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1. Introduction

The increasing demand for rigor in empirical economics has led to the increasing use of auxiliary

tests (balance, parallel trends, over-identification, placebo, etc.) to assess the credibility of a paper’s

main results. We dub these “sniff tests” because rejection is bad news for the author and standards

for passing are informal.

Sniff tests provide valuable information, allowing readers to discount main results that stem

from misspecification. It is natural for journals to not only require sniff tests to be reported but to

use them as a screen, discarding misspecified studies that would pollute the literature and waste

scarce journal space. The use of sniff tests as a screen is not completely benign, however. First,

incentives to “publish or perish” may drive authors to omit sniff tests they have run indicating mis-

specification from their papers if not actively engaging in “p-hacking,” manipulating data, meth-

ods, or reporting strategy so that reported probability values (p-values) appear better than actually

estimated (Brodeur, Cook, and Heyes 2020). These forms of author manipulation can distort re-

sults, impair statistical inference, and erode trust in research generally. Second, by chance, 5% of

well-specified studies will have p-values that are significant at the 5% level, 10% significant at the

10% level, and so forth, making them appear to be misspecified when judged by those respective

thresholds. If reviewers screen out these studies in the publication process (or authors self-screen

anticipating reviewer treatment), valuable research would be lost, relegated to Rosenthal’s (1979)

metaphorical “file drawer.”

In this paper, we seek to measure the rate at which sniff tests are removed by the publication

process (whether by p-hacking or relegation to the file drawer) and to determine whether this

rate is justified by a commensurate rate of misspecification among removed studies. Estimating

2



latent characteristics of removed tests, which are not directly observable, is a challenge, which

we surmount by marshaling a large dataset of published sniff tests, hand collecting a sample of

nearly 30,000 sniff tests from 893 articles in 59 economics journals. Under the null hypothesis

of no misspecification, and absent removal by the publication process, sniff-test p-values should

have a uniform distribution on [0,1] by construction. Comparing the aggregate distribution of p-

values (called the p-curve) from our large sample of sniff tests to the uniform benchmark allows

us to uncover the rate of removal of significant p-values and the extent of misspecification in the

underlying set of papers.

Our analysis starts with a visual inspection of kernel-density estimates of p-curves in various

subsamples. After an initial look at the full dataset, most of the analysis focuses on the “pure” sam-

ple of sniff tests for which the authors were unlikely to have taken measures (re-randomization,

stratification, or matching) to lessen the p-values’ significance. We further break the pure sample

down into balance tests in randomized controlled trials (RCTs) and other tests. We expect that few

RCTs suffer from flawed randomization procedures, ruling out the existence of a substantial pro-

portion of misspecified studies for this subsample. Unless significant p-values have been removed

by the publication process, the p-curve for balance tests in RCTs should follow the uniform dis-

tribution. For other tests, an unknown, perhaps substantial, proportion of studies may suffer from

misspecification, skewing the p-curve toward 0 in the absence of removal.

For the pure sample of balance tests in RCTs, the kernel-density estimate of the p-curve looks

relatively uniform except for a block of missing mass in the [0,0.15) interval. This shape is consis-

tent with balance tests in RCTs not suffering from much misspecification but those with significant

p-values being subject to a substantial rate of removal. For the pure sample of other tests, the

p-curve is highly non-uniform, with a large spike of p-values near 0. This shape is consistent with
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substantial misspecification in the underlying population of studies. Proceeding from visual to for-

mal regression analysis allows us to quantify the departure from the uniform benchmark and judge

the statistical significance of any departure.

We proceed to use the regression estimates as an input into the computation of bounds on the

rates of removal and misspecification. One of our contributions in this paper is the derivation of

such bounds under plausible nonparametric assumptions. Initially, we only impose the minimal

assumption that misspecification tends to pile mass on low p-values while the publication process

tends to do the opposite, disposing of low p-values or shifting them to higher values. Stronger

assumptions allow us to tighten the bounds. Our tightest bounds suggest that around a third of

the pure sample of RCT balance tests with p-values in [0,0.15) were removed by the publication

process and suggest that more than 40% of the pure sample of other tests with p-values in [0,0.15)

were indicative of misspecification rather than bad luck.

Of course, authors would like readers to believe that significant sniff tests are the result of

bad luck rather than misspecification. Such claims can be made with impunity because they are

difficult to reject on an individual basis. Our large sample allows us to evaluate whether such

claims are justified in the aggregate. We find that authors defend approximately 80% of significant

p-values as either passing or resulting from bad luck in the pure sample of RCT balance tests

and approximately 50% in the pure sample of other tests. These rates of strong claiming are

not inconsistent with estimates of the nonparametric bounds on misspecification but may be high

enough to merit reader scrutiny.
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2. Relation to Literature

Our paper provides the first large-scale meta-analysis of sniff tests. The closest previous work is

Bruhn and McKenzie (2009). The authors investigate the practice used by leading development

economists to obtain and report balance in RCTs. The authors analyze a sample of balance tests

from articles in development economics. While their study examines 13 articles, our sample in-

cludes nearly 900 articles across all fields of economics, allowing us to obtain a broader view of

the distribution of p-values from sniff tests in the economics literature and to run formal statistical

tests.

A series of more recent papers apply econometric theory to determine whether sniff tests can

be appropriately used as a screen and to develop alternatives if not. Most of these papers focus on

testing for violation of parallel trends in difference-in-difference studies, but the results often have

more general implications. Kahn-Lang and Lang (2019) raised an early caution that an insignificant

result from a parallel-trends test may not adequately justify the research design. Borusyak, Jaravel,

and Spiess (2022) propose new tests for pre-trends in event studies. Andrews, Gentzkow, and

Shapiro (2020) propose a measure relating the performance of sniff tests to their informativeness

on the robustness of main results. Freyaldenhoven, Hansen, and Shapiro (2019) propose methods

to estimate causal effects in event studies when pre-trends are present in the outcomes. Instead

of the null of no misspecification, Bilinski and Hatfield (2020) and Dette and Schumann (2022)

suggest flipping the perspective and testing against the null that misspecification exceeds some

threshold. Roth (2022) shows that screening studies based on violation of parallel trends can

exacerbate publication bias in the main results of interest.

Much of the voluminous literature on publication bias focuses not on sniff tests but on main
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tests.1 The broader literature on publication bias in medical and science journals is too vast to sur-

vey here. The literature on publication bias in economics, dating back at least to DeLong and Lang

(1992), has been surveyed in Stanley (2005), Ioannidis and Doucouliagos (2013), and Christensen

and Miguel (2018). Opportunities to identify the universe of unpublished and published studies is

rare for meta-researchers in economics because the majority of economics studies are observational

and pre-analysis plans for RCTs have gained traction only recently. More commonly, only the se-

lected set of published articles can be observed. To facilitate the detection of publication bias in

this selected set, meta-analyses have focused on isolated cases in which many studies of the same

pair of dependent and independent variables have been published, applying methods including

the funnel plot, rank correlation tests, and parametric selection models. Examples include meta-

analyses by Card and Krueger (1995) on the effect of minimum wage on employment; Ashenfelter,

Harmon, and Oosterbeek (1999) on the effect of schooling on earnings; Görg and Strobl (2001) on

the effect of multinationals on domestic productivity; Doucouliagos (2005) on economic freedom;

Nelson (2014) on the price elasticity of beer; and Havranek (2015) on intertemporal substitution.

Our methods allow us to pool observations across a range of topics, as do Brodeur et al. (2016)

and Ioannidis, Stanley, and Doucouliagos (2017).

Our approach shares some similarities with recent advances in this literature. Elliott, Kudrin,

and Wüthrich (2022) prove that in the absence of removal, the p-curve is nonincreasing; in the

special case of t-tests, furthermore, the p-curve is completely monotonic and lies below specified

bounds. Nonmonotonicities and excess mass above their specified bounds provide evidence of

p-hacking. We also bound the p-curve, but our bounds are tailored to be dispositive for sniff

1The medical literature is just beginning to recognize what Ioannidis (2023) dubs inverse pub-

lication bias, arising in clinical safety trials and other contexts in his taxonomy.
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tests, where p-hacking tends to remove significant p-values. Andrews and Kasy (2019) develop

methods to nonparametrically identify the removal rate of insignificant main results using the joint

distribution of coefficients and standard errors observed in replication studies and meta-analyses.

Although they focus on main results, their methods equally apply to identify the removal rate of

significant sniff tests, the focus of our paper. Our alternative approach, tailored to the study of sniff

tests, has some advantages in that context. We are able to bound the misspecification rate alongside

the removal rate. Our approach can sometimes wring more usable observations from a sample,

including observations for which authors do not report enough information to glean standard errors

(e.g., reporting just significance thresholds) and observations reporting coefficients and standard

errors to such low precision that computing a test statistic from them generates substantial rounding

error. Differences aside, in the limited comparison conducted in the empirical section, the methods

provide reassuringly similar results.

3. Data

We collected data on sniff tests by having a team of research assistants systematically examine a

large initial pool of journal articles in economics. We identified this pool from Elsevier’s online

database of journal articles, ScienceDirect. We collected all economics articles that were turned up

by a search of related keywords such as “balance test,” “falsification test,” “placebo test,” “random-

ization,” “validation check,” etc. (see the online appendix for a complete list). We supplemented

the Elsevier journals with five top-tier, general-interest journals in economics archived on JSTOR

(American Economic Review, Econometrica, Journal of Political Economy, Review of Economic

Studies, Quarterly Journal of Economics), performing the same keyword search as on ScienceDi-
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rect. As the keywords were relatively uncommon before 2005, we restricted our pool to articles

published starting in 2005. The pool extends from 2005 to 2015.

The research assistants browsed each article in this initial pool, determining whether it con-

tained a table reporting sniff tests. If so, the research assistants collected data on test statistics,

p-values, and significance levels reported in the table or tables containing the sniff tests along

with relevant table, article, and journal information. All work was double checked by supervising

research assistants. Our final sample includes 29,776 sniff-test observations reported in 1,369 dif-

ferent tables from 893 articles published in 59 journals.2 A list of journals and the contribution

each makes to the sample is provided in the online appendix. The Journal of Health Economics

contributes the most observations (16% of the sample), followed by the Journal of Public Eco-

nomics (11%), followed by the Journal of Development Economics (10%).

Figure 1 graphs the number of sniff-test observations in our sample by year of publication of

the containing article, evincing a rapidly accelerating trend. Starting from a few observations in

2005, the number sniff tests in our sample grows at a 48% average annual rate.

Figure 2 breaks down our sample into subsamples by methodology. It is important to dis-

tinguish among methodologies since the distribution of p-values can differ systematically across

them. A key breakdown is between tests of balance in randomized controlled trials (RCTs) and

2Our raw dataset includes both one- and two-sided tests. The difficulties of analyzing publi-

cation bias in the context of one-sided tests raised by DeLong and Lang (1992) led us to restrict

the final sample to two-sided tests. We dropped a further 764 observations that either were not

structured as well-defined hypothesis tests or did not provide sufficient information to glean either

an exact p-value or an interval for it. We arrive at our final sample by dropping two additional

observations reporting p-values exceeding 1.
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other tests. RCT balance tests, comprising 24% of our sample, play a special role in our analysis

because what we presume to be the main source of misspecification with them—randomization

failure—is presumably rare. In the absence of substantial misspecification, which could pile mass

in the region of significant p-values, we have some hope of detecting missing mass in this region

relative to the uniform [0,1] distribution. As discussed in the theory section, under some condi-

tions, missing mass relative to the uniform benchmark will allow us to bound the extent of study

removal by the publication process.

The remaining 76% of our sample is comprised by other than RCT balance tests—including

placebo tests, various falsification and specification tests, and balance tests in non-RCT settings.

We do not have strong priors on the misspecification rate in these other tests. If many studies in our

sample suffer from misspecification, the subsample of other tests may exhibit considerable excess

mass at low p-values relative to the uniform benchmark.

Studies involving RCTs sometimes employ techniques to improve balance relative to what we

will label the “pure” case of a single randomization. Athey and Imbens (2017) catalog the vari-

ous balance-improvement techniques, including re-randomization (randomizing treatment/control

selection multiple times until one achieves the desired balance in covariates between groups), strat-

ification (randomizing treatment/control selection within covariate strata), and matching (finding

pairs of observations with similar covariate values, making one a treatment and the other a con-

trol). Balance-improvement techniques can increase the power of tests of a study’s main findings

without biasing or distorting the size of those tests and indeed have been recommended to be used

when possible as a principle of good study design (Morgan and Rubin 2012).

Balance-improvement techniques shift some of the mass of low p-values to higher values, cre-

ating a departure from the benchmark uniform distribution. To avoid misconstruing mass missing
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from the region of significant p-values due to balance improvement in published studies as indicat-

ing that studies have been removed by the publication process, we construct a “pure” subsample

of RCT balance tests for which we deem balance improvement was unlikely to have been applied.

We account for opaque or possibly missing mention of re-randomization by taking a conservative

approach to constructing the pure subsample, only including items for which re-randomization was

unlikely on a priori grounds. Among other examples, this includes cases in which a public lottery

determines treatment status and cases in which treatment has been assigned by a third-party. The

opacity of the reporting of stratification and matching is less of a concern: owing to the deliberation

involved in their application, we presume that they are reported whenever used. Of the subsample

of RCT balance tests, 42% are classified as pure. For the remaining 58%, either (a) the authors did

not mention re-randomization in the article but we cannot definitively rule out re-randomization

because authors had access to the baseline data to re-randomize before treatment assignment or

(b) the authors definitively employed a balance-improvement technique. We conservatively clas-

sify these observations as “possibly improved.”

We similarly break the subsample of tests other than RCT balance down by whether balance-

improvement techniques have been employed. Re-randomization and stratification are irrelevant

for these observations since authors do not have requisite control over the experimental procedure

outside of an RCT. The remaining feasible technique is matching, which authors can employ by

restricting analysis to a matched subsample of their full sample. In 74% of the subsample of

other tests, no matching, and thus no p-value improvement method, was employed. We deem this

subsample as the “pure” sample of other tests. The rest involve some matching. For 11% of other

tests, matching is employed, but the reported sniff tests are those conducted prior to matching. For

15% of other tests, matching is likewise employed, but the reported sniff tests are those conducted
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after matching.

Most of our analysis will focus on the pure subsamples of both RCT balance tests and other

tests. We will also briefly examine the subsamples in which balance was possibly improved to see

how strongly p-curves can depart from the uniform benchmark when unbridled selection forces

operate.

We motivated the breakdown of our sample into subsamples by the systematic differences in p-

curves across methodologies. Another motivation for analyzing these subsamples separately is that

the consequences of using the sniff test as a publication screen can differ across methodologies,

benign in some cases and biasing inference in others. For studies involving RCTs, if publication

process removes studies failing their balance tests, this typically does not distort the size of tests of

main findings for published RCT studies. For non-RCT studies which use sniff tests to assess the

validity of their causal-identification strategies, removing studies that fail the pre-tests can bias tests

of main results and distort inference (Andrews 2018, Roth 2022). For both RCT balance and other

tests, removal by the publication process can potentially reduce social welfare by relegating useful

research to the proverbial file drawer, not publicly circulated. The social benefit from keeping

misspecified studies out of circulation are likely to be greater with other tests than RCT balance

tests, presuming the main source of misspecification—failed randomization—is rare in RCTs.

For the sniff tests in our sample, we recorded the p-value information provided by the article,

which in some cases reported exact p-values, in other cases an interval for the p-value (often

a reported significance level as indicated by asterisks alongside the reported test statistic). For

articles providing no direct information about p-values, we tried to glean p-values from ancillary

information provided in the sniff-test table (perhaps a reported test statistic, perhaps other reported

results from which we could derive a test statistic). Our sample has exact p-values for 41% of the
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observations and an interval for 59% of them.

4. Theory

In this section, we begin by providing theoretical background on the distribution of p-values from

sniff tests. We explain why the uniform distribution is a useful benchmark for sniff-test p-values

and how the distribution is altered by the presence of misspecification and removal by the publica-

tion process. Subsequent subsections construct nonparametric bounds on removal and misspecifi-

cation, the estimation of which in the results section is a key contribution of the paper.

4.1. Asymptotic Distribution of Sniff-Test P-values

This subsection provides background on the distribution of p-values from sniff tests, drawing on

textbook material from Lehmann and Romano (2005). Let parameter vector θ index the misspec-

ification (of whatever form relevant to the application) that a representative sniff test is designed

to detect. The sniff test is structured as a test of the null hypothesis H0 : θ ∈ Θ0 of no misspec-

ification against the alternative H1 : θ ∈ Θ1 of misspecification, where Θ0 ∩Θ1 = /0. The author

computes the sniff-test statistic Zθ (the distribution of which depends on the presence and extent

of misspecification θ ) and determines whether Zθ lies in rejection region R(α), where α is a pre-

specified significance level. Rejection regions are sometimes based on the exact distribution of Zθ ,

sometimes on the asymptotic distribution, and are typically structured so that they are nested, i.e.,

R(α ′)⊂ R(α ′′) for α
′ < α

′′. (1)
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The p-value associated with test statistic Zθ is defined as the lowest significance level for which

H0 is rejected, i.e.

p ≡ inf{α |Zθ ∈ R(α)}. (2)

Let F (p,θ) denote the cdf associated with the p-value.

Our benchmark result is that in the absence of distortions due to the publication process, the

asymptotic distribution of the p-value from the sniff test is uniform on [0,1] under the hypothesis

H0 of no misspecification; formally,

F (p,θ) = p for all p ∈ [0,1] and θ ∈ Θ0. (3)

For a textbook proof and technical conditions required for (3) to hold, see, e.g., Lehmann and

Romano (2005, Lemma 3.3.1). Notice that the uniform benchmark in (3) is not conditional on the

number of observations n in the study employing the sniff test, holding whether the study involves

few or many observations.

The presence of misspecification alters the distribution of p-values in a predictable way, piling

more mass on lower p-values than the uniform benchmark. More formally, under weak condi-

tions, the asymptotic distribution of p-values in the presence of of misspecification (but absent

publication removal) is first order stochastic dominated by the uniform distribution, i.e.,

F (p,θ)≥ p for all p ∈ [0,1] and θ ∈ Θ1. (4)

Equation (4) holds under the weak condition that the sniff test is unbiased, meaning that it is more

likely to reject the null if the alternative is true than if the null is true, or equivalently, that the sniff

test’s power exceeds its significance.3

3To prove (4), let β (α,θ) denote the power of a sniff test with significance level α against al-
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The analysis so far has focused on representative sniff test. It is straightforward to see that

the results (3) and (4) extend from an isolated sniff test to a collection of them, say all the say all

the p-values reported in a table of sniff tests, whether or not the sniff tests in the collection are

correlated. The results can be further extended to a sample of sniff tests from unrelated studies,

such as in the dataset we will use for our empirical analysis. Let F(p) denote the cdf averaged over

the population of sniff tests, F0(p) the cdf averaged over the subpopulation for which the null of no

misspecification holds, and F1(p) the cdf averaged over the subpopulation for which the alternative

of some misspecification holds. Formally,

F(p)≡
∫

Θ0∪Θ1

F (p,θ)dG(θ) (5)

F0(p)≡
∫

Θ0
F (p,θ)dG(θ)∫

Θ0
dG(θ)

(6)

F1(p)≡
∫

Θ1
F (p,θ)dG(θ)∫

Θ1
dG(θ)

, (7)

where G(θ) denotes the cdf of θ for the population of sniff tests. Since result (3) holds for all cdfs

over which F0(p) is integrated, F0(p) inherits the result, implying F0(p) = p. Result (4) holds for

all cdfs over which F1(p) is integrated, implying F1(p) ≥ p. Together, results (3) and (4) imply

F(p)≥ p.

ternative θ ∈ Θ1, i.e., β (α,θ) = Pr(Zθ ∈ R(α)). Then F (α,θ) = Prθ (p ≤ α)≥ Pr(Zθ ∈ R(α)) =

β (α,θ)≥ α . The first step follows from the definition of a cdf, the second step from the fact that

Zθ ∈ R(α) implies p ≤ α by (2), and the third step from definition of power. The final step holds

for unbiased sniff tests. Exchanging the variable p for α yields (4).
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4.2. Nonparametric Bounds on Removal

The publication process may remove sniff tests with lower p-values in one of several ways. After

seeing the significant result, the author may omit the sniff test from the table or omit the whole ta-

ble. The author may decide to shelve the paper, or journals may reject it. Any of these mechanisms

would delete the sniff test from the published record, reducing the number of published sniff tests.

Other forms of removal may shift the distribution of sniff-test p-values in the published record up

without reducing the total number. For example, an author may p-hack the sniff test to raise its

p-value so that it appears less significant.

To formally model the ways in which the publication process can remove p-values, suppose

the unit interval can be partitioned into two subintervals, [0,r) and [r,1], where r is the threshold

level of significance below which the publication process may exert pressure to remove p-values

but above which it does not. We will refer to the lower interval [0,r) as the removal region and

the upper interval [r,1] as the no-removal region. Let dr ≥ 0 denote the mass of p-values deleted

from the removal region and sr ≥ 0 the mass shifted from the removal to the no-removal region.

We assume that mass is not deleted from the no-removal region nor is mass shifted back from

the no-removal to the removal region. Assume deletion and shifting from the removal region are

exhaustive and mutually exclusive ways the publication process can remove sniff tests.

We next introduce a series of variables related the distribution of p-values in the pre- and post-

removal populations of studies. Let m denote the mass of p-values in the pre-removal population,

πr the proportion in the removal region of pre-removal population, and πn the proportion in the

no-removal region of the pre-removal population. Analogues of the variables just defined written

with breves (a mnemonic for change, in this case resulting from removal) refer to their counter-
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parts for the post-removal population. Thus, m̆ denotes the mass of sniff tests in the post-removal

population, π̆r the proportion in the removal region in that population, and π̆n the proportion in the

no-removal region in that population. Normalize m = 1, implying that πr and πn represent both

proportions and masses. Since the removal and no-removal regions partition each population, we

have πr +πn = π̆r + π̆n = 1.

The variables introduced thus far in the subsection are population-level variables, equivalently,

the theoretical probability limits (plims) to which consistent finite-sample estimators converge.

Our dataset is a sample of the post-removal population, allowing us to obtain estimates, π̂r and π̂n,

of the respective population proportions, π̆r and π̆n, with some error.

With that notation in hand, we can proceed to define the removal and misspecification rates we

will proceed to estimate. Let ρr denote the removal rate of p-values from [0,r), given by

ρr =
dr + sr

πr
. (8)

In principle, one could define an analogous removal rate ρn from [r,1], but since there is no removal

in this region by assumption, we trivially have ρn = 0. Our analysis will thus focus on character-

izing ρr. Ideally, we would be able to derive point estimates, but since ρr depends on unobserved

properties of the pre-removal population, absent functional-form assumptions we will have to be

content with nonparametric bounds. Let
¯
ρr and ρ̄r denote, respectively, lower and upper bounds

on ρr such that no admissible configuration of removals {dr,sr} exists for which ρr lies below
¯
ρr

or above ρ̄r.

To be an admissible configuration of removals, {dr,sr} must first satisfy the nonnegativity

conditions dr ≥ 0 and sr ≥ 0. Further, they must satisfy the following identities to ensure that all

p-values pre- and post-removal are accounted for, in every region and in the population as a whole.
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The identity

m̆ = m−dr = 1−dr (9)

ensures that mass in the whole population is accounted for. The identity

m̆π̆r = πr −dr − sr (10)

ensures that mass in the removal region is accounted for.

We begin construction of bounds on ρr for the case in which the null hypothesis of no misspec-

ification holds for all observations in a population. Absent misspecification, publication removal

is the only force driving the p-value distribution away from the uniform benchmark, allowing us

to use deviations of the post-removal population from the uniform benchmark to bound removal.

Consider a hypothetical example in which all removal was due to shifting, not deletion. With no

deletion, the pre-removal mass of p-values is preserved post-removal, implying m̆ = m = 1 by (9).

The proportion of p-values in the removal region (also the mass since the unit mass is preserved)

differs by the amount of the shift: sr = πr − π̆r by (10). Substituting the preceding equality along

with dr = 0 into (8) yields ρr = (πr − π̆r)/πr. Under the null of no misspecification, as shown in

the previous subsection, πr = F0(r) = r, which upon substituting into the preceding equation yields

ρr =
r− π̆r

r
. (11)

Continue to suppose that the null hypothesis of no misspecification holds for all observations,

but now suppose that all removal was due to deletion, not shifting. Substituting sr = 0 into (10),

further substituting m̆ = 1−dr from (9), and solving for dr yields dr = (πr − π̆r)/(1− π̆r). This is

precisely the deletion from the removal region needed so that the proportion of mass in that region

is the same as the proportion observed in the post-removal population. Substituting this value of dr
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along with sr = 0 into (8) yields ρr = (πr − π̆r)/πr(1− π̆r). Under the null of no misspecification,

πr = r, and the preceding equation becomes

ρr =
r− π̆r

r(1− π̆r)
. (12)

It is easy to see that equation (12) exceeds (11). Attributing removal to shifting generates a

lower removal rate than attributing it to deletion. Shifting has a dual effect on the departure of the

post-removal distribution of p-values from the uniform benchmark, not only removing mass from

[0,r) but also piling the removed mass in [r,1]. Deletion only has the first effect. Rationalizing a

given departure of the post-removal population from the uniform benchmark therefore requires less

shifting than deletion. Extending this logic, when removal is due to a combination of both shifting

and deletion, the associated removal rate ρr will lie between equations (11) and (12). Since there

are no other forms of removal besides shifting and deletion, we have established that, under the

null of no misspecification, (11) provides a lower bound
¯
ρr on the removal rate and (12) provides

an upper bound ρ̄r on the removal rate.

The analysis has so far maintained the null of no misspecification. In the presence of possible

misspecification, equation (11) still provides a valid lower bound. To see this, by (4), misspecifi-

cation can only inflate the mass of p-values in [0,r) relative to the uniform benchmark, requiring

more removal to arrive at the post-removal mass. In the presence of misspecification, the upper

bound in (12) is no longer valid, however. Examples can be constructed with increasingly extreme

misspecification in which πr is increasingly large, requiring an increasing removal rate to arrive

at the observed post-removal distribution. As this construction suggests, the upper bound on the

removal rate in the presence of possible misspecification is the trivial one, ρ̄r = 1.
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4.3. Nonparametric Bounds on Misspecification

The pre-removal proportion of p-values in the removal region, πr, can be written as a weighted

sum of p-values in that region from well-specified studies and p-values from misspecified studies:

πr = F(r) = (1−µ)F0(r)+µF1(r), (13)

where µ denotes the overall misspecification rate among studies in the pre-removal population. We

will focus on bounding not µ but µr, the misspecification rate restricted to the removal region. The

reason the publication process removes studies in [0,r) is presumably to avoid the misspecification

concentrated there. Quantifying µr will help clarify the tradeoffs involved in removal. The mass

of misspecified studies in [0,r) is given by the last term in (13). Dividing that term by the mass in

[0,r) expresses misspecification in that region as a rate:

µr =
µF1(r)

πr
. (14)

To derive a bound on µr, we will first distill some insights from (13). Noting that F0(r) = r as

shown in Section 4.1 and that F1(r)≤ 1 since F1 is an average of cdfs, substituting these expressions

into (13) and rearranging yields

µ ≥ πr − r
1− r

. (15)

Intuitively, the extra mass in the removal region relative to the uniform benchmark, suitably nor-

malized, bounds the overall misspecification rate µ . To translate the bound on µ into a bound on

µr, note µF1(r) = πr − (1− µ)r ≥ (πr − r)/(1− r), where the equality follows from rearranging

(13) and the inequality from (15). Substituting this inequality into the numerator of (14) yields

µr ≥
πr − r

(1− r)πr
. (16)
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Suppose that there is no removal, i.e., ρr = 0. Then equations (9)–(10) imply πr = π̆r, which

upon substituting into (16) yields

µr ≥
π̆r − r

(1− r)π̆r
. (17)

The right-hand side of (17) provides a lower bound
¯
µr on the misspecification rate in the removal

region absent removal.

Regardless of what we assume about the removal rate, we will not be able to derive a tighter

upper bound of the misspecification rate than the trivial µ̄r = 1. Intuitively, even if the pre-removal

p-value distribution appeared uniform, we cannot rule out that virtually all observations were mis-

specified (i.e., µ = 1) but so slightly that the p-value distribution hardly departs from the uniform

(so F1(r)≈ r). By (13)–(14), that would imply µr = 1 as well.

The analysis so far has supposed that there is no removal. The possibility of removal only

enlarges the scope for misspecification. Whatever the departure from the uniform distribution in

the post-removal population, there may have been a greater departure pre-removal, requiring even

more misspecification to explain. The lower bound
¯
µr in (17) continues to be valid with more

potential misspecification. The upper bound was at the corner before, µ̄r = 1, and cannot expand

beyond that with more potential misspecification.

4.4. Refining the Bounds

The previous two subsections provided bounds on removal and misspecification under special cir-

cumstances. For example, we derived bounds on removal assuming either that there is no mis-

specification or that the extent of misspecification is unknown. Similarly, we derived bounds on

misspecification assuming either that there was no removal or the extent of removal is unknown.

In this subsection, we refine the bounds, allowing we, the researchers, to have partial informa-
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tion on misspecification in bounding removal or partial information on removal when bounding

misspecification. The bounds are provided in the following series of propositions, proved in the

online appendix.

Proposition 1. Suppose we, the researchers, know µr ≤ µ̄r. For all admissible removal configura-

tions {dr,sr}, the removal rate ρr does not fall below the lower bound

¯
ρr =

r− π̆r

r
(18)

or above the upper bound

ρ̄r =
r− π̆r + π̆rµ̄r

r(1− π̆r)
. (19)

Proposition 2. Suppose we, the researchers, know ρr ≥
¯
ρr. For all admissible removal configura-

tions {dr,sr}, the misspecification rate µr does not fall below the lower bound

¯
µr =

π̆r − r+(1− π̆r)r
¯
ρr

(1− r)π̆r
(20)

or above the (trivial) upper bound µ̄r = 1.

Beyond providing new results, Propositions 1 and 2 nest all the results derived in the preceding

two subsections. Thus, a rigorous foundation can be provided for the sketches of derivations in

the preceding two subsections. For example, the upper bound (12) on removal in the absence of

misspecification can be recovered from Proposition 1 by substituting µ̄r = 0 into (19). Other upper

and lower bounds (whether with or without information on complementary rates) can be recovered

in a similar way.

A bound is sharp if it can be attained for some admissible removal configuration, which has

the key implication that it cannot be improved upon. The bounds in Propositions 1 and 2 may
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or may not be sharp. We prove in the online appendix that the bounds on removal indeed are

sharp in the absence of misspecification. We have proved that upper bound on removal (19) is not

sharp by constructing an alternative bound that can improve upon it in rare circumstances. Given

that the circumstances are not only rare but are not empirically relevant for our sample and that

the improvement so slight, we relegate discussion of the alternative bound to the online appendix.

Some of the bounds can be slightly improved if, instead of aggregating the removal region into

a single interval, it is divided into subintervals and the proportion of p-values in each subinterval

separately estimated (as we do in the first three rows of Table 1). The improvement is too slight

to merit including a discussion in the main text of the rather complex recursive formulas involved

(reflecting a procedure we call backward ironing), so we relegate the propositions and proofs in

the case of multiple removal regions to the online appendix.

For consistency, we focused on the the removal region of the pre-removal sample in bounding

rates of removal and misspecification. While these are arguably the most useful rates to bound,

alternatives might be of interest as well. For example, one might be interested in bounding rates in

the entire unit interval, not just the removal region, or one might be interested in bounding rates in

the post-removal rather than the pre-removal population. Owing to space constraints, we provide

a comprehensive analysis of these alternatives in the online appendix.

5. Empirical Results

We next turn to the empirical results, presented in a series of subsections roughly in order of

increasing rigor. Starting with a visual inspection of kernel density plots, we move to regressions

used to conduct formal statistical tests of the departures of the distributions from the uniform
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benchmark. A further subsection uses the regression estimates as inputs into estimation of the

nonparametric bounds on removal and misspecification. The final subsection provides additional

context for the bounds by bringing in additional data on the strength of author claims about how

well their sniff tests performed.

5.1. Kernel-Density Estimates of P-Curves

Figure 3 plots kernel-density estimates of the p-curves from various samples of sniff tests. Standard

methods for estimating kernel densities require data points rather than intervals, so the sample we

use for the kernel densities includes only the 41% of observations for which we can glean exact

p-values. To account for the fact that different tables contribute different number of sniff tests, we

weight each p-value by the inverse of the number of observations in the containing table so each

table contributes equally to the aggregate distribution. (Further details on the inverse-frequency-

weighting method are provided in the next subsection.)

The p-curve in Panel (1) is estimated using the full sample of exact p-values. Its peculiar

nonlinear shape is a clear departure from uniformity. The mass spikes for the lowest p-values,

suggesting a sizable number of published sniff tests pick up true misspecification. The [0.05,0.15)

interval is missing mass relative to the uniform benchmark (the dotted line having height 1). Above

0.2, the density is close to the uniform benchmark.

Panel (2) plots the p-curve for the subsample of pure RCT balance tests. As discussed in

previous sections, absent removal from the publication process, the distribution should be close to

uniform since study flaws arising from failures to appropriately randomize treatment and control

groups should be small. We observe a block of missing mass relative to the uniform benchmark

for p-values below 0.15. Above that threshold the p-curve rises quickly to the uniform benchmark,
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which it tracks closely until it reaches the highest p-values in (0.85,1]. The p-curve rises above

the uniform benchmark in (0.85,1], appearing as if the block of mass missing from [0,0.15) was

shifted there.

Panel (3) plots the p-curve for RCT balance tests when a balance improvement method (re-

randomization, stratification, and/or matching) was definitively employed or likely employed. The

proportion of significant p-values is higher than that in panel (2) and closely tracks the uniform

benchmark, indicating an absence of detectable misspecification in this subsample and little addi-

tional removal of significant sniff tests.

Panel (4) plots the p-curve for the pure subsample of other tests. The similarity of this plot

to that for the full sample in panel (1) is natural given that the subsample in (4) constitutes the

majority of the full sample.

Panel (5) plots the p-curve for other tests conducted on the pre-matched sample by studies using

matching. Authors usually show these p-values to motivate the use of matching to improve balance

and these tests are usually accompanied by p-values of the same tests on the post-matched sample.

Since the post-matched sample is used for estimation, the publication process likely exerts little

pressure to remove significant sniff tests for pre-matched sample. Panel (5), therefore, provides a

picture of unvarnished misspecification. We see a mountain of mass of p-values in [0,0.1), after

which the p-curve dips well below the uniform benchmark.

Panel (6) plots the p-curve for other tests, matched sample post-match. We see quite the oppo-

site of the pre-match sample. P-values below 0.5 have a density considerably below the uniform

benchmark, much of this mass shifted to a spike of p-values above 0.9, suggesting matching as an

overall effective method to improve balance.
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5.2. Regression Estimates of Interval Proportions

In this section, we quantify the qualitative observations made from the kernel-density plots using

regression analysis. Another advantage of the regression analysis is that it can exploit a larger

sample containing both exact p-values and some observations for which only intervals are reported.

A key choice in the specification of the subsequent analysis is how large to make the removal

region. Our choice of [0,0.15) is motivated by the estimates obtained in this subsection of pro-

portions of p-values in different subintervals of length 0.05. To explain which data are included

in the estimation of these proportions requires some additional notation. Let pi denote a p-value

observation, indexed by i ∈ I, where I denotes the population of p-values. Index tables by t ∈ T ,

where T denotes the population of tables. We sometimes emphasize the “containing” relation with

functional notation, letting t(i) denote the table containing pi. We seek to measure the share of

p-values falling into a given subinterval j = [a j−1,a j)⊂ [0,1]. Equivalently, letting 1pi∈ j be the in-

dicator function for the subscripted event that pi is contained in j, we seek to estimate the expected

value of 1pi∈ j.

One challenge in estimating this expected value is that tables differ in the precision at which

they report p-values, some specifying an exact value for pi, others reporting whether pi achieves a

single significance level, others partitioning [0,1] into multiple significance levels. The reporting

convention used in some tables may not line up with j in a way that would allow us to deduce 1pi∈ j

from the information provided by the table. Let Tj denote the subset of tables whose reporting

convention does allow us to deduce 1pi∈ j for any realization of pi.4 For example, a table reporting

4Formally, Tj is the set of tables whose reporting convention induces a partition of [0,1] that is

at least as fine as { j, [0,1]\ j}, the coarsest partition containing j.
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significance at the 5% level is in T[0,0.05) but not in T[0,0.01) or in T[0,0.10). We include only tables in

Tj in our analysis of interval j.5 Let I j denote the sniff tests in the subset of tables Tj.

The proportion of p-values that fall into interval j for a typical table is captured by the following

conditional expectation:

π̆ j = Et∈Tj(E(1pi∈ j | i ∈ t)), (21)

The conditional expectation in (21) corresponds to the sampling frame that first randomly samples

a table and then randomly samples a sniff test within that table, in effect allowing each table to

contribute equally to our estimates. A natural alternative for the sampling frame would be to pool

sniff tests across tables and sample directly from that pool. The drawback of this alternative is that

tables with more sniff tests would tend to be overrepresented, biasing the estimates if the number

of sniff tests presented in an article is correlated with their significance (see the online appendix

for a proof).

A consistent estimator π̂ j of the population proportion π̆ j can be obtained by replacing the

expectations in (21) with sample averages:

π̂ j =
1∣∣Tj
∣∣ ∑

t∈Tj

(
1
|t|∑i∈t

1pi∈ j

)
, (22)

where vertical bars denote the cardinality of sets, so
∣∣Tj
∣∣ denotes the number of tables whose

reporting convention line up with j and |t| the number of sniff tests in table t. We can obtain a

5Obviously, we cannot use observations outside of Tj for which 1pi∈ j cannot be determined. We

could include observations outside of Tj for which 1pi∈ j can be determined, but doing so would

impart a selection bias. For example, let j = [0,0.10). For a table reporting significance at the 5%

level, we can determine 1pi∈ j for all significant p-values reported in the table but cannot determine

1pi∈ j for all insignificant p-values.
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convenient, equivalent expression for π̂ j by introducing inverse frequency weights

wi =

∣∣I j
∣∣∣∣Tj

∣∣|t(i)| . (23)

These weights are inversely proportional to the number of sniff tests |t(i)| in the including table,

scaled by the constant
∣∣I j
∣∣/∣∣Tj

∣∣ required for the weights to sum to
∣∣I j
∣∣, the number of relevant

observations. Substituting (23) into (22) yields

π̂ j =
1∣∣I j
∣∣ ∑

i∈I j

wi1pi∈ j, (24)

the inverse-frequency-weighted average of 1pi∈ j for the relevant subsample of sniff tests.

Regression-based methods can be used to recover π̂ j. In particular, in the inverse-frequency-

weighted least squares (IFWLS) regression of 1pi∈ j on a constant using the subsample i ∈ I j, i.e.,

1pi∈ j = π̆ j ·1+ui j i ∈ I j, (25)

the estimate π̂ j of the coefficient on the constant term is numerically identical to π̂ j in equation

(22). Regression-based methods have the advantage of facilitating the computation of standard

errors. Since tables form the sampling frame in our analysis, one natural clustering scheme is the

table level. To account for correlation among sniff tests possibly constructed from the same dataset

underlying an article, we adopt the more conservative approach of clustering at the article level for

all reported standard errors.

Table 1 presents the regression estimates for a selection of the samples covered by panels in

Figure 3. The first column presents aggregate results for the full sample. We see that 9.9% of

tests fall into the [0,0.05) interval, 3.8% fall into the [0.05,0.10) interval, and 3.7% fall into the

[0.10,0.15) interval. As the stars indicate (note their nonstandard interpretation, tailored to our
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context), the aforementioned results are all significantly different from 5%, the proportion arising

in any interval of length 0.05 under the uniform benchmark. The 4.7% of p-values falling into

the [0.15,0.20) interval is not significantly different from the uniform benchmark. The pattern

confirms what we observe from the kernel-density plot and suggests misspecification and removal

in the publication process are important forces in determining the shape of the p-curve.

The next column provides regression results for the pure subsample of RCT balance tests. We

expect little misspecification in this subsample, so absent removal, the p-curve should resemble the

uniform benchmark, with the percentage of p-values significant in each interval equaling the size

of the interval. Instead, we see that the [0,0.05), [0.05,0.10), and [0.10,0.15) intervals contain,

respectively, 4.6%, 2.5%, and 3.3% of observations. The latter two percentages are significantly

different from the 5% uniform benchmark at the 1% level. The [0.15,0.20) interval, by contrast,

contains 5.4% of p-values, which is slightly greater than the 5% uniform benchmark but not statis-

tically significantly so.

The last column provides results for the pure subsample of other tests. Unlike pure RCT bal-

ance tests, for which we expect little misspecification, for the “mixed bag” of other tests, we do not

know the extent of misspecification or the power of the tests employed to detect it. The results for

the pure subsample of other tests are quite similar to for the full sample (perhaps unsurprisingly

since the subsample constitutes the majority of the full sample). Both have one result that stands

in sharp contrast to those for the pure subsample of RCT balance tests, namely that the proportion

of p-values in [0,0.05) is significantly greater than the uniform benchmark in the first and last

columns but significantly less than the uniform benchmark in the middle column. Evidently, a sub-

stantial proportion of studies are failing sniff tests because of misspecification, enough to swamp

the removal process that would tend to reduce the proportion of the most significant p-values.
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Confirming the impression from a visual inspection of the kernel-density estimates, the re-

gression results provide significant evidence of missing mass relative to the uniform benchmark—

potential evidence for removal by the publication process—below the 0.15 threshold. Above this

threshold, in the [0.15,0.20) interval, there is no evidence of a departure from the uniform bench-

mark and thus no evidence of removal. Based on this evidence, we will take the removal region to

be [0,0.15) and thus r = 0.15 in the computations of bounds in the next subsection.6

5.3. Estimates of Nonparametric Bounds

The formulas provided in Propositions 1 and 2 for bounds on the rates of removal and misspecifica-

tion depend on just two variables, the threshold r dividing the removal from the no-removal region

and the proportion π̆r of p-values in the removal region. As discussed in the previous subsection,

we set r = 0.15. Table 1 provides estimates π̂r to input into the formulas. Standard errors for the

output of these nonlinear formulas can be computed using the delta method.

Table 2 reports estimates of the bounds on the removal rate ρr provided by the formulas in

Proposition 1. The first row estimates bounds for the pure subsample of RCT balance tests without

any assumptions on the extent of misspecification. The estimated lower bound is 30.8%. The

estimate of the formula for the upper bound, 111.6%, exceeds the 100% mathematical limit on a

rate, so is uninformative. The next row provides estimates that bring in additional information on

misspecification, assuming the rate is negligible for the pure RCT balance test subsample. While

the additional misspecification information does not help refine the lower bound, it does help refine

the upper bound, yielding an estimate of 34.4%. Having sandwiched the removal rate between

6Elliot, Kudrin, and Wüthrich (2022) also adopt the [0,0.15) removal region for their empirical

applications.
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fairly narrow bounds, we can conclude—nonparametrically, solely from the missing mass in the

removal region—that about a third of sniff tests were removed by the publication process from the

pure sample of RCT balance tests assuming negligible misspecification in this subsample.7

The estimates of bounds on the removal rate for the pure subsample of other tests presented in

the bottom row of the table turn out to be uninformative. Without assumptions on the misspeci-

fication rate, the estimated bounds are wider than the mathematical limits on a rate, [0%,100%].

Under the assumption of no misspecification in the subsample, the estimated upper bound becomes

negative—an impossibility—indicating that the assumption is violated for this subsample. There

must be at least some misspecification in the pure subsample of other tests since the proportion of

p-values in [0,0.15) in the post-removal subsample at 17% exceeds the 15% uniform benchmark,

7Andrews and Kasy (2019) provide a method for estimating publication removal using infor-

mation on coefficients and standard errors in published articles. Their method requires true effects

and standard errors to be independent, which appears to be violated by the extent of heterogeneity

in the scatterplot for our pure sample of RCT balance tests. We apply their methods instead to

individual-journal subsamples with less evidence of heterogeneity. Among journals with little evi-

dence of heterogeneity, the two supplying the most usable observations (sniff tests reporting stan-

dard errors as well as coefficients) are the Journal of Economic Behavior & Organization (JEBO)

and American Economic Review (AER). Modifying their web application posted on the GitHub site

“Estimating publication bias using meta-studies—Maximilian Kasy” (maxkasy.github.io) to allow

a 15% threshold for the removal region and translating the resulting estimate into a removal rate

generates a 70% removal rate for JEBO and 17% for the AER. Our methods applied to these indi-

vidual journal subsamples bound the removal rate between 55% and 59% for JEBO and between

28% and 31% for the AER. This comparison suggests that while the alternative methods do not

produce identical results, they are directionally similar.
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an excess which can only be explained by misspecification.8

Table 3 reports estimates of the bounds on the misspecification rate µr provided by the for-

mulas in Proposition 2. The first row estimates bounds for the pure subsample of RCT balance

tests without any assumptions on the extent of removal. The bounds are uninformative since they

are wider than the [0%,100%] mathematical limits on a rate. The next row brings in additional

information from the estimated the lower bound on the removal rate for that subsample. While the

additional information helps narrow the bounds on the misspecification rate, the bounds remain

uninformative. To understand why, recall Proposition 2 places no upper bound on the misspecifi-

cation rate; as explained in the theory section, even a p-curve that looks uniform can hide a large

mass of slightly misspecified studies. The proposition provides a lower bound leveraging excess

mass in the removal region relative to the uniform benchmark. However, the pure subsample of

RCT balance tests exhibits missing mass in this region rather than an excess, making it impossible

to rule out that the subsample exhibits no misspecification (indeed this is a maintained assumption

in computing a set of removal bounds above).

The bounds on misspecification for the pure subsample of other tests are informative. If the

removal rate is unknown (or known to be 0), the estimated lower bound is 13.6%.9 If one assumes

8In the online appendix, we tighten the lower bound on removal in the absence of misspecifica-

tion information for the pure sample of other tests to 9.2% by exploiting the additional information

that comes from partitioning the removal region into subintervals. The bound draws on Theo-

rem 1 of Elliott, Kudrin, and Wüthrich (2022), which states that the p-curve is nonincreasing under

general conditions.
9In the online appendix, we tighten the lower bound on misspecification in the absence of

removal information for the pure sample of other tests to 22.4% by exploiting the additional in-

formation that comes from partitioning the removal region into subintervals. The bound draws on
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the removal rate is the same as for the pure subsample of RCT balance tests, which is bounded

below by 30.8%, the estimate of
¯
µr rises to a substantial 40.2%.

5.4. Text Analysis of Author Claims

Authors have incentives to attribute unfavorable sniff tests to random bad luck. Such claims are

difficult to dispute on an individual basis. To investigate whether authors, in the aggregate, tend to

over- or under-attribute unfavorable sniff tests to bad luck, we combine our nonparametric bounds

on the latent proportion of misspecified studies with hand-collected data on authors’ qualitative

characterization of their own sniff-test results.

Our research assistants read the discussions of sniff tests in the articles and rated the authors’

confidence in the test result according to a rubric involving four categories: “strong claim,” “weak

claim,” “admit rejected,” and “no claim.” The “strong claim” category includes cases in which

the authors express satisfaction with the test outcome. Authors express satisfaction—with good

reason—when the associated p-value under consideration is not significant. We also consider

authors to be strongly satisfied whenever, faced with having to explain a significant p-value, they

explicitly attribute it to random chance rather than some systematic feature of the data. These cases

are often associated with tables reporting multiple sniff tests, only a few of which are significant.

The “weak claim” category includes cases in which, faced with some significant sniff-test results

to explain, perhaps too many to attribute to random chance, the authors are forced to acknowledge

possible problems while mounting some defense of their results. Typical of this category is for

authors to acknowledge that the test outcome indicates the existence of imbalance or pre-treatment

a lemma proved in the appendix that the proportion of well specified studies is bounded by the

largest rectangle that can be inscribed under the p-curve.
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effects but then argue that it does not undermine the validity of their main results, often using

the argument that the significant sniff-test results follow no systematic patterns. “Admit rejected”

includes cases when authors freely acknowledge that the significant p-value indicates rejection of

the sniff test and a potential problem for their study. When the authors do not discuss the specific

test statistic, we classify it as “no claim.”

In our pure subsample of RCT balance tests, restricting attention to p-values in the [0,0.15) re-

moval region, authors make strong claims in 78% of cases (employing the same inverse frequency

weighting used for all our empirical results). These claims are not unjustified under our assumption

that misspecification in RCT is negligible.

In our pure sample of other tests, 52% of authors with p-values in the removal region make

strong claims.10 Whether these claims can be justified by our estimated misspecification rates

depends on some assumptions. If we assume nothing about the removal rate, allowing for the

possibility of no removal, then according to Table 3 the misspecification rate in the pre-removal

population is bounded below by approximately 14%, implying that the proportion of well-specified

studies in the pre-removal population is bounded above by 86%. If no studies are removed, this

86% upper bound on well-specified studies is inherited by the post-removal population. The frac-

tion of authors making strong claims is well within this bound. Instead, assume that studies with

significant other tests are removed at the same rate as studies with significant RCT balance tests.

Furthermore, assume that the removal rate is homogeneous across p-values in the removal region

(as the estimates in Table 1 for the pure sample of RCT balance tests suggest) and independent of

whether studies are truly misspecified (which is unobservable to the publication process). Then

the relevant lower bound on misspecification from Table 3 is 40%, implying that the proportion

10See Table A9 in the online appendix for a full set of results on authors claims.
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of well-specified studies is bounded above by 60%. The fraction of authors making strong claims

continues to be inside the bound, but not by much, suggesting that such claims might merit reader

scrutiny.

6. Conclusion

This paper analyzed a hand-collected sample of nearly 30,000 sniff tests from 893 articles in 59

economics journals. Our most detailed analysis focused on what we call “pure” samples in which

p-value improvement techniques were unlikely to have been used. We further divided the sample

into subsamples, one for RCT balance tests and one for other tests.

A visual inspection revealed stark differences in the the p-curves across the two subsamples.

For the pure subsample of RCT balance tests, the p-curve is missing mass relative to the uniform

benchmark, evidence of removal by the publication process (whether due to p-hacking or relegation

to the metaphorical “file drawer”). The pure subsample of other tests has extra mass piled on low

p-values, evidence of a high rate of misspecification in the associated published studies.

Despite being unable to observe the full sample of studies prior to removal by the publication

process, we were able to construct nonparametric bounds on the latent rates of removal and mis-

specification among these studies using only information on the proportion of significant p-values

in published studies. Estimates of these bounds vary depending on the strength of the assump-

tions behind them. Under the plausible assumption that there is negligible misspecification in RCT

balance tests, only arising in the rare instance of a failed randomization, we estimated that the

publication process removed about a third of significant RCT balance tests. Under the plausible

assumption that RCT balance tests and other tests experienced similar removal rates, we estimated
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that over 40% of significant sniff tests represented actual misspecification, not simply an unlucky

sniff-test draw for a well-specified study.

References

Andrews, Isaiah, ”Valid Two-Step Identification-Robust Confidence Sets for GMM,” Review of

Economics and Statistics 100:2 (2018), 337–348.

Andrews, Isaiah, Matthew Gentzkow, and Jesse M. Shapiro, “On the Informativeness of Descrip-

tive Statistics for Structural Estimates,” Econometrica 88:6 (2020), 2231–2258.

Andrews, Isaiah and Maximilian Kasy, “Identification of and Correction for Publication Bias,”

American Economic Review 109:8 (2019), 2766–2794.

Ashenfelter, Orley, Colm Harmon, and Hessel Oosterbeek, “A Review of Estimates of the School-

ing/Earnings Relationship, with Tests for Publication Bias,” Labour Economics 6:4 (1999),

453–470.

Athey, Susan and Guido W. Imbens, “The Econometrics of Randomized Experiments” (pp. 73–

140), in Esther Duflo and Abhijit Banerjee (eds.), Handbook of Economic Field Experiments,

vol. 1 (Amsterdam: North Holland, 2017).

Bilinski, Alyssa and Laura A. Hatfield, “Nothing to See Here? Non-inferiority Approaches to

Parallel Trends and Other Model Assumptions,” arXiv preprint 1805.03273 (2020).

Borusyak, Kirill, Xavier Jaravel, and Jann Spiess, “Revisiting Event Study Designs: Robust and

Efficient Estimation,” SSRN working paper 2826228 (2022).

35
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Table 1: Regression Results for Proportion of Significant P-values

Variable Full sample RCT balance, pure Other tests, pure

Proportion π̂ j of p-values in subintervals

• j = [0,0.05) 0.099∗∗∗ 0.046 0.091∗∗∗

(0.006) (0.009) (0.006)

• j = [0.05,0.10) 0.038∗∗∗ 0.025∗∗∗ 0.039∗∗∗

(0.002) (0.005) (0.003)

• j = [0.10,0.15) 0.037∗∗∗ 0.033∗∗∗ 0.039∗∗∗

(0.003) (0.006) (0.004)

• j = [0.15,0.20) 0.047 0.054 0.050
(0.004) (0.009) (0.007)

Aggregate proportion π̂r 0.173∗∗∗ 0.103∗∗∗ 0.170∗∗

over removal region [0,0.15) (0.007) (0.012) (0.009)

Observation counts

• Unique sniff tests 28,832 2,953 16,063
• Clusters 857 85 606

Notes: Columns show estimates from IFWLS regressions for select subsamples. See Table A8 in

the online appendix for the full set of regression results corresponding to every panel in Figure 3.

Estimates are based on more observations than kernel density plots: in addition to those for which

we glean exact p-values, we include observations specifying p-value intervals. We use a stacked

regression that allows each coefficient π̂ j to be estimated on the largest subsample I j for which 1pi∈ j

can be determined for any realization of pi ∈ [0,1]. The number of observations in each column

differs slightly from that reported in Figure 2 because some tables do not use conventional significance

reporting thresholds. In row for aggregate results over removal region [0,0.15), entries equal the sum

of the coefficients above in same column: π̂r = π̂[0,0.05) + π̂[0.05,0.10) + π̂[0.10,0.15). Standard errors

reported in parentheses below results are clustered at the article level. The interpretation of stars is

non-standard here: rather than indicating a significant difference from 0, they indicate a significant

difference from the uniform benchmark (with the proportion equaling the length of interval j) in a

two-tailed test at the ∗ten-percent level, ∗∗five-percent level, ∗∗∗one-percent level.
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Table 2: Estimates of Bounds on Removal

Lower bound Upper bound
Sample, µ̄r assumption

¯
ρr =

r−π̆r
r ρ̄r =

r−π̆r+µ̄rπ̆r
r(1−π̆r)

RCT balance, pure

• Unknown misspecification (µ̄r = 1 possible) 0.308∗∗∗ 1.116
(0.078) (0.015)

• No misspecification (µ̄r = 0) 0.308∗∗∗ 0.344∗∗∗

(0.078) (0.082)

Other tests, pure

• Unknown misspecification (µ̄r = 1 possible) −0.131 1.204
(0.057) (0.012)

• No misspecification (µ̄r = 0) −0.131 −0.157∗∗∗

(0.057) (0.070)

Notes: Estimates of bounds on removal rate from Proposition 1. Standard errors reported in parenthe-

ses below results computed using the delta method and clustered at the article level. The interpretation

of stars is non-standard here. For the lower-bound and upper-bound columns, stars indicate signifi-

cantly greater than 0 and significantly less than 1, respectively, in a one-tailed test at the ∗ten-percent

level, ∗∗five-percent level, ∗∗∗one-percent level.

Table 3: Estimates of Bounds on Misspecification

Lower bound Upper bound

Sample,
¯
ρr assumption

¯
µr =

π̆r−r+r(1−π̆r)
¯
ρr

(1−r)π̆r
µ̄r = 1

RCT balance, pure

• Unknown or no removal (
¯
ρr = 0) −0.524 1.000

(0.191)

• Lower bound estimated for this −0.054 1.000
sample (

¯
ρr = 0.308) (0.014)

Other tests, pure

• Unknown or no removal (
¯
ρr = 0) 0.136∗∗∗ 1.000

(0.052)

• Lower bound estimated for RCT 0.402∗∗∗ 1.000
balance, pure sample (

¯
ρr = 0.308) (0.075)

Notes: Estimates of bounds on misspecification rate from Proposition 2. Since trivial upper bound

µ̄r = 1 is posited, not estimated, standard errors omitted for those entries. See previous table for

additional notes. 40



Figure 1: Trend in Sniff-Test Observations Over Time
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Note: Figure graphs the number of sniff-test observations in our dataset by the year that the con-

taining article was published.

Figure 2: Subsample Breakdown by Methodology
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Figure 3: Kernel Density Estimates of P-curves
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Notes: Solid curve is the p-curve, estimated using Jann’s (2005) kdens Stata module with the

default Epanechnikov kernel. Procedure accounts for lower and upper bounds on the support

using the renormalization procedure prescribed by Jones (1993) taking the standard kernel-density

estimate and dividing it by the amount of local mass lying inside the bounds of the support. To

maintain consistent scaling across panels, disproportionately high curve in panel (5) is truncated at

the maximum of vertical axis. Dotted line is the uniform [0,1] density benchmark.
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Online Appendixes

Examining Selection Pressures in the Publication
Process Through the Lens of Sniff Tests

Christopher M. Snyder Ran Zhuo
Dartmouth College and NBER University of Michigan

This document contains a series of online appendixes supplementing the article. The appendixes
include the following content.

Appendix A1 provides details behind the construction of the sample.

Appendix A2 provides bounds for the case in which the removal region is treated as a single
interval. This is the appendix containing proofs of the propositions stated in the main text.

Appendix A3 provides bounds for alternative definitions of removal and misspecification rates
than adopted in the text, for example defining rates with respect to the post-removal rather
than pre-removal population or defining rates over the entire unit interval rather than just in
the removal region.

Appendix A4 generalizes the analysis to allow the removal region to be partitioned into subinter-
vals with potentially different removal rates.

Appendix A5 provides details behind the inverse frequency weighting used in our regressions.

Appendix A6 provides full regression tables for results mentioned in the main text.
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A1. Details on Sample Construction

Search Phrases for Sniff Tests
We construct the initial pool of articles potentially containing sniff tests from searches of keywords
in Elsevier’s online database, ScienceDirect, We include any article that was published in the list
of Elsevier journals in Table A1 and that contains any of the following phrases:

• “balance test”

• “balancing test”

• “baseline characteristics”

• “falsification checks”

• “falsification test”

• “placebo regression”

• “placebo test”

• “randomization checks”

• “randomization test”

• “validation checks”

• “validation test”

• (“compare” OR “comparison”) AND “at baseline”

• (“compare” OR “comparison”) AND “treatment group” AND “control group”
AND (“before treatment” OR (“prior” AND “treatment”)).

We similarly construct the initial pool of articles potentially containing sniff tests from the list of
top-five, general-interest journals in Table A1 by searches of the JSTOR database for any of the
listed phrases. We performed the same keyword search on Google Scholar to obtain the initial
pool of articles for years 2013–15 for the Quarterly Journal of Economics and 2015 for the Review
of Economic Studies, journal volumes which were not available through JSTOR during our initial
data collection in 2015.
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Sample Journals
Table A1 lists the journals in economics and affiliated fields contained in the sample, grouped by
five-year impact factor.

Table A1: Journals in Sample by Five-Year Impact Factor
Impact Factor ≥ 4 Impact Factor ∈ [2,4) Impact Factor < 2

Impact Sample Impact Sample Impact Sample
Journal factor % Journal factor % Journal factor %

† Quarterly J. Ec. 9.8 4.2 Ecological Ec. 3.9 1.5 J. Banking & Fin. 1.9 0.6
J. Fin. Ec. 5.9 1.9 Energy Ec. 3.4 0.1 J. Int. Money & Fin. 1.9 0.1
† Econometrica 5.8 2.5 J. Health Ec. 3.3 15.9 European J. Political Ec. 1.8 0.5
† J. Political Ec. 5.7 1.7 Ec & Human Biology 3.0 1.1 J. Corporate Fin. 1.8 0.4
† American Ec. Rev. 5.0 7.8 J. Envir. Ec. & Manag. 2.9 1.6 European Ec. Rev. 1.8 2.3
† Rev. Ec. Studies 4.7 1.5 J. Urban Ec. 2.9 3.9 China Ec. Rev. 1.8 1.1
J. Accounting & Ec. 4.7 0.1 Food Policy 2.8 0.0 J. Ec. Psychology 1.8 0.2

J. Public Ec. 2.8 10.8 J. Comparative Ec. 1.7 1.3
J. Development Ec. 2.8 10.2 J. Ec. Behavior & Org. 1.5 5.1
J. Int. Ec. 2.7 1.1 Ec. Education Rev. 1.5 2.0
World Development 2.7 5.8 J. Empirical Fin. 1.5 0.4
J. Monetary Ec. 2.7 0.1 Regional Sci. & Urban Ec. 1.4 0.0
J. Econometrics 2.3 0.4 Labour Ec. 1.4 8.3
J. Fin. Stability 2.1 0.1 Int. Rev. Ec. & Fin. 1.4 0.5
Resource & Energy Ec. 2.0 0.1 Int. J. Industrial Org. 1.4 0.6

Information Ec. & Policy 1.1 0.1
Explorations Ec. History 1.1 0.5
Pacific-Basin Fin. J. 1.0 0.0
J. Housing Ec. 1.0 0.0
Ec. Modelling 0.9 0.4
J. Japanese & Int. Ec. 0.8 0.1
Ec. Letters 0.7 0.9
Fin. Research Letters 0.7 0.0
Int. Rev. Law & Ec. 0.5 0.4
J. Applied Ec. 0.5 0.1

Notes: Listing of journals constituting sample, divided into three categories by five-year impact factor. Five-year
impact factors from Thomson Reuters Journal Citation Reports 2015. All listed journals contribute observations to
sample, though some entries in the % of sample column round to 0.0%. Table omits listing of the 12 journals in the
third category that are too young to have a five-year impact factor by 2015: Int. Rev. Ec. Education, Int. Rev. Fin.
Analysis, J. Asian Ec., J. Behavioral & Experimental Ec., J. Choice Modelling, J. Fin. Intermediation, J. Socio-Ec.,
North American J. Ec. & Fin., Quarterly Rev. Ec. & Fin., Research Policy, Research Social Stratification & Mobility,
and Rev. Fin. Ec.. None of these journals alone constitutes more than 0.5% of the sample; together, they constitute less
than 1.5%. Journals accessed via JSTOR site designated by †; these journals also happen to be regarded as the top-five
general interest journals in economics; journals without this designation are published by Elsevier and accessed via
the ScienceDirect website.
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A2. Nonparametric Bounds with a Single Removal Region

Overview
This appendix first proves the two propositions stated in the main text, which provide nonpara-
metric bounds when the unit interval of p-values is partitioned into just two regions, the removal
region [0,r), and the no-removal region [r,1]. The appendix then states and proves propositions
on when those bounds are sharp. Finally, we provide an alternative to equation (19) for an upper
bound on removal and discuss the circumstances under which one or the other bound is tighter.

Proof of Proposition 1
Lower bound (18) can be established with the following series of inequalities:

ρr ≡
dr + sr

πr
=

πr − m̆π̆r

πr
≥ r− m̆π̆r

r
≥ r− π̆r

r
. (A1)

The first step repeats the definition in (8). The second step follows from admissibility constraint
(10). The third step follows from

πr = F(r)≥ r, (A2)

where the equality follows from the definition of the cdf and the inequality is shown in Section 4.1
to hold by (4). The fourth step follows from m̆ ≤ 1, which in turn follows from the admissibility
constraint (9).

We next turn to establishing upper bound (19). Before doing so, we will establish two prelim-
inary facts. Section 4.1 argued that the asymptotic uniformity of the p-value distribution captured
in equation (3) implies F0(r) = r. Substituting the preceding equality into (13) yields

πr = (1−µ)r+µF1(r) = (1−µ)r+πrµr ≤ r+πrµ̄r. (A3)

The second equality follows from substituting for µF1(r) from (14). The last inequality follows
from µ ≥ 0 and µr ≤ µ̄r. Rearranging (A3) yields our first preliminary fact:

πr ≤
r

1− µ̄r
. (A4)

The second preliminary fact comes from combining the admissibility conditions (9) and (10) and
rearranging, yielding

πr = π̆r +(1− π̆r)dr + sr. (A5)

Proceeding to establish the upper bound, substituting (A5) into (8) yields

ρr =
dr + sr

π̆r +(1− π̆r)dr + sr
. (A6)

Substituting (A5) into (A4) yields

π̆r +(1− π̆r)dr + sr ≤
r

1− µ̄r
. (A7)

Online Appendix page 4



We can bound ρr above by maximizing (A6) subject to (A7) and nonnegativity constraints dr ≥ 0
and sr ≥ 0. By (A6), we will be assured that ρr does not lie above the maximum of the resulting
value function, so we will have our upper bound.

Objective (A6) is increasing in dr and sr. Hence, constraint (A7) binds at the optimum. Treating
(A7) as an equality, solving for sr, substituting this value into the right-hand side of objective (A6),
and rearranging yields

1− π̆r(1−dr)(1− µ̄r)

r
. (A8)

This rewritten objective is increasing in dr and independent of sr. Hence, it is maximized subject
to (A7) by setting s∗r = 0 and

d∗
r =

1
1− π̆r

(
r

1− µ̄r
− π̆r

)
, (A9)

the value of dr for which (A7) holds with equality setting sr = 0. (That the corner involves no
shifting, only deletion, is expected from the discussion in Section 4.2, which argued that attributing
removal to deletion rather than shifting generates the greatest removal rate consistent with observed
properties of the post-removal sample.) Substituting d∗

r and s∗r into (A6) and rearranging yields the
upper bound in (19). □

Proof of Proposition 2
We showed in (A3) that

πr = (1−µ)r+µF1(r). (A10)

We will draw two implications from (A10). First, a simple rearrangement shows

µF1(r) = πr − (1−µ)r. (A11)

The second implication follows from the fact that, since F1 is an average over cdfs, it inherits the
property F1(r) ≤ 1. Substitituing the preceding inequality into (A10) yields πr ≤ (1− µ)r + µ ,
which upon rearranging yields

µ ≥ πr − r
1− r

. (A12)

Leveraging those two implications allows us to derive a lower bound on the misspecification
rate:

µr ≡
µF1(r)

πr
=

πr − (1−µ)r
πr

≥ πr − r
(1− r)πr

. (A13)

The first step repeats the definition of µr in (14). The second step follows from substituting from
(A11). The last step follows by substituting from inequalty (A12) and rearranging. We proceed
by solving the problem of choosing the removal configuration {dr,sr} minimizing the rightmost
expression in (A13) subject to admissibility constraints. By (A13), we will be assured that µr does
not lie below the minimum of the resulting value function, so we will have our lower bound.

One can verify that the rightmost expression in (A13) is increasing in πr. The rest of the
terms in the expression are exogenous. Hence, the removal configuration minimizing the right-
most expression in (A13) subject to constraints will be the same as that minimizing πr subject to
constraints. Substituting from for m̆ from admissibility constraint (9) into admissibility constraint
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(10) and rearranging yields
πr = π̆r +(1− π̆r)dr + sr. (A14)

We will minimize the right-hand side of (A14) subject to nonnegativity constraints dr ≥ 0 and
sr ≥ 0 as well as a constraint incorporating the researcher’s knowledge of the bound on removal
rate:

ρr ≡
dr + sr

πr
=

dr + sr

π̆r +(1− π̆r)dr + sr
≥

¯
ρr, (A15)

where the first equality repeats the definition of ρr from (8), the second equality follows from
substituting from (A14), and the third reflects the knowledge that the removal rate is no less than
some threshold

¯
ρr. Rearranging the last inequality in (A15) yields a useful form for the removal

constraint
[1− (1− π̆r)

¯
ρr]dr +(1−

¯
ρr)sr ≥

¯
ρrπ̆r. (A16)

Minimizing the right-hand side of (A14) subject to (A16) and nonnegativity constraints is a
linear program. It can be solved by checking the value of the objective at the two vertices of the
constraint set. One vertex sets sr = 0 and sets dr to the value satisfying (A16) with equality:

dr = ¯
ρrπ̆r

1− (1− π̆r)
¯
ρr
. (A17)

The other vertex sets dr = 0 and sets sr to the value satisfying (A16) with equality:

sr = ¯
ρrπ̆r

1−
¯
ρr
. (A18)

One can verify that the first vertex produces a lower solution and thus provides the mininum for
the linear program. Substituting the solution into (A14), and substituting the resulting value of πr
into the original objective function given by the rightmost expression in (A13) yields the bound
stated in equation (20). □

Sharpness of Bounds
Next, we state a result on the sharpness of one of the bounds just established.

Proposition 3. Suppose there is no misspecification in the pre-removal sample. Then the bounds
from Proposition 1, upon substituting µ̄r = 0, are sharp.

Proof. To prove the lower bound in (18) is sharp, consider the configuration of removals such that
d∗

r = 0 and s∗r = r− π̆r, which turns out to satisfy the combination of admissibility conditions in
(A5) when dr = 0. Substituting d∗

r and s∗r into the removal rate as expressed in (A6) yields ρr =
(r− π̆r)/r, the bound in (18). Demonstrating an admissible configuration of removals attaining the
lower bound proves it is sharp.

To prove the upper bound in (19) is sharp, consider the configuration of removals such that
sr = 0 and d∗

r = (r− π̆r)/(1− π̆r), which turns out to satisfy (A5) when sr = 0. Substituting d∗
r

and s∗r into (A6) yields ρr = (r− π̆r)/r(1− π̆r), the bound in (19) when µ̄r = 0. Demonstrating an
admissible configuration of removals attaining the upper bound proves it is sharp. □
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Alternative Bounds
The next proposition provides an alternative upper bound on the removal rate to that stated in
Proposition 1, which is tighter under some conditions.

Proposition 4. Suppose we, the researchers, know µr ≤ µ̄r. For all admissible removal configura-
tions {dr,sr}, the removal rate ρr does not fall above the upper bound

¯̄ρr =
r− π̆r +(1− r)µ̄r

(1− π̆r)[r+(1− r)µ̄r]
. (A19)

This bound is tighter than (19) if and only if

µ̄r >
1−2r
1− r

(A20)

and weaker if the reverse inequality holds.

Proof. We can obtain an upper bound on ρr by choosing dr and sr to maximize ρr as expressed in
(A6) subject to nonnegativity constraints dr ≥ 0 and sr ≥ 0 and the combination of the remaining
admissibility conditions as expressed in (A5). Now

πr = (1−µr)r+µrF1(r)≤ r+(1− r)µr ≤ r+(1− r)µ̄r, (A21)

where the equality follows from (A10), the first inequality from F1(r) ≤ 1, and the last inequal-
ity from the fact that µ̄r is an upper bound on µr. Combining (A5) with (A21) yields a weaker
constraint

π̆r +(1− π̆r)dr + sr ≤ r+(1− r)µ̄r. (A22)

Following the logic used to solve similar problems in this appendix, the solution to this weaker
problem of maximizing (A6) subject to nonnegativity and (A22) involves s∗r = 0 and the value d∗

r
solving (A22) treated as an equality after substituting sr = 0, i.e.,

d∗
r =

r− π̆r +(1− r)µ̄r

1− π̆r
. (A23)

Substituting d∗
r and s∗r into (A6) yields the bound in (A19).

To verify (A20), the difference between (19) and (A19) can be written, after rearranging,

π̆rµ̄r[(1− r)(1− µ̄r)− r]
r(1− π̆r)[r+(1− r)µ̄r]

. (A24)

All the factors are definitively positive except the one in square brackets, which is positive if and
only if (A20) holds, in which case (19) exceeds (A20) and so (A20) is a tighter bound. □
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A3. Alternatively Defined Rates
For consistency, the main text focused on the the removal region of the pre-removal population in
bounding rates of removal and misspecification. While these are arguably the most useful rates to
bound, alternatives might be of interest as well. For example, one might be interested in bounding
rates in the entire unit interval, not just the removal region, or one might be interested in bounding
rates in the post-removal rather than the pre-removal population.

Table A2 provides a taxonomy of the rates analyzed in the main text and the additional al-
ternatives analyzed in this appendix. Each box provides the notation for the alternative rate. It
also cross-references the tables in which the relevant bound formulas and bound estimates from
our dataset are reported. Subsequent sections of this appendix derive the formulas for the rates in
Table A2 and lower and upper bounds on those rates thus defined.

Table A2: Taxonomy of Alternatively Defined Rates

Population

Pre-removal Post-removal

R
eg

io
n R
em

ov
al

ρr µr ρ̆r µ̆r
Table 2 Table 3 No table Tables A5 and 3

U
ni

t ρ µ ρ̆ µ̆

Table A3 Table A4 No table Tables A6 and A7

Notes: Since there is no removal from the post-removal population, the removal rates ρ̆r and ρ̆ are
not well defined and thus are not reported in tables. Several entries have two tables of reported
results covering various subcases to be defined.

Removal Rate from Entire Pre-removal Population
Since the mass of the pre-removal population is normalized to m = 1, the removal rate from the
entire pre-removal population equals the total mass removed:

ρ = dr + sr. (A25)

Rearranging (10) yields dr + sr = πr − m̆π̆r ≥ r− π̆r, where the last inequality follows from (A2).
This provides a lower bound on the removal rate:

¯
ρ = r− π̆r.

Next turn to deriving an upper bound on (A25) when we, the researchers, know µr ≤ µ̄r.
Similar logic as in the proof of Proposition 1 can be used to show that a bound can be obtained by
choosing dr ≥ 0 and sr ≥ 0 to maxizing removal rate (A25) subject to (A7). The solution is the
same here as in that proof: d∗

r given by (A9) and s∗r = 0. Substituting those values into objective
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(A25) yields upper bound

ρ̄ =
r− π̆r(1− µ̄r)

(1− π̆r)(1− µ̄r)
. (A26)

The next table summarizes the rate and bound formulas just derived and reports estimates of
the bounds in our sniff-test sample.

Table A3: Bounds on Removal Rate ρ in Entire Pre-removal Population

Lower bound Upper bound
Sample, µ̄r assumption

¯
ρ = r− π̆r ρ̄ = r−π̆r(1−µ̄r)

(1−π̆r)(1−µ̄r)

RCT balance, pure

• Unknown misspecification (µ̄r = 1 possible) 0.046∗∗∗ ∞

(0.012)

• No misspecification (µ̄r = 0) 0.046∗∗∗ 0.052∗∗∗

(0.012) (0.012)

Other tests, pure

• Unknown misspecification (µ̄r = 1 possible) −0.019 ∞

(0.009)

• No misspecification (µ̄r = 0) −0.019 −0.024∗∗∗

(0.009) (0.011)

Notes: Notes: Estimates of bounds on removal rate, formulas for which are provided in column
headings. The negative estimate for ρ̄ is inconsistent with the requirement that the removal rate
be nonnegative, indicating that the assumption of no misspecification is invalid. See Table 2 for
additional notes.

Misspecification Rate in Entire Pre-removal Population
The misspecification rate in the entire pre-removal population is simply µ . The argument in Sec-
tion 4.3 that µ̄r = 1 is a tight upper bound on µr carries over here to imply that µ̄ = 1 is a tight
upper bound on µ .

We are left to derive a lower bound, denoted
¯
µ when we, the researchers, know ρr ≥

¯
ρr. By

(A12), a lower bound on µ is given by

πr − r
1− r

=
π̆r +(1− π̆r)dr + sr − r

1− r
, (A27)

where the equality follows from substititing for π from (10). To arrive at lower bound
¯
µ , we can

choose dr ≥ 0 and sr ≥ 0 to minimize the right-hand side of (A27) subject to ρr = (dr+sr)/πr ≥
¯
ρr,

which was shown in the proof of Proposition 2 to be equivalent to (A16). The upshot is a linear
program, which one can verify by testing the vertices to have the same solution as in that proof:
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d∗
r given by (A17) and s∗r = 0. Substituting that solution into the objective given by the right-hand

side of (A27) yields lower bound

¯
µ =

π̆r − r+ r(1− π̆r)
¯
ρr

(1− r)[1− (1− π̆r)
¯
ρr]

. (A28)

The next table summarizes the rate and bound formulas just derived and reports estimates of
the bounds in our sniff-test sample.

Table A4: Bounds on Misspecification Rate µ in Entire Pre-removal Population

Lower bound Upper bound

Sample,
¯
ρr assumption

¯
µ =

π̆r−r+r(1−π̆r)
¯
ρr

(1−r)[1−(1−π̆)
¯
ρr]

µ̄r = 1

RCT balance, pure

• Unknown or no removal (
¯
ρr = 0) −0.054 1.000

(0.014)

• Lower bound estimated for this −0.008 1.000
sample (

¯
ρr = 0.308) (0.002)

Other tests, pure

• Unknown or no removal (
¯
ρr = 0) 0.023∗∗ 1.000

(0.010)

• Lower bound estimated for RCT 0.092∗∗∗ 1.000
balance, pure sample (

¯
ρr = 0.308) (0.026)

Notes: Estimates of bounds on misspecification rate, formulas for which are provided in column
headings. See Table 3 for additional notes.

Misspecification Rate in Removal Region of Post-removal Population Under
Weak Assumptions on Misspecification Among Removed
The misspecification rate in the removal region of the post-removal population is given by

µ̆r =
µrπr −µds(dr + sr)

m̆π̆r
, (A29)

where µds is the misspecification rate among removed observations. Presumably, the misspecifica-
tion rate among removed observations is at least as great as the unconditional misspecification rate
µr in the removal region pre-removal even if in the worst case removal is at random. We will place
no restrictions on µds other than the natural constraint that a rate cannot entail more than complete
misspecification: µds ≤ 1.
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The argument in Section 4.3 that µ̄r = 1 is a tight upper bound on µr carries over here to imply
that ¯̆µ = 1 is a tight upper bound on µ̆ .

We are left to derive a lower bound, denoted ˘
¯
µ when we, the researchers, know ρr ≥

¯
ρr. We

have

µ̆r ≥
µrπr −dr − sr

m̆π̆r
(A30)

≥ πr − r− (1− r)(dr + sr)

(1− r)m̆π̆r
(A31)

=
π̆r − r

(1− r)π̆r
+

rsr

(1− r)(1−dr)π̆r
, (A32)

where (A30) follows from substituting µds ≤ 1, (A31) follows from substituting µr ≥ (πr−r)/(1−
r)πr from (A13) and rearranging, and (A32) follows from further rearranging. Equation (A32) can
be minimized by setting s∗r = 0 without violating the constraint entailed by knowledge of ρr ≥

¯
ρr.

Substituting s∗r = 0 into (A32) yields lower bound

˘
¯
µ =

π̆r − r
(1− r)π̆r

. (A33)

The next table summarizes the rate and bound formulas just derived and reports estimates of
the bounds in our sniff-test sample. Notice that the weak assumptions on misspecification rate µds
among removed observations preclude our leveraging knowledge of the removal rate, so

¯
ρr is not

a factor in this table.

Table A5: Bounds on Misspecification Rate µ̆r in Removal Region of Post-removal Population
Under Weak Assumptions on Misspecification Among Removed

Lower bound Upper bound
Sample

¯
µ = π̆r−r

(1−r)π̆r
µ̄r = 1

RCT balance, pure −0.524 1.000
(0.014)

Other tests, pure 0.136∗∗∗ 1.000
(0.052)

Notes: Estimates of bounds on misspecification rate, formulas for which are provided in column
headings. The weak assumptions on misspecification rate µds among removed observations pre-
clude our leveraging knowledge of the removal rate, so

¯
ρr does is not a factor in this table. See

Table 3 for additional notes.
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Misspecification Rate in Entire Post-removal Population Under Weak As-
sumptions on Misspecification Among Removed
The misspecification rate in the entire post-removal population is given by

µ̆ =
µ −µdsdr

m̆
. (A34)

We again place no restrictions on the misspecification rate among removed observations, µds, other
than µds ≤ 1.

The argument in Section 4.3 that µ̄r = 1 is a tight upper bound on µr carries over here to imply
that ¯̆µ = 1 is a tight upper bound on µ̆ .

We are left to derive a lower bound, denoted ˘
¯
µ when we, the researchers, know ρr ≥

¯
ρr. We

have

µ̆ ≥ µ −dr

m̆
(A35)

=
µ −dr

1−dr
(A36)

≥ πr − r− (1− r)dr

(1− r)(1−dr)
(A37)

=
π̆r +(1− π̆r)dr + sr − r− (1− r)dr

(1− r)(1−dr)
, (A38)

The constraint ρr ≥
¯
ρr was shown in the proof of Proposition 2 to be equivalent to (A16). We

can thus compute a lower bound by minimizing (A38) subject to (A16). The constraint turns out
to bind. Solving the constraint treated as an equality for sr, substituting into the objective, and
differentiating the result with respect to dr yields a negative derivative, implying that the optimum
involves a high value of d∗

r and low value of s∗r . Substituting s∗r = 0 into the objective yields lower
bound

˘
¯
µ =

π̆ − r
1− r

. (A39)

The next table summarizes the rate and bound formulas just derived and reports estimates of
the bounds in our sniff-test sample. Notice again that the weak assumptions on misspecification
rate µds among removed observations preclude our leveraging knowledge of the removal rate, so
as in Table A5,

¯
ρr is not a factor in this table either.
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Table A6: Bounds on Misspecification Rate µ̆ in Entire Post-removal Population Under Weak
Assumptions on Misspecification Among Removed

Lower bound Upper bound
Sample ˘

¯
µ = π̆r−r

1−r
˘̄µr = 1

RCT balance, pure −0.054 1.000
(0.014)

Other tests, pure 0.023∗∗ 1.000
(0.010)

Notes: Notes from Table A5 apply.

Misspecification Rate in Removal Region of Post-removal Population Assum-
ing Random Removal
Equation (A29) shows the misspecification rate in the removal region of the post-removal pop-
ulation. If removal is random, implying that the removal rate is independent of whether studies
are well specified or misspecified and indepenent of the p-value within the removal region, then
µsd = µr. Substituting into (A29) yields

µ̆r =
µr(πr −dr − sr)

m̆π̆r
= µr, (A40)

where the second equality follows from substituting for the denominator from (10). This is the
identical formula for the misspecification rate studied in the main text for the pre-removal popula-
tion. See the main text for bounds on this misspecification rate and Table 3 for bounds estimates
in our sniff-test sample.

Misspecification Rate in Entire Post-removal Population Assuming Random
Removal
Equation (A34) shows the misspecification rate in the entire post-removal population. As argued
in the previous section, µsd = µr if removal is random. Substituting into (A34) yields

µ̆ =
µ −µrdr

m̆
(A41)

=
µ[πr −F1(r)dr]

πr(1−dr)
(A42)

≥ µ(πr −dr)

πr(1−dr)
(A43)

≥ (πr − r)(πr −dr)

(1− r)πr(1−dr)
(A44)
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≥ (π̆r − r)(π̆r −dr)

(1− r)π̆r(1−dr)
(A45)

Equation (A42) follows from substituting for µ from (9) and for µr from (14). Condition (A43)
follows from F1(r)≤ 1. Condition (A44) follows from (A12). To see (A45), differentiating (A44)
with respect to πr yields a positive derivative. But π̆r ≤ πr since π̆r reflects removed mass. Thus,
the substitution of π̆r for πr in moving from (A44) to (A45) reduces the expression.

A lower bound can be obtained by minimizing (A45) subject to the constraint that ρr ≥
¯
ρr,

which was shown previously to be equivalent to (A16). Since s∗r does not appear in (A45), the
solution sets s∗r = 0 and d∗

r such that (A16) holds with equality after substituting s∗r = 0, i.e., the
value of d∗

r satisfying (A17). Substituting from (A17) into objective (A45) and yields lower bound

˘
¯
µ =

π̆r − r+ r(1− π̆r)
¯
ρr

1− r
. (A46)

The next table summarizes the rate and bound formulas just derived and reports estimates of
the bounds in our sniff-test sample.

Table A7: Bounds on Misspecification Rate µ̆ in Entire Post-removal Population Assuming Ran-
dom Removal

Lower bound Upper bound

Sample,
¯
ρr assumption

¯
µ =

π̆r−r+r(1−π̆r)
¯
ρr

1−r µ̄r = 1

RCT balance, pure

• Unknown or no removal (
¯
ρr = 0) −0.054 1.000

(0.014)

• Lower bound estimated for this −0.006 1.000
sample (

¯
ρr = 0.308) (0.001)

Other tests, pure

• Unknown or no removal (
¯
ρr = 0) 0.023∗∗ 1.000

(0.010)

• Lower bound estimated for RCT 0.068∗∗∗ 1.000
balance, pure sample (

¯
ρr = 0.308) (0.015)

Notes: Estimates of bounds on misspecification rate, formulas for which are provided in column
headings. See Table 3 for additional notes.
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A4. Nonparametric Bounds with Multiple Removal Regions

Overview
In this appendix, we generalize the analysis from the previous appendix to allow for an arbitrary
number of removal regions with potentially differing rates of shifting and deletion. As we will
explain, the move to multiple removal regions does not tighten many of the bounds derived with
a single removal region since many of them were shown to be sharp. We are able to tighten two
of the bounds as stated in Propositions 5 and 6 below. The appendix concludes with an empirical
estimation of the improved bounds using our sniff-test sample.

Setup
To pursue this generalization, some additional notation is in order. Consider a partition 0 = a0 <
a1 < .. . < aJ ≤ aJ+1 = 1 of the unit interval. Suppose there is possible removal of p-values in the
first J subintervals [a j−1,a j), j = 1, . . . ,J, but no removal in the last subinterval [aJ,1], which is
allowed to be an empty set when aJ = 1.

As before, the breve accent is used to distinguish between the pre- and post-removal popula-
tions of p-values. Denote the proportion of observations falling into interval j in the pre-removal
population by π j and in the post-removal population by π̆ j. Since the unit interval is partitioned
by subintervals j = 1, . . . ,J + 1, we have ∑

J+1
j=1 π j = ∑

J+1
j=1 π̆ j = 1. Denote the total mass in the

pre-removal population by m and in the post-removal population by m̆. Normalize m = 1. Suppose
the pre-removal p-value distribution is continuous with probability density function (pdf) f (p).

Let d j denote the mass of p-values deleted from interval j and s j, j′ denote the mass shifted out
of j into interval j′. Assume dJ+1 = 0 and s j, j′ = 0 for all j′ < j. These assumptions ensure that
p-hacking and other mechanisms only shift mass up, not down, and that no mass is removed from
the rightmost interval J+1, consistent with its definition as falling outside the removal region.

The propositions below are concerned with bounds on the rate of removal and misspecification
in the removal region [0,aJ) pre-removal. To establish the bounds, we will show that there exists
no admissible configuration of removals {d j,s j, j′ | j = 1, . . . ,J; j′ > j} for which the relevant rate
lies outside the bound. As discussed in the text, to be admissible, the configuration of removals
must be nonnegative,

d j ≥ 0 for all j = 1, . . . ,J (A47)

s j, j′ ≥ 0 for all j = 1, . . . ,J and j′ > j, (A48)

must ensure that overall mass in both samples is accounted for,

m̆ = m−
J

∑
j=1

d j = 1−
J

∑
j=1

d j, (A49)

and must ensure that mass in each interval j is accounted for,

m̆π̆ j = π j −d j − ∑
j′> j

s j, j′ + ∑
j′< j

s j′, j (A50)
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for all j = 1, . . . ,J+1.
The notation for the more general model here can be connected back to the notation in the

main text. The threshold for removal, is given by r ≡ aJ . The proportion of observations in the
removal region and no removal region, respectively, in the pre-removal population are given by
πr ≡ ∑

J
j=1 π j and πn ≡ πJ+1. Analogously, the proportion of observations in the removal region

and no removal region, respectively, in the post-removal population are given by π̆r ≡ ∑
J
j=1 π̆ j

and π̆n ≡ π̆J+1. Total deletions amount to dr ≡ ∑
J
j=1 d j, and total shifts out of the removal region

amount to sr ≡ ∑
J
j=1 s j,J+1.

The rest of this appendix maintains the same assumptions required for the background results
in Section 4.1 to hold, including that sniff tests have nested rejection regions, are unbiased, and
so forth. For brevity, we omit the list of those maintained assumptions from the statement of the
propositions; the reader is referred to that subsection for a list and discussion of the maintained
assumptions.

Inherited Bounds from a Single Removal Region
Having set up the more general model, we proceed to derive bounds on removal and misspeci-
fication with multiple removal regions. We seek results in a similar vein as those with a single
removal region: bounding the removal rate given the knowledge we, the researchers, have about
the misspecification rate and vice versa. With multiple removal regions, there is some ambiguity
in how the misspecification rate should be constrained, whether the constraint is on the aggregate
misspecification rate µr over the entire removal region or whether separate constraints µ j should
be specified for each of the removal intervals j = 1, . . . ,J. We resolve this ambiguity by assum-
ing the knowledge we, the researchers, have takes on one of the extremes, either knowing that
there is no misspecification or knowing nothing about the misspecification rate and thus leaving
it unconstrained. The same ambiguity arises when considering we, the researchers, knowledge of
the removal rate when bounding misspecification. We will resolve that ambiguity simiilarly by
assuming that either there is no removal or the removal rate is unconstrained.

Start with the derivation of bounds on the removal rate. Assume first that there is no misspec-
ification in the removal region, µr = 0, implying that there is no misspecification in any of the
subintervals of the removal region. The bounds derived with a single removal region continue to
apply with multiple removal regions. In principle, the bounds could be tighter with in the latter
case. However, Proposition 3 shows they are sharp with a single removal region, so must be sharp
with multiple removal regions.

Now assume that the researcher does not know the misspecification rate. We argued that the
tight upper bound on removal is ρ̄r = 1 with a single removal region. The argument relied on a
construction with increasingly extreme misspecification in which πr is increasingly large, requiring
an increasing removal rate to arrive at the observed post-removal distribution. The same argument
implies that ρ̄r = 1 with multiple removal regions as well. This leaves the open question of whether
the lower bound on removal

¯
ρr with no information on misspecification can be improved by moving

to multiple removal regions. We prove in the next section that it can.
We next turn to deriving bounds on the misspecification rate µr given either that the researcher

knows ρr = 0 or the researcher is uninformed about ρr. We argued in the text that the upper bound
on the misspecification rate with a single removal region is the trivial µ̄r = 1, which continues to be
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the upper bound with multiple removal regions. This leaves the open queston of whether the lower
bound on misspecification

¯
µr can be improved by moving to multiple removal regions. Again, we

prove in the next section that it can.

Improving Bounds Over Single Removal Region
We will analyze the open questions raised in the previous section in reverse order, starting a proof
that the lower bound

¯
µr on misspecification can be improved with multiple removal regions. We

argued in the text that the bound when the researcher knows the removal rate is ρr = 0 is the
same as when the researcher does not know the removal rate because ρr = 0 is the “worst case”
for generating misspecification. The next proposition in this appendix is phrased as bounding the
misspecification rate when the researcher lacks information on the removal rate, but it could be
equivalently phrases as bounding the misspecification rate when ρr = 0. The bound formula is
complex, reflecting an iterative procedure we call “backward ironing” which we use to calculate
the shifts that complement deletions needed to minimize the misspecification rate to obtain the
lower bound. Despite the complex formula, the procedure can be described in intuitive terms and
illustrated with a diagram.

Before stating the last proposition, we provide a lemma stating a useful intermediate result.
To streamline the statement of the next lemma and proof of the subsequent proposition, let

¯
f ≡

min{ f (p) | p ∈ [0,1]}.

Lemma 1. Consider a continuous random variable with pdf f (p) and support in [0,1]. We can
write f (p) = (1−µ)+µg(p) for some well-defined density function g(p) and weight µ ∈ [0,1] if
and only if µ ∈ [1−

¯
f ,1].

Proof. See Pounds and Morris (2003) for a proof of the “if” direction. To prove the “only if”
direction, suppose we write f (p) = (1− µ)+ µg(p) for some µ < 1−

¯
f . Then there exists p′ in

the support of f such that f (p′) =
¯
f < 1−µ . Thus, (1−µ)+µg(p′)< 1−µ , implying g(p′)< 0,

implying g cannot be a well-defined density. □

The lemma is relevant for the next proposition, implying that the mass of well-specified studies
cannot exceed the largest rectangle that can be inscribed under the pdf f of p-values in the pre-
removal sample. Residual mass between the top of this inscribed rectangle and f must reflect
misspecification; those observations must have something other than a uniform distribution that
would have arisen absent misspecification.

Proposition 5. Suppose we, the researchers, are uninformed about the removal rate ρr. There
exists no admissible configuration of removals {d j,s j, j′ | j = 1, . . . ,J; j′ > j} such that the misspec-
ification rate

µr =
µF1(aJ)

∑
J
j=1 π j

, (A51)

falls below lower bound

¯
µr =

1− π̆J+1 −aJ +(1−aJ)∑
J
j=1 d∗

j

(1−aJ)
(

1− π̆J+1 +∑
J
j=1 d∗

j

) , (A52)
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where

d∗
j ≡ max

[
0,δ j +

j−1

∑
j′=1

s∗j′, j −
J

∑
j′= j+1

s∗j, j′

]
, (A53)

and

δ j ≡
(

a j −a j−1

1−aJ

)
π̆J+1 − π̆ j. (A54)

The iterative procedure for deriving the optimal s∗j′, j is embodied by the following recursive for-
mula:

s∗j′, j = max

[
0,

1
1+ e j−1

(
δ j′ −δ j +

j′−1

∑
k=1

s∗k, j′

)]
, (A55)

where
e j = 1+min

{
j′ = 1, . . . , j−1 |s∗j′, j > 0

}
(A56)

is the number of subintervals that were equalized with j in stage j ironing.

Proof. Before proceeding, we establish a preliminary inequality:

J

∑
j=1

π j = F(aJ) (A57)

= (1−µ)F0(aJ)+µF1(aJ) (A58)
= (1−µ)aJ +µF1(aJ) (A59)
≤

¯
f aJ +µF1(aJ) (A60)

≤ min
j∈{1,...,J+1}

(
π j

a j −a j−1

)
aJ +µF1(aJ) (A61)

Equation (A57) follows from (5), equation (A58) from (13), and equation (A59) from (3). Con-
dition (A60) follows from Lemma 1. Condition (A61) follows because the lowest value

¯
f of the

pdf of the pre-removal sample over [0,1] cannot exceed the average density π j/(a j −a j−1) in any
subinterval.

Substituting for µF1(aJ) from (A57)–(A61) into the numerator of (A51) yields

µr ≥ 1− aJ

∑
J
j=1 π j

min
j∈{1,...,J+1}

(
π j

a j −a j−1

)
(A62)

= 1− aJ

∑
J
j=1 π̆ j +

(
1−∑

J
j=1 π̆ j

)
∑

J
j=1 D j +∑

J
j=1 S j,J+1

× min
j∈{1,...,J+1}


(

1−∑
J
j′=1 D j′

)
π̆ j +D j +∑ j′> j S j, j′ −∑ j′< j S j′, j

a j −a j−1

 (A63)
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≥ 1− aJ

∑
J
j=1 π̆ j +

(
1−∑

J
j=1 π̆ j

)
∑

J
j=1 D∗

j +∑
J
j=1 S∗j,J+1

× min
j∈{1,...,J+1}


(

1−∑
J
j′=1 D∗

j′

)
π̆ j +D∗

j +∑ j′> j S∗j, j′ −∑ j′< j S∗j′, j
a j −a j−1

 (A64)

= 1− aJ

∑
J
j=1 π∗

j
min

j∈{1,...,J+1}

(
π∗

j

a j −a j−1

)
, (A65)

where we have modified the notation slightly for this proof, letting uppercase D j denote deletion
from subinterval j and S j, j′ denote the shift from j to j′, reserving lowercase d j and s j, j′ for the
normalized version of those removals, introduced later. Equation (A63) follows from making two
substitutions. For the first substitution, we obtain an expression to substitute for π j appearing in
parentheses in (A62) by substituting for m̆ from (A49) into (A50) and rearranging:

π j =

(
1−

J

∑
j′=1

D j′

)
π̆ j +D j + ∑

j′> j
S j, j′ − ∑

j′< j
S j′, j. (A66)

For the second substitution, we obtain an expresion to substitute for the sum ∑
J
j=1 π j appearing in

the denominator in (A62) by summing (A50) over j = 1, . . . ,J and substituting for m̆ from (A49):

J

∑
j=1

π j =
J

∑
j=1

π̆ j +

(
1−

J

∑
j=1

π̆ j

)
J

∑
j=1

D j +
J

∑
j=1

S j,J+1. (A67)

Inequality (A64) follows from substituting starred variables for their analogues appearing in (A63),
where the starred variables are the nonnegative values minimizing (A63). Equation (A65) reflects
the shorthand notation

π
∗
j =

(
1−

J

∑
j′=1

D∗
j′

)
π̆ j +D∗

j + ∑
j′> j

S∗j, j′ − ∑
j′< j

S∗j′, j, (A68)

which is the same proportion as in (A66) after substituting optimal deletions D∗
j and sifts S∗j′, j.

The derivative of (A64) with respect to D∗
j depends on whether j is a pivotal interval, establish-

ing the minimum in square brackets. If the expression for j is strictly above the minimum, then an
increase in D∗

j has no effect on the minimum in square brackets but increases the denominator of
the last factor, increasing the overall expression. Hence, D∗

j = 0 in that case. If j is pivotal, then
the left-hand derivative of (A63) equals

−aJ

a j −a j−1

(1− π̆ j)∑
J
j′=1 π∗

j′ −
(

1−∑
J
j′=1 π̆ j′

)
π∗

j(
∑

J
j′=1 π∗

j′

)2

 . (A69)

Equation (A69) is negative for j ≤ J since the first factor is negative and the numerator and
denominator in square brackets are positive. That the numerator in square brackets is positive

Online Appendix page 19



follows from ∑
J
j′=1 π∗

j′ ≥ π∗
j and ∑

J
j′=1 π̆ j′ ≥ π̆ j, implying 1− π̆ j ≥ 1−∑

J
j′=1 π̆ j′ . Thus, the optimum

for all j ≤ J involves increasing D j until j is no longer pivotal. This leaves interval J+1 as pivotal
since there is no removal in this interval, so DJ+1 = 0.

Reflecting the pivotalness of interval J+1, (A64) becomes

1−

(
aJ

1− π̆J+1 + π̆J+1 ∑
J
j=1 D∗

j +∑
J
j=1 S∗j,J+1

)(
π̆J+1 − π̆J+1 ∑

J
j=1 D∗

j −∑
J
j=1 S∗j,J+1

1−aJ

)
(A70)

=1−

(
aJ

1− π̆J+1 + π̆J+1 ∑
J
j=1 D∗

j

) π̆J+1

(
1−∑

J
j=1 D∗

j

)
1−aJ

 , (A71)

where (A70) holds because (A65) is increasing in S∗j,J+1, implying S∗j,J+1 = 0. Since (A70) is
increasing in D∗

j , the minimizing value is either 0 or the positive value that forces a tie between j
and J+1 for value of the factor in square brackets in (A64), i.e.,(

1−∑
J
j′=1 D∗

j′

)
π̆ j +D∗

j −∑ j′< j S∗j′, j +∑ j′> j S∗j, j′

a j −a j−1
=

(
1−∑

J
j′=1 D∗

j′

)
π̆J+1

1−aJ
. (A72)

Solving (A72) for D∗
j yields

D∗
j =

(
1−

J

∑
j′=1

D∗
j′

)(
δ j +

j−1

∑
j′=1

s∗j′, j −
J

∑
j′= j+1

s∗j, j′

)
, (A73)

defining

δ j =

(
a j −a j−1

1−aJ

)
π̆J+1 − π̆ j (A74)

as well as the normalized version of a shift:

s∗j, j′ =
S∗j, j′

1−∑
J
j′=1 D∗

j′
. (A75)

Combining the two possible values for D∗
j in a single expression yields

D∗
j =

(
1−

J

∑
j′=1

D∗
j′

)
max

(
0,δ j +

j−1

∑
j′=1

s∗j′, j −
J

∑
j′= j+1

s∗j, j′

)
, (A76)

where the J(J−1)/2 variables

{s∗j′, j ≥ 0 | j, j′ = 1, . . . ,J; j > j′} (A77)
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are set to minimize the sum appearing in (A71):

J

∑
j=1

D∗
j =

J

∑
j=1

max

[
0,δ j +

j−1

∑
j′=1

s∗j′, j −
J

∑
j′= j+1

s∗j, j′

]
, (A78)

as it can be verified that minimizing that sum minimizes the overall expression. The variables
in (A77) shift mass across intervals in the removal region leaving the total mass constant. Since
the max operator in (A78) is convex, the sum is minimized by reducing variation among the D∗

j .
If mass could be shifted in both directions, it would be possible to eliminate all variation in the
D∗

j . Since the nature of p-hacking only entails shifts in one direction, the best that can be done
to achieve the minimum is to eliminate the variation in D∗

j in the form of increases from D∗
j−1 to

D∗
j > D∗

j−1.
We label the iterative procedure to do so “backward ironing,” drawing a connection to a related

procedure familiar from the mechanism-design literature (see, e.g., Myerson 1981) for ironing
out nonmonotonicities in the distribution of agents’ virtual values as a preliminary analytical step.
Among other differences, ironing shifts mass in two directions in the mechanism-design literature,
whereas the nature of p-hacking constrains shifts to go in one direction here.

To gain intuition for the backward ironing procedure, consider the example in Figure A1 in
which the removal region is divided into five subintervals. For pedagogical purposes, we take
the subinterval widths to be equal, reducing the problem of equalizing the d∗

j to the problem of
equalizing the heights of the shaded bars. Stage 1 shows the density function before any ironing.
In stage 2, mass that was shifted by p-hacking from bar 1 to bar 2 is returned to bar 1, equalizing
their heights. In stage 3, there is no way to use a backward shift to equalize the height of bar 3
and preceding bars since the preceding bars are higher; so no shift is made. Stage 4 equalizes the
heights of bars 3 and 4 by returning mass that was shifted from 3 to 4 back to 3. Stage 5 equalizes
the height of bar 5 not only with bar 4, its immediate predecessor, but also with bar 3. Equal mass is
returned to both, implying that the drop in the height of bar 4 is twice the rise in bars 3 and 4. More
generally, backward ironing redistributes mass to as many predecessors as possible—all those tied
with the bar’s immediate predecessor after the previous stage’s smoothing. Since bar 5 is lower
than the stage-2 levels of bars 1 and 2, there is no way to go even further backward and equalize
the height of those bars with a backward shift; so backward ironing in stage 5 stops after bar 5 is
equalized with bars 3 and 4.

To obtain the formulas in the statement of the proposition requires a change of variables. Let

d∗
j ≡ max

(
0,δ j +

j−1

∑
j′=1

s∗j′, j −
J

∑
j′= j+1

s∗j, j′

)
, (A79)

implying
J

∑
j=1

D∗
j =

∑
J
j=1 d∗

j

1+∑
J
j=1 d∗

j
. (A80)

Substituting for the left-hand sum from the right-hand side of (A80) into (A71) and rearranging
yields the bound formula (A52) as stated in the proposition. □

Though the bound in Proposition 5 requires a complex series of recursive formulas to state

Online Appendix page 21



Figure A1: Example of Backward Ironing
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Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

algebraically, the implied algorithm for obtaining the bound is easier to describe. First, the algo-
rithm iteratively shifts mass backward just within the removal region to effectively iron out any
divots of mass there. The algorithm then considers a final round of deletions to bring densities in
removal-region subintervals up to the density in the no-removal region. Remaining excess mass
can then be attributed to misspecified studies and the bound computed by dividing this excess mass
by the mass in the removal region adjusted for deletions.

The next proposition provides a possible improvement to the lower bound on removal when
moving from a single to multiple removal regions. As with Proposition 5, the bound is complex
to formalize algrebraically but easier to describe algorithmically. The algorithm is similar to the
one just described but with subtle differences. The algorithm starts out with the same first step of
iteratively ironing backward to smooth out any divots of mass within the removal region. However,
instead of the final round using deletions to bring densities in removal-region subintervals up to the
no-removal region, this is accomplished with shifts. The mass in that final round of shifts bounds
the minimal amount of removal in the data.

The proof of the proposition relies on Theorem 1 of Elliot, Kudrin, and Wüthrich (2022), which
states that the p-curve is nonincreasing under general conditions, allowing for general misspeci-
fication and allowing the p-values to come from general tests (not just t-tests). Their result is
stronger than the one established in equation (4), which states that under general misspecification,
the p-curve is first order stochastic dominated by the uniform distribution.

Proposition 6. Suppose we, the researchers, are uninformed about the misspecification rate µr.
There exists no admissible configuration of removals {d j,s j, j′ | j = 1, . . . ,J; j′ > j} such that the
removal rate

ρr =
∑

J
j=1(d j + s j,J+1)

∑
J
j=1 π j

, (A81)

falls below lower bound

¯
ρr =

∑
J
j=1 s∗j,J+1

∑
J
j=1 π̆ j +∑

J
j=1 s∗j,J+1

, (A82)

for s∗j,J+1 defined in (A55).

Proof. We begin by translating the monotonicity result in Theorem 1 of Elliot, Kudrin, and Wüthrich
(2022) into a constraint on the removal configuration {d j,s j, j′ | j = 1, . . . ,J; j′ > j} that can be
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added to the other admissibility constraints considered so far in the paper. Consider two subin-
tervals, j and j′ > j. Letting f denote the density of p-values in the population of studies, the
monotonicity result implies

π j

a j −a j−1
=

1
a j −a j−1

∫ a j

a j−1

f (p)d p (A83)

≥ 1
a j −a j−1

∫ a j

a j−1

f (a j)d p (A84)

= f (a j) (A85)
≥ f (a j′) (A86)

=
1

a j′ −a j′−1

∫ a j

a j′−1

f (a′j)d p (A87)

≥ 1
a j′ −a j′−1

∫ a j

a j′−1

f (p)d p (A88)

π j′

a j′ −a j′−1
. (A89)

In the particular case in which j′ is taken to be J+1, (A83)–(A89) imply

π j

a j −a j−1
≥ πJ+1

1−aJ
. (A90)

A lower bound on (A81) can be obtained by choosing removal configuration {d j,s j, j′ | j =
1, . . . ,J; j′ > j} to minimize (A81) subject to admissibility and monotonicity constraints. We pro-
ceed to solve a relaxed problem that generates a solution satisfying the original problem, as can
be verified. To arrive at the relaxed problem, we let the smaller set of monotonicity constraints
embodied in (A90) for j = 1, . . . ,J stand in for the larger set in (A83)–(A89) for all j′ > j and
j = 1, . . . ,J. Further, we extract the information in (A49) and (A50) by substituting for m̆ from
(A49) into (A50), substituting the resulting value of π j in the objective function and constraints
(A90), and then ignoring constraints (A49) and (A50) in the subsequent minimization. The prob-
lem reduces to minimizing the rewritten objective

∑
J
j=1(d j + s j,J+1)(

1−∑
J
j=1 d j

)
∑

J
j=1 π̆ j +∑

J
j=1 ∑

J
j=1(d j + s j,J+1)

(A91)

subject to (A47), (A48), and, for all j = 1, . . . ,J,(
1−∑

J
j′=1 d j′

)
π̆ j +d j +∑ j′> j s j, j′ −∑ j′< j s j′, j

a j −a j−1
≥

(
1−∑

J
j′=1 d j′

)
π̆J+1 −∑

J
j=1 s j,J+1

1−aJ
. (A92)

We will show that the minimum involves all shifts, no deletions. To this end, consider a removal
configuration in which d j > 0. We will show this configuration can be improved upon by one that
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reduces d j by ∆d j and increases s j,J+1 by ∆s j such that the changes satisfy

∆d j

(
π̆J+1

1−aJ
−

1− π̆ j

a j −a j−1

)
= ∆s j

(
1

a j −a j−1
− 1

1−aJ

)
. (A93)

By construction, ∆d j and ∆s j keep the gap between the left- and right-hand sides of constraint
(A92) the same, so the constraint continues to be satisfied. The sum

J

∑
j=1

(d j + s j,J+1) (A94)

changes by ∆s j −∆d j, which upon substituting for ∆s j from (A93) and rearranging becomes

−
(a j −a j−1)(1− π̆J+1)+(1−aJ)π̆ j

(1−aJ)+(a j −a j−1)
, (A95)

which is obviously negative. The new configuration not only reduces the sum (A94); we can
also prove that it reduces the objective (A91). Objective (A91) is increasing in (A94), which
appears as a term in the numerator and denominator of (A91). Thus, the reduction in (A94) reduces
(A91). The reduction in d j reduces (A91) through an additional channel: d j appears outside of
the sum (A94) in the factor (1−∑

J
j=1 d j)∑

J
j=1 π̆ j in the denominator; a reduction in d j reduces

(A91) through this channel. Having demonstrated that the new configuration reduces the objective,
the original configuration with d j > 0 could not have been optimal, implying that the minimum
involves d∗

j = 0.
Substituting d∗

j = 0 into (A91), the objective function becomes

∑
J
j=1 s j,J+1

∑
J
j=1 π̆ j +∑

J
j=1 ∑

J
j=1 s j,J+1

. (A96)

Minimizing (A96) is equivalent to minimizing the sum

J

∑
j=1

s j,J+1. (A97)

Constraint (A92) becomes

π̆ j +∑ j′> j s j, j′ −∑ j′< j s j′, j

a j −a j−1
≥

π̆J+1 −∑
J
j=1 s j,J+1

1−aJ
. (A98)

If constraint (A98) is slack for j, then s∗j,J+1 = 0. If (A98) binds for subinterval j and is slack for
subinterval j′ > j, the solution can be improved by increasing s j, j′ and relaxing the constraint for
j. Indeed, s j, j′ should be increased up until the point that (A98) binds for j′. This proves that if
constraint (A98) binds for any j, it binds for all j′ = j, . . . ,J.

The minimizing solution can be found by backward ironing among subintervals in the removal
region until completion and then one final step of backward ironing from the no-removal region
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back to the removal region. The formulas for the shifts involved in backward ironing are provided
in Proposition 5. □

Estimating Improved Bounds on Misspecification
This section estimates the lower bound on misspecification,

¯
µr from equation (A51), in the pure

subsample of RCT balance tests and pure subsample of other tests in our data. Instead of using the
estimate π̂r of the proportion of p-values aggregated over the removal region [0,0.15) from one of
the lower rows in Table 1, we will use estimates π̂1, π̂2, and π̂3 for the finer subintervals from the
top rows in the table, where a1 = 0.05, a2 = 0.10, and a3 = 0.15, implying that π̂1, π̂2, and π̂3 are
the estimated proportion of observations in the subintervals [0,0.05), [0.05,0.10), and [0.10,0.15),
respectively.

Start by computing
¯
µr for the pure sample of RCT balance tests. To provide geometric in-

tuition for the computations, Figure A2 graphs the regression results as shaded bars. The top
panel provides the relevant results for the pure sample of RCT balance tests. The first step is to
apply backward ironing. The only scope for backward ironing in the removal region is to equal-
ize the heights of bars 2 and 3. We have d∗

1 = δ1, d∗
2 = δ ∗

2 + s∗2,3, and d∗
3 = δ3 − s∗3,2, implying

d∗
1 +d∗

2 +d∗
3 = δ1 +δ2 +δ3, in turn implying ∑

J
j=1 d∗

j = ∑
J
j=1 δ j in this case. Hence,

J

∑
j=1

d∗
j =

J

∑
j=1

δ j =

(
aJ

1−aJ

)
π̆J+1 −

J

∑
j=1

π̆ j =
1

1−aJ

(
a j −

J

∑
j=1

π̆ j

)
, (A99)

where the first equality was just established, the second follows from (A74), and the last from
algebra. Substituting from (A99) for ∑

J
j=1 d∗

j in (A51) leads to a 0 in the numerator, implying

¯
µr = 0.

This is the same (trivial) bound
¯
µr found before with a single removal region. Moving to

multiple removal regions does not tighten the misspecification bound for the pure sample of RCT
balance tests. We still cannot rule out no misspecification. The p-curve in the top panel of Fig-
ure A2 could have corresponded to the uniform distribution in the pre-removal sample from which
δ1, δ2, and δ3 was deleted.

Turn to computing
¯
µr for the pure sample of other tests. The shaded bars in the lower panel

of Figure A2 represent the regression results for this sample. There is no scope for backward
ironing in the removal region in this case, so we can proceed directly to computing the deletions
d∗

1 = max(0,δ1) = 0, d∗
2 = max(0,δ2) = δ2, and d∗

3 = max(0,δ3) = δ3. Hence,

J

∑
j=1

d∗
j = δ2 +δ3 =

0.10
0.85

(1− π̆1 − π̆2 − π̆3)− π̆2 − π̆3, (A100)

where the second equality follows from (A74), noting we are taking the threshold for the removal
region to be aJ = 0.15. Substituting from (A100) for ∑

J
j=1 d∗

j in (A51) and rearranging yields

¯
µr =

0.90π̆1 −0.05(1− π̆2 − π̆3)

0.75π̆1 +0.10(1− π̆2 − π̆3)
. (A101)

Substituting the estimates of π̂1, π̂2, and π̂3 provided in the Table 1 and the bottom panel of
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Figure A2: Computing Improved Bounds on Misspecification with Multiple Removal Regions

(1) RCT balance tests, pure
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Notes: Graphs of regression estimates for proportions of p-values in various intervals from Table 1. The top panel
graphs results from column (2) of the table and the bottom panel from column (3). The area of each shaded bar
(including, where relevant, light and dark shaded pieces) corresponds to the proportion of observations in the relevant
interval, also indicated by the number at the top of the bar. The non-removal region [0.15,1] has been consolidated
into a single bar. Horizontal axis not drawn to scale: the distance between 0.15 and 1 has been shortened to preserve
legibility.
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Figure A2, we obtain estimate of the lower bound on the misspecification rate of 0.224. The robust
standard error on this estimate, clustered on article, computed using the delta method, is 0.029.
This estimate is about 9 percentage points tighter than the bound estimated treating the removal
region as a single interval reported in Table 3: an estimate of 0.136 (standard error 0.052). Both
estimates are looser than the bound assuming the removal rate for other tests is the same as for
RCT balance tests reported in Table 3: an estimate of 0.402 (standard error 0.075).

Estimating Improved Bounds on Removal
This section estimates the lower bound on removal,

¯
ρr from equation (A82), in the pure subsample

of RCT balance tests and pure subsample of other tests in our data. For the pure subsample of
RCT balance tests, one can show that the backward ironing with multiple removal regions does not
tighten the bound relative to the 0.308 estimated in Table 2 for a single removal region.

For Proposition 6 to tighten the bound on removal relative to that with a single removal region,
one can show that the p-value distribution has to look like the bottom panel of Figure A2 rather
than the top panel. That is, the distribution must have subintervals with shaded bars both above
and below that of the no-removal region rather than all the shaded bars in the removal region being
below that in the no-removal region as in the top panel. The figure suggests that there is scope for
Proposition 6 in the pure sample of other tests, and indeed there is.

The algorithm implied by Proposition 6 involves backward ironing within the removal region
and then a round of backward ironing from no-removal to removal region. There is no scope for
backward ironing within the removal region because the bars in the removal region are no higher
than their counterparts to the left. So we are left to iron backward from the no-removal region to
equalize the height of that bar with the those in the intervals [0.05,0.10) and [0.10,0.15). Backward
ironing entails shifts solving

π̆2 + s∗2,4
a2 −a1

=
π̆3 + s∗3,4
a3 −a2

=
π̆4 − s∗2,4 − s∗3,4

1−aJ
. (A102)

Substituting a2 −a1 = a3 −a2 = 0.05 and 1−aJ = 0.85 and solving yields

s∗2,4 =
0.05
0.95

(1− π̆1)− π̆2 (A103)

s∗3,4 =
0.05
0.95

(1− π̆1)− π̆3. (A104)

Substituting these values of s∗2,4 and s∗3,4 along with s∗1,4 = 0 into (A82) yields

¯
ρr =

0.10(1− π̆1)−0.95(π̆2 + π̆3)

0.10+0.85π̆1
. (A105)

Substituting the estimates of π̂1, π̂2, and π̂3 provided in the Table 1, we obtain estimate of the lower
bound on the removal rate of 0.092 with a robust standard error, clustered on article, of 0.028. This
estimate is significantly greater than 0 in a one-tailed test at better than the 1% level but does not
amount to a substantial improvement over the trivial 0 bound with a single removal region.
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A5. Inverse Frequency Weighting
This appendix provides additional discussion of the biases addressed by inverse frequency weight-
ing used in our regression specifications.

As explained in the main text, we focus on conditional expectation (21), corresponding to
the mean outcome of a randomly selected sniff test from a randomly selected table. An obvious
alternative would be to pool sniff and look at the mean outcome for a random selection from that
pool, captured by the expected value

Ei∈I j(1(pi ∈ j)). (A106)

If different tables articles contain different numbers of sniff tests and the number of sniff tests in the
table is correlated with their significance, then expectation (A106) will differ from (21). Pooling
sniff tests together and taking a simple unweighted mean will lead tables reporting more sniff tests
to be over-represented.

We will prove that the unweighted mean is a biased estimate of (21) in a predictable direction.
Let n̄ j = Et∈Tj(|t|) denote the expected number of observations per table in the set Tj. By the law
of iterated expectations, the unweighted expectation (A106) can be written

Et∈Tj

(
|t|
n̄ j

E(1(pi ∈ j) | i ∈ t)
)
. (A107)

It is immediate that if tables are all the same size, then (21) equals (A107) since |t|= n̄ j.
To provide a more general comparison of the two expectations, we introduce the following

reduced-form model. Repeating equation (25), we have

1(pi ∈ j) = π̆ j +ui j, (A108)

where ui j is an error term with conditional expectation

Et∈Tj(E(ui j | i ∈ t)) = 0 (A109)

by (21). Assume the error term can be decomposed as ui j = νi j +εi j, where εi j is white noise with
mean zero both within a table and across all tables, i.e.,

E(εi j | i ∈ t) = 0, (A110)

whereas νi j is unobserved table effect, which has zero mean across tables but can have nonzero
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mean within a table. Formally, letting ηt j denote expected value of the unobservable effect for
table t, i.e.,

ηt j = E(νi j | i ∈ t), (A111)

we allow ηt j to be nonzero.
Substituting (A108)–(A111) into (A107) and rearranging yields

1
n̄ j

Et∈Tj

(
E(|t|π̆ j + |t|νi j + |t|εi j | i ∈ t)

)
= π̆ j +

1
n̄ j

Covt∈Tj(|t|ηt j). (A112)

We see that the alternative expectation is biased relative to π j: in the positive direction if ηt j
covaries positively with table size |t| and in the negative direction if ηt j covaries negatively with
|t|.

The main text showed that inverse frequency weighting produces an unbiased estimator of
(21). Wooldridge (2010, chapter 20) discusses the utility of weighting across a variety of sam-
pling contexts. Connections can be drawn between our weighted estimators those prescribed in
Wooldridge’s text. Our equation (22) implements the estimator suggested in his equation (20.48)
for for cluster-sampling contexts. Equation (24) implements the estimator suggested in his equa-
tion (20.13) for standard-stratified-sampling context. In our application, the two contexts are equiv-
alent since, within each stratum (i.e., each table), all observations (i.e., all sniff tests) are collected.
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A6. Supplementary Regression Results

Table A8: Regression Results for Proportion of Significant P-values

RCT balance tests Other tests

Full Possibly Matched, Matched,
sample Pure improved Pure pre-match post-match

Variable (1) (2) (3) (4) (5) (6)

Proportion π̂ j of p-values in subintervals

• j = [0,0.05) 0.099∗∗∗ 0.046 0.057 0.091∗∗∗ 0.560∗∗∗ 0.041
(0.006) (0.009) (0.011) (0.006) (0.039) (0.011)

• j = [0.05,0.10) 0.038∗∗∗ 0.025∗∗∗ 0.037∗∗∗ 0.039∗∗∗ 0.070∗ 0.024∗∗∗

(0.002) (0.005) (0.005) (0.003) (0.010) (0.006)

• j = [0.10,0.15) 0.037∗∗∗ 0.033∗∗∗ 0.039∗∗ 0.039∗∗∗ 0.029∗∗∗ 0.031∗∗

(0.003) (0.006) (0.005) (0.004) (0.007) (0.009)

• j = [0.15,0.20) 0.047 0.054 0.038∗∗∗ 0.050 0.034∗∗ 0.044
(0.004) (0.009) (0.004) (0.007) (0.007) (0.008)

Aggregate proportion π̂r 0.173∗∗∗ 0.103∗∗∗ 0.132 0.170∗∗ 0.660∗∗∗ 0.096∗∗∗

over removal region [0,0.15) (0.007) (0.012) (0.005) (0.009) (0.034) (0.018)

Observation counts

• Unique sniff tests 28,832 2,953 4,020 16,063 2,372 3,424
• Clusters 857 85 109 606 71 109

Notes: Rounding out the partial set of regression results provided by Table 1, this table provides the full set of results
corresponding to all panels of Figure 3. Notes from Table 1 apply.
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Table A9: Strength of Author Claims

RCT balance tests, pure Other tests, pure

pi ∈ [0,0.15) pi ∈ [0.15,1] Difference pi ∈ [0,0.15) pi ∈ [0.15,1] Difference
Variable (1) (2) (1)− (2) (3) (4) (3)− (4)

Nature of claim

• Strong 0.775∗∗∗ 0.939∗∗∗ −0.164∗∗∗ 0.517∗∗∗ 0.852∗∗∗ −0.335∗∗∗

(0.082) (0.027) (0.060) (0.055) (0.024) (0.048)

• Weak 0.065 0.029 0.036 0.096∗∗∗ 0.051∗∗∗ 0.045∗∗

(0.045) (0.020) (0.025) (0.029) (0.017) (0.021)

• Admit rejected 0.160∗∗ 0.032∗ 0.128∗∗ 0.309∗∗∗ 0.058∗∗∗ 0.251∗∗∗

(0.076) (0.019) (0.060) (0.054) (0.012) (0.049)

• No claim † † † 0.078∗∗ 0.039∗∗∗ 0.039
(0.026) (0.014) (0.027)

Observation counts

• Sniff tests 261 1,246 1,507 1,056 3,606 4,662
• Clusters 39 58 58 139 226 226

Notes: Results are the proportions of p-value observations out of the subsample in the interval and sample indicated in
column headings. The numbers of observations are different from those reported in Figure 2 because we exclude here
the observations for which we cannot determine whether the p-value falls in [0,0.15). The type of the author claim
is indicated in the row heading. Columns (1) and (3) focus on p-values in the removal region [0,0.15) and columns
(2) and (4) on p-values above the removal region. Since they are proportions of the indicated subsample, results in
each of columns (1)–(4) add down the column to 1. Results are from IFWLS regressions. Standard errors, reported in
parentheses below results, are clustered at the article level. †No observations in the pure sample of RCT balance tests
categorized as making no claim. Significantly different from 0 at the ∗ten-percent level, ∗∗five-percent level, ∗∗∗one-
percent level. The relevant test is one-tailed in columns (1)–(4) and two-tailed in the remaining columns, which report
differences.
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