 4, and rearranging yields

lnS∞(Q) −R0S∞(Q) = lnS0(Q) −R0[Î0 + S0(Q)]. (A10)

Further substituting S0(Q) = Ŝ0 − Q from (6) yields (11).
To derive (12), exponentiating both sides of (A10) and rearranging yields

S∞(Q) =
{

S0(Q)e−R0[Î0+S0(Q)]
}

eR0S∞(Q), (A11)

or, equivalently,
x = beax, (A12)

where x = S∞(Q), a = R0, and b = S0(Q)e−R0[Î0+S0(Q)]. It is well-known that (A12) has solution
x = −L̄(−ab)/a = |L̄(−ab)|/a, where the second equality holds if a,b > 0 implying L̄(−ab) < 0.
Substituting for x, a, and b in this solution as well as S0(Q) = Ŝ0 − Q from (6) yields (12).

Equation (A12) also has a solution in terms of the lower branch of the Lambert W function,
x = −

¯
L(−ab)/a. We reject this solution because it exceeds 1, out of bounds for S∞(Q). Q.E.D.

Additional Lemmas
We state and prove two additional lemmas, which draw on previous results, which will help stream-
line the subsequent proofs.

Lemma 7. limR0↓0 S∞(Q) = Ŝ0 − θQ and limR0↓0[R0S∞(Q)] = 0.

Proof. The first limit can be shown to hold by substituting R0 = 0 into (11). The second limit then
follows: limR0↓0[R0S∞(Q)] = (Ŝ0 − θQ) limR0↓0R0 = 0. Q.E.D.

Lemma 8. limR0↑∞ S∞(Q) = limR0↑∞[R0S∞(Q)] = 0.

Proof. We will verify the second limit; the first limit is an immediate consequence. We have

lim
R0↑∞

[R0S∞(Q)] = lim
R0↑∞

∣∣∣L̄(−R0S0(Q)e−R0[Î0+S0(Q)]
)∣∣∣ (A13)

=

∣∣∣∣L̄(−S0(Q) lim
R0↑∞

R0

eR0(Î0+S0(Q)]

)∣∣∣∣ (A14)

= |L̄(0)|. (A15)

Equation (A13) follows by taking limits in (12), (A14) is a simple rearrangement, and (A15) follows
from application of l’Hôpital’s Rule. As is well known for the Lambert W function, L̄(0) = 0. Q.E.D.
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Lemma 9. ∂S∞(Q)/∂R0 < 0.

Proof. The Implicit Function Theorem can be applied to (11) to compute the derivative

∂S∞(Q)

∂R0
=

−S∞(Q)

1 −R0S∞(Q)
[Î0 + S0(Q) − S∞(Q)]. (A16)

The first factor is negative by Lemma 5. The factor in square brackets is positive since Î0 + S0(Q) −

S∞(Q) > S0(Q) − S∞(Q) > 0, where the first inequality follows from Î0 > 0 and the second by
Lemma 4. Q.E.D.

Lemma 10. ∂Φ(Q)/∂Q< 0.

Proof. Differentiating (14) and substituting from (13) yields

∂Φ(Q)

∂Q
=

−θΦ(Q)R0S∞(Q)

S0(Q)[1 −R0S∞(Q)]
, (A17)

which is negative by Lemma 5. Q.E.D.

Verification of Table 1 Entries
The equilibrium condition is P∗c = c. Firms earn no profit under perfect competition: Π∗c = 0. No
consumers purchase in case (i), implying Q∗c = 0. All susceptibles purchase in case (iii), implying
Q∗c = Ŝ0. In case (ii), Q∗c can be found by substituting P∗c = c in equation (17).

To find R∞(Q∗c), note R∞(Q∗c) = 1− I∞(Q∗c)−S∞(Q∗c)−θQ∗c = 1−S∞(Q∗c)−θQ∗c since I∞(Q∗c) = 0.
Substituting Q∗c = 0 gives the entry for R∞(Q∗c) in case (i), and substituting Q∗c = Ŝ0 gives the entry
for R∞(Q∗c) in case (iii). To find R∞(Q∗c) in case (ii), set c = MPB(Q∗c) in equation (15) and rearrange,
yielding

S∞(Q∗c) = (1 − c̃)(Ŝ0 − θQ∗c) (A18)

Substituting (A18) into R∞(Q∗c) = 1 − S∞(Q∗c) −θQ∗c and rearranging yields R∞(Q∗c) = 1 − (1 − c̃)Ŝ0 −

c̃θQ∗c . Substituting from the table entry for Q∗c yields the table entry for R∞(Q∗c).
Substituting Q∗c = 0 in (15) gives MPB∗c in case (i), and substituting Q∗c = Ŝ0 in (15) gives MPB∗c

in case (iii). For some but not all consumers to purchase in case (ii) requires MPB∗c = c.
Substituting Q∗c = 0 in (22) gives MSB∗c in case (i), and substituting Q∗c = Ŝ0 in (22) gives MSB∗c

in case (iii). Substituting from (A18) into (22) yields MSB∗c in case (ii).
The table entries for MEX∗c can be obtained by subtracting other table entries: MEX∗c = MSB∗c −

MPB∗c . To derive the table table entries for W ∗c , by definition W ∗c = SB∗c −cQ∗c = H[1−R∞(Q∗c)]−cQ∗c ,
where the second equation follows from (20). Substituting other table entries into this equation gives
the table entries for W ∗c . Q.E.D.

Proof of Proposition 1
Results for P∗c , Π∗c , and W ∗c . The results for P∗c and Π∗c are obvious from Table 1. The comparative
statics for W ∗c are also obvious from inspection of the table in view of (A16).
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Results for Q∗c . To show Q∗c is weakly increasing, it can be verified that it is continuous at thresh-
olds R′0 and R′′0 defined in (24)–(25). In case (ii), ∂Q∗c/∂R0 = − ln(1 − c̃)/θc̃R2

0 > 0. Hence, Q∗c is
weakly increasing in R0 for all R0 > 0 and strictly increasing for R0 in the interior of case (ii).

Results for MPB∗c . To show MPB∗c is weakly increasing, start with case (i). Differentiating the
table entry,

∂MPB∗c
∂R0

= −

(
θH

Ŝ0

)
∂S∞(0)

∂R0
. (A19)

By Lemma 9, ∂S∞(Q)/∂R0 < 0 for all Q ∈ [0, Ŝ0], including Q∗c = 0, implying (A19) is positive. In
case (ii), MPB∗c is constant. Differentiating the table entry in cases (iii) and (iv),

∂MPB∗c
∂R0

= −

[
θH

(1 − θ)Ŝ0

]
∂S∞(Ŝ0)

∂R0
, (A20)

which is negative since ∂S∞(Q)/∂R0 < 0 by Lemma 9 for all Q ∈ [0, Ŝ0], including Q∗c = Ŝ0.
The last step in deriving comparative statics for MPB∗c is to show it is continuous at both end-

points of case (ii). Now MPB(Q) is continuous in Q because it is differentiable in Q by (16). Further,
MPB(Q) is continuous in R0 because S∞(Q) is differentiable in R0 by (A16). Since Q∗c is continuous
at both endpoints of case (ii) as argued in the first paragraph of this proof, we have that MPB∗c is
continous at R′0 and R′′0 .

Results for R∞(Q∗c). To derive the comparative statics for R∞(Q∗c), combining the table entries
with Lemma 9 shows R∞(Q∗c) is increasing in R0 in case (i) as well as cases (iii) and (iv). The table
entry is obviously decreasing in R0 in case (ii). We thus have that R∞(Q∗c) attains a local maximum
at R′0 if we can establish that R∞(Q∗c) is continuous at R′0. Using the table entry for R∞(Q∗c) in case
(i),

lim
R0↑R′0

R∞(Q∗c) = 1 − lim
R0↑R′0

S∞(0) = 1 −

(
1 − lim

R0↑R′0

MPB∗c
θH

)
Ŝ0 = 1 − (1 − c̃)Ŝ0. (A21)

The second equality follows from the table entry for MPB∗c in case (i): MPB∗c = θHΦ(0) = θH[1 −

S∞(0)/Ŝ0] by (14). The third equality follows from the continuity of MPB∗c at R′0, allowing us to
substitute the table entry for MPB∗c = c in case (ii). Using the table entry for R∞(Q∗c) in case (ii),

lim
R0↓R′0

R∞(Q∗c) = 1 − Ŝ0 − Î0 +
1
R′0
| ln(1 − c̃)|= 1 − (1 − c̃)Ŝ0. (A22)

The equality between (A21) and (A22) proves the continuity of R∞(Q∗c) at R′0.
Since R∞(Q∗c) is increasing in R0 in cases (iii) and (iv), the other candidate for a supremum is

lim
R0↑∞

R∞(Q∗c) = 1 − θŜ0. (A23)

This equality follows from taking the limit R0 ↑∞ of the table entry in cases (iii) and (iv) and noting
that limR0↑∞ S∞(Ŝ0) = 0 by Lemma 8. The local maximum is thus a global maximum if and only if
1 − (1 − c̃)Ŝ0 ≥ 1 − θŜ0. Rearranging gives c̃≥ 1 − θ.
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Results for MSB∗c . To provide a roadmap for the analysis, we first look at cases (i) and (ii) and show
that MSB∗c has a unique local maximum over R0 ≤ R′′0 . Furthermore, this restricted local maximum
is the restricted global maximum over R0 ≤ R′′0 . We then look at cases (iii) and (iv) and show that
MSB∗c has at most one restricted local maximum over R0 > R′′0 . If no restricted local maximum
exists there, then we show that the restricted maximum over R0 ≤ R′′0 is the global maximum over
all R0 > 0. If a restricted local maximum exists in cases (iii) and (iv), then either it or the restricted
local maximum over R0 ≤ R′′0 is the global maximum. This establishes, in sum, that MSB∗c has at
most two local maxima, one of which is the global maximum.

To prove that MSB∗c has a unique local restricted maximum over R0 ≤ R′′0 , we will show that
MSB∗c is increasing in a neighborhood around 0, quasiconcave for all R0 ∈ (0,R′0], continuous at
R′0, and decreasing for all R0 ∈ (R′0,R

′′
0). The arguments are made in reverse order. It is clear from

inspection of Table 1 that MSB∗c is decreasing for R0 ∈ (R′0,R
′′
0). To show MSB∗c is continuous at

R′0, using the table entry for MSB∗c in case (i),

lim
R0↑R′0

MSB∗c =
limR0↑R′0 MPB∗c

1 −R′0(1 − limR0↑R′0 MPB∗c/θH)Ŝ0
=

θHc̃(Î0 + c̃Ŝ0)

Î0 + c̃Ŝ0 + (1 − c̃)Ŝ0 ln(1 − c̃)
. (A24)

The first equality follows from substituting the table entry for MPB∗c in case (i) directly as well as
substituting the implication of that table entry that S∞(0) = Ŝ0(1 − MPB∗c/θH). The second equality
follows from limR0↑R′0 MPB∗c = c by continuity and from substituting from (24). Using the table
entry for MSB∗c in case (ii),

lim
R0↓R′0

MSB∗c =
θHc̃2

c̃ + (1 − c̃)[ln(1 − c̃) +R′0Î0]
=

θHc̃(Î0 + c̃Ŝ0)

Î0 + c̃Ŝ0 + (1 − c̃)Ŝ0 ln(1 − c̃)
. (A25)

The equality of (A24) and (A25) proves the continuity of MSB∗c at R′0.
We next show MSB∗c is quasiconcave for all R0 in case (i). Differentiating the relevant table

entry, substituting from (A16), and eliminating positive constants shows that ∂MSB∗c/∂R0 has the
same sign as [

Ŝ0 − S∞(0)
][

1 −R0S∞(0)
]

+
[
Î0 + Ŝ0 − S∞(0)

](
1 −R0Ŝ0

)
. (A26)

The second derivative of (A26) with respect to R0—after substituting from (A16), and rearranging
considerably—can be shown to equal

2
∂S∞(0)

∂R0

[
Î0 + Ŝ0 − S∞(0)

]
, (A27)

which is negative—as can be shown using arguments similar to those behind Lemma 9. Hence,
(A26) is concave. In the limit R0 ↓ 0, (A26) approaches 2[Ŝ0 − S∞(0)] + Î0, which is positive by
Lemma 4 and Î0 > 0. Having established that (A26) is concave throughout (i) and initially positive,
we have that (A26) can change sign at most once. Therefore, ∂MSB∗c/∂R0 is either nonnegative
throughout case (i) or positive then negative. In either event, this proves that MSB∗c is quasiconcave
in (i). We have already established MSB∗c is increasing in a neighborhood of R0 above 0, the last
step needed to prove that MSB∗c has a unique restricted local maximum over R0 ≤ R′′0 , which is a
global maximum on that restricted set.

We next look at the behavior of MSB∗c in cases (iii) and (iv), showing it has a most one restricted
local maximum over R0 >R′′0 . Similar calculations used in the previous paragraph can be used here
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to establish the concavity of the following function,[
(1 − θ)Ŝ0 − S∞(Ŝ0)

][
1 −R0S∞(Ŝ0)

]
+
[
Î0 + (1 − θ)Ŝ0 − S∞(Ŝ0)

][
1 − (1 − θ)R0Ŝ0

]
, (A28)

which determines the sign of ∂MSB∗c/∂R0 in (iii) and (iv). Thus, (A28) has at most two roots in those
cases, which cannot both be local maxima, implying that MSB∗c has at most one local maximum over
R0 > R′′0 . The limit as R0 ↑ ∞ of (A28) equals

Î0 + 2(1 − θ)Ŝ0 − (1 − θ)Ŝ0[Î0 + (1 − θ)Ŝ0] lim
R0↑∞

R0 (A29)

after substituting limR0↑∞ S∞(Ŝ0) = limR0↑∞[R0S∞(Ŝ0)] = 0 by Lemma 8. Expression (A29) ap-
proaches −∞ since it involves R0 multiplied by negative constant. Since the limit R0 ↑ ∞ cannot
produce a restricted supremum over R0 > R′′0 , the restricted supremum is either the lower boundary
of (iii), i.e., R′′0 , or is the interior restricted maximum. If R′′0 provides the restricted supremum over
R0 >R′′0 , this cannot be a global maximum since MSB∗c is decreasing in (ii); the restricted maximum
over R0 ≤ R′′0 must then be the global maximum.

Results for MEX∗c . We use the same roadmap for the comparative-statics analysis of MEX∗c as
for MSB∗c . We begin by proving that MEX∗c has a unique local restricted maximum over R0 ≤ R′′0 .
We do this by showing that MEX∗c is increasing in a neighborhood around 0, quasiconcave for all
R0 ∈ (0,R′0], continuous at R′0, and decreasing for all R0 ∈ (R′0,R

′′
0). The arguments are made in

reverse order. Differentiating the table entry for case (ii) yields

∂MEX∗c
∂R0

=
−θHc̃2(1 − c̃)Î0{

c̃ + (1 − c̃)[ln(1 − c̃) +R0Î0]
}2 , (A30)

which is negative. The proof that MEX∗c is continuous at R′0 is similar to that for MSB∗c and omitted.
We next show MEX∗c is quasiconcave for all R0 in case (i). Differentiating the relevant table

entry, substituting from equation (A16), and eliminating positive constants shows that ∂MEX∗c/∂R0
has the same sign as[

Ŝ0 − S∞(0)
][

1 −R0(Î0 + Ŝ0)
]

+R0S∞(0)
[
1 −R0S∞(0)

][
Î0 + Ŝ0 − S∞(0)

]
. (A31)

All of the factors in (A31) are definitively positive except for 1 −R0(Î0 + Ŝ0). If this is also nonneg-
ative, then ∂MEX∗c/∂R0 is positive in (i), implying MEX∗c is quasiconcave in (i), as desired.

So suppose instead that
R0(Î0 + Ŝ0)> 1. (A32)

We will show that (A32) implies that (A31) is concave. The second derivative of (A31) with respect
to R0—after substituting from (A16), rearranging considerably, and removing positive factors—can
be shown to have the same sign as

S∞(0)
[
1 −R0(Î0 + Ŝ0)

]
− [1 −R0S∞(0)

]
(Î0 + Ŝ0) − S∞(0)

[
2(Î0 + Ŝ0) − S∞(0)

]
− S∞(0)

{
1 −R0

[
Î0 + Ŝ0 − S∞(0)

]}[
Î0 + Ŝ0 − 2S∞(0)

]
. (A33)

By (A32) and familiar arguments, all the terms in (A33) are negative except possibly the last. If the
last term is also nonpositive, the whole expression is negative, establishing (A31) is concave. So
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suppose instead that the last term is positive. For this to be the case, one of its last two factors must
be positive and the other negative. That is, one of the following two sets of conditions must hold:

1 −R0
[
Î0 + Ŝ0 − S∞(0)

]
> 0, Î0 + Ŝ0 − 2S∞(0)< 0 (A34)

1 −R0
[
Î0 + Ŝ0 − S∞(0)

]
< 0, Î0 + Ŝ0 − 2S∞(0)> 0 (A35)

Suppose (A34) holds. Then (A33) is strictly less than

− S∞(0)
[
2(Î0 + Ŝ0) − S∞(0)

]
− S∞(0)

{
1 −R0

[
Î0 + Ŝ0 − S∞(0)

]}[
Î0 + Ŝ0 − 2S∞(0)

]
(A36)

<− S∞(0)
[
2(Î0 + Ŝ0) − S∞(0)

]
− S∞(0)

[
Î0 + Ŝ0 − 2S∞(0)

]
(A37)

= − 3S∞(0)
[
Î0 + Ŝ0 − S∞(0)

]
. (A38)

Equation (A36) follows from eliminating the first two negative terms of (A33). Equation (A37)
follows from substituting 1, which is greater than the factor in braces, for the factor in braces. The
fact that this substitution results in an increase in (A37) follows from (A34). Straightforward algebra
yields (A38), which is negative by familiar arguments.

Suppose (A35) holds. Then (A33) is strictly less than

S∞(0)
[
1 −R0(Î0 + Ŝ0)

]
− S∞(0)

{
1 −R0

[
Î0 + Ŝ0 − S∞(0)

]}[
Î0 + Ŝ0 − 2S∞(0)

]
(A39)

< S∞(0)
[
1 −R0(Î0 + Ŝ0)

]
− S∞(0)

{
1 −R0

[
Î0 + Ŝ0 − S∞(0)

]}
(A40)

= −R0S∞(0)2. (A41)

Equation (A39) follows from eliminating the second and third two negative terms from (A33). Equa-
tion (A40) follows from substituting 1 for the last factor, Î0 + Ŝ0 − 2S∞(0). To see that this increases
the expression, note Î0 + Ŝ0 − 2S∞(0) < Î0 + Ŝ0 ≤ 1, where the last inequality holds since the size of
the infected and susceptible subpopulations at date 0, Î0 + Ŝ0, cannot exceed the size of the entire
population, normalized to 1. The fact that substituting 1 for Î0 + Ŝ0 − 2S∞(0) increases (A39) follows
from (A35). Straightforward algebra yields (A41), which is obviously negative.

In sum, we have shown (A33) is negative for R0 < R′0, implying (A31) is concave. In the limit
R0 ↓ 0, (A31) approaches Ŝ0 − S∞(0), which is positive by Lemma 4. These facts are sufficient to
establish that MEX∗c is quasiconcave in case (i) by the same arguments used for MSB∗c above. These
are all the facts needed to prove that MEX∗c has a unique restricted local maximum over R0 ≤ R′′0 ,
which is a global maximum on that restricted set.

We next investigate the behavior of MEX∗c in (iii) and (iv). Calculations similar to those used
above can be used to show a function determining the sign of ∂MEX∗c/∂R0 in cases (iii) and (iv),[

(1−θ)Ŝ0 −S∞(0)
]{

1−R0[Î0 +(1−θ)Ŝ0]
}

+R0S∞(Ŝ0)
[
1−R0S∞(Ŝ0)

][
Î0 +(1−θ)Ŝ0 −S∞(Ŝ0)

]
. (A42)

is concave. Thus, (A42) has at most two roots in cases (iii) and (iv), at most one of which is a
local maximum for MEX∗c . Taking the limit of the table entry for MEX∗c in cases (iii) and (iv) and
substituting the limit limR0↑∞ S∞(Ŝ0) = limR0↑∞[R0S∞(Ŝ0)] = 0 by Lemma 8 yields limR0↑∞ MEX∗c =
0. Since the limit R0 ↑ ∞ produces an infimum for MEX∗c , not a supremum, the restricted supremum
of MEX∗c over R0 > R′′0 is either the lower boundary of case (iii), i.e., R′′0 , or the interior restricted
maximum. If R′′0 provides the restricted supremum over R0 >R′′0 , this cannot be a global maximum
since MSB∗c is decreasing in case (ii); the restricted maximum over R0 ≤R′′0 must then be the global
maximum. Q.E.D.
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Proof of Proposition 2
We first show that the condition for monopoly to deliver the first best involving universal vaccination
of susceptibles, MR(Ŝ0)≥ c, holds for sufficiently high R0. Substituting Ŝ0 for Q in (26) shows that
MR(Ŝ0)≥ c holds if and only if

Φ(Ŝ0)

[
1 −

(
θ

1 − θ

)
R0S∞(Ŝ0)

1 −R0S∞(Ŝ0)

]
≥ c̃. (A43)

The left-hand side equals 1 in the limit R0 ↑∞. To see this, note that limR0↑∞ S∞(Q) = 0 by Lemma 8,
implying limR0↑∞ Φ(Ŝ0) = 1 by (14). Also by Lemma 8, limR0↑∞R0S∞(Q) = 0, implying the factor
in square brackets in (A43) equals 1 in the limit R0 ↑ ∞. The left-hand side exceeds the right-hand
side in the limit since 1> c̃ by assumption (19).

We next verify that when monopoly output is an interior solution, i.e., Q∗m ∈ (0, Ŝ0), we have
Q∗m < Q∗c . Given Q∗m > 0, as argued in the text, R0 > R′0, ruling out case (i). As shown in Table 1
Q∗c = Ŝ0 in cases (iii) and (iv), so it is immediate that Q∗m < Q∗c for interior Q∗m. This leaves case
(ii). We have MPB(Q∗c) = MPB∗c = c = MR(Q∗m) < θHΦ(Q∗m) = MPB(Q∗m), where the first step is
definitional, the second step follows from the relevant entry in Table 1 in case (ii), the third step
follows from the Kuhn-Tucker conditions for an interior solution, the fourth step follows from the
fact that the factor in braces in (26) is less than 1, and the fifth step follows from (15). Since (16) is
negative, MPB(Q∗c)<MPB(Q∗m) implies Q∗c > Q∗m. Q.E.D.

Proof of Proposition 3
Results for Π∗m. The result is a consequence of the Envelope Theorem. Monopoly profit can be
written

Π∗m = θH
[

1 −
S∞(Q∗m)

S0(Q∗m)
− c̃
]

Q∗m. (A44)

This is a function of R0 indirectly through its dependence on Q∗m, which in turns depends on R0. It
also depends on R0 because S(Q) is a function of R0 (although the argument is omitted for brevity).
If Q∗m is an interior solution, as in case (ii) and (iii), the first-order condition ensures that the indirect
effect of R0 on Π∗m through Q∗m equals 0. Only the direct effect remains. Hence,

∂Π∗m
∂R0

=

[
−θHQ∗m
S0(Q∗m)

]
∂S∞(Q∗m)

∂R0
, (A45)

which is positive since the derivative on the right-hand side is negative by Lemma 9.

Results for R∞(Q∗m). We first show that R∞(Q∗m) has at least one interior local maximum in R0.
By Tables 1 and 2, Q∗m = Q∗c in case (i), implying R∞(Q∗m) = R∞(Q∗c). The proof of Proposition 1
showed R∞(Q∗c) is increasing in R0 in case (i), implying R∞(Q∗m) is increasing in case (i).

According to Table 2, R∞(Q∗m) = 1 − S∞(Q∗m)−θQ∗m in cases (ii) and (iii). Differentiating, substi-
tuting from (13), and rearranging yields

∂R∞(Q∗m)

∂R0
= −

[
θΦ(Q∗m)

1 −R0S∞(Q∗m)

]
∂Q∗m
∂R0

. (A46)
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Since Q∗m increases from 0 at the threshold R0 below case (ii) to Ŝ0 at the threshold above case
(iii), we must have ∂Q∗m/∂R0 > 0 on a set of R0 in (ii) and (iii) of positive measure. Thus,
∂R∞(Q∗m)/∂R0 < 0 on a set of R0 of positive measure by (A46) since the factor in square brackets
in (A46) is positive by Lemma 5. If R∞(Q∗m) is decreasing for R0 in a neighborhood above R′0 at the
threshold between cases (i) and (ii), then R∞(Q∗m) attains a local maximum at R′0. Otherwise, the
lower bound of the first set of positive measure for which ∂R∞(Q∗m)/∂R0 < 0 is a local maximum.

Suppose for the remainder of the proof that c̃ ≥ 1 − θ. We will show R∞(Q∗m) has an interior
global maximum. Since R∞(Q∗m) = R∞(Q∗c) for all R0 in case (i),

lim
R0↑R′0

R∞(Q∗m) = lim
R0↑R′0

R∞(Q∗c) = 1 − (1 − c̃)Ŝ0, (A47)

where the first equality follows by continuity since R′0 is the upper bound on case (i) by (24) and the
second equality follows from (A21).

We proceed to compare (A47) to the limits of R∞(Q∗m) for extreme values of R0. We have

lim
R0↓0

R∞(Q∗m) = lim
R0↓0

R∞(Q∗c) = 1 − lim
R0↓0

S∞(0) = 1 − Ŝ0, (A48)

where the first equality follows since R∞(Q∗m) = R∞(Q∗c) for all R0 in case (i), the second equal-
ity follows from the entry for R∞(Q∗c) in case (i) in Table 1, and the third equality follows from
Lemma 7. Equation (A48) is less than (A47). At the other extreme,

lim
R0↑∞

R∞(Q∗m) = lim
R0↑∞

R∞(Q∗c) = 1 − θŜ0, (A49)

where the first equality follows by continuity since R∞(Q∗m) = R∞(Q∗c) for all R0 in case (iv), the
second equality follows from the entry for R∞(Q∗c) in cases (iii) and (iv) in Table 1, and the third
equality follows from (A23). Since c̃ ≥ 1 − θ, (A49) is weakly less than (A47). We have shown
that R∞(Q∗m) is greater at the interior R′0 than at extreme values of R0, implying that R∞(Q∗m) has an
interior global maximum.

Results for MSB∗m. We show that the limits of MSB∗m for extreme values of R0 are exceed by
interior values. We have

lim
R0↓0

MSB∗m = lim
R0↓0

MSB∗c = θH
[

1 −
1
Ŝ0

lim
R0↓0

S∞(0)

]
= θH

(
1 −

Ŝ0

Ŝ0

)
= 0, (A50)

where the first equality follows since MSB∗m = MSB∗c for all R0 in case (i), the second equality
follows from the entry for MSB∗c in case (i) in Table 1, and the third equality follows from Lemma 7.
To examine the upper limit, the proof of Proposition 1 showed that MSB∗c asymptotes downward
toward limR0↑∞ MSB∗c = 1. Since MSB∗m = MSB∗c in case (iv), and all R0 above a sufficiently high
value are contained in case (iv), MSB∗m must also slope downward toward its asymptote. Thus MSB∗m
is higher at interior values of R0 than the extremes.

Results for MEX∗m. Arguments similar to those just used for MSB∗m can be used to show limR0↓0 MEX∗m =
limR0↑∞ MEX∗c = 0. Hence, MEX∗m is higher for interior values of R0 than extreme values and thus
attains an interior maximum. Q.E.D.

Appendix page 10



Proof of Proposition 4
The sketch of the proof in the text omitted two details filled in here. We first prove Q∗∗ for R0 in a
neighborhood above 0. Taking limits in (22),

lim
R0↓0

MSB(Q) = θH
[

1 −
S0(Q)

S0(Q)

]
= 0. (A51)

Hence, there exists R0 in a neighborhood above 0 and ε ∈ (0,c) such that MSB(Q) < ε. For R0 in
this neighborhood, W (Q) =

∫ Q
0 [MSB(x)− c]dx< (ε− c)Q< 0 = W (0). Thus, Q∗∗ = 0 for R0 in this

neighborhood.
We next prove G∗∗ > 0 for some R0 ∈ (0,∞). Since Q∗∗ = 0 for all R0 in neighborhood of

0, Q∗ ≤ Q∗∗ = 0 implies Q∗ = 0 for all R0 in a neighborhood of 0. The text argued Q∗m = Ŝ0 for
sufficiently high R0, implying Ŝ0 = Q∗m ≤ Q∗∗ ≤ hS0, implying Q∗∗ = Ŝ0 for sufficiently high R0.
By the Theorem of the Maximum, since Q∗∗ is a maximizer of continuous function W (Q), Q∗∗ is
continuous, implying the existence of R0 ∈ (0,∞) such that Q∗ ∈ (0, Ŝ0). This Q∗∗ must satisfy the
first-order condition MSB(Q∗∗) = c, implying MPB(Q∗∗)+MEX(Q∗∗) = c, implying MPB(Q∗∗)< c
since MEX(Q)> 0 for all Q ∈ (0, Ŝ0) by (23). Q.E.D.

Proof of Proposition 5
Start with the analysis of perfect competition. To derive G∗∗c for various values of Q∗∗, first suppose
Q∗∗ = 0. Arguments in the text preceding Proposition 4 can be used to show G∗∗c = 0.

Next, suppose Q∗∗ ∈ (0, Ŝ0). Then Q∗∗ must satisfy the first-order condition for welfare maxi-
mization MSB(Q∗∗) = c, implying MPB(Q∗∗)+MEX(Q∗∗) = c, in turn implying P∗∗c = MPB(Q∗∗) =
c−MEX(Q∗∗). Since competitive firms pass the subsidy through to consumers, P∗∗c = c−G∗∗c . Com-
bining the preceding equations yields G∗∗c = MEX(Q∗∗).

Next, suppose Q∗∗ = Ŝ0 > Q∗c . Then the highest price at which output Ŝ0 is purchased sat-
isfies P∗∗c = MPB(Ŝ0). Combined with competitive pass through, P∗∗c = c − G∗∗c , we have G∗∗c =
c − MPB(Ŝ0).

Finally, suppose Q∗c = Q∗∗ = Ŝ0. Arguments in the text preceding Proposition 4 can be used to
show G∗∗c = 0. The various results for Q∗∗ = Ŝ0 can be nested as G∗∗c = max[0,c − MPB(Ŝ0)].

Turn next to the analysis of monopoly. To derive G∗∗m for various values of Q∗∗, first suppose
Q∗∗ = 0. Arguments in the text preceding Proposition 4 can be used to show G∗∗m = 0.

Next, suppose Q∗∗ ∈ (0, Ŝ0). The monopoly regards the subsidy as a reduction in marginal cost,
maximizing [MPB(Q) − c + G]Q. To generate the first best, the optimal subsidy G∗∗m must force the
monopoly’s first-order condition to be satisfied by Q∗∗:

MR(Q∗∗) = c − G∗∗m . (A52)

For general Q, (23) and (26) can be combined to show

MR(Q) = MPB(Q) −
MEX(Q)θQ

Ŝ0 − θQ
. (A53)

Evaluting (A53) at Q = Q∗∗ yields

MR(Q∗∗) = MPB(Q∗∗) −
MEX(Q∗∗)θQ∗∗

Ŝ0 − θQ∗∗
= c − MEX(Q∗∗) −

MEX(Q∗∗)θQ∗∗

Ŝ0 − θQ∗∗
, (A54)
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where the second step follows from MPB(Q∗∗) = c−MEX(Q∗∗), which was shown in the analysis of
perfect competition above when Q∗∗ ∈ (0, Ŝ0). Combining (A52) and (A54) and rearranging yields
G∗∗m = MEX(Q∗∗)Ŝ0/(Ŝ0 − θQ∗∗).

Next, suppose Q∗∗ = Ŝ0 > Q∗m. According to standard Kuhn-Tucker conditions, for a subsidy G
to induce the monopoly to produce at the corner Ŝ0, G must satisfy MR(Ŝ0) ≥ c − G. This condi-
tion holds with equality at the lowest such subsidy, which is the optimal subsidy under monopoly,
implying

MR(Ŝ0) = c − G∗∗m . (A55)

Evaluating (A53) at Q = Ŝ0 yields

MR(Ŝ0) = MPB(Ŝ0) −
MEX(Q)θ

1 − θ
. (A56)

Combining (A55) and (A56) yields

G∗∗m = c − MPB(Ŝ0) +

(
θ

1 − θ

)
MEX(Ŝ0). (A57)

Finally, suppose Q∗c = Q∗∗ = Ŝ0. Arguments in the text preceding Proposition 4 can be used to
show G∗∗m = 0. The various results for Q∗∗ = Ŝ0 can be nested as stated in (27). Q.E.D.

Proof of Proposition 6

Section 3.1 argued that universal vaccination is attained under perfect competition if R0 >R′′0 . Sub-
stituting θ = 1 into the expression for R′′0 in (25) yields R0 > | ln(1 − c̃)|/Î0. Rearranging and expo-
nentiating yields 1 − e−R0 Î0 > c̃.

Turning next to the analysis of monopoly, according to Proposition 2, monopoly attains universal
vaccination if and only if MR(Ŝ0) ≥ c. Using (15) and (26) and rearranging, this inequality can be
written

Φ(Ŝ0)

{
1 −

θR0Ŝ0[1 − Φ(Ŝ0)]

1 −R0S∞(Ŝ0)

}
≥ c̃. (A58)

To determine whether (A58) holds with a perfectly effective vaccine, we need to take limits as
θ ↑ 1, requiring us to compute limits limθ↑1 S∞(Ŝ0) and limθ↑1 Φ(Ŝ0). To compute the first limit, by
(12), limθ↑1 S∞(Ŝ0) = |L̄(0)|/R0 = 0, where the second step follows from the well-known fact that
L̄(0) = 0. Computing the second limit is more delicate since it involves a 0/0 form. Manipulating
(11), we have

S∞(Q)

S0(Q)
= e−R0[Î0+Ŝ0−θQ−S∞(Q)], (A59)

implying

lim
θ↑1

[
S∞(Ŝ0)

S0(Ŝ0)

]
= e−R0 Î0, (A60)

using limθ↑1 S∞(Ŝ0) = 0. Hence, limθ↑1 Φ(Ŝ0) = 1 − e−R0 Î0 . Substituting these limits into (A58) and
recognizing that the inequality must be strict to hold for θ< 1 yields (1−e−R0 Î0)(1−R0Ŝ0e−R0 Î0)> c̃.
Q.E.D.
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Proof of Proposition 8

Suppose R0Ŝ0 > 2. Then 1< R0Ŝ0/2< R0[Ŝ0 + S∞(0)]/2 = R0[S0(0) + S∞(0)]/2, where the second
step follows from S∞(0)> 0 by Lemma 4. This chain of inequalities implies that (29) holds at Q = 0
and thus that the vaccine exhibits initially increasing social returns.

At a general output level Q ∈ (0, Ŝ0),

R0

[
S0(Q) + S∞(Q)

2

]
> R0

(
S0(Q)

2

)
= R0

(
Ŝ0 − θQ

2

)
≥ R0

(
(1 − θ)Ŝ0

2

)
. (A61)

If R0Ŝ0 ≥ 2/(1 − θ), then the last expression weakly exceeds 1, implying (29) holds for all feasible
Q, implying the vaccine exhibits everywhere increasing social returns. Q.E.D.

Proof of Proposition 9
The assumption c = 0 implies c̃ = 0, leaving two cases in Table 1: (ii)–(iii) and (iv). Nesting those
cases, we can write

∆Π∗m = θH
{

Î0 + Ŝ0Φ(0) − Q∗mvΦ(Q∗mv)
}
, (A62)

where Q∗mv solves maxQ∈[0,Ŝ0] QΦ(Q). Since Q∗mv > 0, we have Q∗mvΦ(Q∗mv) < Q∗mvΦ(0) ≤ Ŝ0Φ(0),

where the first inquality follows from Lemma 10 and the second inequality from Q∗mv ∈ [0, Ŝ0].
Substituting the preceding inequality into (A62) yields ∆Π∗m > θHÎ0. Thus, ∆Π∗m > 0 for all R0 > 0.

To derive the results on limits of ∆Π∗m, we have that limR0↓0 Φ(Q) = limR0↓0[1−S∞(Q)/S0(Q)] =

1 for all Q ∈ [0, Ŝ0] since limR0↓0 S∞(Q) = Ŝ0 − θQ = S0(Q) by Lemma 7. Hence, limR0↓0 ∆Π∗m =

θHÎ0. For all Q ∈ [0, Ŝ0], limR0↑∞ Φ(Q) = 1 since limR0↑∞ S∞(Q) = 0 by Lemma 8. Therefore,

lim
R0↑∞

Q∗mvΦ(Q∗mv) = lim
R0↑∞

{
max

Q∈[0,Ŝ0]
QΦ(Q)

}
= max

Q∈[0,Ŝ0]

[
Q lim

R0↑∞
Φ(Q)

]
= Ŝ0 ·1. (A63)

Substituting from (A63) into (A62) along with limR0↑∞ Φ(0) = 1 yields limR0↑∞ ∆Π∗m = θHÎ0. Now
∆Π∗m > θHÎ0 for all R0 > 0 implies θHÎ0 ≤ infR0>0 ∆Π∗m ≤ limR0↓0 ∆Π∗m = θHÎ0, which in turn
implies infR0>0 ∆Π∗m = θHÎ0.

Combining the results from the previous paragraph, limR0↓0 ∆Π∗m = limR0↑∞ ∆Π∗m = infR0>0 =

θHÎ0. But the first paragraph showed ∆Π∗m > θHÎ0. Hence, ∆Π∗m must be nonmonotonic in R0,
higher in the interior than for either limiting value of R0.

Turning to limiting values of ∆W ∗m as R0 ↓ 0 and R0 ↑∞, one can show that (A43) holds in these
limits. Thus, the relevant case for computing W ∗mv is (iv). Substituting c̃ = 0 into the relevant entry of
Table 2 and multiplying by θHŜ0 to reverse the rescaling yields W ∗mv = H[S∞(Ŝ0)+θŜ0]. Subtracting
from (31) and rearranging yields

∆W ∗m = H
[
θÎ0 + (1 − θ)S∞(0) − S∞(Ŝ0)

]
. (A64)

By Lemma 7, limR0↓0[(1−θ)S∞(0)] = (1−θ)Ŝ0. The lemma also implies limR0↓0 S∞(Ŝ0) = (1−θ)Ŝ0.
Substituting these limits into (A64) yields limR0↓0 ∆W ∗m = θHÎ0. By Lemma 8, limR0↑∞ S∞(0) =

limR0↑∞ S∞(Ŝ0) = 0. Substituting these limits into (A64) yields limR0↑0 ∆W ∗m = θHÎ0.
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The final step is to provide parameters for which ∆W ∗m < 0. Using Matlab, we verified that
for R0 = 2, θ = 0.5, Î0 = 0.1, Ŝ0 = 0.8, (A43) holds, implying that the vaccine monopoly supplies
first-best quantity Ŝ0, putting us in case (iv). Subtracting the relevant Table 2 entry from (31) and
simplifying yields ∆W ∗m = H[(1 − θ)S∞(0) + θÎ0 − S∞(Ŝ0)], which Matlab calculations show equals
−0.09 for the specified parameters. Q.E.D.

Appendix A2. Calibration Details

The calibration considers the limiting case in which rescaled cost, c̃ = c/θH, is set to 0. This
appendix provides additional documentation justifying that limiting value.

Castillo et al. (2021) reports that prices for available Covid vaccines were no greater than $40
per course. Health losses can be computed following Snyder et al. (2020). Hanlon et al. (2021)
estimates 12 years of lost life (YLL) per death. Since this estimate already allocates shorter lifespans
to people with comorbidities, we assume one YLL translates into one disability adjusted life year
(DALY) without need for further downward adjustment to reflect a proportion of years lived with a
disability. To convert DALYs into monetary values, we multiply DALYs lost in a country by three
times that country’s 2019 GDP per capita, reflecting World Health Organization (WHO) standards
for a cost-effective health intervention in a country stated in Marseille et al. (2015). According to
this standard, a health intervention is cost effective if the cost per DALY saved is less than three
times that country’s per-capita GDP ($65,253 in the U.S. in 2019). Putting these estimates together
yields an estimate of H = 12×3×$65,253 = $2.35 million. Using the calibrated value of θ = 0.8
yields c̃ = 40/(0.8×2.35×106) = 2.13×10−5.
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Appendix A3. Cournot Competition
This appendix extends the analysis to Cournot competition, which nests the perfectly competitive
and monopoly market structures studied in the text. Under Cournot competition, the vaccine is
manufactured by n ≥ 1 homogeneous firms, which choose quantities each period simultaneously.
We will look for the symmetric Nash equilibrium, denoting a firm’s equilibrium output by q∗n and
market output by Q∗n = nq∗n.

Case (i) from Table 1, in which R0 ≤ R′0, which involves no sales under perfect competition,
also involves no sales under Cournot since firms mark up marginal costs. Thus the entries in case (i)
from both Tables 1 and 2 will also apply to Cournot. For the remainder of this appendix, suppose
R0 > R′0.

Suppose market equilibrium output is an interior value: Q∗n ∈ (0, Ŝ0). Since some but not all
consumers purchase, consumers must be indifferent between purchaing and not, implying the price
must extract marginal private benefit: P(Q) = MPB(Q). Thus, firm i’s profit equals

[P(qi + Q−i) − c]qi = [MPB(qi + Q−i) − c]qi. (A65)

Consider the following generalization of a firm’s marginal revenue when n symmetric firms together
produce Q units:

MR(Q,n) = MR(Q) = MPB(Q)

{
1 −

θR0Q[1 − Φ(Q)]

n[1 −R0S∞(Q)]

}
. (A66)

The only difference from marginal revenue defined for a monopoly in (26) is the appearance of n in
the denominator of the term in braces. It is obvious that (A66) reduces to (26) when n = 1. Taking
the first-order condition of (A65) with respect to qi, imposing symmetry by substituting q∗i = Q∗n/n,
and rearranging, one can show that an interior equilibrium satisfies MR(Q∗n,n) = c.

This interior solution is the equilibrium market output under Cournot if Q∗n < Ŝ0. Otherwise,
Q∗n = Ŝ0, and all firms produce an equal share q∗n = Ŝ0/n in the symmetric equilibrium. A necessary
and sufficient condition for this corner solution is MR(Ŝ0,n)≥ c.

Appendix A4. Consumer Heterogeneity
The model in the text assumes consumers are homogeneous. This appendix introduces consumer
heterogeneity and shows that the key result regarding the nonmonotonicities of the marginal exter-
nality continues to hold in this extension.

For concreteness, assume consumers, indexed by i, differ in disease harm, Hi. Similar analysis
applies if consumers experience different efficacies θi or have different lifespans. We conjecture
that the analysis is also similar if consumers contract the disease at different rates, but modeling
heterogeneity in that dimension requires delicacy to avoid changing the epidemiological process.

Denote the probability density function (pdf) by f (Hi), the cumulative distribution function (cdf)
by F(Hi), and the complementary cdf by F̄(Hi) = 1 − F(Hi), and the expected value by E(Hi) =∫

∞

0 Hi f (Hi)dHi. Assume Hi has full support on (0,∞).
Assume further that the population distribution of Hi is common knowledge but the specific

realization of Hi is consumer i’s private information. The model requires consumers to be aware of
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their heterogeneity (for example, differences in income leading to different willingnesses to pay to
avoid harm, or a family history of disease). Undiagnosed conditions that lead harm to vary but are
unknown to the consumer are better accommodated in the homogeneous-harm model.

With homogeneous consumers, we showed the marginal private benefit can be written MPB(Q) =
θHΦ(Q), the product of efficacy, harm, and probability of contracting the disease. With consumer
heterogeneity, consumer i’s marginal private benefit becomes MPBi(Q) = θHiΦ(Q).

Incorporating heterogeneity in some of the normative measures requires additional work to keep
track of the high-value consumers who end up purchasing. We have

SB(Q) =

{[
1 − Φ(Q)

]∫ Ĥ

0
Hi f (Hi)dHi +

[
1 − Φ(Q) − θΦ(Q)

]∫ ∞

Ĥ
Hi f (Hi)dHi

}
Ŝ0. (A67)

The first integral reflects the expected health experienced by those whose harm is below the thresh-
old Ĥ for purchase. With no vaccine to protect them, consumer i in this group obtains Hi with
probability 1 − Φ(Q). The second integral reflects the expected health experienced by those who
purchase. Consumer i in this group obtains Hi if either they would not have been infected anyway
(probability 1−Φ(Q)) or would have been infected without a vaccine but receive the vaccine protec-
tion (probability θΦ(Q)). The final factor Ŝ0 allows the per-consumer surplus given by the integrals
to be scaled up to the population of potential consumers. Differentiating (A67) yields

MSB(Q) =

{
−
∂Φ(Q)

∂Q

[
E(Hi) − θ

∫
∞

Ĥ
Hi f (Hi)dHi

]
+ θΦ(Q)Ĥ f (Ĥ)

∂Ĥ
∂Q

}
Ŝ0. (A68)

To compute ∂Ĥ/∂Q, note threshold consumer type Ĥ is given as an implicit function of Q by
Q = F̄(Ĥ)Ŝ0. Totally differentiating this identity with respect to Q and rearranging yields ∂Ĥ/∂Q =
1/ f (Ĥ)Ŝ0. Substituting this derivative into (A68) shows that the last term equals θĤΦ(Q). This is
the private benefit of the threshold consumer, equal to MPB∗ when evaluated at the equilibrium Q∗.
Subtracting to compute MEX∗ = MSB∗ − MPB∗ leaves just the first term of (A68), as stated in the
following lemma.

Lemma 11. In the model with heterogeneity in consumer harm Hi, the marginal externality in both
the long- and short-run analyses equals

MEX∗ = −
∂Φ(Q∗)
∂Q

[
E(Hi) − θ

∫
∞

Ĥ(Q∗)
Hi f (Hi)dHi

]
Ŝ0. (A69)

Intuitively, Lemma 11 says that the marginal externality is proportional to −∂Φ(Q∗)/∂Q, the de-
cline in the equilibrium probability of infection for an unvaccinated individual when one additional
susceptible is vaccinated. The proof of the next proposition shows that that leading factor approaches
0 as R0 ↓ 0 since a noninfectious disease presents no danger of infection in either analysis. The fac-
tor also approaches 0 as R0 ↑ ∞ in both analyses since the individual will almost certainly contract
the infinitely infectious disease in any event—from someone who was vaccinated but for whom the
vaccine was ineffective if no one else. The remaining factors are obviously positive and finite for all
R0. Thus, MEX∗ approaches 0 for extreme values of R0, implying it peaks for an interior value of
R0 ∈ (0,∞), as the following proposition states.

Proposition 10. In the model with heterogeneity in consumer harm Hi, MEX∗ peaks for an interior
value of R0 ∈ (0,∞) under both perfect competition and monopoly.
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Proof. It remains to analyze the limits of ∂Φ(Q∗)/∂Q as R0 ↓ 0 and R0 ↑ ∞, showing that the limits
equal 0 for both market structures. Lemma 7 states limR0↓0[R0S∞(Q)] = 0, implying limR0↓0∂Φ(Q)/∂Q =
0 by (A17). Lemma 8 states limR0↑∞[R0S∞(Q)] = 0, implying limR0↑∞∂Φ(Q)/∂Q = 0 by (A17).
These limits both hold for all Q, including Q = Q∗c and Q = Q∗m. Q.E.D.

Appendix A5. Additional Preventive
The model in the text assumes that the vaccine is the only preventive technology available to con-
sumers. In practice, consumers may pursue other preventive technologies instead of or in addition to
vaccines, including social distancing. The extension in this appendix extends the model to allow for
a second technology having efficacy δ against the disease. For simplicity, we initially derive results
supposing the second technology is competitively supplied at a zero price, so that all consumers
adopt it. We then show the results generalize to the case in which the price of the competitively
supplied second product is nonnegative, as long as the price is sufficiently low.

Generalizing Model
We will generalize the model so that the successfully immunized compartment Z0 now covers all
successfully protected from the disease by any product. The epidemiological model remains the
same as in the text, governed by equations (1)–(8). The only change is that Z0 can have a more
general form than in (9). To accommodate that more general form, we will rederive expressions for
epidemiological outcomes as functions not of the vaccine quantity Q but of the proportion protected
Z0. We will write the susceptible, infected, and recovered compartments as St(Z0), It(Z0), and
Rt(Z0), respectively, and write the probability of infection as

Φ(Z0) = 1 −
S∞(Z0)

S0(Z0)
= 1 −

S∞(Z0)

Ŝ0 − Z0
. (A70)

Since only an initial condition has changed, not one of the laws of motion, most of the epidemi-
ological outcomes remain the same as in the text. In particular, Lemmas 1–5 remain unchanged
substituting St(Z0) and It(Z0) for St(Q) and It(Q). Lemma 6 would remain unchanged had it been
written in terms of S0(Q), but given it is written in terms of the exogenous parameters, the equations
characterizing S∞(Z0), (11) and (12), need to be replaced by

lnS∞(Z0) −R0S∞(Z0) = ln(Ŝ0 − Z0) −R0(Î0 + Ŝ0 − Z0) (A71)

S∞(Q) =
1
R0

∣∣∣L̄(−R0(Ŝ0 − Z0)e−R0(Î0+Ŝ0−Z0)
)∣∣∣ . (A72)

Applying the Implicit Function Theorem to (A71) yields

∂S∞(Z0)

∂Z0
=

S∞(Z0)

S0(Z0)

[
R0S0(Z0) − 1
1 −R0S∞(Z0)

]
(A73)

∂S∞(Z0)

∂R0
=

−S∞(Z0)

1 −R0S∞(Z0)
[Î0 + S0(Z0) − S∞(Z0)]. (A74)

Note the similarity of these derivatives to their analogs, (13) and (A16), in the model without the
second preventive.
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Additional Preventive Freely Available
Assume that whether technologies protect an individual are independent draws across consumers and
across technologies. Assume further that consumers do not learn about the success or failure of one
technology before buying the other, so make a simultaneous buying decision in period t = 0. Given
that all Ŝ0 initial susceptibles consume the second technology with efficacy δ and Q susceptibles buy
the vaccine with efficacy θ, the number of initial susceptibles who are protected is

Z0(Q) = δŜ0 + (1 − δ)θQ, (A75)

replacing equation (9) in the epidemiological model.
We will continue the notational convention of writing variables related to demand, supply, and

social welfare in terms of the quantity Q of the vaccine, still the product of key interest since it alone
is the potential target of subsidy. The marginal private benefit from the vaccine is

MPB(Q) = (1 − δ)θHΦ(Z0(Q)), (A76)

and its derivative is

∂MPB(Q)

∂Q
=

−(1 − δ)θR0S∞(Z0(Q))MPB(Z0(Q))

S0(Z0(Q))[1 −R0S∞(Z0(Q))]
. (A77)

The demand curve remains the same as in (18), substituting the following expression for demand
when a subset purchase for (17):

d(P) =
1

(1 − δ)θ

{
(1 − δ)Ŝ0 +

(1 − δ)θH
P

[
1
R0

ln
(

1 −
P

(1 − δ)θH

)
+ Î0

]}
. (A78)

Regarding normative measures, social benefit becomes

SB(Q) = H[1 − R∞(Z0(Q))] = H[S∞(Z0(Q)) + Z0(Q)]. (A79)

The expressions for welfare, marginal social benefit, and marginal externality in (21)–(23) remain
unchanged since they were already written in sufficient generality.

On the supply side, redefine normalized unit cost as

c̃ =
c

(1 − δ)θH
= c̃. (A80)

Marginal revenue for a monopoly becomes

MR(Q) = MPB(Q)

{
1 −

(1 − δ)θR0Q[1 − Φ(Z0(Q))]

1 −R0S∞(Z0(Q))

}
. (A81)

The preceding expressions can be used to derive equilibrium variables under perfect competition
and monopoly shown in Tables A1 and A2. The threshold values of R0 become

R′0 =
| ln(1 − c̃)|

Î0 + (1 − δ)c̃Ŝ0
. (A82)
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R′′0 =
| ln(1 − c̃)|

Î0 + (1 − δ)(1 − θ)c̃Ŝ0
. (A83)

The entries in Table A1 can be used to show Proposition 1 holds without modification in this
generalization. More specifically, for all variables except R∞(Z0(Q∗c)) and W ∗c , the entries are iden-
tical in the two tables after transforming two constants: θ̆ = (1 − δ)θ and S̆0 = (1 − δ)Ŝ0. The entries
for the remaining two variables just add a constant that does not affect the derivative with respect to
R0, since ∂S∞(Q)/∂R0 is invariant to the generalization as shown in (A74).

A similar argument can be used to show that Proposition 3 holds without modification in this
generalization. It is immediate that Proposition 2 holds in the generalization because the expressions
are provided in a general enough way that they remain unchanged in the generalization.

Turn next to an analysis of the comparative-statics effects of an increase in δ. The top panel of
Figure A1 shows how Q∗ varies with R0 for a given value of δ. An increase in δ effectively stretches
the solid and dotted black curves for vaccine quantity rightward. Formally, one can show that an
increase in δ increases the threshold values of R0 in (A82)–(A83) determining the regions in which
some but not all consumers purchase a competitively supplied vaccines can be shown to increase
in δ (taking into account the fact that an increase in δ increases c̃ in (A80)). The rightward stretch
means that Q∗ weakly declines in δ for a given R0. The reduction in vaccine quantity is not enough
to offset the increase in population protection from the second preventive. Population protection
increases in δ since each consumer has more options for protection, so can arrange weakly lower
cost personal protection for any given level of population protection.

Additional Preventive Sold at Low Price
The top panel of Figure A1 illustrates the comparative-static effect of R0 on Q∗ in the presence of
a second preventive that is freely available. The picture is similar even when the second preventive
is sold for a positive price if that price is sufficiently low that all consumers purchase the second
preventive for any R0 such that any purchase the vaccine. The new situation is shown in the lower
panel in Figure A1. While the gray curve representing the quantity of the second preventive looks
different from the upper panel, it is only different in a region that is irrelevant for vaccine purchase;
they are identical in the region of R0 labeled (d).

While it is intuitive that the strict results from the previous subsection, which hold when the
price of the second preventive is zero, should hold in a neighborhood of strictly positive prices by
continuity, we proceed to verify this formally. In particular, if the following condition holds,

c2 <
δc1[1 − max(δ,θ)]

(1 − δ)θ
. (A84)

then, for each R0 in regions (a)–(c) in Figure A1, there exists an equilibrium in which no vaccine
is purchased and the quantity indicated purchase the second preventive; furthermore, for each R0 in
region (d), there exists an equilibrium in which all consumers purchase the second preventive and
the quantity indicated purchase the vaccine as well.

Case (a) is defined as that region of R0 for which no consumer purchases the second preven-
tive when no vaccine is purchased either. For no consumer to purchase the second preventive in
equilibrium, consumer surplus must be negative:

δHΦ(0) − P2 ≤ 0. (A85)
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We will show that no consumer deviates to purchasing the vaccine either. We have

θHΦ(0) − P1 ≤ θHΦ(0) − c1 (A86)

< θHΦ(0) −
θc2

δ
(A87)

=
θ

δ
[δHΦ(0) − c2]. (A88)

Condition (A86) follows from a nonnegative markup on vaccines, (A87) from c1 > θc2/δ by (A84),
and (A88) from algebra. Substituting (A85) into (A88) implies θHΦ(0) − P1 < 0, implying that
purchasing a vaccine provides negative consumer surplus for all R0 in case (a). The incremental
consumer surplus from buying the vaccine in addition to the second preventive,

(1 − δ)θHΦ(0) − P1, (A89)

is yet lower, so no vaccine is purchased in region (a).
In case (b), some but not all consumers purchase the second preventive, implying that the equi-

librium quantity of the second preventive Q2 is such that they are indifferent between buying the
second preventive and not:

δHΦ(δQ2) − P2 = 0. (A90)

Conditions (A86)–(A88) continue to apply. Substituting (A90) into (A88) implies θHΦ(0)− P1 < 0,
implying that purchasing a vaccine provides negative consumer surplus in case (b). As argued in
the previous paragraph, the incremental consumer surplus from buying the vaccine in addition to the
second preventive is yet lower, so no vaccine is purchased in region (b).

The upper threshold of case (c) is given by the R0 such that consumers first start to buy the
vaccine in addition to the second preventive when all other consumers buy the second preventive and
only that, when the vaccine is supplied under perfect competition. The marginal vaccine consumer
obtains zero incremental surplus from a vaccine sold at marginal cost:

(1 − δ)θHΦ(δŜ0) − c1 = 0. (A91)

We will show that consumers do not prefer buying just the vaccine to buying just the second preven-
tive. The consumer surplus from buying just the vaccine is

θHΦ(δŜ0) − P1 ≤ θHΦ(δŜ0) − c1 (A92)

= δHΦ(δŜ0) + (θ − δ)HΦ(δŜ0) − c1 (A93)

= δHΦ(δŜ0) −
δ(1 − θ)c1

(1 − δ)θ
(A94)

< δHΦ(δŜ0) − c2. (A95)

Condition (A92) follows from a nonnegative markup on vaccines, (A87) from rearranging, (A94)
from substituting from (A91) for HΦ(δŜ0) and rearranging, and (A95) from

c1 >
(1 − δ)θc2

δ(1 − θ)
, (A96)

which follows from (A84).
In case (d), consumers start to add the vaccine when all consumers purchase the second preven-

tive. For each R0, there exists an equilibrium in which the analysis from the previous subsection
characterizes equilibrium quantities of both products.
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Ŝ 0

M
P

B
∗ m

(1
−
δ)
θH

Φ
(0

)
(1

−
δ)
θH

Φ
(Q
∗ m

)
(1

−
δ)
θH

Φ
(Ŝ
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FIGURE A1: Equilibrium Quantities at Various Prices for Second Preventive

Q*

ℛ0

ℛ0

Q*

Additional preventive 
freely available

Additional preventive 
sold at low price

Additional
preventive

Competitive
vaccine

Monopoly
vaccine

(a) (b) (c) (d)

Notes: Schematic diagram of comparative statics of Q∗ in R0, analogous to top panel of Figure 1,
but here for model with additional preventive. Panels illustrate two different prices for the second
preventive. Dotted black curve represents Q∗c , and solid black curve represents Q∗m. Gray curve
represents quantity of second preventive. Where curves overlap, solid black curve represents all
overlapping curves.
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