$sas

Copyright © 20

PROC SQL VS. DATA STEP PROCESSING

- Joining data
- Additional comparisons

- Conditional processing

- Indexing data

« Subsetting

« Sorting and summarizing
« Creating macro variables

VS

SQL Data Ste

JOINING SAS DATA USING THE S as

DATA STEP AND PROC SQL e

TYPES OF JOINS ANSI STANDARD SQL

- Natural

- Uses no ‘keys’ — typically termed a Cartesian
product

e Inner

« QOuter Joins

. Left
« Right
- Full

PROC SQL and the DATA Step can deliver the same
results in many cases Gsas

THE
POWER
TO KNOW.

JOINING DATA WHAT DOES THE DATA LOOK LIKE?

One to One
One to Many
Many to One
Many to Many

PROC SQL and the DATA Step can deliver the same results for
one-to-one and one-to-many; they produce different results for
many-to-many.

9sas|

TYPES OF JOINS INNER JOIN

Inner Join
« The intersection of two or more sets
- Return only matching rows

OSas | ¥,

TYPES OF JOINS OUTER JOINS

Outer Joins

- return all matching rows, plus nonmatching rows
from one or both tables

- can be performed on only two tables or views

at a time.
Left Full Right

GSas | B,

HOW DO THE
TECHNIQUES SAMPLE DATA: ONE-TO-ONE JOINS
COMPARE?

FRUITS VEGGIES

FRUIT DAY | VEGGIE
apples 1 | broceaoli
apples 2| broccoli
apples 4 | brocecoli

apples 5 | broccoli

THE
POWER
TO KNOW.

Gsas

JOINS ONE-TO-ONE JOINS: DEFAULT BEHAVIOR

proc sql;

o Don’t do this —
create table sql default joinl as The result is a
select £.%, wv.*

from fruit f, wveggies v; Cartesian Join

runy;

Don't do this — data data default joinl;

Overlaid values merge fruits veggles;
result run;

HOW DO THE Default SQL Join
TECHNIQUES
COMPARE’) DAY FRUIT | VEGGIE

1 apples | broccali
1 apples | broccoli
1 apples | broccoli

1 apples | broccali

Default DATA Step Join

apples | broccoli
JOINS: DEFAULT apples | broccoli DAY | FRUIT | VEGGIE
apples | broccoli 1 apples broccali

BEHAVIOR

apples | broccoli apples broccali

apples broccoli apples | broccoli

[0 I~ N

apples | broccoli apples | broceoli
apples | broccoli
apples | broccali
apples | broccoli
apples | broccoli

apples | broccali

apples | broccoli Ssas ‘

['n I s TR o 3 N 3 TR S Y - A SO S B S B S B P

JOINS ONE-TO-ONE JOINS: USING A KEY

proc sql;

create table =gl key Joinz as

rurn-

select f£.7*,

from fruits £, veggies v

where

V.vegglie

T.day=v.day;

SORT steps are
needed if the data
IS not already

in BY order

data data key JoinZ ;
merge fruits veggles;
by dav;

run;

HOW DO THE
TECHNIQUES
COMPARE?

JOINS: USING A

KEY

DATA Step Join with Key

SQL Join with Key DAY | FRUIT | VEGGIE

1 apples | broccoli

DAY FRUIT VEGGIE 2 broccoli
1 | apples | broccali 3 apples
4 apples broccaoli 4 | apples broccaoli
] broccali
b | apples

JOINS STEP)

proc sql;
create table =gl key Joinz as
select f£.%, v.veggle

ONE-TO-ONE JOINS: USING A KEY (MODIFY THE DATA

(same step as

from fruits £, vegglies v before)
where T.day=v.day;
run;

data data key JjoinZb ;
Add the merge fruits (in=f) veggies (in=v);
IN= bvw davy;
Operator 1t £ and w;

run;

Gsas

HOW DO THE
TECHNIQUES
COMPARE?

JOINS: USING A
KEY

(modified DATA
Step)

SQL Join with Key DATA Step Join with Key and IN=
DAY | FRUIT | VEGGIE DAY | FRUIT VEGGIE

1 apples broccoli 1 apples broccol

4 apples broccoli 4 apples broccoli

A MATCH!

This type of join is called an INNER join —
it returns only the rows where the key field
matches.

Inner Join Gsas

JOINS ONE-TO-ONE DATA: LEFT AND RIGHT (OUTER) JOINS

- Return all matching rows, plus nonmatching rows
from the left or the right table
- Can be performed on only two tables or views

at a time.

Left Join Right Join

JOINS ONE-TO-ONE: LEFT JOIN

proc sqgql;
create table sgl left join3 as
select £.%, wv.*
from fruits £
left jJoin
veggles v
on fT.day = wv.day;

run/,

data data left join3a;
merge fruits (in=1f)
oy day;
it £

run;

vegglies

(in=v);

Gsas

HOW DO THE

TECHNIQUES
COMPARE?
SQL Left Join DATA Step Left Join
DAY | FRUIT | VEGGIE DAY | FRUIT | VEGGIE
1 apples broccoli 1 apples | broccoli
3 apples 3 apples
4 | apples broccali 4 | apples | broccoli
6 apples 6 apples

JOINS: Left Join

A MATCH!

THE
POWER
TO KNOW.

Gsas

JOINS ONE-TO-ONE: RIGHT JOIN

proc sql;
create table sgl right joind as
select f£.fruit, v.*
from fruits £
right Join
Tedggles v
on f.day = v.day;

run;,

data data right joinda;
merge fruits (in=t)
by dav;
it

run;

vegglies

(1n=v) ;

Gsas

HOW DO THE
TECHNIQUES
COMPARE?

JOINS: Right Join

SQL Right Join
FRUIT | DAY | VEGGIE
apples 1| broceaoli

2 | broceali
apples 4 | broccoli
5 | broccoli

DATA Step Right Join

DAY | FRUIT | VEGGIE
1 apples | broccoli
2 broccaoli
4 apples braccaoli

5 broccoli

A MATCH!
(ALMOST)

JOINS ONE-TO-ONE: RIGHT JOIN

proc sql;
create table sgl right joinda as
select v.day, f.fruit, wv.veggilie
from fruits £
right join
vegglies v
on f.day=v.davy;

quit;
data data right Joinda;
(sanuesux)as merge fruits (in=f) wveggies (1in=v);
before) by day;
it w;
run;

9

SAS

HOW DO THE
TECHNIQUES
COMPARE?

JOINS: Right Join

SQL Right Join

DAY | FRUIT | VEGGIE
1 apples broccali
2 broccali
4 | apples | broccaoli

a broccaoli

DATA Step Right Join

DAY | FRUIT | VEGGIE
1 apples | broccoli
2 broccaoli
4 apples braccaoli

5 broccoli

A MATCH!

JOINS ONE-TO-ONE DATA: FULL (OUTER) JOIN

Retrieve the matching rows as well as the non-
matches from the left table and the non-matches from
the right table.

Full Join

Gsas

JOINS ONE-TO-ONE: FULL JOIN

proc sql;
create table sgl full joind as
select £.*%, wv.*
from fruits £ full jJoin vegglies v
on tT.day=v.day;

run;

data full joinbd;
merge fruits (in=f) veggies (in=v);
by days;
it £ or w;

run;

Gsas

HOW DO THE

TECHNIQUES
COMPARE? SQL Full Join DATA Step Full Join
DAY FRUIT VEGGIE DAY | FRUIT VEGGIE
1 apples broccoli 1 apples broccoli
broccali 2 broccoli
3 | apples 3| apples
4 | apples | broccali 4 apples broccoli
JOINS: Full (Outer) _ broccoli 5 broccoli
JOin b | apples B apples

A MATCH!
(ALMOST)

JOINS MODIFY CODE TO INCLUDE THE COALESCE FUNCTION.

The COALESCE function returns the value of the first
non-missing argument.
General form of the COALESCE function:

COALESCE(argument-1,argument-2<, ...argument-n)

GSas | B,

JOINS ONE-TO-ONE: FULL JOIN

proc sql;
create table sgl full joinda as
select coalesce(f.davy,v.day) as Key,f.fruit, wv.wveggile
from fruits £ full jJoin vegglies v
on T.day=v.day;

run;

Add the COALESCE function

data full joinbda; _
merge fruits vegglies; Remove the IN= option and
by day; IF statement

run;

HOW DO THE

TECHNIQUES .
COMPARE? SQL Full Join DATA Step Full Join
Key FRUIT VEGGIE DAY FRUIT VEGGIE
1 apples broccol 1 apples broccoli
2 broccali 2 broccoli
3 | apples 3 | apples
4 apples broccol 4 apples broceal
JO'NS FU” (Outer)] broccali 5 braccali
JOin E | apples B apples

A MATCH!

HOW DO THE
TECHNIQUES SAMPLE DATA: ONE-TO-MANY JOINS
COMPARE?

VEGGIES2

DAY VEGGIE
brocooli

tomatoes

FRUITS2

lettuce
FRUIT)
broccoli

apples
tomatoes

apples
apples
apples

lettuce
broccoli
tomatoes
lettuce

broccali

tomatoes

moom MmO s

lettuce

JOINS ONE-TO-MANY INNER JOIN

proc sql;
create table =gl 1 to m joinl as
select f2.%, v2.veggie Alternate coding here —
from fruitsiZ f2 inner Joln use(ﬁ”ﬁnnerkjn”in
veggless vz syntax
on tz.day=vz.day;
run;

data data 1 to m Joinl;
merge fruitsZ (in=ftZ) veggiesZZ [(1n=vi);
by davy;
it £2 and vi;

run;

Gsas

HOW DO THE
TECHNIQUES
COMPARE?

ONE-to-MANY

INNER JOIN

S$QL One-to-Many Inner Join

DAY

o

FRUIT

apples
apples
apples
apples
apples
apples

VEGGIE
broccoli
tomatoes
lettuce
broccoli
tomatoes

lettuce

DATA Step One-to-Many Inner Join

DAY

o O -

A MATCH!

FRUIT
apples
apples
apples
apples
apples
apples

VEGGIE
broccaoli
tomatoes
lettuce
broccoli
tomatoes

lettuce

JOINS ONE-TO-MANY LEFT JOIN

proc sgql;

create table sgl 1 to m left joinZ as

select TZ.%*,

run/,

from fruitsz f£2

left Join

Teggliess v

on fZ.day

veLE

= vZ.day;

data data_l_to_m_left_join2a;
merge fruitsZ (in=tZ) veggies’
by davy;
it f£Z2;

run;

(1n=vZ]) ;

Gsas

HOW DO THE
TECHNIQUES
COMPARE?

ONE-to-MANY

LEFT JOIN

SQAL One-to-Many Left Join

Lo T - A e S %

FRUIT

apples
apples
apples
apples
apples
apples
apples
apples

VEGGIE
tomatoes
lettuce

broccoli

broccoli
lettuce

tomatoes

DATA Step One-to-Many Left Join

DAY

[T S Y O %

FRUIT

apples
apples
apples
apples
apples
apples
apples
apples

A MATCH!

VEGGIE
braccoli
tomatoes

lettuce

broceoli
tomatoes

lettuce

JOINS ONE-TO-MANY RIGHT JOIN

proc sql;
create table sgl 1 to m right Jjoin3d as

select vZ2.day as key, fZ.fruit, vZ.veggie

from fruitsZ f&

right Jjoin

veggless v

on fzZz.day = vZ.dav;
run;

merge fruitsZ (i1n=tftz)
by dav;
it va;

run;

data data 1 to m right Join3;

veggless

(in=vZ);

Gsas

HOW DO THE
TECHNIQUES
COMPARE?

ONE-to-MANY

RIGHT JOIN

3QL One-to-Many Right Join

DAY | FRUIT | VEGGIE DAY

1
1

—

[o T o N T e A - = T % T % |

apples
apples
apples

apples
apples
apples

tomatoes 1
lettuce 1
broccaoli 1
lettuce
tomatoes
broccoli
broccoli
lettuce
tomatoes
lettuce

tomatoes

[T & T o e e e - % T % T

broccaoli

A MATCH!

FRUIT

apples
apples
apples

apples
apples
apples

VEGGIE
broccoli
tomatoes
lettuce
broccoli
tomatoes
lettuce
broccoli
tomatoes
lettuce
broccoli
tomatoes

lettuce

DATA Step One-to-Many Right Join

JOINS ONE-TO-MANY FULL JOIN

proc sql;
create table sgl 1 to m full joind as
select coalesce(fZz.day,vZ.day) as Key, fZ.fruit,
from fruitsZz f£2 full Join veggliessd v
on ftz.day=vz.day;
run;

Ve.Veggle

data data_l_to_m_full_join4;
merge fruitsd veggiesi;
by davy;

run;

Gsas

HOW DO THE

TECHNIQUES SQL One-to-Many Full Join DATA Step One-to-Many Full Join
COMPARE? Key | FRUIT VEGGIE DAY | FRUIT VEGGIE
1 apples | tomatoes 1 apples | broccoli
1| apples | lettuce 1 apples | tomatoes
1 apples | broccoli 1 apples | lettuce
P lettuce P broccoli
2 tomatoes P tomatoes
ONE-to-MANY 2 broccaoli 2 lettuce
FULL JOIN 3 apples 3 apples
4 | apples broccaoli 4 | apples broccoli
4 | apples lettuce 4 | apples tomatoes
4 | apples tomatoes 4 | apples lettuce
5 lettuce 5 broccoli
5 tomatoes b tomatoes
5 broccoli 5 lettuce
6 apples 6 apples

HOW DO THE
TECHNIQUES SAMPLE DATA: MANY-TO-MANY JOINS

COMPARE?

FRUITS3 VEGGIES3
DAY | FRUIT DAY | VEGGIE
1 | apples 1| braccoli
1 | bananas 1 | tomatoes

1 oranges 1| lettuce

3 | apples 2 | broccoli
3 | bananas 2 | tomatoes

3 | oranges 2 | lettuce

4 | apples 4 | broccoli
4 | bananas 4 | tomatoes

4 | oranges 4 | lettuce

6 apples 5 | broccoli
6 bananas 5 | tamatoes

6 oranges 5 | lettuce

JOINS MANY-TO-MANY INNER JOIN
proc sql;
create table sgl m to m Joinl as
select £3.%, wv3.veggle

run;

vegglies3 w3

from fruits3 £3 inner jJoin

onn T3.day=v3.day;

data data m to m Joinl
merge fruits3 (in=t3)
by dav;
it £33 and v3;

run;

]
L

vegglies3

(in=v3);

Gsas

HOW DO THE
TECHNIQUES
COMPARE? DAY FRUIT | VEGGIE

1 apples | broccoli

3QL Many-to-Many Inner Join

1 apples | lettuce
1 apples | tomatoes

1| bananas | broccoli DATA Step Many-to-Many Inner Join

1 bananas lettuce

DAY | FRUIT | VEGGIE

1| bananas | tomatoes

MANY_to_MANY 1 oranges | broccoli 1| apples | broccoli

1 oranges | lettuce 1 bananas tomatoes

INNER \JOIN 1 oranges | tomatoes

apples | broccoli

1 oranges lettuce

apples | broccoli

apples | lettuce
bananas tomatoes
apples | tomatoes

F R - - 9

. oranges | lettuce
bananas broccoli 9

bananas | lettuce
bananas tomatoes
oranges | broccoli

oranges | lettuce

F - - T T - - - - -

oranges tomatoes

JOINS MANY-TO-MANY LEFT JOIN

proc sql;

create table sgl m to m left joinZ as

select £3.*,

run;

from fruit=s3 £33

left Join

vegglies3 w3

on tT3.day

VoL *E

= wv3.day;

data data_m_to_m_left_join2;
merge fruits3 (in=f3) veggles3
by davy;
it £3;

run;

(1n=v3) ;

Gsas

HOW DO THE
TECHNIQUES
COMPARE?

MANY-to-MANY

LEFT JOIN

SQL Many-to-Many Left Join

DAY | FRUIT

1
1

[R w R 3 R S T T — T N - - — S S oV R TR R L

bananas
oranges
apples
bananas
oranges
apples
bananas
oranges
apples
oranges
bananas
apples
apples
oranges
bananas
apples
oranges
bananas
apples
oranges
bananas
oranges
bananas

apples

VEGGIE
tomatoes
tomatoes
tamatoes
lettuce
lettuce
lettuce
broccoli
broccoli

broceaoli

brocoali
brocoali
brocooli
lettuce
lettuce
lettuce
tomatoes
tomatoes

tomatoes

DATA Step Many-to-Many Left Join

DAY

[S R Y N S =N Y A T B 5 A 1

FRUIT
apples
bananas
oranges
apples
bananas
oranges
apples
bananas
oranges
apples
bananas

oranges

VEGGIE
brocooli
tomatoes

lettuce

hroceoli
tomatoes

lettuce

JOINS MANY-TO-MANY RIGHT JOIN

proc sql;
create table sgl m to m right Jjoin3 as
select v3.day as key, f3.fruit, wvi.wveggile
from fruits3 £3
right Join
veggies3 w3
on f3.day = v3.day;
run;

data data m to m right Join3;
merge fruits3 (1in=f3) veggies3
by dayv;
1t w3;

run;

(1n=v3);

Gsas

HOW DO THE SQL Many-to-Many Right Join
TECH N IQU ES DAY FRUIT VEGGIE
COMPAREO 1| bananas tomatoes

1 bananas | lettuce

DATA Step Many-to-Many Right Join

1 bananas broccoli

1 oranges | tomatoes

DAY FRUIT | VEGGIE

1 oranges | lettuce

1 oranges | broceoli 1 apples | broceoli
1 apples | tomatoes 1 bananas tomatoes
1 apples | lettuce 1| aranges | lettuce
MANY-to-MANY | aeples | broceol |
-10- 2 broccoli
2 lettuce
RIGHT JOIN 2 omas :
2 braccali 2 lettuce
4 apples broccol 4 | apples | broccoli
4 apples | lettuce
4 | bananas tomatoes
4 apples | tomatoes
4 | oranges | broccoli 4 oranges | lettuce
4 oranges | lettuce & broccoli
4 oranges | tomatoes g tomatoes
4 bananas | broccoli
= lettuce
4 | bananas | lettuce
4 bananas tomatoes
5 lettuce
= tomatoes Ssas
5 broccoli

JOINS MANY-TO-MANY FULL JOIN

proc sql;
create table sgl m to m full jJoind as
select coalesce(fd.day,vi.day) az Kevy, 3. fruit,
from fruitss £33 full Join veggliezd w3
on ft3.day=v3i.day;
run;

v3.vegglie

data data_m_to_m_full_join%;
merge fruits3 veggies3;
by davy;

run;

Gsas

HOW DO THE
TECHNIQUES
COMPARE?

MANY-to-MANY

FULL JOIN

SQL Many-to-Many Full Join

Key

M m | | o m m B e B e s BB R = W W W R R R

FRUIT
hananas
hananas
hananas
oranges
oranges
oranges
apples
apples
apples

oranges
bananas
apples
apples
apples
apples
oranges
oranges
oranges
bananas
bananas

bananas

oranges
bananas

apples

VEGGIE
tomatoes
lettuce
braceoli
tomatoes
lettuce
braceoli
tomatoes
lettuce
braceoli
lettuce
tomatoes

braceoli

broccali
lettuce
tomatoes
broccali
lettuce
tomatoes
broccali
lettuce
tomatoes

lettuce
tomatoes

broccali

DATA Step Many-to-Many Full Join

DAY

[A e T 3 O T o i B & o B . T L% T Ty I N6 R o }

FRUIT
apples
bananas

oranges

apples
bananas
oranges
apples
bananas

oranges

apples
bananas

aranges

VEGGIE
broccoli
tomatoes
lettuce
broceali
tomatoes

lettuce

broccoli
tomatoes
lettuce
broccoli
tomatoes

lettuce

SUMMARY

JOINING DATA

* SQL joins and DATA step merges may produce

the same output for the following data:
 One-t0o-One
 One-to-Many

 SQL joins and DATA step merges produce
dissimilar results when data represents a many to
many structure.

ADDITIONAL COMPARISONS

CONDITIONAL
PROCESSING

- |IF THEN statement in the DATA step
- Very flexible

- CASE expression in SQL

Gsas | Fe.

SQL CASE EXPRESSION

proc sqgl;
select name, case
when continent = “North America’ then “US~’
when continent = “Oceania’ then “Pacific Islands’
else “None”
end as region
from states;

THE
POWER
TO KNOW.

Gsas

DATA STEP IF THEN STATEMENT

data new;
set states;
1T continent = “North America’
then region =°US~;
else 1T continent = “Oceania’
then region = “Pacific Islands’;
else region=“None”’;
run;

Gsas

THE
POWER
TO KNOW.

INDEXES

Indexes can be created by
- SQL
- DATA step (at data set creation)

Indexes may also be administered through SQL.

Gsas | Fe.

DATA STEP INDEXES

data health.test(index=(memberiD));
set health.claims_sample;

runsj;

Indexes are created at the time of data set creation.
PROC DATASETS can be used to change or maintain
the indexes.

GSas | B,

SQL INDEXES

proc sql;
drop iIndex providerld from health.test;
create unique i1ndex ProviderlID on
health.provider(providerliD);

PROC SQL can be used to create and administer indexes.

GSas | B,

SUBSETTING

- Use the WHERE clause in PROC SQL to select only
the rows of data that meet a certain condition.

- Use the WHERE statement or WHERE= option in the
DATA step to select only the rows of data that meet a
certain condition

Gsas | Fe.

SUBSETTING SQL AND DATA STEP

proc sql;
create table sgl subset as
select * from sashelp.cars
where make='Acura' and type='Sedan';

quit;

data data subset;

set sashelp.cars;

where make="Acura' and type='Sedan';
run;

Ggsas

THE
POWER
TO KNOW.

SORTING,
SUMMARIZING
AND CREATING
NEW VARIABLES

-« PROC SQL can sort, summarize, and create new
variables in the same step

- The DATA step requires separate steps to accomplish
sorting, summarizing, and creating new variables

THE
POWER
TO KNOW.

Gsas

SORTING,
SUMMARIZING, PROC SQL
CREATING NEW

VARIABLES

proc sql;

title 'S0QL - Total Reimbursement';

title?Z '"for Each Trial Phase in Test 1°7;

select phase, sum(reimbursement) as tot reimbursement

lakel="Total Reimbursement' format=dollarls.

from o.dataftile
where test level="Test 1°7
group kv Phase
order bv phase;

quit;

GSas | B,

SORTING,
SUMMARIZING, MULTIPLE STEPS

CREATING NEW
VARIABLES

proc summary data=o.datafile;

where test level="Test 17';

class phase:;

var reimbursement;

output out=tot reimburse sum=tot reimbursement;
run;

proc sort data=tot_reimbur5e;
by phase;
run;

proc print data=tot reimburse nocbs label;
var phase tot_reimbursement;
format tot_reimbursement dollarlb. ;
label tot reimbursement='Total Reimbursement’;
title 'FROCS - Total Reimbursement’:
title?Z '"for Each Trial Phase in Tegst 17;
where type =1;
run;

GSas | B,

CREATING MACRO
VARIABLES

Macro variables can be created at execution time using:

- PROC SQL with the INTO clause
- CALL SYMPUTX data step routine

Gsas | Fe.

SQL CREATING MACRO VARIABLES

proc sgl noprint;
select country, barrels
into :-countryl, :barrelsl
from sql.oilrsrvs;

Ggsas

THE
POWER
TO KNOW.

DATA STEP CREATING MACRO VARIABLES-

data null_;
call symputx(® 1tems ", " text to assign’);
call symputx(®™ x ", 123.456);

run;

Both the DATA step and SQL can create macro variables at
execution time.

The DATA step might be considered more flexible.

9sas

THE
POWER
TO KNOW.

PRESENTING
YOUR DATA

PROC SQL has the capability to produce basic line-
oriented reports.

The DATA step provides maximum flexibility for creating
highly customized reports.

Gsas | Fe.

DATA STEP PRESENTING YOUR DATA

The DATA step code below produces the block-oriented report

data null_;

t h t t d Patient Information
se eartsorted,
file print notitles header=head; Patient ID: 124 Gender: Female
put @10 "Patient ID: " pat_id :zg: f;%
@30 "Gender: " sex / Cholesterol: 250
@30 "Height: " height/
- - . - - Patient ID: 125 Gender: Female
@30 "Weight: weight/ . 55 75
@30 "Cholesterol: " cholesterol //; P L
Cholesterol: 242
return; Patient ID: 126 Gender: Male
- Height: 66
head: Weight: 156
put @22 “Patient Information® //; Cholesterol: 281
return;

run;

GSas | B,

HOW DO THE
TECHNIQUES BENEFITS AND ADVANTAGES*
COMPARE??
SQL:
- Provides the combined functionality of the DATA step and several base SAS procedures
- PROC SQL code may execute faster for smaller tables
- PROC SQL code is more portable for non-SAS programmers and non-SAS applications
- Processing does not require explicit code to presort tables
- Processing does not require common variable names to join on, although same type and length are
required
- By default, a PROC SQL SELECT statement prints the resultant query; use the NOPRINT option to
suppress this feature
- Efficiencies within specific RDBMS are available with Pass-thru code (connect to) for the
performance of joins
- Use of aliases for shorthand code may make some coding tasks easier

*From DATA Step vs. PROC SQL: What's a neophyte to do? Proceedings of 291" SAS User Group International Conference, by
Craig Dickstein, Tamarack Professional Services, Jackman, ME and Ray Pass, Ray Pass Consulting, Hartsdale, NY

GSas | B,

HOW DO THE
TECHNIQUES BENEFITS AND ADVANTAGES*
COMPARE?

NON-SQL BASE SAS:

- DATA step set operators can handle more data sets at a time than PROC SQL outer joins

- Non-SQL techniques can open files for read and write at the same time

- Customized DATA step report writing techniques (DATA _NULL) are more versatile than using
PROC SQL SELECT clauses

- The straightforward access to RDBMS tables as if they were SAS data sets negates the need to
learn SQL constructs

« Input of non-RDBMS external sources is easier

*From DATA Step vs. PROC SQL: What's a neophyte to do? Proceedings of 291" SAS User Group International Conference, by
Craig Dickstein, Tamarack Professional Services, Jackman, ME and Ray Pass, Ray Pass Consulting, Hartsdale, NY

GSas | B,

HOW DO THE
TECHNIQUES WHICH TECHNIQUE TO USE?
COMPARE?

Which technique more efficiently handles the task at hand?

Which technique allows you to be more collaborative with your peers and
coworkers?

Which technique is easier to maintain?

Which technique are you more familiar with?

Gsas

THE
POWER
TO KNOW.

RESOURCES

SUPPORT.SAS.COM
RESOURCES

Base SAS documentation
http://support.sas.com/documentation/onlinedoc/base/index.html

SAS Training

http://support.sas.com/training/

RSS & Blogs

http://support.sas.com/community/rss/index.html
http://blogs.sas.com

Discussion Forums
http://communities.sas.com/index.jspa

http://support.sas.com/documentation/onlinedoc/base/index.html
http://support.sas.com/training/
http://support.sas.com/community/rss/index.html
http://blogs.sas.com/
http://communities.sas.com/index.jspa

SUPPORT.SAS.COM
RESOURCES

SAS® 9.4 SQL Procedure User's Guide

http://support.sas.com/documentation/cdl/en/sglproc/65065/H
TML/default/viewer.htm#titlepage.htm

Papers & SAS Notes
http://support.sas.com/resources/papers/sgf09/336-2009.pdf
http://support.sas.com/kb/20/783.html

http://support.sas.com/documentation/cdl/en/sqlproc/65065/HTML/default/viewer.htm#titlepage.htm
http://support.sas.com/resources/papers/sgf09/336-2009.pdf
http://support.sas.com/kb/20/783.html

RESOURCES PAPERS & BLOG

« Yes, Proc SOL is Great, But | Love Data Step
Programming, What's a SAS User To Do? Mira J.
Shapiro, MJS Consultants, Bethesda, MD

« Proc SOL versus The Data Step JoAnn Matthews,
Highmark Blue Shield, Pittsburgh, PA

- DATA Step versus PROC SOL Programming
Techniques Kirk Paul Lafler, Software Intelligence
Corporation

- DATA Step vs. PROC SQL: What's a neophyte to do?
Craig Dickstein, Tamarack Professional Services,
Jackman, ME Ray Pass, Ray Pass Consulting,
Hartsdale, NY

http://support.sas.com/resources/papers/proceedings10/100-2010.pdf
http://www.nesug.org/proceedings/nesug06/hw/hw06.pdf
http://analytics.ncsu.edu/sesug/2009/FF003.Lafler.pdf
http://www2.sas.com/proceedings/sugi29/269-29.pdf

.I--q‘.'”; b % 1 .II

S—— __,____Z)-q'.;\'.k'l.\.llil*h';d . / ’__'

Sas | o,

Copyright © 20

	SQL vs. data step processing
	Slide Number 2
	Joining SAS data using the DATA Step and PROC SQL�
	Types of Joins
	Joining Data
	Types of Joins
	Types of joins
	How do the techniques compare?
	joins
	How do the techniques compare?
	joins
	How do the techniques compare?
	joins
	How do the techniques compare?
	joins
	joins
	How do the techniques compare?
	joins
	How do the techniques compare?
	joins
	How do the techniques compare?
	joins
	joins
	How do the techniques compare?
	joins
	joins
	How do the techniques compare?
	How do the techniques compare?
	joins
	How do the techniques compare?
	joins
	How do the techniques compare?
	joins
	How do the techniques compare?
	joins
	How do the techniques compare?
	How do the techniques compare?
	joins
	How do the techniques compare?
	joins
	How do the techniques compare?
	joins
	How do the techniques compare?
	joins
	How do the techniques compare?
	Summary
	Additional Comparisons�
	Conditional Processing
	SQL
	Data Step
	Indexes
	DATA step
	SQL
	subsetting
	subsetting
	Sorting, summarizing and creating new variables
	Sorting, summarizing, creating new variables
	Sorting, summarizing, creating new variables
	Creating macro variables
	SQL
	DATA step
	Presenting your data
	Data Step
	How do the techniques compare?
	How do the techniques compare?
	How do the techniques compare?
	Resources
	support.sas.com Resources
	support.sas.com Resources
	Resources
	�thank you!

