
Copyr i g ht © 2012, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

TOP 10 (OR MORE) WAYS TO
OPTIMIZE YOUR SAS CODE

Handy Tips for the Savvy Programmer

Copyr i g ht © 2012, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

SAS PROGRAMMING BEST PRACTICES

• Create Readable Code
• Basic Coding Recommendations

» Efficiently choosing data for processing
» When to use indexes
» Other general recommendations

• Developing Code

Copyr i g ht © 2012, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

CREATE READABLE CODE

Tips for creating code that you and your co-workers will find easy to
read and understand.

Copyr i g ht © 2012, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

1. COMMENT, COMMENT, COMMENT!

Method 1: Method 2:
/* create summary report*/
proc means data=new;

more statements here;
run;

*create summary report;
proc means data=old;

more statements here;
run;

Note: Method 1 may also be helpful when developing and debugging code.

Copyr i g ht © 2012, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

1. COMMENT, COMMENT, COMMENT!

/*
data new;

set old;
run;
*/
proc means data=new;

more statements here;
run;

Method 1:

Efficiency consideration: every submission of the DATA step re-
creates the SAS data.

Copyr i g ht © 2012, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

2. USE RECOMMENDED FORMATTING FOR SAS CODE

Not this:Do this:
data new; set old; run;
proc means data=new;
var newvar; class year;
run;

data new;
set old;

Run;
proc means data=new;

var newvar;
class year;

run;

Copyr i g ht © 2012, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

3. USE DESCRIPTIVE NAMES

Do this:
data salaryinfo2012;
set salaryinfo2011;
newsalary=

oldsalary+increase;
run;

Not this:

data new;
set old;
z=x+y;

run;

Note: If you are forced to use a project’s naming conventions, then use
block comments with variable name descriptions to help describe the
variables.

Copyr i g ht © 2012, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

4. USE UNDERSCORES OR CAMEL CASE TO CREATE
DESCRIPTIVE NAMES

Camel Case
data salaryInfo2012;
set salaryInfo2011;
newSalary=

oldSalary+increase;
run;

Underscores

data salary_info2012;
set salary_info2011;
new_salary=

old_salary+increase;
run;

SAS names:
• Can be 32 characters long.
• Must start with a letter or underscore, continuing with

numbers, letters or underscores.
• Can be uppercase, lowercase or mixed case.
• Are not case sensitive.

Copyr i g ht © 2012, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

5. PUT ALL “GLOBAL” STATEMENTS AT THE BEGINNING
OF YOUR CODE

Libname statements, system options, and title statements are easier to find
(and change, if necessary) if they are all in one place.

Copyr i g ht © 2012, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

BASIC CODING RECOMMENDATIONS

Basic coding recommendations to increase the efficiency of your SAS
programs.

Copyr i g ht © 2012, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

6. MINIMIZE THE NUMBER OF TIMES YOU READ YOUR
DATA

Do this: Not this:

data a b c;
set old;
if condition then

output a;
else if condition then

output b;
else if condition then

output c;
run;

data a;
set old;
[more code]

run;
data b;

set old;
[more code]

run;
data c;

set old;
[more code]

run;

Copyr i g ht © 2012, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

7. LIMIT THE NUMBER OF TIMES YOU SORT YOUR
DATA

If you think the incoming data is already sorted, use the presorted option on
your SORT statement; the sort order will be verified.

data new;
infile ‘rawdata.dat’;
input ID $ 1-4 name $ 5-25 salary 26-35;

run;

proc sort data=new out=new_sorted presorted;
by ID;

run;

Copyr i g ht © 2012, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

When creating an SQL view, avoid including an ORDER BY clause in the view,
as the data will need to be sorted every time the view is used.

proc sql;
create view sql.new as

select *
from sql.old
order by firstvar;

proc print data=sql.new;
run;

The PROC PRINT or any other procedure/DATA step that uses the view will
execute the stored SQL query, including the ORDER BY.

7A. LIMIT THE NUMBER OF TIMES YOU SORT YOUR DATA

Copyr i g ht © 2012, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

In our example, the SQL view stores the following query:

proc sql;
create view sql.new as

select *
from sql.old
order by firstvar;

proc print data=sql.new;
run;

Stored in SQL view

View is executed

7A. LIMIT THE NUMBER OF TIMES YOU SORT YOUR
DATA

Copyr i g ht © 2012, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

8. USE IF-THEN-ELSE INSTEAD OF IF-IF-IF

Do this:
data new;
set old;
if condition then

some action;
else if condition then

some other action;
else if condition then

some other action;
run;

Not this:
data new;
set old;
if condition then

some action;
if condition then

some other action;
if condition then

some other action;
run;

Note: It is recommended that you use a SELECT group rather than a series
of IF-THEN statements when you have a long series of mutually exclusive
conditions.

Copyr i g ht © 2012, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

IF THEN

• When there are few conditions
to check.

• The values are not uniformly
distributed.

• The values are character or
the values are discrete
numeric data.

SELECT

• When there is a long series of
mutually exclusive conditions.

• The values are numeric and
are uniformly distributed.

8A. USE IF-THEN-ELSE INSTEAD OF IF-IF-IF

Copyr i g ht © 2012, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

9. ORDER IF THEN CONDITIONS IN DESCENDING ORDER
OF PROBABILITY

data new;
set old;
if condition occurring most often then

some action;
else if condition then

some other action;
else if condition then

some other action;
run;

Copyr i g ht © 2012, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

10. SELECT ONLY THE COLUMNS YOU NEED
WHEN WORKING WITH SAS DATA

Do This: Not This:

data new;
set old (drop=category

type value ...);
more statements here;

run;

data new;
set old;
more statements here;

run;

Variations:
• Use the keep= option if you need to keep more variables than you need

to drop!
• Use both keep= and drop= options to control variables on both the

incoming and outgoing sides!
• Keep= and drop= options can be used in PROC steps, too!

Copyr i g ht © 2012, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

When you use DROP=/KEEP= on the SET statement, you affect
what is read from the existing SAS data set.

X Y Z Y Z Y Z

data new;
set old(drop=x);

run;

Read Write

Data set OLD Data set NEWPDV

Note: Variables not read into the PDV are not available for processing.
Consider the following assignment statement:
p=x+y;

10. SELECT ONLY THE COLUMNS YOU NEED
WHEN WORKING WITH SAS DATA

Copyr i g ht © 2012, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

The variables P and X are added to the PDV at compile time when
SAS encounters the assignment statement.

X Y Z Y Z P X
. .

data new;
set old(drop=x);
p=x+y;

run;

Read Write

Data set OLD Data set NEWPDV

Since the variables X and P are being created due to the assignment
statement, they both receive initial values of missing.

Y Z P X

10. SELECT ONLY THE COLUMNS YOU NEED
WHEN WORKING WITH SAS DATA

Copyr i g ht © 2012, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

The variables P and X are added to the PDV at compile time when
SAS encounters the assignment statement. X is considered to be a
‘new’ variable.

X Y Z Y Z P X
. .

data new;
set old(drop=x);
p=x+y;

run;

Read Write
Y Z P X

p=.+y;

10. SELECT ONLY THE COLUMNS YOU NEED
WHEN WORKING WITH SAS DATA

Copyr i g ht © 2012, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

10. OUTPUT

Copyr i g ht © 2012, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

When you use DROP=/KEEP= on the DATA statement, you affect
what is written to the output SAS data set.

X Y Z X Y Z P

data new(drop=x);
set old;
p=x+y;

run;

Read Write

Data set OLD Data set NEWPDV

10. SELECT ONLY THE COLUMNS YOU NEED
WHEN WORKING WITH SAS DATA

Now the x value from the data set OLD is in the PDV and
available for processing.

p=x+y; p=1+2;

Y Z P

Copyr i g ht © 2012, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

10. OUTPUT

Copyr i g ht © 2012, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

You may also use the DROP statement, which affects the output
data set.

X Y Z X Y Z Y Z

data new;
drop x;
set old;

run;

Read Write

Data set OLD Data set NEWPDV

Note: The DROP statement affects ALL output data sets. The DROP=
data set option affects only the data set it immediately follows.

10. SELECT ONLY THE COLUMNS YOU NEED
WHEN WORKING WITH SAS DATA

Copyr i g ht © 2012, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

You may also use the DROP statement, which affects the output
data set.

X Y Z X Y Z

Y Z

data new new1;
drop x;
set old;

run;

Read Write

Data set OLD

Data set NEW

PDV

Note: The DROP statement affects ALL output data sets. The DROP=
data set option affects only the data set it immediately follows.

10. SELECT ONLY THE COLUMNS YOU NEED
WHEN WORKING WITH SAS DATA

Y Z

Data set NEW1

Copyr i g ht © 2012, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

11. SELECT ONLY THE ROWS YOU NEED WHEN
WORKING WITH SAS DATA

Do this:

data new;
infile ‘old.dat’;
if city=‘CLEVELAND';
more statements here;

run;

Not this:

data new;
infile ‘old.dat’;
more statements here;

run;

Copyr i g ht © 2012, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

12. CONSIDER THE POSITION OF THE SUBSETTING IF

Do this:

data new;
infile ‘old.dat’;
if city=‘CLEVELAND';
more statements here;

run;

Not this:

data new;
infile ‘old.dat’;
more statements here;
if city=‘CLEVELAND';

run;

Subset as soon as you have all necessary values in order to prevent
unnecessary creation of variables and additional processing.

Copyr i g ht © 2012, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

13. IF YOU ARE READING SAS DATA, USE WHERE INSTEAD
OF SUBSETTING IF

Instead of this:

data new;
set old;
where condition;
more statements here;

run;

Try this:

data new;
set old;
if condition;
more statements here;

run;

Added efficiency: when using SAS/Access engines, SAS attempts to send
the WHERE clause to the RDBMS for evaluation rather than to SAS;
With the IF statement, SAS must do the processing.

Copyr i g ht © 2012, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

The WHERE statement is a pre-processor. It subsets data before it
is loaded into the PDV.

X Y Z

X Y Z

data new;
set old;
where x > 100;

run; WHERE

Data set OLD

PDV

Since the WHERE statement subsets before loading data into
the PDV, it expects to read SAS data.

13. IF YOU ARE READING SAS DATA, USE WHERE INSTEAD
OF SUBSETTING IF

Copyr i g ht © 2012, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

Consider the following SAS code.

X Y Z

X Y Z

data new;
set old;
p=x+y;
where p > 100;

run;

WHERE p > 100;

Data set OLD

PDV

The variable P does not exist in the input data set OLD. Since
WHERE is a preprocessor, it can only ‘understand’ data that is stored
in the SAS data set OLD. This code yields an error message.

13. IF YOU ARE READING SAS DATA, USE WHERE INSTEAD
OF SUBSETTING IF

Copyr i g ht © 2012, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

13. IF YOU ARE READING SAS DATA, USE WHERE INSTEAD
OF SUBSETTING IF

Copyr i g ht © 2012, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

If you need to subset based on a calculated variable, you may
choose to use the subsetting IF.

X Y Z

X Y Z P

data new;
set old;
p=x+y;
if p > 100;

run;

IF p > 100;

Data set OLD

PDV

The subsetting IF subsets based on values that are in the PDV. It
does not preprocess the data.

13. IF YOU ARE READING SAS DATA, USE WHERE INSTEAD
OF SUBSETTING IF

Copyr i g ht © 2012, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

When conditions permit, you may choose to use a combination of
WHERE and subsetting IF. Consider the following code.

X Y Z

X Y Z P

data new;
set old;
p=x+y;
if p > 100 and x < 50;

run;

if p > 100 and x < 50;

Data set OLD

PDV

This code can be rewritten to use both WHERE and IF.

13. IF YOU ARE READING SAS DATA, USE WHERE INSTEAD
OF SUBSETTING IF

Copyr i g ht © 2012, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

Consider the following version of the code.

X Y Z

X Y Z P

data new;
set old;
p=x+y;
where x < 50;
if p > 100;

run;

IF p > 100;

Data set OLD

PDV

Advantage: The WHERE statement can still be used to subset
appropriate information, reducing the amount of information
subsequently loaded into the PDV.

WHERE x < 50;

13. IF YOU ARE READING SAS DATA, USE WHERE INSTEAD
OF SUBSETTING IF

Copyr i g ht © 2012, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

14. CONSIDER DECLARING VARIABLES AS CHARACTER
WHEN THERE IS A STORAGE SAVINGS

1015
2034
5543
6793
...

Compare:

data new;
input ID 1-4;

• ID is numeric requiring 8 bytes of storage

Consider Employee ID values
similar to the following:

data new;
input ID $ 1-4;

 ID is character requiring 4 bytes of
storage

A savings of 4 bytes per observation adds up when dealing with
large data!

Copyr i g ht © 2012, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

Consider the following data sets:

14A. USE THE LENGTH STATEMENT TO DECLARE
CHARACTER VARIABLES

Copyr i g ht © 2012, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

data concatenate;
set old old2;

run;

The code will produce truncated values for X. The value of X is established at
compile time based on the attributes found the first time it is encountered. In
this case, the attributes in the data set OLD are used because it is listed first on
the SET statement.

14A. USE THE LENGTH STATEMENT TO DECLARE
CHARACTER VARIABLES

Copyr i g ht © 2012, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

data concatenate;
length x $ 3;
set old old2;

run;

14A. USE THE LENGTH STATEMENT TO DECLARE
CHARACTER VARIABLES

Copyr i g ht © 2012, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

15. CONSIDER ADDING INDEXES TO YOUR DATA IF
YOU WILL BE FILTERING IT FREQUENTLY

What is an index?

An index is an optional file that you can create for a SAS data set in order to provide

direct access to specific observations.

In other words, an index enables you to locate an observation by value.

Copyr i g ht © 2012, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

15. WHAT IS AN INDEX?

The index file has the same name as its associated data file, and a
member type of INDEX.

Copyr i g ht © 2012, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

15. WHEN TO USE INDEXES?

Index guidelines:

• Indexes perform best when they retrieve 15% or fewer rows in a table/data

set.

• Indexes are not usually useful if they are based on uniformly distributed, low

cardinality columns. (Male & Female example)

• Do not create indexes on small tables. Sequential access is faster.

• Minimize the number of indexes in order to reduce disk storage and update

costs.

Copyr i g ht © 2012, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

15. CONSIDER ADDING INDEXES TO YOUR DATA IF
YOU WILL BE FILTERING IT FREQUENTLY

• Indexes can be created on the DATA statement, with PROC SQL, with

PROC DATASETS, and in other ways.

• Indexes can be simple or composite.

• Under the right circumstances, indexes can decrease processing time.

• However, indexes take up space!

• Carefully consider whether an index makes sense in the specific situation.

Added efficiency: sort the data in ascending order on the key variable before
indexing the data file.

Copyr i g ht © 2012, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

15. METHODS FOR CREATING INDEXES

DATA step:

data finances(index=(stock /unique));
more statements here
run;

PROC SQL:

proc sql;
create unique index empnum

on employee (empnum);

or
proc sql;

create index names on
employee(lastname, frstname);

Copyr i g ht © 2012, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

15. METHODS FOR CREATING INDEXES

proc datasets library=mylib;
modify my_dataset;

index create empnum / unique;
index create names=(lastname frstname);

run;

PROC DATASETS:

Copyr i g ht © 2012, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

15. CONTROLLING INDEX USAGE

You can control index usage for WHERE processing with the DATA set options
IDXWHERE and IDXNAME.

data mydata.empnew;
set mydata.employee (idxwhere=yes);

where empnum < 2000;

IDXWHERE=YES tells SAS to decide which index is the best for
optimizing a WHERE expression, disregarding the possibility that a
sequential search of the data file might be more resource efficient.

Copyr i g ht © 2012, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

15. CONTROLLING INDEX USAGE

data mydata.empnew;
set mydata.employee (idxname=empnum);
where empnum < 2000;

The IDXNAME= data set option directs SAS to use a specific
index in order to satisfy the conditions of a WHERE expression.

Copyr i g ht © 2012, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

16. USE CEDA WISELY

What is CEDA?
• CEDA stands for Cross-Environment Data Access, and refers to a

component of the SAS data architecture that allows SAS to access physical
data using a platform other than the one used to create the data.

• CEDA describes the capability to recognize non-native data and the
components that arrange for cross-architecture data translation on the fly.

Copyr i g ht © 2012, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

16. USE CEDA WISELY

• Reading SAS 9.2 or earlier data sets in SAS 9.3 results in a translation

process using CEDA (cross-environment data access)

• Because the BASE engine translates the data as the data is read, multiple

procedures require SAS to read and translate the data multiple times. In this

way, the translation could affect system performance.

• “Convert” SAS data sets by using PROC MIGRATE or other techniques.

Copyr i g ht © 2012, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

WHEN YOU ARE DEVELOPING CODE

Tips to save time and create efficient code.

Copyr i g ht © 2012, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

17. TEST YOUR PROGRAMS WITH THE OBS= OPTION

data complicated_program;
set sample_data(obs=50);
many, many, many more statements here;

run;

This technique may not adequately test all conditions, but will confirm
the correctness of the overall program logic – and save time and
computer resources!

Copyr i g ht © 2012, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

data complicated_program;
set sample_data;
if condition then do;

put ‘write value here’ value;
other statements to execute;
end;

run;

This technique allows you to test certain coding logic to determine if
conditions are met as well as variable values.

17A. TEST YOUR PROGRAMS WITH THE PUT
STATEMENT

Copyr i g ht © 2012, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

18. BENCHMARK PRODUCTION JOBS

Recommendations for benchmarking include:

• Benchmark your programs in separate SAS sessions

• Run each program multiple times and average the performance statistics.

• Use realistic data for tests.

• Elapsed time should not be used for benchmarking.

Copyr i g ht © 2012, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

19. MAKE THINGS EASIER FOR YOURSELF:
EFFICIENCY ALSO MEANS WORKING SMARTER!

• Be “GREEN” – save code and reuse it later!

• Collaborate with your co-workers to share tips and suggestions

• Meet regularly to share ideas

• Some ways SAS code fosters reusability:
» Macro library

» Stored processes

» User-written functions and procedures.

Copyr i g ht © 2012, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

RESOURCES:

• http://support.sas.com

• SAS Training

• Local and regional users groups

• Your Customer Account Executive

• Your co-workers and peers!

http://support.sas.com/

Copyr i g ht © 2012, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

Copyr i g ht © 2012, SAS Ins t i tu t e Inc . A l l r ights reser ve d .

THANK YOU!

	Top 10 (Or More) Ways to Optimize Your SAS Code�
	SAS Programming Best Practices
	Create Readable Code
	1. Comment, Comment, Comment!
	1. Comment, Comment, Comment!
	2. Use recommended formatting for SAS code
	3. Use Descriptive Names
	4. Use Underscores or Camel Case to Create Descriptive Names
	5. Put All “global” Statements at the Beginning of Your Code
	Basic Coding Recommendations
	6. Minimize the number of times you read your data
	7. Limit the number of times you sort your data
	7a. Limit the number of times you sort your data
	Slide Number 14
	8. Use IF-THEN-ELSE instead of IF-IF-IF
	Slide Number 16
	9. Order IF THEN conditions in descending order of probability
	10. Select only the columns you need when working with SAS data
	10. Select only the columns you need when working with SAS data.�����							�					��
	�����							�					��
	10. Select only the columns you need when working with SAS data.�����							�					��
	Slide Number 22
	�����							�					��
	Slide Number 24
	�����							�					��
	�����							�					��
	11. Select only the rows you need when working with SAS data
	12. Consider the position of the subsetting IF
	13. If you are reading SAS data, use WHERE instead of subsetting IF
	13. If you are reading SAS data, use WHERE instead of subsetting IF
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	14. Consider declaring variables as character when there is a storage savings
	Slide Number 37
	Slide Number 38
	Slide Number 39
	15. Consider adding indexes to your data if you will be filtering it frequently
	15. What Is an Index?
	15. When to Use Indexes?
	15. Consider adding indexes to your data if you will be filtering it frequently
	15. Methods for Creating Indexes
	15. Methods for Creating Indexes
	15. Controlling Index Usage
	15. Controlling Index Usage
	16. Use CEDA Wisely
	16. Use CEDA Wisely
	When You are Developing Code
	17. Test your programs with the OBS= option
	17a. Test your programs with the PUT statement
	18. Benchmark Production Jobs
	19. Make things easier for yourself: efficiency also means working smarter!
	Resources:
	Slide Number 60
	Thank you!

