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1  Introduction 

By 2024, it is estimated that the Covid-19 pandemic will have reduced economic output by $13.8 

trillion relative to pre-pandemic forecasts (International Monetary Fund 2022). The pandemic 

resulted in an estimated 7–13 million excess deaths (Economist 2022) and an estimated $10–$17 

trillion loss of future productivity and earnings from school disruption (Azevedo et al. 2021). Such 

devastating losses from a pandemic are not new: some sources estimate that the 1918 flu killed 2% 

of the world’s population and reduced GDP by 6% (Barro, Ursúa, and Weng 2020) and that the 

Black Death killed 30% of Europe’s population (Alfani 2022).  

Vaccines against Covid-19 were developed, approved, and distributed at record speed, 

mitigating both the economic and social losses. Yet many countries waited years for sufficient 

supply, resulting in millions of deaths and trillions in economic damage that could have been 

averted. Estimates suggest that accelerating the capacity to produce 1.5 billion courses of vaccine 

annually by just three months would have had a social value of $1.3 trillion (Castillo et al. 2021). 

This large social value eclipsed the revenue that pharmaceutical companies were earning from 

Covid-19 vaccines. The gap between social and private returns suggests private companies will 

have inadequate incentives to invest in the capability to produce pandemic vaccines both before 

and during pandemics, calling for deliberate public policies to improve those incentives. 

This paper makes the economic case for public investments in vaccine-manufacturing 

capacity in advance of the next pandemic. The first step in estimating the social return from such 

a program is to estimate the arrival rate of pandemics of different intensities. We follow (and 

extend) Marani et al. (2021, corrected in 2023), who find that the distribution of pandemic intensity 

conditional on one arriving has been fairly stable over the long time series they study (1600 to 

present), closely following a generalized Pareto distribution. They then use more recent data to 

estimate the arrival rate of pandemics of whatever intensity, allowing recent medical advances, 

climate change, and other factors to shift the arrival rate. We combine these projections with 

estimates of the economic costs of pandemics of different intensities from the economic literature 

(Barro, Ursúa, and Weng 2020; Keogh-Brown et al. 2009; Huber, Finelli, and Stevens 2018; 

United Nations Development Programme 2017; International Monetary Fund 2022), the value of 

lives lost, and losses from school closures (Azevedo et al. 2021).  

We estimate that the expected present value of the stream of global social losses from future 

pandemics amounts to $17.8 trillion. Assuming a 4% social discount rate, this is equivalent to $712 



2 
 

billion each year going forward, more than the budget of U.S. Department of Defense in the 

baseline year (U.S. Department of Defense 2020). To account for the uncertainties in predicting 

pandemics, we estimate pandemic losses under a range of scenarios: under the most optimistic 

scenarios, expected losses exceed $350 billion annually, rising to over $2.1 trillion annually under 

some more pessimistic but still plausible scenarios.  

With these estimates of large expected losses in hand, we proceed to estimate the return to 

a combination of up-front and continuing investments that reduce the damage caused by 

pandemics. We evaluate the benefits of this program compared to the status-quo policy investing 

in vaccine capacity at the maximum scale and speed that can be achieved if investment is delayed 

to the start of a pandemic. We estimate that expanding production capacity for vaccines and 

supply-chain inputs so that there is sufficient production capacity to vaccinate 70% of the global 

population against a new virus within six months would generate an expected net present value 

(NPV) of $735 billion, a gain of more than $500 billion over the status quo of delaying investment 

until the start of the pandemic, achieved by cutting the time to complete that vaccination campaign 

by more than half. These estimates account for the risk that vaccines might fail and that vaccine 

hesitancy might be high. According to our model, the program would require an up-front 

investment on the order of $60 billion and $5 billion to be spent each year thereafter. 

Our analysis focuses on a global program since this would extend the benefits of 

accelerated and expanded capacity to the most people. However, full participation among all 

countries may not be achievable in equilibrium absent an international agreement. The reason is 

that advance investment by one country reduces its demand for in-pandemic capacity, generating 

positive spillovers for others, possibly leading to free riding. If countries fail to strike an 

international agreement, it is not an equilibrium for none of them to invest in advance. High-

income countries would reap large net benefits from going it alone and investing in advance 

capacity. For example, we calculate that if the United States alone undertook an advance-

investment program that enabled it to vaccinate 70% of its population within six months, this 

would generate an NPV of $77 billion, a gain of $61 billion ($183 per capita) over the status quo. 

The benefits extend to middle- and low-income countries as well. For example, we calculate that 

an advance-investment program undertaken by Brazil alone would have an NPV of $19 billion, a 

$15 billon ($70 per capita) gain over the status quo.  

While our main focus is on preparatory investments in vaccine production capacity, the 
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logic of our arguments extends to a broader set of investments that could mitigate pandemic harm 

including research, development, and production of a universal coronavirus vaccine, development 

of broad-spectrum antivirals, and new antibiotics and investments that would streamline vaccine 

approval during pandemics (such as the rules under which human challenge trials would be 

appropriate).  

Our paper builds on work in the scientific literature on the frequency of pandemics 

including Marani et al. (2021), Carlson et al. (2021), and Bernstein et al. (2022) as well as an 

economics literature on the economic costs of specific past pandemics (cited above) and the 

expected costs of future pandemics (Fan et al. 2018; Nakamura et al. 2013, Keogh-Brown et al. 

2009, Martin and Pindyck 2015, Martin and Pindyck 2017, Jaimeson and Summers 2015). The 

epidemiological component of our analysis draws on methods that account for progress in the 

world’s ability to moderate the impact of pandemics in modern times. We expand on previous 

literature on the cost-effectiveness of pandemic preparedness including increased surveillance 

(Bernstein et al. 2022), research and development (Crank et al. 2019), vaccines including building 

up stockpiles (Meltzer, Cox, and Fukuda 1990; Prager, Wei, and Rose 2017; Schoenbaum 1987), 

and all of the above (Yamey et al. 2017). Our model of the benefits of accelerating the pace of 

vaccination during a pandemic and the net benefits of investing in supply capacity draws on 

Castillo et al. (2021), Ahuja et al. (2021), and Athey et al. (2022). 

The paper is outlined as follows. Section 2 reviews and adapts analysis on the frequency 

and epidemics of varying intensities. After synthesizing estimates of various losses from 

epidemics, Section 3 derives a relationship between total losses and mortality intensity. Section 4 

provides a conceptual discussion of a program to accelerate widespread vaccine availability by 

investing in pre-pandemic preparedness. Section 5 sets out the formal model for evaluating the 

program’s expected net benefits, and Section 6 presents the results. Section 7 discusses whether 

international cooperation is needed to achieve these gains, and Section 8 concludes. Details behind 

some derivations are provided in the appendix. 

2  Probability of Future Pandemics 

The challenge in estimating the arrival rate of future pandemics is that large pandemics only 

happen rarely, requiring a long time series to observe enough events to accurately estimate their 

frequency. However, over time the arrival rate changes due, for example, to medical advances 
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(e.g., the arrival of antibiotics) and environmental changes. To address this challenge, we follow 

the methodology of Marani et al. (2021, revised in 2023). They use the long-run history of 

epidemics (from 1600 to present) to estimate the distribution of relative pandemic intensity (i.e., 

when a pandemic arrives, how much more likely it is to be small than large). They use recent data 

(last 20 years) to estimate whether pandemics of whatever size have become more or less frequent 

recently.  

Marani et al. (2021) document 476 significant epidemics since the year 1600, of which 271 

have data on duration and deaths, forming the main basis of their estimations. Defining the 

intensity 𝑖𝑖 of an epidemic in a year to be the associated mortality expressed in terms of deaths per 

thousand population, the authors show that the distribution of epidemic intensity, conditional on 

one arriving in a year, is stable over the long time series, well described by a generalized Pareto 

distribution having cumulative distribution function 

Φ0(𝑖𝑖) =

⎩
⎪
⎨

⎪
⎧𝛼𝛼 𝑖𝑖 = [0, 𝜇𝜇′)

1 − (1 − 𝛼𝛼) �1 +
𝜉𝜉(𝑖𝑖 − 𝜇𝜇′)

𝜎𝜎
�
−1 𝜉𝜉⁄

𝑖𝑖 ∈ [𝜇𝜇′, 𝜇𝜇′′]

1 𝑖𝑖 ∈ [𝜇𝜇′′, 1000],

 (1) 

where 𝜇𝜇′ = 10−3 is the threshold below which epidemics are too small to leave a detectable record, 

𝛼𝛼 = 0.62 is the probability that the epidemic is below the threshold of detectability, and 𝜎𝜎 =

0.0113 and 𝜉𝜉 = 1.41 are shape parameters estimated by the authors via maximum likelihood.1 

The complement to the cumulative distribution function, Φ�0(i) = 1 −Φ0(𝑖𝑖), sometimes called 

the exceedance probability, has the useful interpretation as the annual probability that an epidemic 

with at least intensity 𝑖𝑖 occurs. 

Marani et al. (2021) do not provide guidance on how to extrapolate their estimates beyond 

the support of their data. Since we will be integrating over the distribution of pandemics of any 

conceivable size to compute expected pandemic losses, our approach requires such extrapolation. 

Our extrapolation strategy is embedded in equation (1). The support of the distribution has a natural 

upper bound at 1,000 deaths per thousand, representing human extinction. It remains to specify 

the mass in the tail of the distribution below this natural upper bound and above the support of 

their data. Small changes in the mass of its fat tail can have a large influence on the expected value 

of a Pareto random variable, but extrapolation in this interval is challenging given the expanding 

 
1 These and other parameters introduced throughout this section are collected in Table 3 for reference. 
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confidence intervals there and the inevitably growing inaccuracy of the Pareto law as intensity 

approaches population size. The conservative approach that we adopt to address this issue 

truncates maximum epidemic intensity at the highest credible reports of deaths for a pandemic in 

their data. Based on estimates that the 1918 flu killed 100 million people (Sanford 1979, Burnet 

1979), dividing by global population at that time and dividing by the three-year duration of that 

pandemic yields a truncation threshold of 𝜇𝜇′′ = 17.8 deaths per thousand per year.2,3 We perform 

various sensitivity analyses for alternative truncation thresholds, one halving the truncation 

threshold, another doubling it, another removing it.    

Starting with the basic distribution in (1), Marani et al. (2021) transform it in a way that 

maintains a constant distribution of relative intensities but allows the arrival rate of epidemics to 

vary over time. This approach allows them to exploit the long historical record to precisely estimate 

the distribution of relative intensities, overcoming the challenge that large pandemics are a “black 

swan” event, requiring a long time series to achieve a reasonable sample of them. The authors then 

use the frequency of recent pandemics to estimate the general arrival rate of any epidemic above 

a threshold size under modern conditions. Most pandemics within a given time band will be small 

but occur with enough frequency to provide a good estimate of an overall arrival rate, which can 

be extrapolated to pandemics of any size under the assumption that the historical distribution of 

relative intensities has remained constant.  

Formally, Marani et al. (2021) transform equation (1) via the metastatistical extreme value 

distribution (MEVD), averaging the distribution of the maximum order statistic from 𝑛𝑛𝑡𝑡 draws 

corresponding to the number of epidemics in year 𝑡𝑡. The resulting formula is  

Φ(𝑖𝑖) ≈
1
𝑤𝑤
�Φ0(𝑖𝑖)𝑛𝑛𝑡𝑡
𝑤𝑤

𝑡𝑡=1

, (2) 

where 𝑤𝑤 is the width of the window of years under consideration. Equation (2) has a particularly 

 
2 Marani et al. (2021) record the midpoint of the range of estimates from Patterson and Pyle (1991), 32 million, as 
mortality from the 1918 flu in their data. Patterson and Pyle’s (1991) themselves report an upper estimate is 39.3 
million deaths. The debate about global mortality from the 1918 flu continues in the literature (Spreeuwenberg, 
Kroneman, and Paget 2018; Chandra and Christensen 2019). There is no debate that the 1918 flu was extremely 
intense in certain regions. For example, Patterson and Pyle (1991) estimate that deaths from a single wave in Asia 
could have been as high as 33 million. Using this estimate would double the truncation point we are using to 𝜇𝜇′′ =
34.2 deaths per thousand.  
3 Our adjustment requires an atom of mass Φ�0(𝜇𝜇′′) to be added at 𝑖𝑖 = 𝜇𝜇′′. Marani et al. (2021) leave the distribution 
of intensity unspecified for 𝑖𝑖 < 𝜇𝜇′. The specification in equation (1) fills this gap in a conservative way by adding an 
atom of mass 𝑎𝑎 at 𝑖𝑖 = 0 and positing zero mass for 𝑖𝑖 ∈ (0, 𝜇𝜇′). 
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simple form if, following Marani et al. (2021), we take the window to be the most recent 20 years 

in their dataset, during which, according to their Supplementary Figure S1(a), there were 13 years 

without a detectable epidemic and seven years with one. Substituting those numbers, (2) becomes 

Φ(𝑖𝑖) =
1

20
[13 +  7Φ0(𝑖𝑖)]. (3) 

Figure 1 graphs the exceedance probability, 1 −Φ(𝑖𝑖), associated with equation (3). The 

annual probability of a pandemic at least as severe as Covid-19 is about 1%, implying that such a 

pandemic is a one in 105-year event. 

The rate of epidemics over the last 20 years, which factors into Φ(𝑖𝑖) as we have just seen, 

turns out to be historically low, reflecting two opposing forces operating recently.4 Modern 

technology has allowed society to mitigate the death toll from pandemics. The invention of 

antibiotics sharply reduced the occurrence of the plague and other bacterial outbreaks. Better 

hospitals and medical care have also helped cut mortality. Working in the opposite direction, 

models of the effect of climate change suggest increasing zoonotic spillovers (the transmission of 

viruses and other parasites from animals to humans), increasing the frequency of future epidemics 

(Carlson et al. 2021).  

The use of the most recent 20 years of data for our baseline forecast allows it to reflect 

current conditions. It is challenging to forecast how the rate of pandemic arrival will continue to 

change in the future. We simply assume that the current arrival rate will persist. To account for 

unknown changes in the arrival rate among other uncertainties inherent in forecasting future 

pandemics, we analyze the sensitivity of our estimates to changes in a variety of assumptions and 

parameters. 

3  Social Losses in a Pandemic 

3.1  Approach 

Having estimated the arrival rate of pandemics of various intensities, we next need to pair that with 

estimates of the losses to society conditional on experiencing a pandemic of a given intensity to 

 
4 Previous estimates of the expected economic losses from future pandemics have tended to use a longer time horizon 
to estimate the intensity and frequency of pandemics, which may overestimate expected losses by underweighting 
progress made in combatting pandemics. This helps explain why our estimates are lower than Fan et al. (2018) despite 
their estimates covering losses from influenza epidemics alone. 
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calculate expected harm from the next pandemic. The literature suggests that expected losses from 

epidemics are dominated by high-intensity pandemics that come along only rarely. In this section, 

we seek to refine existing estimates of the possibly nonlinear relationship between the intensity 𝑖𝑖 

of an epidemic (measured by relative mortality) and associated social losses.  

 Some of the literature focuses on a particular category of social loss, say just deaths or just 

the shortfall in economic output.5 Here, we seek a comprehensive measure that, in addition to these 

two categories, includes longer-term losses from the decline in human capital associated with 

closures of school and training programs. Our approach will be to use the best available 

information from the literature to map pandemic intensity into each category of loss and then sum 

the categories to obtain total losses to society. Our total measure will still be conservative since it 

will not include difficult-to-estimate categories such as the disutility of social distancing and pain 

and suffering from sickness.  

 Conditional on an epidemic of intensity 𝑖𝑖 arriving in year 𝑡𝑡, let 𝑀𝑀𝑀𝑀𝑡𝑡(𝑖𝑖) denote mortality 

losses from that pandemic, 𝑂𝑂𝑀𝑀𝑡𝑡(𝑖𝑖) denote economic-output losses, and 𝑀𝑀𝑀𝑀𝑡𝑡(𝑖𝑖) denote learning 

losses experienced in that year. Let 𝑀𝑀𝑀𝑀0(𝑖𝑖), 𝑂𝑂𝑀𝑀0(𝑖𝑖), and 𝑀𝑀𝑀𝑀0(𝑖𝑖) denote the analogous expressions 

for the base year 𝑡𝑡 = 0. We will discuss the estimation of each loss category in turn, starting with 

𝑀𝑀𝑀𝑀𝑡𝑡(𝑖𝑖). 

3.2  Mortality Losses 

Mapping intensity 𝑖𝑖 into mortality losses 𝑀𝑀𝑀𝑀𝑡𝑡(𝑖𝑖) requires two steps. First, intensity 𝑖𝑖, which is a 

proportion, needs to be converted into expected deaths in year 𝑡𝑡, denoted 𝑑𝑑𝑡𝑡, which is a level. 

Marani et al. (2021) define 𝑖𝑖 as deaths per 1,000 population, i.e., 𝑖𝑖 = 𝑑𝑑𝑡𝑡 (𝑁𝑁𝑡𝑡 1000⁄ )⁄ , where 𝑁𝑁𝑡𝑡 

denotes the global population in year 𝑡𝑡. Inverting, 𝑑𝑑𝑡𝑡 = 𝑖𝑖𝑁𝑁𝑡𝑡 1000⁄ .  

Next, expected deaths 𝑑𝑑𝑡𝑡 needs to be translated into a monetary value. We use Sweis’s 

(2022) estimate, $1.3 million, of the value of a statistical life (VSL) for the world population in 

the base year 2021.6 Mortality losses in the base year are thus 

𝑀𝑀𝑀𝑀0(𝑖𝑖) = �
$1.3 million ∙ 𝑁𝑁0

1000
� 𝑖𝑖. (4) 

 
5 Fan et al. (2018) combine value of lives lost with falls in economic output while Keogh-Brown et al. (2009) also add 
losses due to school closures. 
6 This estimate has several advantages for our purposes. First, it is a global measure. Most available VSL estimates 
are for individual countries, with a focus on high-income countries, which would overstate the global VSL since VSL 
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Mortality losses in year 𝑡𝑡, 𝑀𝑀𝑀𝑀𝑡𝑡(𝑖𝑖), can be derived from 𝑀𝑀𝑀𝑀0(𝑖𝑖) under assumptions on 

global annual growth rates for GDP per capita and population. Assume GDP per capita grows at a 

constant rate 𝑦𝑦. Our calculations set 𝑦𝑦 = 1.6%, the long run global rate projected through 2060 by 

OECD (2022). Population growth is a more complex issue. If the current slowdown in population 

growth continues, the world will eventually experience population declines, though presumably 

these declines would slow before they lead the population to disappear. An additional complexity 

raised by a changing population is that it changes the nature of the optimal vaccine program. It is 

challenging enough to model the costs of a program targeting a fixed population let alone one that 

adjusts dynamically to a first growing and then shrinking population. We finesse these 

complexities by fixing the population size at the baseline level, 𝑁𝑁0, for the analysis. Our results 

will then apply to a program optimized for current citizens, understating that installing even more 

capacity to accommodate larger future generations would have positive option value. Under the 

preceding assumptions and parameter values,  

𝑀𝑀𝑀𝑀𝑡𝑡(𝑖𝑖) = (1 + 𝑦𝑦)𝑡𝑡𝑀𝑀𝑀𝑀0(𝑖𝑖).  (5) 

3.3  Economic-output Losses 

Turn next to the estimation of economic-output losses 𝑂𝑂𝑀𝑀𝑡𝑡(𝑖𝑖) conditional on the arrival of an 

epidemic of intensity 𝑖𝑖 in the base year. We include in this category only short-run deviations in 

economic output from trend caused by pandemics, deliberately excluding longer-term losses such 

as reduction in future wages due to declines in human-capital, covered by a later calculation.  

Table 1 shows the five major pandemics over the previous century for which we could find 

a credible estimate of economic-output losses. All but one of the estimates come from studies in 

the literature that use deviations from global GDP trend as the main determinant of economic 

losses.7 The last column puts all the economic-loss estimates quoted by the indicated studies on 

the same metric, an annual global loss in percentage terms, denoted ∆. The table also shows the 

 
estimates increase with income. For example, Sweis’s (2022) estimate of the VSL in the United States is $7.2 million, 
over five times higher than her global estimate. Second, the author applies a rigorous methodology due to Becker 
(2007) to data on health risks during the Covid-19 pandemic, a relevant domain to our analysis, and time period close 
to our 2021 base year. Third, for comparable countries, Sweis’s (2022) VSL estimates are close to those in other well-
cited studies (e.g., Viscusi 2020) but typically slightly lower, suiting our approach of maintaining conservative 
assumptions. Finally, other policy studies adopt a similar estimate; for example, Ahuja et al. (2021) take the global 
VSL to be $1.2 million.   
7 We have adjusted for the fact that some studies include the value of lives lost and others do not by taking out the 
value of lives lost from those that include it and adding it separately using our own valuation later in the calculation. 
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estimate of intensity taken from sources on which Marani et al. (2021) drew with the exception of 

Covid-19, which is not in their data.   

 The five rows in Table 1 provide a sample that can be used to estimate the relationship 

between ∆ and 𝑖𝑖. Figure 2 plots those variables using log scales on the axes along with a regression 

line estimated via ordinary least squares,  

ln∆ = 0.74
(0.56)

+ 0.46
(0.08)

ln 𝑖𝑖, (6) 

where standard errors are reported in parentheses below coefficient estimates. The regression 

exhibits remarkably good fit, with 𝑅𝑅2 = 0.92.  

The regression can be paired with the distribution of pandemic intensity from equation (3) 

to compute expected annual economic output losses from pandemics in the base year:  

𝑂𝑂𝑀𝑀0(𝑖𝑖) = 𝑌𝑌0𝑁𝑁0
∆(𝑖𝑖)
100

, (7) 

where, denoting per-capita GDP in year 𝑡𝑡 by 𝑌𝑌𝑡𝑡, 𝑌𝑌0 is per-capita GDP in the base year. 

Exponentiating both sides of regression (6) yields ∆(𝑖𝑖) = 2.09𝑖𝑖0.46. Dividing by 100 converts the 

percentage into a proportion. Multiplying by 𝑌𝑌0𝑁𝑁0, which equals GDP in the base year, converts a 

proportional loss into a loss in levels. 𝑂𝑂𝑀𝑀𝑡𝑡(𝑖𝑖) can be derived from 𝑂𝑂𝑀𝑀0(𝑖𝑖) by analogy to equation 

(5). We use 2021 as the base year, the most recent year that World Bank data are available for 𝑌𝑌0 

and 𝑁𝑁0, and the same year used for the VSL estimate used to value mortality losses. 

3.4  Learning Losses 

The final category of losses we consider is 𝑀𝑀𝑀𝑀𝑡𝑡(𝑖𝑖), learning losses from the arrival of an epidemic 

of intensity 𝑖𝑖 in year 𝑡𝑡. Under the assumption that school disruption moves in line with the 

disruption to other economic behavior, we take 𝑀𝑀𝑀𝑀𝑡𝑡(𝑖𝑖) to be proportional to 𝑂𝑂𝑀𝑀𝑡𝑡(𝑖𝑖). We derive the 

proportionality constant by examining the ratio of economic-output losses and learning losses for 

Covid-19 for which we have good estimates of both loss categories. We take the conservative end 

of the World Bank’s estimated range for learning losses from Covid-19 at an aggregate $10 trillion 

in lifetime earnings in present value (Azevedo et al. 2021).8 For economic-output losses from 

 
8 Azevedo et al. (2021) use the correlation between years of schooling and wages to calculate the return to an additional 
year of schooling and hence the cost of closed schools. If wages reflect the worker’s marginal product and private 
returns to education reflect social returns, then future wage losses will be a good measure of future GDP losses. While 
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Covid-19, we take the International Monetary Fund’s (2022) estimate of a $13.8 trillion shortfall 

relative to pre-pandemic forecasts due to the pandemic.9 Taking the ratio of the two estimates, we 

have  

𝑀𝑀𝑀𝑀𝑡𝑡(𝑖𝑖) =
10

13.8
𝑂𝑂𝑀𝑀𝑡𝑡(𝑖𝑖). (8) 

3.5  Total Losses 

Let 𝑇𝑇𝑀𝑀𝑡𝑡(𝑖𝑖) = 𝑀𝑀𝑀𝑀𝑡𝑡(𝑖𝑖) + 𝑂𝑂𝑀𝑀𝑡𝑡(𝑖𝑖) + 𝑀𝑀𝑀𝑀𝑡𝑡(𝑖𝑖) denote total social losses from all three categories 

conditional on an epidemic of intensity 𝑖𝑖 arriving in year 𝑡𝑡. For program evaluation, this 

conditional loss measure needs to be converted into an unconditional one reflecting the distribution 

of epidemic intensity estimated in Section 2 since the intensity of future pandemics is uncertain 

when advance investment is undertaken. We will build up to the unconditional loss measure we 

ultimately use in a series of steps.  

 A straightforward measure of unconditional losses is the present value of expected losses 

from the stream of pandemics into the future, 

𝑃𝑃𝑃𝑃(𝑇𝑇𝑀𝑀����) = ��
1

1 + 𝑟𝑟
�
𝑡𝑡+1

𝐸𝐸(𝑇𝑇𝑀𝑀𝑡𝑡(𝑖𝑖)),
∞

𝑡𝑡=0

 (9) 

where 𝑟𝑟 denotes the social discount factor, which we set at 𝑟𝑟 = 4% in the baseline scenario.10  The 

factor 𝐸𝐸(𝑇𝑇𝑀𝑀𝑡𝑡(𝑖𝑖)) denotes expected pandemic losses in year 𝑡𝑡: 

𝐸𝐸(𝑇𝑇𝑀𝑀𝑡𝑡(𝑖𝑖)) = � 𝑇𝑇𝑀𝑀𝑡𝑡(𝑖𝑖) 𝑑𝑑Φ(𝑖𝑖).
∞

0

 (10) 

 
Mincer (1974) equations do not measure the causal effect of education on earnings, Duflo (2001) concludes that causal 
estimates of the income benefits of education are close to Mincer-regression estimates where the two can be compared. 
In a Spence (1973) model, education can be rewarded with higher wages even if it does not increase productivity, 
leading private returns to exceed social returns to education. Positive spillovers from education would lead social 
returns to exceed private returns. We proceed by assuming that Mincer regressions give an adequate estimate of the 
private returns to education and that social returns weakly exceed private returns on average. If social returns to 
education strictly exceed private returns on average, our measure of learning losses will be conservative. 
9 We take these loss estimates for Covid-19 losses as they are reported by our sources: not annualized figures but 
accumulated losses over a multiyear pandemic. Since both sources use this same accounting frame, taking the ratio of 
them produces the proper proportionality constant. 
10 Gollier and Hammitt (2014) discuss the debate in the economic literature on the appropriate value to assume for the 
social discount factor 𝑟𝑟. Our baseline value 𝑟𝑟 = 4% is within the range of the literature but toward the upper end of 
the interval between 1% and 4% recommended by Gollier and Hammitt (2014) and thus conservative because higher 
social discount rates generate lower present discounted values.  
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Table 2 reports a convenient rescaling of 𝑃𝑃𝑃𝑃(𝑇𝑇𝑀𝑀����), interpreted as expected annual pandemic 

losses. Formally, let 𝐴𝐴𝑃𝑃(𝑇𝑇𝑀𝑀����) denote the constant expected loss that if experienced in perpetuity 

would generate the present value in equation (9), i.e., 𝐴𝐴𝑃𝑃(𝑇𝑇𝑀𝑀����) 𝑟𝑟⁄ = 𝑃𝑃𝑃𝑃(𝑇𝑇𝑀𝑀����). We show in the 

appendix   

𝐴𝐴𝑃𝑃(𝑇𝑇𝑀𝑀����) = 𝑟𝑟𝑃𝑃𝑃𝑃(𝑇𝑇𝑀𝑀����) =
𝑟𝑟

𝑟𝑟 − 𝑦𝑦
𝐸𝐸�𝑇𝑇𝑀𝑀0(𝑖𝑖)�. (11) 

Table 2 reports the expected annual pandemic losses in total, 𝐴𝐴𝑃𝑃(𝑇𝑇𝑀𝑀����), as well as for the component 

losses 𝐴𝐴𝑃𝑃(𝑀𝑀𝑀𝑀����), 𝐴𝐴𝑃𝑃(𝑂𝑂𝑀𝑀����), and 𝐴𝐴𝑃𝑃(𝑀𝑀𝑀𝑀���), defined analogously to 𝐴𝐴𝑃𝑃(𝑇𝑇𝑀𝑀����). In the baseline scenario, 

expected annual pandemic losses are 𝐴𝐴𝑃𝑃(𝑇𝑇𝑀𝑀����) = $712 billion annually. In other words, the world 

can expect to lose $712 billion every year to pandemics going forward. Mortality losses account 

for 73% of the total, followed by economic-output losses (16% of the total), followed by learning 

losses (11% of the total).  

3.6  Sensitivity of Pandemic-Loss Estimates 

We already discussed the first row of Table 2, which provides our baseline results for annual 

pandemic losses. Subsequent rows analyze the sensitivity of the results to changes to parameters 

and changes to the assumptions behind the distribution of pandemic intensities. The first 

alternative scenario cuts the probability of pandemic arrival in half, which cuts the expected loss 

estimates in half. Still, total expected annual pandemic losses are a substantial $356 billion. 

Doubling the probability of pandemic arrival increases expected losses to $1.2 trillion. 

 The next set of alternative scenarios revisit the challenge of extrapolating the distribution 

of pandemic intensities outside of the data that Marani et al. (2021) used to estimate their power-

law parameters. Mathematically, the estimated power law must break down for extreme intensities 

𝑖𝑖 approaching 1,000 (corresponding human extinction), but it is hard to know where beyond the 

range of the data this breakdown occurs. In the baseline, we adopt the conservative approach of 

setting the truncation point 𝜇𝜇′′ on intensity at the highest credible report of intensity for pandemics 

in their data (𝜇𝜇′′ = 17.8, based on estimates for the 1918 flu cited above). One alternative halves 

that truncation point, another doubles it, another eliminates truncation (apart from the natural 

maximum of human extinction). Social losses are reduced when the truncation point is tightened 

and increased when the truncation point is relaxed. Eliminating truncation below human extinction 
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more than doubles 𝐴𝐴𝑃𝑃(𝑇𝑇𝑀𝑀����) to $1.5 trillion.11  

The last set of scenarios analyze the sensitivity of the loss estimates to changes to the VSL, 

growth rate of GDP per capita 𝑦𝑦, and social discount rate 𝑟𝑟. Perhaps the most consequential change 

is that 𝐴𝐴𝑃𝑃(𝑇𝑇𝑀𝑀����) increases to $2.1 trillion when 𝑟𝑟 is reduced to 2%.12  

Several broad observations about our baseline estimates can be drawn from the sensitivity 

analyses. First, they are robust. In no row does 𝐴𝐴𝑃𝑃(𝑇𝑇𝑀𝑀����) fall below $356 billion, which is still half 

of a substantial baseline. Second, our baseline estimates may be quite conservative. We truncated 

the distribution of epidemic intensity out of an excess of caution about extrapolating the estimates 

of Marani et al. (2021) too far beyond the range of their data. Removing this truncation increases 

𝐴𝐴𝑃𝑃(𝑇𝑇𝑀𝑀����) substantially. We also erred on the conservative side by setting the social discount rate to 

𝑟𝑟 = 4%. It is not uncommon for studies to set 𝑟𝑟 = 2%; at this rate 𝐴𝐴𝑃𝑃(𝑇𝑇𝑀𝑀����) rises substantially to 

$2.1 trillion.  

3.8  Expected Losses from Next Pandemic 

The criterion we ultimately use for program evaluation is more complicated than 𝑃𝑃𝑃𝑃(𝑇𝑇𝑀𝑀����) and 

𝐴𝐴𝑃𝑃(𝑇𝑇𝑀𝑀����), requiring some discussion. The criterion involves the expected present value of social 

losses—not from the stream of all future pandemics—but just from the next significant epidemic. 

Denote this concept by 𝑃𝑃𝑃𝑃(𝑇𝑇𝑀𝑀𝑁𝑁������∗), where the 𝑁𝑁 suffix stands for next pandemic and the star 

superscript indicates that to qualify for the next significant pandemic, the epidemic must exceed 

some threshold intensity 𝑖𝑖∗.  

As will be seen, using 𝑃𝑃𝑃𝑃(𝑇𝑇𝑀𝑀𝑁𝑁������∗) as the loss measure rather than 𝑃𝑃𝑃𝑃(𝑇𝑇𝑀𝑀����) or 𝐴𝐴𝑃𝑃(𝑇𝑇𝑀𝑀����) 

facilitates modeling the status-quo program to which our proposed advance-investment program 

will be compared. We presume that this status-quo policy would not roll out a global vaccination 

campaign for a minor epidemic but only one of significance. We also presume that at least some 

of the capacity that this program installs to mitigate harm from the next pandemic would be 

 
11 The sensitivity analyses with respect to where the intensity distribution is truncated highlight the implications of a 
power-law distribution’s fat tails. Varying the truncation point for a normal distribution (which has thin tails) hardly 
matters if the truncation point is extremely high. With a power-law distribution, by contrast, varying a truncation point 
in an extreme range beyond the data can have a substantial effect on expected values. 
12 It is unsurprising that present values grow large when the discount rate shrinks. Here, however, 𝐴𝐴𝑃𝑃(𝑇𝑇𝑀𝑀����) is not a 
present value of a stream of losses but an annualized loss. The annualized loss still grows large because future losses—
reflecting growing GDP per capita with time—weigh more heavily in the annualized figure. 
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retained to use in pandemics after that. To absolve ourselves from having to guess how much 

capacity would be retained in the absence of a coordinated program to do that, we effectively cut 

the future off after the arrival of the next pandemic. We argue that that modeling device leads to a 

conservative evaluation of the benefits of our proposed advance-investment program since the 

proposed program generates more capacity in the next pandemic, leading to weakly more capacity 

available in epidemics after that.  

To derive an expression for 𝑃𝑃𝑃𝑃(𝑇𝑇𝑀𝑀𝑁𝑁������∗), let ℎ𝑡𝑡(𝑖𝑖∗) denote the hazard of a significant 

epidemic, i.e., the probability that an epidemic of at least intensity 𝑖𝑖∗ arrives in year 𝑡𝑡 conditional 

on no epidemic of at least that intensity having yet arrived by then since base year 0. We have 

ℎ𝑡𝑡(𝑖𝑖∗) = Φ(𝑖𝑖∗)𝑡𝑡[1 −Φ(𝑖𝑖∗)]. (12) 

Then 

𝑃𝑃𝑃𝑃(𝑇𝑇𝑀𝑀𝑁𝑁������∗) = ��
1

1 + 𝑟𝑟
�
𝑡𝑡+1

ℎ𝑡𝑡(𝑖𝑖∗)𝐸𝐸(𝑇𝑇𝑀𝑀𝑡𝑡(𝑖𝑖)|𝑖𝑖 ≥ 𝑖𝑖∗),
∞

𝑡𝑡=0

 (13) 

The last factor is the expectation of social losses from an epidemic of at least intensity 𝑖𝑖∗ certainly 

arriving in year 𝑡𝑡:  

𝐸𝐸(𝑇𝑇𝑀𝑀𝑡𝑡(𝑖𝑖)|𝑖𝑖 ≥ 𝑖𝑖∗) = �
𝑇𝑇𝑀𝑀𝑡𝑡(𝑖𝑖)

1 −Φ(𝑖𝑖∗)
𝑑𝑑Φ(𝑖𝑖).

∞

𝑖𝑖∗

 (14) 

The baseline scenario sets the threshold intensity 𝑖𝑖∗ for a significant pandemic to be half the 

intensity of Covid-19 or worse.  

To compare the related loss measures, in the baseline, the expected present value of losses 

from the whole stream of future pandemics is 𝑃𝑃𝑃𝑃(𝑇𝑇𝑀𝑀����) = $17.8 trillion. The expected present value 

of losses from next pandemic at least half as intense as Covid-19 is 𝑃𝑃𝑃𝑃(𝑇𝑇𝑀𝑀𝑁𝑁������∗) = $8.4 trillion. 

Neither 𝑃𝑃𝑃𝑃(𝑇𝑇𝑀𝑀����) nor 𝑃𝑃𝑃𝑃(𝑇𝑇𝑀𝑀𝑁𝑁������∗) average over years, so both are orders of magnitude larger than 

𝐴𝐴𝑃𝑃(𝑇𝑇𝑀𝑀����), which does average over years to provide an annual measure.  

4  Conceptual Discussion of Advance Investment Program 

This section motivates and outlines a program of advance investment to accelerate the availability 

of vaccine capacity in a pandemic. The discussion in this section is conceptual; a formal model of 
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the program is deferred to Section 5.  

4.1  Program Motivation and Basic Design 

The estimates from Section 3 suggest that future pandemics are too large a problem to ignore. The 

expected present value of the future stream of social losses from pandemics is nearly $18 trillion 

in our baseline estimates, averaging over $700 billion annually. There is a strong case for any 

program that can mitigate some of the enormous losses from the next significant pandemic at 

reasonable cost.  

The experience from the Covid-19 pandemic highlights a promising possibility. Vaccines 

were developed and deployed with unprecedented speed. The reduction in mortality bolstered 

countries’ confidence to reopen their economies, reducing economic-output losses. Yet the 

enormous social losses that still mounted each month beg the question of whether there was room 

to further accelerate vaccinations. There was roughly a two-year lag between the date Covid-19 

was detected and the production of enough vaccine to fully immunize 70% of the world’s 

population. Most of this lag was not the time required to discover or approve effective vaccines 

but rather the time needed to scale up production after approval. We therefore focus most of our 

attention in this paper on policies to accelerate production scale up. This focus is partially 

motivated by our belief that investing in accelerating vaccine production is one of the most cost-

effective ways to prepare for future pandemics. This focus does not sacrifice much generality 

because the analysis of this specific investment program readily applies to other promising 

pandemic preparations, discussed in the conclusion.  

Athey et al. (2022) explain how accelerating and expanding vaccine capacity can mitigate 

pandemic losses. The existence of long lags between when a facility starts to add production lines 

for a new vaccine and when those lines are producing at full capacity13 provide an opportunity for 

accelerating the availability of capacity. Presuming that every reasonable technological avenue for 

shortening the time to capacity availability would be exploited in a pandemic, there remains 

another possibility for accelerating capacity, using a strategy that Athey et al. (2022) and others 

call “at-risk investment.” Production capacity can be expanded before regulatory approval, in 

 
13 Production lines are technologically complex, requiring months to set up. Obtaining reasonable yields requires 
skilled technicians to learn by doing in a specific production facility. Each facility must receive independent regulatory 
approval. All these factors result in long lags before a facility can start producing and additional lags before production 
fully spins up. 
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parallel with clinical trials, rather than sequentially, after clinical trials have succeeded and 

regulatory approval gained. Ordinarily, this strategy would be socially wasteful. Vaccine programs 

exhibited a 70% failure rate in clinical trials over the past two decades (Lo, Siah, and Wong 2020). 

If a vaccine fails to be approved, any of the at-risk investment that is difficult to repurpose for 

other uses is wasted. However, the benefit of speed in a pandemic may justify this high risk of 

wastage. Athey et al. (2022) calculate that if the capacity for Covid-19 vaccines available by April 

2021 were available three months earlier, that would have had a global benefit of $3 trillion.   

Not just early capacity but expanded capacity can also accelerate a vaccination program. 

To the extent that scarce supply is the limiting factor in vaccine distribution, and scarce capacity 

is the rate-limiting step in supply, doubling capacity can double the rate at which vaccine is rolled 

out to the population. 

There are limits to how much and how quickly capacity can be installed during a pandemic. 

Short-run supply curves for necessary inputs can be sharply upward sloping and may hit hard 

constraints. Supply curves tend to be more elastic and constraints more relaxed over the longer 

term. Thus, there are potential returns from investing in vaccine capacity in advance of the next 

pandemic rather than waiting until the pandemic arrives.  

Here we propose and analyze a program that secures vaccine production capability before 

a new pathogen emerges. Up-front investment expands total general-purpose vaccine capacity. 

The investment can fund an expansion of plant and equipment for vaccine manufacture and the 

expert labor force to manage and run the manufacturing process. The investment could also fund 

expanded capacity to produce inputs that otherwise would be bottlenecks in the supply chain. An 

annual fee is paid to reserve some of that vaccine capacity to be quickly switched to the production 

of a vaccine when a pandemic threat emerges. For concreteness, we will analyze a program that 

installs enough advance capacity that, when topped up with additional investment undertaken in a 

pandemic, ensures the world would have enough capacity to fully vaccinate 70% of the population 

in six months. We factor into our calculations the risk that not all targeted individuals may wish to 

be vaccinated and thus only a fraction of the benefit of that target coverage may be realized for 

this or other reasons. The quantitative targets matter less than the key qualitative point that the 

program we have in mind is ambitious, involving expansive capacity. To evaluate the benefit of 

this advance-investment program, we compare it—not to the absence of any vaccination—but to 

a status-quo program that also runs a vaccination campaign against the next significant pandemic 
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also employing the strategy of at-risk investing but without the benefit of the extra capacity coming 

from advance investment.  

4.2  Gap in Commercial Versus Social Incentives 

Can the world rely on commercial markets to provide adequate advance investment in the absence 

of a dedicated public program? We would argue no for several reasons. In the absence of a 

dedicated program, commercial incentives for advance investment would presumably come from 

the promise of high returns from vaccine sales in the next pandemic, possibly decades in the future. 

However, social and political pressure to keep prices of vaccines low during a pandemic can create 

an enormous divergence between commercial and social returns to a vaccine. Covid-19 vaccines 

sold for between $6 and $40, much less than the $5,800 social value of a course of annual capacity 

in early 2021 as estimated by Castillo et al. (2021). Few incentives were provided for speed. Even 

a dose price much higher than $40, if it is fixed independent of delivery date, provides little 

incentive to supply those doses sooner rather than later. But getting a vaccine earlier can mitigate 

enormous social harm. Thus, we will analyze in effect a procurement program using government 

or donor-organization resources to procure more capacity in advance and reserve some for 

pandemic preparedness.  

4.3  Coordinated International Program 

Our analysis will focus on the total net benefits assuming all countries undertake advance 

preparedness action. Below we discuss how positive spillovers from advance investment may lead 

to suboptimal investment (particularly for smaller countries), suggesting some benefits from 

coordination. However, if no other countries are making advanced investments, individual 

countries actually have stronger incentives to undertake advance investment unilaterally than what 

our computations show the average country has in the coordinated global program. Thus, our 

analysis of a coordinated global program provides a benchmark that is useful for several exercises, 

setting a goal for countries to coordinate on and showing that advance investment can be incentive 

compatible for countries acting alone if coordination fails. 

The positive spillovers from advance investment are in contrast to the often-expressed 

concern that investment in vaccine capacity has negative spillovers to other countries. Such 

concerns loom particularly large if one’s mental model is that vaccine production capability is 
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fixed, constrained by the fixed supply of key inputs. However, one lesson from Covid-19 is that 

additional investments were able to expand total vaccine supply in a pandemic, and there is reason 

to think that additional at-risk investment would have expanded it further (Ahuja et al. 2021). As 

supply is even more elastic in the long than short run, negative spillovers are even less of a concern 

for the pre-pandemic investments proposed in this paper. Our analysis instead points to the 

possibility of positive spillovers: countries coming into the next pandemic with advance capacity 

will compete less hard for new capacity being installed, leaving more supplies for others. Once a 

country’s dedicated capacity has served its population (in the modeled program, taking six 

months), that capacity can be used to serve other countries. The latter effect is a positive externality 

from unilateral country investment not picked up by our analysis of a coordinated global program. 

Hence, our analysis should be regarded as a lower bound on internal and external benefits from a 

single country’s investment. 

4.4  Did Covid-19 Already Prepare the World? 

Does the world already have enough vaccine capacity as a result of the investments undertaken in 

the Covid-19 pandemic? We would argue no for several reasons. At its peak, the world was 

producing 580 million doses of mRNA Covid-19 vaccine per month. At that rate, it would take 

over a year and a half to produce enough vaccine to cover 70% of the world population with a full 

course of an mRNA vaccine. To reach this coverage in six months during the next pandemic would 

require an expansion of mRNA capacity. Instead, in response to the falling demand for Covid-19 

vaccines, some existing mRNA capacity is reportedly being shut down (Kay, Makol, and Paton 

2022). Our analysis will show that paying the owners of existing capacity an annual fee to keep 

their existing capacity in place and paying others to build new mRNA capacity would have a high 

expected return.  

The world has considerably more capacity for traditional than mRNA vaccines. However, 

some of the traditional vaccines that are regularly administered are of sufficiently high value that 

health authorities might not want facilities producing these to switch to pandemic vaccines even 

during a pandemic. For example, during Covid-19, very few facilities producing childhood 

vaccines switched to producing Covid-19 vaccines. Thus, despite the larger production capacity 

for traditional vaccines, reaching the desired level of reserve capacity will require new capacity to 

be built.  
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The mRNA technology is particularly useful for pandemic preparedness as it appears to be 

easier to scale rapidly than many other vaccine technologies. However, mRNA is still too new a 

technology to know whether it can replace traditional vaccines for all diseases. There is no 

guarantee any single technology will provide the most effective vaccines for all viruses. Thus, the 

proposed program takes a portfolio approach, involving investing in capacity for several 

technologies to combat future pandemics.    

4.5  Further Design Features 

Contracts to ensure sufficient vaccine capacity was in place to vaccinate the world or an individual 

country for the next pandemic would need to guarantee that such capacity was functional and up 

to date. (During Covid-19 some reserve vaccine capacity failed.)14 Given the billions of dollars at 

stake, appropriate monitoring systems could be devised. One way to do this is to allow—indeed 

encourage—contracted reserve capacity to be used for the production of other vaccines. 

We prefer the proposed program contract on advance capacity rather than contracting in 

advance on doses to be supplied in the next pandemic and leaving it to the producer to arrange 

requisite capacity. As explained in Section 4.2, producers do not internalize the full social benefit 

of speed, and so may underinvest in capacity, fulfilling their supply obligations but more slowly 

than would be socially desirable. Contracts on doses may generate negative spillovers for other 

countries, pushing other countries down the queue waiting for scarce supplies. Contracts on 

capacity, on the other hand, can generate positive spillovers for other countries, increasing the rate 

at which the queue is served. 

 For concreteness, the program will focus on advance vaccine capacity, but the logic applies 

to other advance preparations for the next pandemic. Consider advance investments in drug 

treatments. More research and development could lead to the discovery of new antivirals to 

mitigate harm in the next pandemic. Securing raw materials has been a constraint in scaling 

Paxlovid, an effective treatment for Covid-19, a constraint which interim supply-chain investments 

can relax in the next pandemic. Similar logic applies for investments increasing supply-chain 

resilience for other products such as personal protective equipment, testing equipment, and so 

forth. One reason for focusing on vaccines rather than drugs or these other products is that they 

 
14 Mole (2021) reports on the failure of Emergent BioSolutions to fulfill its reserve contracts to supply Johnson & 
Johnson vaccine because of cross-contamination problems.  
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are simpler to produce and easier to scale up than vaccines, so maintaining spare capacity for them 

is valuable, but not as valuable as for vaccines. 

5  Model 

This section formally models a program of advance investment in production capacity to accelerate 

vaccinations in the next pandemic.  

5.1  Setup 

Starting from base year 𝑡𝑡 = 0, the next epidemic of at least intensity 𝑖𝑖∗ arrives with hazard rate 

𝜆𝜆𝑡𝑡(𝑖𝑖∗) in year 𝑡𝑡, where 𝑖𝑖∗ is the minimum intensity evoking a global vaccine response. We consider 

two basic options for a coordinated global vaccine program: a program of advance preparatory 

investment or the status quo without. Distinguish variables associated with the status-quo program 

with a single prime and variables associated with the advance-preparation program with two 

primes. Omitted primes refer to a generic program option.  

Even in the status quo in the absence of advance preparations, if a significant epidemic 

arrives in year 𝑡𝑡, as we saw with the Covid-19 pandemic, the world will seek to obtain vaccines as 

quickly as possible. Conditional on the arrival of an epidemic, let 𝑥𝑥′ denote the capacity (measured 

in annual courses) for vaccines against that epidemic that the world can possibly obtain without 

advance preparations. The model will allow more spending to buy more capacity, but disruptions 

to supply chains and limited input supplies will mean that no more capacity than 𝑥𝑥′ can be installed 

in the short span of an epidemic. The model takes 𝑥𝑥′ to be an exogenous parameter (𝑥𝑥′ = 4.5 

billion annual courses).  

5.2  Role of Advance Investment 

Advance investment—undertaken when supply chains are more fluid and input supplies are more 

elastic—can generate more capacity. Indeed, we will suppose that the program specifies sufficient 

capacity be installed in advance that, in expectation, it achieves an ambitious target of 70% 

coverage of the population within six months when combined with the maximum capacity that can 

be installed during an epidemic. Formally, letting 𝑥𝑥′′ denote the ultimate capacity available with 

advance investment, we have 𝑥𝑥′′ 2⁄ = 0.7𝑁𝑁0, where the left-hand side is multiplied by one half 
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since 𝑥𝑥′′ is measured in annual courses, but the target coverage is sought in half that time (six 

months). Since 𝑥𝑥′ = 4.5 billion < 15.7 billion = 1.4𝑁𝑁0, we have 𝑥𝑥′′ > 𝑥𝑥′.  

 

Advantage 1. The fact that 𝑥𝑥′′ > 𝑥𝑥′ is the main advantage of advance investment 

in the model: without advance investment, the world simply cannot obtain the 

capacity it needs a vaccination campaign of the desired scale and speed.  

 

Let 𝑧𝑧′′ denote the amount of advance capacity that supports the higher capacity level 𝑥𝑥′′ 

desired during a pandemic. Rather than fully endogenizing 𝑧𝑧′′, we will take a more reduced-form 

approach, specifying an exogenous parameter 𝜃𝜃 measuring how much of the maximum capacity 

𝑥𝑥′ that could possibly be installed in-pandemic that the world avoids having to undertake then to 

attain the target 70% coverage in six months. When 𝜃𝜃 = 0, the world leaves itself the task of 

installing the entirety of 𝑥𝑥′ in-pandemic. When 𝜃𝜃 > 0, it leaves itself a smaller in-pandemic 

investment. Either way, the world achieves the target coverage with advance investment. But if 

𝜃𝜃 > 0, more of this investment is undertaken earlier, when the cost of capacity installation is lower, 

as the cost model will make clear.  

 

Advantage 2. The second advantage of advance investment, which emerges from 

the model when 𝜃𝜃 > 0, is that it can save on some of the cost of capacity 

installation.  

 

Formally, we have 𝑥𝑥′′ = 𝑥𝑥′ + (1 − 𝜃𝜃)𝑧𝑧′′. In the absence of advance investment, by definition, 

𝑧𝑧′ = 0.  

5.3  Vaccine Technology Platforms 

Vaccines differ on many dimensions including how much of the virus is presented to the body to 

stimulate an immune response (some vaccines only introduce a spike protein or sugar while others 

introduce the whole virus) and how this antigen is introduced into the body. They also differ in 

how the antigen is cultured. Most vaccines are cultured in eggs or cells (whether mammalian or 

insect). While production processes are not identical across various cell-cultured vaccines, they 

share some commonalities. By contrast, mRNA vaccines are produced quite differently, in a cell-
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free system. Whether any specific platform can produce a successful vaccine, and if so, which can 

be developed most quickly or generate the greatest efficacy, will likely vary from disease to disease 

and involve a considerable element of luck. Repurposing an mRNA vaccine production line from 

one disease to another may be a simple programming exercise, holding out the promise that it will 

be much quicker to scale in response to a pandemic. Since the production process for mRNA 

vaccines is so different from the process for other vaccines, it is likely to be difficult to quickly 

repurpose mRNA production lines to manufacture other vaccines and vice versa. Switching 

between production lines that use egg or cell cultures is not trivial—we specify it takes several 

months—but we do assume different types of cell-cultured vaccines share enough commonalities 

in their production processes that repurposing capacity from one type to another is eventually 

possible.15  

For purposes of the model, we will collect the various vaccine technology platforms into 

two: 𝑣𝑣 ∈ {𝑚𝑚, 𝑜𝑜}, where 𝑣𝑣 = 𝑚𝑚 denotes the mRNA platform and 𝑣𝑣 = 𝑜𝑜 denotes other (mostly cell-

cultured) platforms. Each platform could contain many subtechnologies, and each subtechnology 

could contain several vaccine candidates. The model reflects the presence of multiple candidates 

within platform by allowing some repurposing of capacity dedicated to unsuccessful candidates 

for production of successful candidates within that same platform. Let 𝑧𝑧𝑚𝑚 and 𝑥𝑥𝑚𝑚 denote advance 

and ultimate global capacity installed for mRNA vaccines and 𝑧𝑧𝑜𝑜 and 𝑥𝑥𝑜𝑜 denote those capacities 

installed for other vaccines. Although the ratios could be endogenized, to simplify modeling we 

fix the ratio of existing and future vaccine capacity so that 1/3 is devoted to mRNA vaccines and 

the rest across other vaccine platforms.  

Let 𝑝𝑝 denote the probability of that some vaccine is successfully approved as safe and 

effective for use against disease arising that year. Let 𝑝𝑝𝑚𝑚 denote the probability that only mRNA 

vaccines succeed, 𝑝𝑝𝑜𝑜 denote the probability that only vaccines using another platform are 

successful, and 𝑝𝑝𝑏𝑏 denote the probability that both vaccines using mRNA and those using other 

platforms are successful. Conditional on some vaccine succeeding, these are exhaustive and 

mutually exclusive events, implying 𝑝𝑝𝑚𝑚 + 𝑝𝑝𝑜𝑜 + 𝑝𝑝𝑏𝑏 = 𝑝𝑝.  

Reflecting the advantages discussed in Athey et al. (2022) of at-risk investment—the 

strategy of allocating capacity to a portfolio of vaccine candidates before any are approved to 

 
15 The discussion has omitted the DNA technology, as it has yet to yield an approved vaccine. For modeling purposes, 
one could consider it as being combined into the mRNA technology category. 
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reduce the lag in scaling up capacity for candidates that turn out to be successful—we make the 

extreme assumption that the at-risk strategy is used to install all capacity under both the advance-

investment program and the status-quo program. While the status-quo program does involve delay, 

the delay is not so severe as to preclude at-risk investment entirely but severe enough to reduce 

the amount of at-risk investment that can be undertaken in that short span. Conditional on some 

mRNA vaccine succeeding, assume a fraction 𝑎𝑎𝑚𝑚 of the capacity was dedicated to successful 

mRNA candidates and can begin producing right away after approval date 𝜏𝜏𝐴𝐴. A fraction 𝑏𝑏𝑚𝑚 is 

dedicated to unsuccessful mRNA candidates but can be repurposed to produce successful mRNA 

candidates after a lag of τ𝑚𝑚. The remaining fraction 1 − 𝑎𝑎𝑚𝑚 − 𝑙𝑙𝑚𝑚 of capacity cannot be repurposed 

and is therefore useless during the pandemic. Vaccines using other platforms are modeled 

similarly, with a fraction 𝑎𝑎𝑜𝑜 of capacity being immediately available upon approval at date 𝜏𝜏𝐴𝐴, 

fraction 𝑙𝑙𝑜𝑜 being available with lag τ𝑜𝑜, and the remaining fraction useless. We assume capacity is 

not fungible between mRNA vaccines and other vaccines during the short epidemic span.16  

Let 𝜏𝜏 ∈ [0,𝑇𝑇] index continuous time within the span of the epidemic (measured a finer 

scale—say days or months—than the yearly scale of epidemic arrival indexed by 𝑡𝑡). Production 

capacity totaled across all vaccines available at time 𝜏𝜏 under both platforms is  

𝑥𝑥(𝜏𝜏) =

⎩
⎨

⎧
0 𝜏𝜏 ∈ [0, 𝜏𝜏𝐴𝐴]
𝑠𝑠𝑚𝑚𝑥𝑥𝑚𝑚𝑎𝑎𝑚𝑚 + 𝑠𝑠𝑜𝑜𝑥𝑥𝑜𝑜𝑎𝑎𝑜𝑜 𝜏𝜏 ∈ (𝜏𝜏𝐴𝐴, 𝜏𝜏𝐴𝐴 + 𝜏𝜏𝑚𝑚]
𝑠𝑠𝑚𝑚𝑥𝑥𝑚𝑚(𝑎𝑎𝑚𝑚 + 𝑙𝑙𝑚𝑚) + 𝑠𝑠𝑜𝑜𝑥𝑥𝑜𝑜𝑎𝑎𝑜𝑜 𝜏𝜏 ∈ (𝜏𝜏𝐴𝐴 + 𝜏𝜏𝑚𝑚, 𝜏𝜏𝐴𝐴 + 𝜏𝜏𝑜𝑜]
𝑠𝑠𝑚𝑚𝑥𝑥𝑚𝑚(𝑎𝑎𝑚𝑚 + 𝑙𝑙𝑚𝑚) + 𝑠𝑠𝑜𝑜𝑥𝑥𝑜𝑜(𝑎𝑎𝑜𝑜 + 𝑙𝑙𝑜𝑜) 𝜏𝜏 ∈ (𝜏𝜏𝐴𝐴 + 𝜏𝜏𝑜𝑜 ,𝑇𝑇],

 (15) 

where 𝑇𝑇 is the duration of the epidemic and 𝑠𝑠𝑚𝑚 and 𝑠𝑠𝑜𝑜 are indicators for whether mRNA and other 

vaccines are successful, respectively. To avoid a proliferation of cases, we have written equation 

(15) under the assumption that 𝜏𝜏𝑚𝑚 ≤ 𝜏𝜏𝑜𝑜, reflecting the relationship between the parameter values 

chosen for program evaluation below. The formula when 𝜏𝜏𝑚𝑚 > 𝜏𝜏𝑜𝑜 is obvious by analogy. The total 

number of people vaccinated by time 𝜏𝜏∗ equals ∫ 𝑥𝑥(𝜏𝜏)𝑑𝑑𝜏𝜏𝜏𝜏∗

0 .  

 
16Silver (2021) provides accounts of the transfer of Pfizer’s mRNA technology to contract manufacturers to scale up 
Covid-19 vaccine production. Modern technologies for vaccine manufacturing allow for increasing flexibility and can 
work especially well in repurposing capacity within a vaccine technology platform (Sell et al. 2021). Fill and finish 
and warehouse capacity is particularly fungible (Mirasol 2021).  
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5.4  Vaccination Costs 

Consider global expenditures on one of the vaccine technologies, 𝑣𝑣 ∈ {𝑚𝑚, 𝑜𝑜}. There are four 

categories of expenditure for this technology. First, advance investment costs 𝑘𝑘𝑣𝑣 per course, for a 

total sunk expenditure of 𝑘𝑘𝑣𝑣𝑧𝑧𝑣𝑣. Second, this investment depreciates and needs to be replenished at 

rate 𝛿𝛿. We assume that during years without a pandemic, such capacity can be rented out to 

pharmaceutical firms for routine vaccine production to recapture a fraction 𝜙𝜙 of the yearly cost. 

The expected present value of the effective expenditures (net of rental income) from these two 

channels through the end of the next pandemic equals 

(1 − 𝜙𝜙) �𝑘𝑘𝑣𝑣𝑧𝑧𝑣𝑣 + ��
1

1 + 𝑟𝑟
�
𝑡𝑡+1

Φ(𝑖𝑖∗)𝑡𝑡𝛿𝛿𝑘𝑘𝑣𝑣𝑧𝑧𝑣𝑣

∞

𝑡𝑡=0

�. (16) 

 

A third category of vaccine expenditure is the cost of installing capacity during the 

pandemic needed to bridge the gap between the advance capacity 𝑧𝑧𝑣𝑣 and the capacity 𝑥𝑥𝑣𝑣 ultimately 

used during the pandemic. Let 𝐾𝐾𝑣𝑣(𝑥𝑥𝑣𝑣 − 𝑧𝑧𝑣𝑣) denote the investment cost, specified following 

Castillo et al. (2021): 

𝐾𝐾𝑣𝑣(𝑞𝑞𝑣𝑣) = �
𝑘𝑘𝑣𝑣𝑞𝑞𝑣𝑣 𝑞𝑞𝑣𝑣 ≤ 𝛽𝛽

𝑘𝑘𝑣𝑣𝑞𝑞𝑣𝑣 �
1

1 + 𝜀𝜀
�𝜀𝜀 ∙

𝛽𝛽
𝑞𝑞𝑣𝑣

+ �
𝑞𝑞𝑣𝑣
𝛽𝛽
�
𝜀𝜀
�� 𝑞𝑞𝑣𝑣 > 𝛽𝛽, 

(17) 

where 𝑞𝑞𝑣𝑣 = 𝑥𝑥𝑣𝑣 − 𝑧𝑧𝑣𝑣. According to this specification, the marginal cost of capacity installed during 

a pandemic is the same 𝑘𝑘𝑣𝑣 as that installed in advance for levels of capacity below a kink point 𝛽𝛽 

(taken to be 100 million annual courses in the baseline); but above that kink point, 𝐾𝐾𝑣𝑣 exhibits 

decreasing returns to scale, which are more severe the higher is 𝜀𝜀 > 0. 

A fourth category of vaccine expenditure is the marginal cost of production 𝑐𝑐𝑣𝑣 per course 

administered during a pandemic. Since a target 70% of the population is assumed to be covered 

by the pandemic’s end under either program (albeit more slowly without advance investment), the 

expense from this threshold conditional on being in a pandemic is 

𝑐𝑐𝑣𝑣 ∙
𝑥𝑥𝑣𝑣
𝑥𝑥
∙ 0.7𝑁𝑁0. (18) 

As the last two categories are only expended conditional on a pandemic, the expected present value 

of these expenditures equals  
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��
1

1 + 𝑟𝑟
�
𝑡𝑡+1

ℎ𝑡𝑡(𝑖𝑖∗) �𝐾𝐾𝑣𝑣(𝑥𝑥𝑣𝑣 − 𝑧𝑧𝑣𝑣) + 𝑐𝑐𝑣𝑣 ∙
𝑥𝑥𝑣𝑣
𝑥𝑥
∙ 0.7𝑁𝑁0�

∞

𝑡𝑡=0

. (19) 

 Combining the four categories of expenditures and substituting simplified expressions for 

infinite series, as shown in the appendix, the expected present value of effective (net of rental 

income) program expenditures on vaccines using technology 𝑣𝑣 can be written 

(1 − 𝜙𝜙)𝑘𝑘𝑣𝑣𝑧𝑧𝑣𝑣 +
(1 − 𝜙𝜙)𝛿𝛿𝑘𝑘𝑣𝑣𝑧𝑧𝑣𝑣
𝑟𝑟 + 1 −Φ(𝑖𝑖∗)

+
1 −Φ(𝑖𝑖∗)

𝑟𝑟 + 1 −Φ(𝑖𝑖∗)
�𝐾𝐾𝑣𝑣(𝑥𝑥𝑣𝑣 − 𝑧𝑧𝑣𝑣) + 𝑐𝑐𝑣𝑣 ∙

𝑥𝑥𝑣𝑣
𝑥𝑥
∙ 0.7𝑁𝑁0�. (20) 

Total program expenditures can be found by summing (20) over the two technologies 𝑣𝑣 ∈ {𝑚𝑚, 𝑜𝑜}. 

The baseline model assumes that every dollar of program expenditures costs the funder a dollar of 

surplus. We examine alternative specifications in which the funder’s surplus loss is more than 

dollar for dollar, either because spending is paid for with distortionary taxation or because 

expenditures are diverted from other worthy projects with high opportunity costs. We will consider 

extensions in which each dollar of expenditures reduces surplus by 1 + 𝜆𝜆 dollars, where 𝜆𝜆 denotes 

the so-called social cost of public funds.  

 Values of the cost-function parameters are drawn from Camillo et al. (2021), who in turn 

based their parameter choices on news reports and interviews with industry experts. Parameters 

related to capacity repurposing are drawn from the G20 High Level Independent Panel (2021). 

5.5  Vaccination Benefits  

We adopt the model (with some simplifications) of the benefits of vaccination that Castillo et al. 

(2021) used in their analysis of the Covid-19 pandemic. Vaccination mitigates the harm from the 

epidemic experienced by the population at time 𝜏𝜏 by the proportion 𝐻𝐻(𝑥𝑥�(𝜏𝜏)), a function of the 

fraction 𝑥𝑥�(𝜏𝜏) = 𝑥𝑥(𝜏𝜏) 𝑃𝑃0⁄  of the world population that has been vaccinated. Following Castillo et 

al. (2021), assume 𝐻𝐻 is a continuous, concave, piecewise-linear function such that 𝐻𝐻(0) = 0 and 

𝐻𝐻(𝑥𝑥�(𝜏𝜏)) = 1 for 𝑥𝑥�(𝜏𝜏) > 0.7, which can be interpreted as the threshold for herd immunity, above 

which the epidemic is quelled and all harm relieved.17 The supplemental appendix to Castillo et 

al. (2021) details why this functional form is a good approximation for vaccination benefits during 

 
17 Based on data on the proportion of high-risk individuals and the differential burden of the disease on them versus 
others, Castillo et al. (2021) specify two additional kinks at 0.13 (the fraction of high-risk population) and 0.5, setting 
𝐻𝐻(0.13) = 0.395 and 𝐻𝐻(0.5) = 0.816. 
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the Covid-19 pandemic. The function’s concavity reflects the larger benefits from initial courses 

administered to more vulnerable populations (such as frontline workers and the elderly in the case 

of Covid-19). Other diseases might have different demographic patterns, but benefits are still likely 

to be concave given any heterogeneity in harm across groups. As explained in the supplementary 

appendix to Castillo et al. (2021), a 70% threshold for herd immunity leaves room for an 

imperfectly effective vaccine to achieve the threshold at plausible transmission rates as indexed 

by the basic reproductive number ℛ0. 

The harm mitigated by vaccines is scaled by 𝛾𝛾 ∈ [0,1] to allow for the possibility that some 

of the harm would have been mitigated by other measures such as improved treatments, better 

contact tracing, and so forth even without a vaccine, or that a superior vaccine technology comes 

along that renders advance capacity for existing technologies obsolete. That 𝛾𝛾 < 1 might also 

reflect imperfect vaccine efficacy or unwillingness among a segment of the population to be 

vaccinated. Recalling the definition of  𝑃𝑃𝑃𝑃(𝑇𝑇𝑀𝑀𝑁𝑁������∗) as the expected present value of total social 

losses from the next pandemic evoking a vaccine response, the expected present value of 

vaccination benefits in the next pandemic equals 

𝛾𝛾𝑃𝑃𝑃𝑃(𝑇𝑇𝑀𝑀𝑁𝑁������∗)�𝐻𝐻(𝑥𝑥�(𝜏𝜏)) 𝑑𝑑𝜏𝜏
𝑇𝑇

0

. (21) 

The pandemic’s duration 𝑇𝑇 is endogenous, given by the implicit solution to  

�𝑥𝑥�(𝜏𝜏)𝑑𝑑𝜏𝜏
𝑇𝑇

0

= 0.7. (22) 

This completes the specification of the model. Table 3 summarizes definitions of 

parameters used in the model and their baseline values.  

6  Results for Program Evaluation 

Table 4 presents the baseline results for outcomes from the program of advance investment 

evaluated relative to the status-quo program. Recall that the status quo we consider is relatively 

sophisticated: it also runs a vaccination campaign in the next significant pandemic, installs the 

maximum capacity supply constraints allow, and puts as much of that capacity as possible to work 
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at-risk to reduce production delays. The only difference is that in the status quo, the world comes 

into the pandemic without the extra capacity installed in advance.  

We consider a baseline design of the advance-investment program that installs an extra 24 

billion annual courses of advance capacity for the next pandemic above and beyond that needed to 

meet typical vaccination demands. We intentionally specify an exogenous capacity level in the 

baseline design rather than optimizing over this capacity. A much larger program might run into 

constraints outside of the model—pushing the limits of standard government budgeting and 

international cooperation or running into the increasing portion of the marginal-cost curve, 

straining our linear-capacity-cost specification. At the end of the section, we address the question 

of whether the program could do even better with more or less than the baseline capacity according 

to the model.  

Assuming two doses are required for full vaccination course, and substituting the values 

for the cost parameters in Table 3 into the cost function from Section 5.4, one can calculate that 

the baseline design spends $60 billion up front to expand production capacity for vaccines and 

supply chain inputs. To offset the modeled depreciation, one can calculate that the baseline design 

requires $5 billion to be spent each year to maintain capacity.  

By shifting some expenditures ex ante, the baseline advance-investment program actually 

reduces expenditures that have to be made ex post during the next pandemic by $32 billion: less 

capacity is left to be installed during the pandemic, when the inelastic short-run supply entails 

quite high unit cost for capacity. Netting out rental income earned deploying the advance capacity 

for vaccines for other diseases between pandemics, the expected present value of the stream of 

expenditures through the next pandemic are $27 billion higher under the advance program. 

Compared to the counterfactual of delayed investment, the expected present value of gross benefits 

is $539 billion higher under advance investment. (To emphasize, this is the expected present value 

of the additional social losses mitigated just in the next pandemic, not considering pandemics after 

that, absolving us from having to model how much capacity remains available under alternative 

programs.) The gross benefits come from achieving the target 70% vaccination coverage about 

seven months earlier. Advance investment yields an NPV gain of $504 over the status quo.  

Table 5 shows the sensitivity of these results to selected assumptions and parameters. For 

space considerations, parameters that changed the results less than those displayed are omitted (see 

table notes for complete list). The NPV gain from advance investing always greater than $288 
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billion over the status quo for any single parameter change considered, whether the probability of 

epidemic arrival is cut in half, the proportion of losses left to be mitigated by vaccines (so not 

already mitigated, say, by effective treatments) is reduced to 𝛾𝛾 = 30%, the proportion of at-risk 

capacity assumed to be devoted to successful vaccines is reduced to 𝑎𝑎𝑚𝑚 = 𝑎𝑎𝑜𝑜 = 20%, VSL is 

reduced to $1 million, the social discount rate is raised to 𝑟𝑟 = 6%, or the social cost of public 

funds is raised to 𝜆𝜆 = 30%. The net gain from advance investment is large in any case and thus 

evidently robust.  

Some of the robustness exercises indicate just how conservative some model assumptions 

are. If we relax the truncation of pandemic intensity beyond the range of historically observed 

epidemics, expected net benefits from the advance program can be nearly $1.3 trillion greater than 

the counterfactual. Reducing the social discount rate to 𝑟𝑟 = 2%, a value commonly used in the 

literature for program evaluation, the advance program results in more than a $1 trillion gain over 

the counterfactual.18  

As we saw, the baseline design of the advance program spends $60 billion up front to install 

24 billion annual courses of capacity. Supposing more spending were not prevented by political 

constraints or steeply convex capacity costs, our model would suggest that even larger up-front 

investments would be worthwhile. Installing 45 billion courses of annual capacity, which one can 

compute entails an upfront expenditure of $113 billion, increases the NPV gain over the 

counterfactual program from $504 billion to $705 billion. Smaller upfront investments than the 

baseline design would have lower expected net benefits but would still be worthwhile. For 

example, installing half the advance capacity, 12 billion annual courses, entailing an upfront 

investment of $30 billion, would generate an NPV of $534 billion, $303 billion more than the 

counterfactual.  

 
18 As another gauge of the robustness of the results, for all parameters in Table 5, we engaged in a “stress test” that 
substituted increasingly extreme parameter values until a value was found making the advanced-capacity program 
worse than the counterfactual. No positive value of VSL does so; even with mortality losses zeroed out, the remaining 
output and learning losses are substantial enough that the program continues to dominate the counterfactual. For other 
parameters, while values can be found for which advance investment is worse than the counterfactual, extreme values 
are required. The probability of pandemic arrival must be cut by a factor of 20. The probability that the need for the 
vaccine is not obviated must be cut by a factor of 17 from the baseline 𝛾𝛾 = 50% to 𝛾𝛾 = 3%. The fraction of advance 
capacity that can be immediately employed for successful candidates must be cut by a factor of 25 from 𝑎𝑎𝑣𝑣 = 30% to 
𝑎𝑎𝑣𝑣 = 1.2% for both technologies 𝑣𝑣 ∈ {𝑚𝑚, 𝑜𝑜}. An eight-fold increase in the social discount factor is required, from 𝑟𝑟 =
4% to 𝑟𝑟 = 114%. The social cost of public funds must be increased from 𝜆𝜆 = 0% to 𝜆𝜆 = 1,440%. 
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7  International Versus National Programs 

Our analysis thus far has focused on a global program. This focus allows for convenient exposition, 

enabling us to report a single world number rather than a set of numbers for individual countries. 

More importantly, a global program extends the net benefits from advance preparations, which we 

found to be very large, to the greatest number of individuals possible.  

Because advance investment in vaccine supply by one country generates positive 

externalities to other countries, advance investment is likely to be suboptimal unless countries 

strike a cooperative agreement. Countries investing in advance reduce their demand for in-

pandemic capacity, lowering the price for those who have engaged in advance investment and 

relaxing the constraint that at most capacity 𝑥𝑥′ can be installed in the short run. Technically, if all 

functions in the model were linear, there would be no spillovers between countries and thus no 

benefit from coordination. But the concavity of the benefit function and the convexity of the short-

run capacity-cost function leads countries’ investments to be strategic substitutes.  

An unmodeled benefit of a cooperative international agreement is that could provide 

insurance against variation in the severity of the pandemic across countries. The model does not 

allow for heterogeneity in intensity across countries, so leaves no role for such insurance. To 

address real-world heterogeneity across countries, both in the average intensity of the pandemic 

there and the timing of when the waves hit it, the international program could pool advance 

investment but then allocate vaccines based on the current case rate or death rate in individual 

countries.19 As with other forms of insurance, such a program carries a risk of moral hazard, i.e., 

that countries might take less stringent control measures knowing this will increase their vaccine 

supply. However, given the high costs of the pandemic even with vaccine access, moral hazard is 

unlikely to be a significant problem in this case.20  

Participating countries in an international program would have to agree on how program 

expenditures should be allocated among them. It might be natural to ask participating countries to 

 
19 Even after the start of the pandemic, considerable uncertainty remains about both the relative severity and timing of 
waves in different parts of the world suggesting insurance even during a pandemic could be beneficial. For example, 
India’s mortality from Covid-19 was initially low, only to be badly hit by the Delta wave. 
20The perception that allocating vaccine based on local cases rewards bad performers might still undermine efforts to 
include insurance-type provisions in an international program. COVAX, a large, coordinated vaccine purchase 
mechanism for Covid-19 initially allocated vaccines without regard to cases, mortality rates, or even demand (proxied 
by utilization of previous shipments been utilized), possibly indicating the political challenges of building insurance 
into an international program. 
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pay into the program according to GDP and receive vaccines according to population (or number 

of high-risk individuals). However, such a mechanism would involve substantial redistribution 

from richer to poorer countries. There may be a limit to how much redistribution can be supported 

before it is no longer incentive compatible for high-income countries to participate.21 What that 

limit is may depend in part on the nature of the bargaining process, whether negotiators commit to 

abandoning the whole agreement if pivotal countries do not participate or whether the agreement 

forges on without those countries. Perhaps paradoxically, countries are more likely to participate 

if they believe themselves to be pivotal, since declining to participate destroys the program they 

would otherwise free ride on. Making a country pivotal relaxes its incentive-compatibility 

constraint and allows the program to support more redistribution from it. If high-income countries 

do not believe themselves to be pivotal, it will be harder to engender the optimal level of their 

participation even in a program without any redistribution.  

 In the absence of an international agreement, if no other country engages in advance 

investment, individual countries would have strong unilateral incentives to be the one to do so. 

With few countries investing in advance, competition for capacity installed during the pandemic 

can be expected to be intense, leading to high capacity prices and capacity shortages. An individual 

country has an incentive to install capacity in advance to avoid this competition.  

For example, if the United States undertook an advance-investment program (proportional 

to the size of the global program analyzed above), we find that the program would generate an 

expected present value of $77 billion in benefits net of program costs, a gain of $61 billion ($183 

per capita) over the counterfactual program. Not just high-income countries but middle- and lower-

income countries could also benefit from unilateral advance investment. For Brazil, for example, 

we find that advance investment would generate an expected present value of $19 billion in net 

benefits over program costs, a gain of $15 billion ($70 per capita) over the counterfactual.22  

Investing countries could generate some revenue for themselves and social value for others 

by signing bilateral agreements with non-investing countries to use their facilities to produce 

vaccines for non-investing countries while the pandemic is severe there but not domestically. The 

 
21 International discussions during the early stages of Covid-19 to develop a coordinated vaccine purchase arrangement 
across countries of very different income levels ran into some of these issues. 
22 Since our analysis of individual-country programs holds mortality losses per capita constant at the global average, 
the difference in benefits between the United States and Brazil is mainly driven by the greater economic-output losses 
suffered in the country with higher GDP per capita and are only partially offset by longer school closures observed in 
MICs and LICs. 
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investing country would retain priority over courses if the pandemic rises there but could benefit 

other countries meanwhile. 

8  Conclusion 

While the world would like to move on from worrying about pandemics, expected losses from the 

next pandemic are too high to ignore. Combining data on the probability distribution of epidemics 

of different severity and estimates of the relationship between epidemic severity (measured in 

deaths) and mortality, economic-output, and education losses from epidemics, we conservatively 

estimated that the present discounted value of the stream of expected social losses from future 

pandemics is $17.8 trillion. This is equivalent to losing $712 billion every year going forward, 

more than the budget of the U.S. Department of Defense in the baseline year. Investments that 

reduce the cost of the next pandemic, even if they are relatively ambitious and expensive, can 

generate very high expected returns.  

Investing now in building the capacity to rapidly vaccinate a large percentage of the 

population against a new virus can be a key way to dramatically reduce the cost of future 

pandemics. Specifically, we calculate that $60 billion in upfront investment and $5 billion in 

annual expenditure would be sufficient to fund capacity to produce 24 billion vaccine courses per 

year, which in turn would be sufficient to vaccinate 70% of the world’s population in six months 

in a pandemic. The NPV gain from this program over the status quo in which capacity investment 

is delayed until the start of the next pandemic would be over $500 billion. Under reasonable 

assumptions, even larger capacity would have a high social return. Social returns are high even if 

we factor in a risk that vaccines will not work against the next virus, that there will be a high degree 

of vaccine hesitancy, that an effective antiviral will reduce the benefit of a vaccine, or that new 

vaccine technology, superior to mRNA, renders a greater fraction of capacity sunk now obsolete 

later. Social returns remain high even if the funder faces a substantial social cost of public funds 

owing to distortionary taxation or opportunity cost of diverting resources from other worthy 

projects.  

 In contrast to the recommendations in this paper, valuable mRNA vaccine capacity is 

currently being, or about to be, converted to other uses. Allowing this capacity to be dismantled 

suggests we are failing to learn the lesson of Covid-19. 

Our proposal is broadly consistent with recommendations in high-profile reports on 
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pandemic preparedness including those issued by the G7, G20, and McKinsey. The G7 set out a 

road map for accelerating the development and distribution of vaccines in a future pandemic that 

included greatly expanding vaccine manufacturing capacity and ensuring it is “kept warm” (G7 

Pandemic Preparedness Partnership 2021). Different elements of the international system are 

tasked with implementing the recommendations. The G20 make similar recommendations (G20 

High Level Independent Panel on Financing the Global Commons for Pandemic Preparedness 

2021). A McKinsey report (Craven et al. 2021) proposes a five-prong approach to improving 

global pandemic preparedness, one of which calls for advance investment in vaccine capacity, the 

focus of our paper. Our contribution beyond these reports is to estimate benefits and costs based 

on a formal model of the program’s design. 

 While this paper has focused on the benefits of maintaining vaccine supply capacity, the 

expected large losses from future pandemics imply that other investments that reduce their costs 

are also likely to be good investments. Perhaps most closely related to this paper are the proposals 

to develop and produce in large quantities a universal coronavirus vaccine that would protect 

against a wide variety of coronaviruses including ones that are yet to emerge. A new World Bank 

fund (Financial Intermediary Fund for Pandemic Prevention) plans to invest in, among other 

things, increased surveillance for the emergence of new pathogens. Research and development 

into new mRNA vaccines will help us improve this still relatively new technology and understand 

which type of viruses it is best suited to combatting. Berry et al. (2020) have suggested that putting 

in place a framework for when human challenge trials could accelerate testing of new vaccines 

and save millions of lives in a future pandemic. Investments in health systems to store and transport 

vaccines and the health staff to administer them would be helpful to reduce the lag in rolling out 

available supplies. Finally, while much of the analysis and recommendations in this paper are 

specific to reducing the cost of future viral pandemics, multidrug resistant bacteria remain a threat. 

Development of new antibiotics to be kept in reserve for use only in combination therapy for 

multidrug-resistant strains would reduce the probability of a highly damaging bacterial pandemic. 

Fortunately, scaling up antibiotics tends to be easier, cheaper, and faster than scaling up vaccines, 

hence our focus on vaccines. A similar logic applies to the development of broad-spectrum 

antivirals. Given the large expected losses from future pandemics, investments in the development 

of broad-spectrum antivirals are likely to be highly cost effective even if there were no certainty 

they would work against the next pandemic.   
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Appendix A. Details on Derivations 

This appendix provides details on several derivations omitted from the text for space 

considerations.  

Derivation of Equation (11) 

A preliminary step is to prove that the analogous formula for 𝑀𝑀𝑀𝑀𝑡𝑡(𝑖𝑖) in equation (5) holds for 

𝑂𝑂𝑀𝑀𝑡𝑡(𝑖𝑖) and 𝑀𝑀𝑀𝑀𝑡𝑡(𝑖𝑖). We have 

𝑂𝑂𝑀𝑀𝑡𝑡(𝑖𝑖) = 𝑌𝑌𝑡𝑡𝑁𝑁𝑡𝑡
∆(𝑖𝑖)
100

 

= 𝑌𝑌𝑡𝑡𝑁𝑁0
∆(𝑖𝑖)
100

 

=
𝑌𝑌𝑡𝑡
𝑌𝑌0
𝑂𝑂𝑀𝑀0(𝑖𝑖) 

= (1 + 𝑦𝑦)𝑡𝑡𝑂𝑂𝑀𝑀0(𝑖𝑖). 

(23) 

The first step is a generalization of the formula given for 𝑂𝑂𝑀𝑀0(𝑖𝑖) in (7). The second step follows 

from fixing the population at 𝑁𝑁0 for our analysis. The third step follows from substituting from 

(7). The last step follows from the definition of 𝑦𝑦 as the GDP growth rate, implying 𝑌𝑌𝑡𝑡 =

(1 + 𝑦𝑦)𝑡𝑡𝑌𝑌0. We also have 

𝑀𝑀𝑀𝑀𝑡𝑡(𝑖𝑖) =
10

13.8
𝑂𝑂𝑀𝑀𝑡𝑡(𝑖𝑖) 

=
10

13.8
(1 + 𝑦𝑦)𝑡𝑡𝑂𝑂𝑀𝑀0(𝑖𝑖) 

= (1 + 𝑦𝑦)𝑡𝑡𝑀𝑀𝑀𝑀0(𝑖𝑖). 

(24) 

The first step follows from (8), the second step follows from (23), and the third step follows again 

from (8).  

Combining these formulas,  

𝑇𝑇𝑀𝑀𝑡𝑡(𝑖𝑖) = 𝑀𝑀𝑀𝑀𝑡𝑡(𝑖𝑖) + 𝑂𝑂𝑀𝑀𝑡𝑡(𝑖𝑖) + 𝑀𝑀𝑀𝑀𝑡𝑡(𝑖𝑖) 

= (1 + 𝑦𝑦)𝑡𝑡[𝑀𝑀𝑀𝑀0(𝑖𝑖) + 𝑂𝑂𝑀𝑀0(𝑖𝑖) + 𝑀𝑀𝑀𝑀0(𝑖𝑖)] 

= (1 + 𝑦𝑦)𝑡𝑡𝑇𝑇𝑀𝑀0(𝑖𝑖). 

(25) 

Substituting (25) into (10), 
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𝐸𝐸�𝑇𝑇𝑀𝑀𝑡𝑡(𝑖𝑖)� = � 𝑇𝑇𝑀𝑀𝑡𝑡(𝑖𝑖) 𝑑𝑑Φ(𝑖𝑖)
∞

0

 

= (1 + 𝑦𝑦)𝑡𝑡 � 𝑇𝑇𝑀𝑀0(𝑖𝑖) 𝑑𝑑Φ(𝑖𝑖)
∞

0

 

= (1 + 𝑦𝑦)𝑡𝑡𝐸𝐸�𝑇𝑇𝑀𝑀0(𝑖𝑖)�. 

(26) 

Substituting (26) into (9), rearranging, and summing the resulting series, 

𝑃𝑃𝑃𝑃(𝑇𝑇𝑀𝑀����) = ��
1

1 + 𝜌𝜌
�
𝑡𝑡+1

𝐸𝐸�𝑇𝑇𝑀𝑀𝑡𝑡(𝑖𝑖)�
∞

𝑡𝑡=0

 

= 𝐸𝐸�𝑇𝑇𝑀𝑀0(𝑖𝑖)���
1

1 + 𝑟𝑟
�
𝑡𝑡+1

(1 + 𝑦𝑦)𝑡𝑡
∞

𝑡𝑡=0

 

=
𝐸𝐸�𝑇𝑇𝑀𝑀0(𝑖𝑖)�

1 + 𝑦𝑦
��

1 + 𝑦𝑦
1 + 𝑟𝑟

�
𝑡𝑡+1∞

𝑡𝑡=0

 

=
𝐸𝐸�𝑇𝑇𝑀𝑀0(𝑖𝑖)�
𝑟𝑟 − 𝑦𝑦

. 

(27) 

Multiplying both sides by 𝜌𝜌 yields equation (11). 

Derivation of Equation (20) 

Equation (20) is the sum of the two sources of costs given in equations (16) and (19). Simplifying 

the series in (16), 

(1 − 𝜙𝜙) �𝑘𝑘𝑣𝑣𝑧𝑧𝑣𝑣 + ��
1

1 + 𝑟𝑟
�
𝑡𝑡+1

Φ(𝑖𝑖∗)𝑡𝑡𝛿𝛿𝑘𝑘𝑣𝑣𝑧𝑧𝑣𝑣

∞

𝑡𝑡=0

� 

= (1 − 𝜙𝜙)𝑘𝑘𝑣𝑣𝑧𝑧𝑣𝑣 +
(1 − 𝜙𝜙)𝛿𝛿𝑘𝑘𝑣𝑣𝑧𝑧𝑣𝑣

Φ(𝑖𝑖∗)
��

Φ(𝑖𝑖∗)
1 + 𝑟𝑟

�
𝑡𝑡+1∞

𝑡𝑡=0

 

= (1 − 𝜙𝜙)𝑘𝑘𝑣𝑣𝑧𝑧𝑣𝑣 +
(1 − 𝜙𝜙)𝛿𝛿𝑘𝑘𝑣𝑣𝑧𝑧𝑣𝑣
1 + 𝑟𝑟 − Φ(𝑖𝑖∗)

. 

(28) 

Simplifying the series in (19),  
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��
1

1 + 𝑟𝑟
�
𝑡𝑡+1

ℎ𝑡𝑡(𝑖𝑖∗) �𝐾𝐾𝑣𝑣(𝑥𝑥𝑣𝑣 − 𝑧𝑧𝑣𝑣) + 𝑐𝑐𝑣𝑣 ∙
𝑥𝑥𝑣𝑣
𝑥𝑥
∙ 0.7𝑁𝑁0�

∞

𝑡𝑡=0

 

= �𝐾𝐾𝑣𝑣(𝑥𝑥𝑣𝑣 − 𝑧𝑧𝑣𝑣) + 𝑐𝑐𝑣𝑣 ∙
𝑥𝑥𝑣𝑣
𝑥𝑥
∙ 0.7𝑁𝑁0���

1
1 + 𝑟𝑟

�
𝑡𝑡+1∞

𝑡𝑡=0

Φ(𝑖𝑖∗)𝑡𝑡[1−Φ(𝑖𝑖∗)] 

= �𝐾𝐾𝑣𝑣(𝑥𝑥𝑣𝑣 − 𝑧𝑧𝑣𝑣) + 𝑐𝑐𝑣𝑣 ∙
𝑥𝑥𝑣𝑣
𝑥𝑥
∙ 0.7𝑁𝑁0�

1 −Φ(𝑖𝑖∗)
Φ(𝑖𝑖∗)

��
Φ(𝑖𝑖∗)
1 + 𝑟𝑟

�
𝑡𝑡+1∞

𝑡𝑡=0

 

= �𝐾𝐾𝑣𝑣(𝑥𝑥𝑣𝑣 − 𝑧𝑧𝑣𝑣) + 𝑐𝑐𝑣𝑣 ∙
𝑥𝑥𝑣𝑣
𝑥𝑥
∙ 0.7𝑁𝑁0�

1 −Φ(𝑖𝑖∗)
1 + 𝑟𝑟 − Φ(𝑖𝑖∗)

. 

(29) 

Summing (28) and (29) yields (20). 
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Table 1  Mortality and Economic Losses from Selected Pandemics Over Last Century 
 
 Deaths  Economic losses 

Epidemic 
(date) 

 
Total deaths  
over pandemic 
(source) 

Mortality intensity = 
annual deaths per 
thousand people  
in world  Economic loss over pandemic 

Annual 
economic loss  
(% global GDP) 

      
1918 flu 
(1918–20) 

32.0 mil. 
(Patterson & Pyle 1991) 

5.7 × 101  6% global GDP 
(Barro, Ursúa, & Weng 2020) 

2.0 

      
SARS 
(2002–03) 

1,000 
(Marani et al. 2021) 

1.2 × 10-4  0.1% global GDP 
(Keogh-Brown & Smith 2008)  

2.5 × 10-2 

      
Ebola 
(2013–16) 

11,325 
(CDC 2019) 

3.9 × 10-4  0.06% global GDP 
(Huber, Finelli, & Stevens 2018) 

8.3 × 10-2 

      
Zika 
(2015–17) 

1,000 
(Marani et al. 2021) 

4.5 × 10-5  0.05% Latin American and 
Caribbean GDP annually 
(UN Development Programme 2017) 

1.7 × 10-2 

      
Covid-19 
(2020-22) 

21.3 mil.  (Economist 
2022) 

3.2 × 10-1  14.4% global GDP 
(IMF 2022) 

3.6 

 
 
Notes: For SARS and Zika, estimated deaths set to 1,000, the lower bound on observation threshold from Marani et al. (2021) 
power-law distribution.  
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Table 2  Expected Annual Global Pandemic Losses 
 
 Expected annual pandemic losses (billion dollars) 

Scenario 
Mortality  
𝐴𝐴𝑃𝑃(𝑀𝑀𝑀𝑀����) 

Economic output 
 𝐴𝐴𝑃𝑃(𝑂𝑂𝑀𝑀����) 

Learning  
 𝐴𝐴𝑃𝑃(𝑀𝑀𝑀𝑀���) 

Total  
 𝐴𝐴𝑃𝑃(𝑇𝑇𝑀𝑀����) 

     
Baseline  519 112 81 712 
     
Probability of pandemic arrival     
     • Halved  259 56 41 356 
     • Doubled 849 183 133 1,165 
     
Truncating intensity distribution     
     • Halve upper truncation 339 90 65 494 
     • Double upper truncation 640 114 83 836 
     • Remove upper truncation 1,283 118 86 1,486 
      
 Value of statistical life (VSL)      
     • Reduce to $1 million  399 112 81 592 
     • Increase to $1.6 million 638 112 81 832 
     
GDP per capita growth rate 𝑦𝑦     
     • Reduce to 1.4%  479 104 75 657 
     • Increase to 1.8% 566 122 89 777 
     
Social discount rate 𝑟𝑟     
     • Reduce to 2% 1,556 336 244 2,136 
     • Increase to 6% 424 92 66 582 
     
 
Notes: Entries are expected annual global pandemic losses in each category and in total following equation (11) in 
billions of 2021 dollars rounded to the nearest billion. The baseline scenario in the first row of results assumes a 
distribution of pandemic intensity given by equation (3); truncates pandemic intensity at the highest figure for the 1918 
flu reported in a scholarly source; uses the arrival rate calculated using the Marani et al. (2021) data; and sets the VSL 
at $1.3 million, social discount factor at 𝑟𝑟 = 4%, and GDP per capita growth rate at 𝑦𝑦 = 1.6%. Other scenarios change 
only the indicated feature from the baseline.  
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Table 3  Model Parameters 
 

Notation Definition Baseline value 

Range for  
sensitivity 
analysis 

    
Pandemic-arrival parameters from Marani et al. (2021) 
     𝛼𝛼 Probability detectable epidemic 0.62 n.a. 
     𝜎𝜎 Pareto shape parameter 0.0113 n.a. 
     𝜉𝜉 Pareto shape parameter 1.41 n.a. 
     𝜇𝜇′ Lower threshold for detectable epidemic 10−3 n.a. 
 
Other pandemic-arrival parameters 
     𝜇𝜇′′ Upper threshold for largest epidemic (authors) 17.8 8.9–35.6 
    
    
Pandemic-loss parameters from various sources 
     VSL Value of statistical life (Sweis 2022) $1.3 million $1–1.6 mil. 
     𝑦𝑦 GDP per capita growth rate (OECD 2022) 1.6% 1.4–1.8% 
     𝛿𝛿 Depreciation rate (authors) 8% 6–10% 
     𝑟𝑟 Social discount rate (authors) 4% 2–6% 
    
    
Vaccine-supply parameters from Castillo et al. (2021) 
     𝛾𝛾 Fraction remaining harm mitigated by vaccine 50%  30–70% 
     𝜃𝜃 Reduction of pandemic-time investments 25% 0–50% 
     𝑘𝑘𝑚𝑚 Unit cost of advance mRNA capacity $1.50 per ann. course $0.75–3.00 
     𝑘𝑘𝑜𝑜 Unit cost of advance capacity for other vaccines $3.00 per ann. course  $1.50–6.00 
     𝑐𝑐𝑚𝑚 Marginal cost of producing mRNA vaccines $6.00 per course $3.00–12.00 
     𝑐𝑐𝑜𝑜 Marginal cost of producing other vaccines $3.00 per course $1.50–6.00 
     𝜀𝜀 Decreasing returns to pandemic capacity 1 0.75–1.25 
     𝑝𝑝𝑏𝑏  Probability both technologies successful 50%  30–70% 
     𝑝𝑝𝑚𝑚, 𝑝𝑝𝑜𝑜 Probability technology alone successful 15%  10–20% 
    
Vaccine-supply parameters from G20 High Level Independent Panel (2021)  
     𝑎𝑎𝑚𝑚, 𝑎𝑎𝑜𝑜 Fraction of at-risk capacity successful 30%  20–40% 
     𝑏𝑏𝑚𝑚, 𝑏𝑏𝑜𝑜 Fraction of at-risk capacity repurposable 40%  20–60% 
     𝜏𝜏𝑚𝑚 Time to repurpose mRNA candidate 2 months 1–3 months 
     𝜏𝜏𝑜𝑜 Time to repurpose other candidate 6 months 3–9 months 
     𝜙𝜙 Rental recovery fraction 70% 50–90% 
    
Other cost parameters 
     𝜆𝜆 Social cost of public funds 0% 0-30% 
    
    
 
Notes: For parameters for which the source is listed as “authors,” Section 3 provides details on the calculations or 
judgment we used to select the baseline value of the parameter, often informed by other scholarly sources cited in 
the text. Sensitivity analysis only conducted for last of the pandemic-arrival parameters; rest are marked “not 
applicable.” The 30% upper bound on parameter 𝜆𝜆 is based on an estimate of the deadweight loss of taxation in 
developed countries by Snow and Warren (1995).  
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Table 4  Baseline Results for Program Outcomes 
 

 
Costs and benefits of program to undertake vaccination 
campaign in next significant pandemic (billion $) 

 
With advance 
investment 

Without advance 
investment Difference 

    
Current value of expenditures     
     • Initial advance investment  60 0 60 
     • Annual maintenance of advance capacity  5 0 5 
     • Additional expenditures in pandemic 22 53 -32 
    
    
Present value of program outcomes    
     • Expected program costs (net of rental income) 50 15 35 
     • Expected gross benefits  785 246 539 
     • Expected net benefits  735 231 504 
    
 
Notes: All entries are in billions of 2021 dollars. First set of rows report current value of expenditures in year 
undertaken. These are actual, not effective, expenditures, so do not net out rental income. Second set of rows 
report present values (from the perspective of the base year) of costs and benefits of program leading to 
vaccination campaign in next pandemic of at least half the intensity of Covid-19.    
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Table 5  Sensitivity of Program Outcomes to Changes in Selected Parameters 
 

 
Present value of expected net benefits of vaccination 
campaign in next significant pandemic (billion $) 

Scenario 
With advance 
investment 

Without advance 
investment Difference 

    
Baseline  735 231 504 
    
Probability of pandemic arrival 437 144 293 
     • Halved 1,079 329 749 
     • Doubled    
    
Truncating intensity distribution 586 184 402 
     • Halve upper truncation 910 286 624 
     • Double upper truncation 1,828 573 1,255 
     • Remove upper truncation    
    
  𝛾𝛾 (fraction of remaining harm mitigated by vaccine) 421 133 288 
     • Reduce to 30% 1049 329 719 
     • Increase to 70%    
    
 Value of statistical life (VSL) 582 183 399 
     • Reduce to $1 million  887 279 609 
     • Increase to $1.6 million     
         
 𝑎𝑎𝑚𝑚, 𝑎𝑎𝑜𝑜 (fraction of at-risk capacity successful) 596 171 425 
     • Reduce to 20% 848 284 563 
     • Increase to 40%    
    
𝑟𝑟 (social discount rate) 1,518 473 1,045 
     • Reduced to 2% 480 152 328 
     • Increased to 6%    
    
𝜆𝜆 (social cost of public funds) 720 227 494 
     • Increased to 30% 735 231 504 
    
 
Notes: All entries are expected present values in billions of 2021 dollars. For space considerations, sensitivity analyses have 
been omitted for other parameters that had smaller effect on difference in program outcomes than those displayed, for 
example, for  𝑓𝑓𝑚𝑚 and 𝑓𝑓𝑜𝑜. Those parameters include 𝜀𝜀, 𝑦𝑦, 𝛿𝛿,  𝜙𝜙, and the pairs (𝑏𝑏𝑚𝑚, 𝑏𝑏𝑜𝑜), (𝑘𝑘𝑚𝑚, 𝑘𝑘𝑜𝑜), and (𝜏𝜏𝑚𝑚, 𝜏𝜏𝑜𝑜), where the two 
elements of each pair are changed together. See Table 3 for the baseline values of those parameters and changes considered. 
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Figure 1.  Exceedance Probability Based on Marani et al. (2021) Estimates. 

  

Notes: Graph of the exceedance probability, interpreted as the probability that an epidemic of at least that intensity 
arrives in a year. Formally, the exceedance probability equals 1 −Φ(𝑖𝑖), where Φ(𝑖𝑖) is the cumulative distribution 
function in equation (3). Log scale used for horizontal axis. Above an intensity of 𝜇𝜇′′ = 17.5, probability drops to 
zero in the baseline specification, reflecting the conservative baseline assumption truncating the intensity of pandemics 
at the highest report in a scholarly source for the most intense pandemic in the Marani et al. (2021) data (1918 Flu). 
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Figure 2.  Relationship Between Epidemic Intensity Economic Losses in Historical Pandemics.  

 
Notes: Data points from Table 1. Regression line given by equation (6). Log scales used for both axes. 
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