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1. Introduction

The literatures in sociology and economics have long recognized (see, e.g., Veblen, 1899; Keasbey,

1903) that individuals are motivated not only by money (and the consumption it buys) but also by

the less quantifiable concept of social status, henceforth referred to as prestige. In this paper we seek

to quantify individuals’ tradeoff between money and prestige using data from the cable-television

show Cutthroat Kitchen, a cooking competition aired in the United States by the Food Network

from 2013 to 2017, a top-ten ranked cable show at the height of its run.1 In the show, contestants

prepare dishes that are judged in a series of elimination rounds, with the added twist that action is

periodically paused to auction sabotages that impair rivals’ cooking. Contestants bid for sabotages

out of a $25,000 initial stake. The contestant who survives elimination at the end of the episode is the

winner, taking home any money from the initial stake that has not been spent on sabotages as prize

money, while the others win nothing. The winner also gains the prestige of winning a television

show, reflecting among other things the contestant’s cooking skill and savvy.

For this study, we hand collected data for a complete set of Cutthroat Kitchen episodes. Cut-

throat Kitchen provides an opportune setting to study the tradeoff between prize money and prestige

because of the sabotage auctions embedded in the show. The English format of the sabotage auction

allows researchers to observe the sequence of contestants’ bids, revealing information about their

values of winning the episode. If a contestant’s value of winning exceeds his or her stake, which

constitutes his or her potential monetary prize, we can infer that the contestant’s residual prestige

value is positive.

A numerical example will help illustrate the inference process. For simplicity, consider the last

sabotage auction in the last round of the episode, when only two contestants remain. Suppose a

risk-neutral contestant A, exhibiting no behavioral biases, having $10,000 left over after bidding in

previous auctions, bids for a last sabotage that will reduce A’s chance of winning by 20% if his or

1Cutthroat Kitchen was ranked tenth in the 18–49 age group according to Neilsen ratings for original cable shows
aired on May 24, 2015 (Metcalf, 2015).
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her rival obtains it instead of A. If A only values prize money, he or she should be willing to bid

no more than $2,000. Any higher bid would reduce A’s prize money conditional on winning by a

greater percentage than obtaining the sabotage increases A’s probability of winning, reducing A’s

expected prize money. If A bids more than $2,000, it can be inferred that he or she obtains prestige

value above and beyond the prize money.

In order not just to demonstrate the presence of prestige value but to quantify it, we construct a

structural model of the last sabotage auction in which winning an episode provides the contestant

with utility from prize money and an additive prestige factor. Contestants have rational expectations

about the effect of sabotaging the remaining rival consistent with empirical probabilities of winning

with or without sabotages observed in the data. A contestant’s bid in a sabotage auction provides a

lower bound on his or her willingness to pay for the increase in the probability of winning the episode

from obtaining the sabotage. In those cases in which a rival outbids the contestant for the sabotage,

the rival’s bid provides an upper bound on the contestant’s willingness to pay (unless the contestant

is liquidity constrained). These bounds on a contestant’s willingness to pay can be translated into

bounds on his or her prestige value. Assuming a functional form for the distribution of prestige

values—we use the normal distribution—the parameters of the prestige-value distribution—mean

and standard deviation—can be estimated by maximizing the likelihood the prestige values fall into

the observed bounds.

The simple model of risk-neutral contestants with rational expectations about sabotage effective-

ness omits two important alternative factors aside from prestige value that could explain overbidding

in the sabotage auctions. One important factor is risk aversion. As is well known since Harris and

Raviv (1981), risk aversion can lead buyers to raise their bids, seeking insurance against the unto-

ward outcome of losing the object for which they pay a risk premium in the form of a higher bid.

That result, however, applies to sealed-bid, first-price auctions, not English auctions, in which buy-

ers’ bids for an indivisible object are unaffected by risk aversion, equaling their private values in any

event (Harris and Raviv, 1981). In our setting, in which the auctioned sabotage does not guarantee
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the desired end—victory in the episode—but is just a lottery with improved odds of victory, risk

aversion has the direct effect of increasing a bidder’s private value for the better lottery, increasing

their equilibrium bids even in an English auction.2 We accommodate risk aversion by specifying a

constant absolute risk aversion (CARA) utility function in the structural model and estimating the

CARA coefficient as a parameter.

Another important factor that could inflate bids is bias in beliefs about sabotages, in particular

in the direction of overestimating how much they impair rivals’ cooking. Without further discipline,

any amount of overbidding can be explained with sufficiently biased beliefs. Our setting provides

a compelling justification for overestimating the effectiveness of the last sabotage. Our empirical

estimates show that the last sabotage in the last round is significantly less effective on average than

earlier sabotages in that round. Contestants who base their beliefs on the data but are inattentive

(as in Schwartzstein’s 2014 theory of selective attention) to sabotage order would be biased in the

direction of overestimating the value of the last sabotage. To gauge the importance of bias in beliefs,

we estimate a version of the structural model with inattentive beliefs to sabotage order and compare

the estimates to the baseline with fully attentive beliefs.

Accounting for risk aversion and biased beliefs cuts our estimates of mean prestige values about

in half. Still, estimates of mean prestige values remain high. For standard episodes, mean prestige

is an estimated $9,600, close to the $11,000 mean monetary prize for episode winners. The mean

prestige value is $35,100 for finales of multi-episode tournaments, significantly higher than standard

episodes, consistent our priors that tournaments are especially prestigious. The prestige value of

tournament finales eclipses the prize money won in them. We find little evidence that prestige value

is correlated with demographics like race or gender. Contestants who come in with prestigious job

titles like chef or restaurant owner gain significantly less prestige value from winning (by $6,000 or

more) than others whose rise in the profession may be aided by winning a widely viewed cooking

2The literature on auctioning lotteries to risk-averse bidders is scant (Vasserman and Watt, 2021). One recent ex-
ception is Baisa (2017), who shows how standard auctions in the presence of risk-averse bidders can be improved by
integrating lotteries into auction design.
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competition.

While we have accounted for some of most important additional factors that could contribute

to overbidding; it is impossible to anticipate the full range of factors, and even factors that can be

anticipated may be difficult to control for. The literature on behavior biases in auctions suggests that

the open-outcry, ascending-bid format used in Cutthroat Kitchen auctions is particularly susceptible

to a number of behavioral biases that contribute to what might be called “bidding fever.” Bidding

fever might stem from an endowment effect, whereby bidders develop an attachment to the object

through the course of bidding may lead them to bid more than their initial value (Heyman, Orhun,

and Ariely, 2004; Ehrhart, Marion, and Abele, 2015; Offerman, Romagnoli, and Ziegler, 2022), or

it might stem from growing spite toward opponents contending for the object (Andreoni, Che, and

Kim, 2007; Bartling, Gesche, and Netzer, 2017; Offerman, Romagnoli, and Ziegler, 2022).

The auction studies cited in the previous paragraph are all laboratory experiments, which can

identify behavioral biases by cleverly controlling auction conditions. Our observational data do not

afford such tight controls. Yet some nuances in our results bolster confidence that we have identified

prestige values from other explanations of overbidding. Mean prestige values are not constant across

episode types but are higher for the types we expect should generate more prestige. This correlation

that is not an obvious implication of endowment effects, spite, or other factors besides prestige

values. Furthermore, mean prestige values are also correlated with the prestige of contestants’ job

titles. This correlation is consistent with the story that contestants bid the most who have the most

prestige to gain and less obviously related to endowment effects or spite. Finally, in a number of

observations, contestants bid away all or virtually all of their potential prize money. Such behavior

would appear too extreme to explain as an endowment effect or spite without an intrisic value of

winning beyond prize money. Certain aspects of our game-show setting may weaken behavioral

biases behind bidding fever apart from prestige. Bidding fever eventually hits a hard cap provided

by the constraint that bids are paid out of remaining stakes, potentially dampening the fever as the

cap is approached. The winning bidder obtains not an object to keep but temporary use of a sabotage
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for the duration of the round. The prospect of temporary usage may generate a weaker endowment

effects than permanent ownership.

Our paper is organized as follows. Section 2 outlines our contribution to related literatures.

Section 3 provides background on the Cutthroat Kitchen show. Section 4 details our data-collection

efforts and provides descriptive statistics for the sample of episodes. Section 5 lays out the structural

model of the last auction in an episode. Section 6 describes our empirical methodology. Section 7

reports our estimation results. First, we report the effect of sabotages on the probability of winning,

estimated using a linear probability model. With these estimates in hand as inputs into bounds on

willingness to pay, we proceed to estimate the mean and standard deviation of the distribution of

prestige values using maximum likelihood. Section 8 concludes.

2. Related Literature

Our paper is perhaps closest to the economics literature measuring an individual’s intrinsic prestige

value from his or her employment or other activities. Focke, Maug, and Neissen-Ruenzi (2017)

find that CEOs who work for prestigious firms experience a compensating differential, earning less

than peers. Kleinjans, Krassel, and Dukes (2017) suggest that the prestige associated with work-

ing in socially conscious occupations can explain a portion of the gender wage gap. Zhan (2015)

links heterogeneity in workers’ tradeoffs between salary and prestige to norms in racial, ethnic, and

neighborhood groups. Harbaugh (1998) analyzes the prestige value of charitable giving when it is

publicly reported using observational data on law-school donations. Li and Riyanto (2022) provides

a related field experiment, and Ariely, Bracha, and Meier (2009) provides a related laboratory ex-

periment. Pascual-Ezamam, Prelec, and Dunfield (2013) studies whether dishonest behavior can be

motivated by prestige in the laboratory. Harbaugh (1998) provides a theoretical analysis.

A series of papers seeks to estimate the market return from awards, ranging from the 5.4%

additional premium buyers pay for houses designed by award-winning architects (Liao, Jing, and

5



Lee, 2022), the $500,000 additional revenue earned by movies starring an Oscar or Golden Globe

winner (Elberse, 2007), or the 12% boost in attendance at a Broadway production when one of the

actors wins a Tony award (Boyle and Chiou, 2009). As the survey by Frey and Gallus (2017) notes,

causally identifying the economic returns from awards is difficult in cross-sectional studies because

the award winner’s skill may be an omitted variable that drives the association between award and

revenue. The better studies in this literature leverage panel data, measuring the bump in revenue

timed with the award’s announcement. Our paper seeks to estimate the intrinsic value to the award

winner themselves. Of course, this intrinsic value may be due in no small part to the market signal

it sends, for example, leading future employers to offer the winner a higher wage.3

A broader literature measures the value of reputation gained through means other than awards.

Teubner et al. (2016) studies the effect of an increase in host ratings on revenue earned from Airbnb

rentals. Manabe and Nakagawa (2022) quantify the greater stock crash during the Covid-19 pan-

demic suffered by firms with lower reputation for product usefulness. Pfeiffer et al. (2012) design a

laboratory experiment in which a reputation for being cooperative in the Prisoners Dilemma can be

traded. Gunter (2014) provides a general discussion of the value of celebrity.

Our paper is part of the literature measuring economic variables using data from game shows,

exploiting the advantages of a stylized setting with well-defined rules as in a laboratory experiment

but offering much higher stakes than research budgets can afford. Many game-show studies focus

on estimating risk preferences, including the study of Card Sharks by Gertner (1993), Jeopardy by

Metrick (1995), LINGO by Beetsma and Schotman (2001), Hoosier Millionaire by Fullenkamp,

Tenorio, and Battalio (2003), and Deal or No Deal by Post et al. (2008). We also estimate risk

preferences in our structural model, they are only of secondary interest in our paper, included to

provide cleaner estimates of the distribution of prestige values, which is our central focus. In contrast

to Gertner (1993) and Beetsma and Schotman (2001) but consistent with Metrick (1995) (as well
3A non-technical but comprehensive discussion of cultural awards and their associated prestige is provided in the

book English (2008) (which ironically received the New York Magazine award for Best Academic Book in its publication
year).
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as Fullenkamp, Tenorio, and Battalio (2003) at least for moderate gambles), contestants do not

exhibit much risk aversion in our game show. Buser, van den Assem, and van Dolder (2023) study

contestants’ aversion to competition in a Dutch version of Deal or No Deal, finding that women are

averse to competing against men. We find little evidence of gender differences, but this is not a direct

contradiction of Buser, van den Assem, and van Dolder (2023) since we study a different variable,

prestige rather than competitiveness. Oran and Yurtkoru (2019) also find few gender differences in

their analysis of bidding behavior in auctions arising in the Turkish game show I Don’t Know, My

Spouse Knows. To our knowledge, we are the first paper to study the prestige value of winning a

game show and the first to study Cutthroat Kitchen.

Our paper is related to the large literature on bidding behavior in auctions given that we use bids

in sabotage auctions to identify prestige values. The auction literature is too vast to survey here.

The most closely related papers link overbidding to various behavioral biases that might generate

“bidding fever,” whether an endowment effect (Heyman, Orhun, and Ariely, 2004; Ehrhart, Marion,

and Abele, 2015), spite toward opponents (Andreoni, Che, and Kim, 2007; Bartling, Gesche, and

Netzer, 2017), or both (Offerman, Romagnoli, and Ziegler, 2022). Since we incorporate risk aver-

sion in our bidding model and estimate a CARA coefficient, our paper is related to the theoretical

and empirical literature on risk aversion in auctions, surveyed in Vasserman and Watt (2021). As

noted in the introduction, the connection is subtle. Harris and Raviv (1981) showed that risk aversion

is immaterial for bids in the auction format used in Cutthroat Kitchen—single-unit, ascending-bid

auctions—only mattering for other formats such as first-price sealed-bid auctions (in which higher

risk aversion induces bidders to submit higher bids). While the sabotage auctions we study are

single-unit, ascending-bid auctions, the winning bidder does not keep the unit but employs it to in-

crease the chance of winning. In effect, what is auctioned is a higher probability of winning the

episode. The more risk-averse are bidders, the more they are willing to pay for an increase in proba-

bility of winning. In this respect, our paper is related to Baisa (2017), who studies optimal auctions

of lotteries over objects in the presence of risk-averse bidders.
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3. Background on Cutthroat Kitchen

Cutthroat Kitchen is a reality-television style cooking competition that aired on Food Network cable

channel in the United States from 2013 to 2017, hosted by the television personality and gourmet,

Alton Brown. Each episode has three rounds. In each round, competitors prepare a dish which is

judged by a guest expert at the end of the round in a blind taste test. The contestant with the worst

dish is eliminated. At the end of three rounds, the field of four initial contestants is winnowed down

to a single episode winner. Contestants are typically professional cooks ranging from line cooks to

private chefs, to executive chefs. Others are restaurant owners or in some cases amateur cooks.

In each round, contestants are told to make a specified dish, whether it be pizza, gumbo, or

baklava. They are given a small amount of time during which they scramble in a pantry to gather

ingredients they will use to cook with. Then the clock restarts and gives then 20 minutes cooking

time to complete their dish.

The key difference between Cutthroat Kitchen and other televised cooking competitions is that

the host pauses the action several times a round to have contestants bid in an auction for a sabotage

that can be inflicted on competitors. The sabotages might waste the sabotaged competitor’s time

(for example, sitting in a corner for a minute while competitors continue cooking), use an inferior

tool (for example, cook with a bunsen burner instead of a stove), or use a poor substitute for a key

ingredient (for example, ketchup for pizza sauce). The highest bidder gets to choose the competitor

on whom to inflict the sabotage (although occasionally sabotages can be applied to more than one

competitor).

The show stakes competitors with an initial $25,000. The highest bidder in the auction pays for

the sabotage out of his or her stake. The winner of the entire episode receives a monetary prize

equal to whatever money is left out of the initial $25,000 that has not been spent in sabotage auc-

tions throughout the game. With three rounds and several sabotage auctions per round, on average,

winners end up exhausting a majority of their stake on sabotages. Winners end up with an average
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monetary prize of about $11,000 in our data, although the lowest prize was a mere $600. Episode

losers forfeit their remaining stakes, so it is only the sole episode winner who obtains any money.

In addition to the cash prize, winning Cutthroat Kitchen may carry considerable prestige value.

Most people will never appear in a television competition, let alone win one. Winning a reality

television show undoubtedly provides a “warm glow” to the contestant. For a professional cook,

winning a cooking show can burnish his or her reputation. This may lead to long-run monetary

benefits beyond the show’s prize money, perhaps in the form of higher future salaries.

4. Data

We derived a census of Cutthroat Kitchen episodes by consulting the Internet Movie Database

(IMDb), an authoritative source of information on movies and television. We validated the com-

prehensiveness of this census by cross-checking against TV Guide and the Food Network websites.

IMDb lists 188 episodes aired between 2013 and 2017, divided into 15 seasons. The sources reported

some stray episodes aired in 2019, but these appear to be an Australian version with a different host,

which we omit from our data.

Since the show is no longer running, our research team had to rely on streaming services to view

and collect data from recorded episodes. Hulu carried most of the episodes, and most of the episodes

missing from Hulu were carried on Google Play or Amazon Prime. Only two episodes could not be

found on these or any streaming service, and so we had to omit these for lack of data.

Our research team collected detailed data from each available episode. From an initial interview

segment, they collected basic demographic information on contestants including gender, race, and

status in the cooking profession—whether an amateur, restaurant owner, line cook, or chef, and if

the latter, whether a private, sous, executive or other kind of chef. For each of the three rounds,

research assistants collected information from all sabotage auctions including the type of sabotage,

all contestants’ bids in sequence, and the winning bidder. This information allows us to track con-
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testants’ remaining stakes at any point in the game and determine the prize for winning the episode.

The research assistants recorded which contestant lost each round. Our research team viewed all

episodes a second time to double check all data entries for accuracy.

Our research design focuses on the last sabotage auction in the final round. One advantage of

this focus on the endgame is that it allows us to abstract from complex dynamic strategies arising

in earlier auctions. The general analysis of settings like ours involving auctions among bidders

having multiunit demands with synergies across units has proved to be intractable (Kwasnica and

Sherstyuk, 2013). Another advantage is that, with only two remaining contestants, we can abstract

from more complex strategic interactions arising when three or more players duel (Kilgour, 1973).

A final advantage is that the last round happened to be more structured than earlier rounds. Instead

of a highly variable number of sabotages, ranging from a low of one to a high of four in earlier

rounds, the last round involved two sabotages in the large majority of cases. We dropped the sole

episode that had more than two sabotages in the last round. We doubt this one exceptional case

led participants to doubt that the second sabotage was the last. In 18 episodes, only one sabotage

was auctioned in the last round. We could not rule out that bidders anticipated a further sabotage

and adjusted their strategies accordingly, so we drop those episodes from the data. Nine remaining

episodes had other idiosyncracies that led us to drop them.4

Table 1 provides descriptive statistics for the final sample of 158 episodes used in our analysis,

with special emphasis on variables recorded for the last sabotage auction and the 316 remaining

contestants that bid in those auctions. Most (80%) of the episodes were stand alone, but Cutthroat

Kitchen did run some tournaments spanning several episodes. Typically these would involve four

preliminary contests, each in its own episode, with the four winners competing in a finale episode.

Hence there were four prelims for every finale (the proportionality looks slightly off in the table due

to rounding.) The average episode involved about seven sabotage auctions.

4We dropped four episodes that started with three rather than the usual four contestants. These lacked a third round
since a winner was selected after two rounds. We dropped two episodes in which two teams of two competed instead of
four independent contestants. We dropped two episodes that ended in a tie. We dropped one episode that began with a
reverse auction that increased rather than reduced contestants’ initial stakes.
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About two-thirds of contestants were male, about two thirds were white, and about two thirds

were some sort of chef. Seven percent were restaurant owners.

The average contestant entered the last auction with a $13,900 stake. The highest winning bid

was $5,000 on average and the highest losing bid was $3,700. The average winner walked away

with about $11,000 in prize money.

5. Model

Our model restricts attention to the last sabotage auction in an episode, when just two contestants re-

main and incentives to influence bidding in furthur auctions have been eliminated. Sabotage auctions

occurring earlier in a Cutthroat Kitchen episode involve exceedingly complex dynamic incentives.

On the one hand, contestants may want to shade bids down in early sabotage auctions, so that rivals

spend their money and exhaust their resources available for later sabotages. On the other hand, con-

testants may want to overbid to force up rivals’ bids to exhaust the resources rivals have for bidding

in later rounds. Complicating the dynamics is that contestants may have incomplete information

about the number of sabotages they will have to bid on over the course of the competition, which

varied across episodes.

The presence of multiple rivals in the first two rounds of an episode adds a further complica-

tion, raising the question of which rival to deploy the sabotage against. One strategy may be to

concentrate multiple sabotages on one rival, to increase the chance that someone else is eliminated.

Another strategy may be to target the rival with the most remaining money, to reduce the chance of

eliminating the rival who would be the strongest bidder in later rounds. To estimate the value of the

sabotage, the modeler would have to have some idea of the best strategy for deploying the sabotage.

Having more than two competitors also raises the issue of free riding. As long as the sabotage is

deployed against someone else, a contestant prefers to save resources by having a rival pay for it.

We avoid these complications by modeling the last sabotage auction in an episode when there
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are only two contestants. This endgame removes any dynamic considerations of how bidding in

the current auction would affect strategies in subsequent auctions. It was well established that no

more than two sabotages were auctioned in the last round, removing any uncertainty whether there

would be additional sabotages after that. The fact that only two contestants remain in the last round

removes any ambiguity about which rival to deploy the sabotage against and obviates any free riding.

The drawback of focusing on the last round is that we lose the information from the large number of

auctions leading up to the last—over six on average—but enough information remains to estimate

the parameters of interest fairly precisely.

Let E denote the set of episodes in our data, indexed by e ∈ E. Let I denote the set of contestants

in our data, indexed by i ∈ I, consisting of the remaining two contestants in each episode in E.

Let vi denote the additional benefit to i from winning the episode beyond the prize money, termed

i’s prestige value, possibly including the “warm glow” from winning a competition, acclaim from

demonstrating talent, and/or improved job prospects. Improved job prospects could translate into

higher future income, thus carrying a monetary value, but we separate this future income from the

prize money earned won in the episode. Assume vi is continuously distributed with probability

density function f (vi), cumulative distribution function F(vi), mean µ, and standard deviation σ.

The focus of our analysis will be to estimate µ and σ.

To help distinguish the winner of a sabotage auction from the winner of the competition, we

introduce a set of indicator functions. Let s1
i and s2

i be indicators for i’s winning, respectively, the

first and second sabotage auctions held in the last round. Thus, si = s1
i + s2

i denotes the total number

of sabotages i wins in the last round. Let wi be an indicator for i’s winning the competition.

Turn next to characterizing i’s payoff function. Let mi denote the remaining money that contes-

tant i has after bidding in all the sabotage auctions prior to the last. Let bi denote i’s last bid in the

last sabotage auction, setting bi = 0 if i declines to bid for it. To simplify the modeling, we will allow

bids to be any positive real number, though the show required bids to be in discrete $100 increments
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(which our estimation methodology will account for). The episode winner obtains payoff

ui(mi − 1(bi > b−i)bi)+ vi, (1)

where ui denotes i’s utility over the monetary prize, a weakly concave function, and −i denotes the

remaining rival to competitor i in the competition. The indicator function 1(bi > b−i) reflects the

fact that only the sabotage winner pays for it; if the contestant who loses the last sabotage proceeds

to win the episode, he or she keeps the entirety of mi for the prize.

Winning a sabotage improves the relative quality of i’s cooking in two ways: by protecting i

cooking from being sabotaged and by harming the quality of the rival’s cooking. This increase

in the relative quality of i’s cooking increases the chance that i’s dish is judged best in the last

round. The contestant with the best dish in the last round wins the episode. Let pi(s1
i ,s

2
i ) denote the

probability that i’s dish is judged best and thus i wins the episode as a function of whether i won the

various sabotages. Assume this function is increasing in both arguments. Define ∆1
i (s

2
i ) = pi(1,s2

i )−

pi(0,s2
i ) as i’s performance gain from winning the first sabotage. Conditioning the performance

gain from one sabotage on other allows sabotages to be complements or substitutes in the cooking

production function. We similarly define i’s performance gain from winning the second sabotage as

∆2
i (s

1
i ) = pi(s1

i ,1)− pi(s1
i ,0). Performance gains can alternatively be expressed in percentage terms

as the following semi-elasticities:

η1
i (s

2
i ) =

∆1
i (s

2
i )

pi(1,s2
i )

(2)

η2
i (s

1
i ) =

∆2
i (s

1
i )

pi(s1
i ,1)

. (3)

Show rules dictate that a contestant cannot bid more than the remaining resources provided by

the show, mi. Contestants are not allowed to dip into resources outside of the show to increase their

bids even if they wanted to. Thus, auction rules place the following constraint on contestant’s ability
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to pay:

bi ≤ mi. (4)

Let b̄i denote i’s maximum willingness to pay for the last sabotage in the counterfactual absence of

any constraint on ability to pay. To compute b̄i, we compare i’s expected payoff from winning the

sabotage auction by raising his or her bid to b̄i, which by equation (1) equals

pi(s1
i ,1)[ui(mi − b̄i)+ vi], (5)

to i’s expected payoff from losing the sabotage auction by standing pat:

pi(s1
i ,0)[ui(mi)+ vi]. (6)

Equating (5) and (6) and solving yields

b̄i = mi − u−1
(

pi(s1
i ,0)

pi(s1
i ,1)

ui(mi)−
pi(s1

i ,1)− pi(s1
i ,0)

pi(s1
i ,1)

vi

)
. (7)

Although b̄i is a latent variable rather than observed in our data, minimal assumptions about

rational bidding in an English auction will allow us to bound b̄i in terms of the last bid by the

contestant, bi, and the rival, b−i, both of which we do observe. Bidding more than one’s maximum

willingness to pay is weakly dominated for all i ∈ I, implying

b̄ ≥ bi. (8)

Substituting for b̄i from (7) into (8) and rearranging yields

η2
i (s

1
i )≥

ui(mi)− ui(mi − bi)

ui(mi)+ vi
. (9)
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Intuitively, winning the auction must result in a greater percentage increase in the chance of winning

the episode on the left-hand side of (9) than the percentage reduction in bidder’s utility on the right-

hand side. To transform (9) into a bound on the variable of interest, the prestige value vi, define the

threshold

Ti(b) =
ui(mi)− ui(mi − b)

η2
i (s

1
i )

− ui(mi). (10)

For brevity, we have suppressed the dependence of Ti on other variables besides the bid b. Rearrang-

ing (9) then yields

vi ≥ Ti(bi). (11)

A further bound on b̄i can be obtained in certain circumstances. Any bidder who lost the sabotage

(bi < b−i) but was not liquidity constrained, so could have paid more (mi > b−i) must have valued the

sabotage less than the rival’s bid (b̄i ≤ b−i). Otherwise, bidding just above b−i would have weakly

dominated i’s observed bid bi. Formally, for all i such that bi < b−i < mi,

b̄i ≤ b−i. (12)

The same logic behind steps (8)–(11) imply vi ≤ Ti(b−i).

In sum, our analysis of the model has allowed us to derive bounds on the prestige value vi in

terms of observables. For contestants who conceded the sabotage auction to their rivals despite

having enough money to outbid them—that is for i such that bi < b−i < mi—their prestige values are

bounded in an interval:

vi ∈ [Ti(bi),Ti(b−i)]. (13)

For other contestants, the analysis only provides a lower bound on the prestige value:

vi ∈ [Ti(bi),∞). (14)
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6. Empirical Methodology

Our empirical methodology exploits the information in model equations (13)–(14) to obtain esti-

mates of the parameters of interest via maximum likelihood (ML). The latent variable vi appears on

the left-hand side of (13)–(14); this is the unknown variable of interest for which we seek to esti-

mate the distributional parameters µ and σ. The right-hand side of (13)–(14) depend on Ti(bi) and

Ti(b−i). As equation (10) shows, these are functions of the bids bi and b−i, which are recorded for

each observation in the data, the remaining money at the start of the last auction, mi, also recorded

for each observation in the data, performance gain η2
i , which we will estimate from the data, and

parameters entering the utility function ui, which we will also estimate.

To estimate η2
i (s

1
i ), we will assume that the effect of sabotages is homogeneous across episodes:

i.e., we will drop the subscript i and write pi(s1
i ,s

2
i ) = p(s1

i ,s
2
i ), implying η2

i (s
1
i ) = η2(s1

i ). This

homogeneity assumption is a reasonable approximation if contestants who make it to the last round

are believed to have similar cooking skills and are similarly harmed by sabotages. Even if there

is heterogeneity in actual skill and harm, what is relevant for estimation are the contestants’ sub-

jective assessments of these, which are arguably homogeneous since they have limited opportunity

to observe how each other’s cooking responds to sabotages. We acknowledge that contestants may

misperceive the gains from winning a sabotage; indeed, a cruical part of the analysis will be to as-

sess how such misperceptions may explain observed distortions in bidding behavior. An estimate

p̂(s1
i ,s

2
i ) of the probability of winning the episode can be obtained from a linear probability model

regressing the indicator for winning the episode wi on indicators for having won no sabotages, only

the first, only the second, or both (or in other words on indicators for various combinations of the

values of s1
i and s2

i ). Elasticity estimates η̂1(s2
i ) and η̂2(s1

i ) can be derived as nonlinear combinations

of the probability estimates p̂(s1
i ,s

2
i ) via equations (2)–(3).
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We take the utility function to have the constant absolute risk aversion (CARA) form:

ui(m) =
1 − e−αim

αi
, (15)

where αi = u′′i (m)/u′i(m) is called the coefficient of absolute risk aversion. Using l’Hôpital’s Rule,

one can show limαi↓0 ui(m) = m, implying that CARA utility nests risk-neutral preferences for van-

ishingly small values of the coefficient of absolute risk aversion. CARA utility is widely used in em-

pirical work in economics and finance, including the literature measuring risk preferences in game

shows (Gertner, 1993; Metrick, 1995; Fullenkamp, Tenorio, and Battalio, 2003), other gambling set-

tings (Jullien and Salanié, 2000), auctions (Cason, 1995), as well as the broader literature, including

classic studies by Paxson (1992), Tuckman and Vila (1992), and Haubrich (1994). Among other

advantages, it allows risk preferences to be estimated independently of agents’ wealth, for which we

lack data. In the interest of parsimony, we assume that contestants share a common coefficient of

absolute risk aversion α, which we will estimate along with µ and σ as part of the ML routine.

The likelihood of observing prestige values falling into the intervals events (13)–(14) in the data

equals

∏
{i|bi<b−i<mi}

[F(Ti(b−i))− F(Ti(bi))] ∏
{i|bi>b−i}
∪{i|mi≤b−i}

[1 − F(Ti(bi))] . (16)

Assuming vi is normally distributed with mean µ and standard deviation σ and taking natural logs

yields log-likelihood function

∑
{i|bi<b−i<mi}

ln
(
Φ

(
1
σ
[Ti(b−i)−µ]

)
−Φ

(
1
σ
[Ti(bi)−µ]

))
+ ∑

{i|bi>b−i}
∪{i|mi≤b−i}

ln
(

1 −Φ

(
1
σ
[Ti(bi)−µ]

))
, (17)

where Φ denotes the standard normal cumulative distribution function. Estimates of the mean and

standard deviation of the distribution of prestige values, respectively µ̂ and σ̂, as well as the coeffi-
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cient of absolute risk aversion α̂ can be obtained by maximizing (17) substituting bids bi and b−i and

starting money mi observed directly in the data and substituting elasticity estimates η̂2(s1
i ) derived

from linear-probability-model coefficients as described in the previous paragraph. Ignoring for the

moment that Ti(b) is a nonlinear function of a parameter α to be estimated, the likelihood function

in equation (16) is quite standard, an offshoot of the Tobit specification called interval regression,

which can be run with a single command in several statistical packages.5 The specification can be

generalized to allow the mean and natural logarithm of the standard deviation to be linear functions,

µ(xi) and lnσ(xi), of a vector of contestant and auction covariates, xi.6 We handle the fact that

Ti(b) is a nonlinear function of a parameter to be estimated, α, by applying interval regression to

maximize (17) for values of α along a grid and selecting α̂ as the grid point maximizing (17).

We mentioned the possibility that contestants may misperceive the marginal effect of sabotages.

If contestants systematically overestimate the marginal effect of the last sabotage on winning, this

would provide a natural explanation for the overbidding we will see in the last auction. While it is

easy to argue that contestants’ estimates are noisy, it is harder to see why they would be systemat-

ically biased. The fact that the second sabotage auctioned in the last round is much less effective

than the first provides a compelling reason for a systematic bias. Behavioral-economics models

of selective attention (see Schwartzstein (2014)) posit that players may not consider all important

payoff-relevant factors. In our setting, contestants may be inattentive to the difference in strength

between the two sabotages, believing they have a roughly symmetric effect. We explore this possi-

bility by estimating what we will label an inattention-to-order model (or inattention model for short)

in which contestants do not distinguish between first and second sabotages, taking the probability

of winning to be a function p(si) of the number of sabotages obtained in the last round, irrespective

of order.7 The probabilities associated with the inattention-to-order model can be estimated from

5We employ the INTREG command in Stata 18.
6We take lnσ rather than σ to be a linear function of xi to ensure σ̂ is positive. Under this specification, the linear

coefficients in lnσ(xi) have the interpretation of semi-elasticities. In the case of covariates that are indicator variables,
the linear coefficients capture the proportional increase in σ when the indicator is switched from 0 to 1.

7We have slightly abused notation by using the same p in the inattention model as we used in the setup of the attention
model, which allows the first and second sabotages to have different marginal effects. When p appears with just one
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the data using a linear-probability model regressing the indicator for winning wi on indicators for

having won no sabotages, one sabotage, or both sabotages.

To account for possible correlation in constestant strategies in an episode, we cluster the robust

standard errors at the episode level. To account for the fact that elasticities η̂2(s1
i ) are not observed

but estimated, potentially with some estimation error, we compute the standard errors for all param-

eter estimates using a bootstrap procedure in which the regression estimating the probabilities used

to compute η̂2(s1
i ) is included as a step in the bootstrap.

7. Results

7.1. Winning Probabilities and Beliefs

To determine the extent of overbidding for sabotages, we need to estimate the contribution of sab-

otages to the probability of winning the episode. To start, we will assume that contestants have

rational expectations about the performance benefits of obtaining sabotages, which are consistent

with empirical estimates from in the data on average, exhibiting no systematic biases. Table 2 re-

ports the results of linear probability models regressing an indicator wi for winning the episode on

indicators for obtaining different configurations of sabotages. The first column of results regresses wi

on indicators for obtaining no sabotages, only the first, only the second, or obtaining both sabotages.

This specification allows the first and second sabotages to have different effects on the probability

of winning the episode, as specified by the attention-to-order model of attentive beliefs.

The probability of winning is 32% with no sabotages and 68% with both. The probability of

winning with exactly one sabotage is intermediate between these two levels and turns out to differ

across the first and second sabotages. The first sabotage is stronger the second: the probability of

winning the episode with the first sabotage alone is 58% and only 42% with the second sabotage

alone. The first sabotage may be stronger simply because it is in effect for a longer fraction of the

argument, it is taken to refer to probabilities in the inattention-to-order model.
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round than the second. Alternatively, the first sabotage may interfere with a a crucial cooking stage

that is more difficult to recover from than a later stage in which the contestant is perhaps just putting

finishing touches on the dish.

A plausible reason for contestants to overvalue the second sabotage arises if following the be-

havioral model of Schwartzstein (2014), they are inattentive to certain payoff-relevant factors, in

this case the differential effect of the first and second sabotages, believing they are equally effective.

The last column in Table 2 estimates the beliefs of a contestant who is inattentive to sabotage order

but otherwise are consistent with the data. The model forces the first and second sabotage to have

the same effect on the probability of winning by collapsing the individual indicators into a single in-

dicator for obtaining one sabotage. Given that two total sabotages auctioned in the last round, when

a contestant obtains exactly one sabotage, his or her rival must also obtain exactly one sabotage.

Since one of the two of them must win, the estimated probability of winning with one sabotage is

mathematically 50%, as the table verifies.

Table 3 converts the probability estimates into semi-elasticities η appearing in the willingness-

to-pay formulas. The semi-elasticies reflect percentage increases in the probability of winning, as

opposed to percentage-point increases. Looking at the first column of results, corresponding to the

model that is attentive to sabotage order, obtaining the first sabotage increases the probability of

winning by 45% over obtaining no sabotages and by 38% when added to the second sabotage. The

second sabotage increases the probability of winning by 23% over obtaining no sabotages and by

14% when added to the first sabotage. The first sabotage has double or more of the effect on the

probability of winning measured as a semi-elasticity. The semi-elasticities associated with the first

sabotage are statistically significantly different from 0 at the 1% level, but those associated with the

second sabotage, while economically subtantial, are not statistically different from 0 at conventional

levels.

The model in which contestants are inattentive to sabotage order, estimated in the last column

of results, yields lower semi-elasticities for the first sabotage and higher semi-elasticities for the
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second sabotage compared to the model that is attentive to sabotage order. The inattentive contestant

believes that the second sabotage increases the probability of winning by 36% over no sabotages and

by 26% over the first.

7.2. Results for Combined Episodes

With the semi-elasticies η estimated in Table 3 in hand along with data observed on bids bi and b−i

and starting money mi, one can compute the thresholds Ti(bi) and Ti(b−i) in equation (10) bounding

prestige values vi. These thresholds factor into the log-likelihood in equation (17) which can be max-

imized to generate estimates of the mean µ̂ and standard deviation σ̂ for the distribution of prestige

values. The maximum-likelihood parameter estimates are reported in Table 4. To account for the

fact that contestant beliefs about the probability of winning the episode embodied in semi-elasticities

η are estimated rather than observed, we compute standard errors using a bootstrap procedure. Since

the distribution of coefficients obtained from the bootstrap in some cases is not normal but skewed,

we report bootstrapped confidence intervals and compute p-values directly from those rather than

reporting standard errors and computing p-values from the associated z-statistics.

Consider the first three columns, which report results combining different types of episodes

(standard, tournament prelims, and tournament finales) together, treating them as homogenous. The

first column assumes contestants hold nunaced beliefs, thus understanding that the second sabotage

is not as effective as the first and thus of modest benefit, and are risk neutral, with CARA coefficient

α = 0. Under these modeling assumptions, the maximum-likelihood estimate of the mean prestige

value is $32,900, significantly different from 0 at the 1% level. Such a high prestige values, on

average exceeding the starting money stakes in the competition, are needed to rationalize high bids

for the only modestly effective second sabotage: contestants must have some additional value from

winning beyond the stakes that they are willing to pay a lot for even a modest increase in the chance

of securing.

The second and third columns introduce factors that can account for some of the overbidding for
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the second sabotage. One factor is risk aversion: the more risk averse the bidder, the more he or she

will bid for the sabotage, in effect paying a premium for the insurance the sabotage provides against

the adverse outcome of losing. The second column allows for risk aversion, estimating a CARA

coefficient as part of the maximum-likelihood procedure. The small estimated CARA coefficient

of α̂ = 0.033 suggests that contestants are fairly close to risk neutral, implying that risk aversion is

fairly minor consideration which cannot explain much overbidding. Allowing for risk aversion does

not reduce mean prestige value substantially, which remains high at $22,500.

The low estimated level of risk aversion is not an artifact of the functional form assumed for

the prestige value distribution (normal), but is non-parametrically identified. Increasing the CARA

coefficient beyond some moderate value collapses the interval between the minimum prestige value

consistent with the i’s observed bid Ti(bi) and the maximum prestige value consistent with not over-

bidding the rival Ti(b−i) for an increasing proportion of the observations, contributing a prohibitive

log-likelihood penalty for such observations not just for the normal distribution of prestige values

but for any distribution with support on the positive real line.

The third column, in addition to allowing for risk aversion, assumes contestants subscribe to

naive beliefs, believing that the second sabotage is no less powerful than the first, leading contestants

to overestimate the effect of the second sabotage because the second is in fact less effective than the

first second in the data. Overestimating the value of the second sabotage in this way can account

for a considerable amount of overbidding. As shown in Table 3, the semi-elasticities for the second

sabotage can be nearly twice as high under naive beliefs as under nuanced beliefs. With less residual

overbidding to explain, the estimate of mean prestige value is cut by more than half to $9,300. Still,

this is a substantial mean, nearly equal to the average amount of prize money the winner ends up

with ($11,000 according to Table 1). Note that risk aversion becomes even less consequential (the

CARA coefficient falls to 0.027) when naive beliefs are considered.
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7.3. Results by Episode Type

The last three columns allow for distinct prestige values across regular episodes and tournaments,

including tournament prelims and finales. The specification includes a constant, the coefficient of

which measures the mean prestige value for a regular episode. As indicators for prelims and finales

are included alongside the constant, their coefficients can be interpreted as the extra prestige value

for the various types of tournament episodes over regular episodes.

The results reveal heterogeneity in prestige values masked in the aggregate results. After break-

ing out the higher prestige values from tournament episides, mean prestige values in regular episodes

remain fairly similar to the aggregate results. In the most conservative specification provided by the

last column of results, whcih allow the contestant to be risk averse and inattentive to sabotage order,

mean prestige value in regular episodes is $9,600.

Tournament episodes are associated with substantially higher prestige values than regular episodes.

The most conservative estimates of the extra prestige value from tournament episodes are provided

by the last column of results. In the same way that allowing the contestant to be risk averse and inat-

tentive to sabotage order can moderate the estimate of mean aggregate prestige values by explaining

some of the overbidding, these factors can also moderate the estimate of the extra prestige value

from tournament episodes.

In the last column, tournament prelims have an extra mean prestige value of $6,100 over regular

episodes, an economically important difference but one that is not statistically significant at conven-

tional levels. Tournament finales have an extra prestige value of $35,100 over regular episodes, a

difference that is statistically significant at the 10% level. Presumably, the small number of tourna-

ment finales limits the stastitical significance of the large coefficient estimate on finales. The total

mean prestige value for finales in the most conservative specification is $9,600+$35,100= $44,700.

Tournaments finales can generate considerable attention because they are the culmination of four ad-

ditional prelims which were widely advertised on the channel, and the winner has a claim to have
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been the best out of sixteen total tournament contestants. Such episodes can plausibly generate con-

siderable prestige value, and here we see how high prestige values can range in such circumstances.

That we are estimating higher prestige values for episodes for which we predict prestige is higher

provides a key check that our methods are not just calculating the residual amount of overbidding

and providing an appealing label for it. After accounting for other factors that can contribute to

overbidding, the remainder is positively correlated with the predicted prestige of the episode, so

appropriately construed as an estimate of prestige value.

Risk aversion, which was only a minor consideration in the specification aggregating episode

types is even less of a consideration once episode types are disaggregated. The CARA coefficient

is only 0.007 in the specification with nuanced beliefs and an even lower 0.002 in the specification

with naive beliefs. With such low estimated levels of risk aversion, specifications allowing for risk

aversion hardly change the estimated parameters of the prestige-value distribution compared to the

risk-neutral specification.

To help visualize how the estimated distribution of prestige value shifts across different episode

types and specifications, Figure 1 graphs the probability density functions based on the estimates

in the last three columns of Table 4. Within each panel, moving from standard episodes to pre-

lims to finales, the distribution of prestige values shifts toward higher values and spreads out. The

second and third panels illustrate the effect of including risk aversion and inattentive beliefs on the

distributions of prestige value by episode type. For all three episode types, those factors shift the

distribution toward lower values and reduce its spread. The effect of allowing for risk aversion is

barely noticeable; the effect of allowing for inattention to sabotage order is much more substantial.

Even after including these factors, the distributions have substantial mass on prestige values in the

tens of thousands of dollars.

Our discussion of the results has focused on estimates of the mean prestige values µ̂ and down-

played the standard-deviation estimates σ̂. The latter are not a pure measure of variation in prestige

values; they also reflect other sources of heterogeneity, error, and estimation noise. One important
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additional source of heterogeneity is in the variety of sabotages auctioned across episodes. Some

sabotages may have been more obviously damaging than others or at least perceived to have been

by contestants. Contestants may have had different levels of risk aversion. Contestants could have

made errors in their bidding strategies. Overall, these additional sources of heterogeneity, bidding

error, and estimation error would tend to inflate σ̂ above the standard deviation of the pure distribu-

tion of prestige values, making it difficult to give σ̂ a structural interpretation. On the other hand,

our estimates of mean prestige values µ̂ can be given a structural interpretation to the extent that

we have successfully controlled for mean biases and that remaining errors and noise are mean zero

white noise.

7.4. Demographic Differences

Table 5 estimates the difference in mean prestige values across different contestant demographics.

All specifications include a constant term, so the reported demographic indicators should be inter-

preted as differences from the omitted demographic category.

The indicators for gender and race are small and statistically insignificant, suggesting little evi-

dence that prestige values differ across those categories.

The indicators for job titles are large in magnitude and statistically significant. They are negative,

suggesting that chefs and owners gain less prestige value from winning than the omitted category—

a catch-all including a variety of titles within the food industry perhaps a rung down from chef or

owner on the career ladder such as home cook, line cook, caterer, culinary instructor, and cake dec-

orator as well as a small number of cases of professions outside the food industry such as teachers,

firefighters, or stay-at-home parents. We did not have strong priors about the sign of the chef and

owner variables. On one hand, contestants who already have already “made their names” in the pro-

fession may have less to gain from winning a cooking show than contestants who are trying to rise in

the profession. The negative coefficients on chef and owner variables are consistent with this story.

On the other hand, other stories are consistent with positive coefficients. Winning the episode may
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only gain notice for someone with a sufficiently established reputation. Contestants with established

reputations may be richer, and having a lower marginal utility of income, may be willing to sacrifice

more prize money for prestige benefits. According to the most conservative specification in the last

column of Table 5, chefs experience $6,000 less prestige value than the omitted category and owners

$9,500 less.

8. Conclusion

We contribute one of the first economic analyses to quantify how much people are willing to spend

to increase their social prestige. Our analysis is based on a hand-collected sample of all available

episodes of Cutthroat Kitchen, a long-running and popular television show with the unique feature

that the cooking competition is periodically stopped to run sabotage auctions. Contestants reveal

their prestige values when they bid more than would a revenue-maximizing agent for the increase in

the probability of winning provided by the sabotage.

In our most conservative specification, which controls for risk aversion and possibly biased esti-

mates of the marginal effect of a sabotage on the probability of winning, we estimate a mean pres-

tige value of nearly $10,000 for typical episodes and over $35,000 for multi-episode tournaments.

While this specification controls for important alternative explanations of overbidding besides pres-

tige value, it may be impossible to control for every alternative. Alternatives such as an endowment

effect, bidding fever, or spite could also explain overbidding.

We take several approaches to addressing these threats to identification. We can provide a priori

arguments that these threats are less relevant in our setting. The winning bidder does not possess

the sabotage in our setting but just uses it for the round, weakening any endowment effects. A

handful of auctions precede the one we study, providing an opportunity to temper bidding fever.

Our general impression from watching the episodes was that of good-natured competition rather

than spite intense enough to lead contestants to bid away a majority of their stake to harm a rival.
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More concretely, the heterogeneity in the estimates accords with a prestige-value interpretation. We

estimate higher prestige values for tournaments, which are presumably more prestigious than typical

episodes. While we estimate few systematic demographic differences in prestige values, we do find

that chefs and owners have significantly lower prestige values than others. One interpretation is that

others are aspiring in the profession and having more to gain from estabishing a reputation. The

heterogeneity across types of episode and job titles is not an obvious consequence of endowment

effects, bidding fever, or spite.
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Table 1: Descriptive Statistics for Cutthroat Kitchen Data

Standard
Variable Measure Mean Deviation Minimum Maximum Observations

Episode type

• Standard Indicator 0.80 0.40 0 1 316
• Prelim Indicator 0.16 0.37 0 1 316
• Finale Indicator 0.04 0.19 0 1 316

Competition variables

• Total sabotage auctions Count 7.3 1.0 5 10 158
• Prize money Thous. $ 11.0 6.1 0.3 45.0 158

Contestant demographics

• Female Indicator 0.36 0.48 0 1 316
• White Indicator 0.66 0.47 0 1 316
• Chef Indicator 0.69 0.46 0 1 316
• Owner Indicator 0.07 0.26 0 1 316

Last-auction variables

• Starting money Thous. $ 13.9 6.6 0.1 45.0 316
• Winning bid Thous. $ 5.0 4.0 0.2 26.0 158
• Highest losing bid Thous. $ 3.7 4.2 0.0 25.0 158

Notes: Descriptive statistics for 158 Cutthroat Kitchen episodes used in analysis. Rows with 158×2 = 316 observations
are computed for the two remaining contestants competing in the last round.
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Table 2: Estimates of Winning Probabilities

Sabotage Probability Attention to Inattention to
indicator estimated sabotage order sabotage order

None p(0,0) = p(0) 0.32∗∗∗ 0.32∗∗∗

(0.06) (0.06)

First alone p(1,0) 0.58∗∗∗

(0.05)

Second alone p(0,1) 0.42∗∗∗

(0.05)

Single p(1) 0.50∗∗∗

(0.00)

Both p(1,1) = p(2) 0.68∗∗∗ 0.68∗∗∗

(0.06) (0.06)

R2 0.06 0.04

Notes: Estimates from a linear-probability model using 316 contestant observations. Regresses an indicator
for winning episode wi on a subset of sabotage indicators given in the first column. For each model, an
exhaustive set of indicators is included and the constant term omitted to avoid multicolinearity. Robust
standard errors accounting for clustering of contestants within the same episode reported in parentheses
below coefficient estimates. Significantly different from zero in a two-tailed test at the ∗10% level, ∗∗5%
level, ∗∗∗1% level.
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Table 3: Semi-elasticities Derived from Probability Estimates

Attention to Inattention to
Variable sabotage order sabotage order

η1(0) = ∆1(0)/p(1,0) 0.45∗∗∗

(0.12)

η1(1) = ∆1(1)/p(1,1) 0.38∗∗∗

(0.09)

η2(0) = ∆2(0)/p(0,1) 0.23
(0.18)

η2(1) = ∆2(1)/p(1,1) 0.14
(0.11)

η(0) = ∆(0)/p(1) 0.36∗∗∗

(0.13)

η(1) = ∆(1)/p(2) 0.26∗∗∗

(0.07)

Notes: Semi-elasticities computed from the estimates in Table 2. Standard errors
computed by applying the delta method to the regressions behind Table 2. Signifi-
cantly different from zero in a two-tailed test at the ∗10% level, ∗∗5% level, ∗∗∗1%
level.
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Table 5: Estimating Demographic Variation in Mean Prestige Value

Attention to sabotage Attention to sabotage Inattention to sabotage
Variable order, risk neutral order, risk averse order, risk averse

Prestige-value mean (µ, thousand dollars)

• Female −1.1 −1.1 −0.8
(−6.7, 4.1) (−6.3, 3.8) (−4.5, 2.5)

• White −4.3 −4.1 −2.0
(−9.6, 0.9) (−8.7, 1.0) (−6.6, 1.2)

• Chef −10.5∗∗ −10.0∗∗ −6.0∗∗

(−17.4, −3.6) (−16.6, −3.1) (−13.2, −2.0)

• Owner −16.8∗∗ −15.9∗∗ −9.5∗∗

(−26.3, −4.6) (−24.8, −4.3) (−21.1, −2.2)

Log-likelihood −536.5 −536.4 −538.2

Notes: Estimates from ML procedure positing normal distribution for prestige values using 316 contestant observations,
similar to Table 4. All equations also allow mean and standard deviation to vary by episode type as in the last three
columns of Table 4, but we only report results for included demographic variables here for brevity. Specification allows
mean, but not standard deviation, to vary by demographics. Other notes from Table 4 apply.
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Figure 1: Distribution of Prestige Values Graphed by Episode Type
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Notes: Densities computed based on estimates from the last three columns of Table 4.

36




