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Phenotypic Plasticity of Climbing-Related Traits in the Ankle Joint of
Great Apes and Rainforest Hunter-Gatherers

Abstract
The "negrito" and African "pygmy" phenotypes are predominately exhibited by hunter-gatherers living in
rainforest habitats. Foraging within such habitats is associated with a unique set of locomotor behaviors, most
notably habitual vertical climbing during the pursuit of honey, fruit, and game. When performed frequently,
this behavior is expected to correlate with developmentally plastic skeletal morphologies that respond to
mechanical loading. Using six measurements in the distal tibia and talus that discriminate nonhuman primates
by vertical climbing frequency, we tested the prediction that intraspecific variation in this behavior is reflected
in the morphology of the ankle joint of habitually climbing human populations. First, to explore the plasticity
of climbing-linked morphologies, we made comparisons between chimpanzees, gorillas, and orangutans from
wild and captive settings. The analysis revealed significant differences in two climbing-linked traits (anterior
expansion of the articular surface of the distal tibia and increased degree of talar wedging), indicating that
these traits are sensitive to climbing behavior. However, our analyses did not reveal any signatures of climbing
behavior in the ankles of habitually climbing hunter-gatherers. These results suggest that the detection of fine-
grained differences in human locomotor behaviors at the ankle joint, particularly those associated with
arboreality, may be obscured by the functional demands of terrestrial bipedalism. Accordingly, it may be
difficult to use population-level characteristics of ankle morphology to make inferences about the climbing
behavior of hominins in the fossil record, even when facultative arborealism is associated with key fitness
benefits.
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Phenotypic Plasticity of Climbing-Related Traits in the Ankle 
Joint of Great Apes and Rainforest Hunter-Gatherers

VIVEK V. VENKATARAMAN,1*† THOMAS S. KRAFT,1† JEREMY M. DESILVA,2 
AND NATHANIEL J. DOMINY

1,3

Abstract The “negrito” and African “pygmy” phenotypes are predominately 
exhibited by hunter-gatherers living in rainforest habitats. Foraging within 
such habitats is associated with a unique set of locomotor behaviors, most 
notably habitual vertical climbing during the pursuit of honey, fruit, and 
game. When performed frequently, this behavior is expected to correlate with 
developmentally plastic skeletal morphologies that respond to mechanical 
loading. Using six measurements in the distal tibia and talus that discriminate 
nonhuman primates by vertical climbing frequency, we tested the prediction 
that intraspecific variation in this behavior is reflected in the morphology of 
the ankle joint of habitually climbing human populations. First, to explore the 
plasticity of climbing-linked morphologies, we made comparisons between 
chimpanzees, gorillas, and orangutans from wild and captive settings. 
The analysis revealed significant differences in two climbing-linked traits 
(anterior expansion of the articular surface of the distal tibia and increased 
degree of talar wedging), indicating that these traits are sensitive to climbing 
behavior. However, our analyses did not reveal any signatures of climbing 
behavior in the ankles of habitually climbing hunter-gatherers. These results 
suggest that the detection of fine-grained differences in human locomotor 
behaviors at the ankle joint, particularly those associated with arboreality, 
may be obscured by the functional demands of terrestrial bipedalism. Ac-
cordingly, it may be difficult to use population-level characteristics of ankle 
morphology to make inferences about the climbing behavior of hominins in 
the fossil record, even when facultative arborealism is associated with key 
fitness benefits.
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Anthropologists of the early twentieth century debated whether the African 
“pygmy” and Asian “negrito” phenotypes were the result of recent shared ancestry 
or convergent evolution. Recently, this pygmäenproblem (Schmidt 1910) or 
pygmy question (Haddon 1912) has been the subject of renewed interest, fueled 
in part by mitochondrial DNA and Y-chromosome haplotype data. Recent studies 
suggest that African pygmies and Asian negritos are more closely related to other 
African and Asian populations, respectively, than they are to each other (Endicott 
et al. 2003, 2006; Thangaraj et al. 2003, 2005). A recent genome-wide study of 
single-nucleotide polymorphisms (SNPs) even points to multiple independent 
origins of the negrito phenotype within Asia (HUGO Pan-Asian SNP Consortium 
2009). The causes of such convergent evolution remain an issue of debate, but the 
strong association between small stature and the occupation of rainforest habitats 
implicates the environment as a driving factor (Perry and Dominy 2009).

Research on skeletal morphology (see Bulbeck this issue; Stock this issue) 
has offered some corroborating nongenetic perspectives on this issue but also 
emphasizes the complexity associated with inferring population history on the 
basis of skeletal characters. Although cranial traits have proven useful for test-
ing hypotheses about relatedness between populations (Bulbeck this issue), a 
functional-morphological approach based on postcranial traits may be useful for 
inferring actual behaviors performed by ancient hunting and gathering populations. 
Here we investigate whether this hunting and gathering mode of subsistence in 
tropical rainforests is associated with diagnostic skeletal correlates, specifically in 
the ankle joint. In general, rainforest hunter-gatherers adopt foraging strategies that 
reflect targeted consumption of foods that provide nutritional and energetic rewards 
within carbohydrate-impoverished rainforest environments. Acquiring these foods 
necessitates significant amounts of climbing behavior and arboreal foraging (Bailey 
1991; Endicott and Endicott 2008; Kraft et al. in press), which poses a stark contrast 
to the uniform locomotor behavior of industrialized populations (Devine 1985).

Correspondences between behaviors performed by contemporary people and 
their anatomical correlates (e.g., bone cross-sectional properties) have provided 
valuable reference points for inferring mobility and activity patterns of ancient 
humans. For example, tennis and baseball players, in addition to cricketers, exhibit 
bilateral asymmetry in some indices of forelimb robusticity (Jones et al. 1977; 
Shaw and Stock 2009; Warden et al. 2009), and rowers have more robust humeri 
than nonrowers (Weiss 2003). Such associations have allowed researchers to infer 
habitual use of watercraft among populations who exploit aquatic resources (Stock 
and Pfeiffer 2001) or habitual digging with sticks by Late Stone Age foragers (Stock 
and Pfeiffer 2004). Accordingly, we hypothesize that the foraging behaviors of 
rainforest hunter-gatherers induce loading patterns that could generate diagnostic 
skeletal correlates.

The present study focused on rainforest hunting and gathering populations 
that climb trees frequently, as determined from the ethnographic literature. Although 
humans are clearly adapted for terrestrial bipedal locomotion, the documentation of 
human tree climbing complicates the classical perception of humans as committed 
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terrestrial bipeds who are incompetent in trees (Latimer 1991; Latimer and Lovejoy 
1990) and instead points to a more diverse locomotor repertoire (Devine 1985; 
Watanabe 1971). Climbing populations include both Philippine and Malaysian 
negritos in addition to African pygmies. All engage in a wide variety of positional 
and locomotor behaviors during foraging. Of the scarce resources readily available 
to humans in tropical rainforests, honey, ripe fruit, and game are highly prized 
(Endicott and Endicott 2008; Ichikawa 1981; Lye 2004) but also the most difficult 
to acquire because of their location in the rainforest canopy. Consequently, acquiring 
these resources can require frequent vertical-climbing behavior (Venkataraman 
et al. 2013). For example, Bailey and Headland (1991) reported that Efe men 
spend approximately 8% of time away from camp either climbing or perched in 
trees. During the honey season in African rainforests, pygmy populations spend 
substantial amounts of time searching for and acquiring honey, which comprises 
a large portion of caloric input during this period (Bailey 1991; Ichikawa 1981). 
Bailey (1991) reported that the Efe climb to an average of 19.1 m to acquire honey, 
and sometimes as high as 51.8 m. Climbing is similarly prevalent among Southeast 
Asian foragers. Endicott (1979) notes that Batek (negrito) foragers sometimes 
climb tall (>50 m) trees daily in the pursuit of honey, and Agta foragers have also 
been reported to climb trees (Evans 1937; Griffin and Estioko-Griffin 1985), as 
have the Batak (Eder 1999) and Andaman Islanders (Dutta et al. 1985). By any 
measure, these climbing behaviors are dangerous (Hewlett et al. 1986; Perry and 
Dominy 2009), yet they are associated with the acquisition of vitally important 
food items. The frequency of climbing among rainforest foragers and its inherent 
danger suggest that natural selection should favor safety- and efficiency-enhancing 
behaviors and anatomies.

Identifying skeletal signals of climbing has long been a focus of study 
by anthropologists interested in the reconstruction of behavior in the primate 
fossil record. Such features manifest in several parts of the postcranial skeleton 
through genetic adaptation or plastic mechanisms [e.g., the infraspinous region 
of the scapula (Green et al. 2012), scapular morphology (Green and Alemseged 
2012), or phalangeal curvature (Richmond 1998)]. Some researchers have also 
called attention to the ankle joint as an area sensitive to loads associated with 
vertical-climbing behavior (DeSilva 2009; Latimer et al. 1987), which is the second 
most frequent locomotor behavior of great apes (Doran 1996). DeSilva (2008, 
2009) demonstrated that chimpanzees engage in significant amounts of ankle 
dorsiflexion and inversion during climbing, an action that reduces the distance 
between the climber’s center of mass and the substrate (Cartmill 1974). Such 
ankle flexion is expected to economize muscular effort during climbing, making 
vertical ascent safer and more efficient. It is also correlated with several traits in 
the shaft and articular surface of the distal tibia (DeSilva 2008, 2009). Among 
these traits, chimpanzees and other apes exhibit mediolaterally (ML) expanded 
anterior articular surfaces. This attribute is thought to dissipate compressive 
loads at the anterior portion of the tibia as it rolls over the talus during extreme 
dorsiflexion. Humans do not bear this trait, nor do most other anthropoid primates 
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(e.g., old-world monkeys) whose style of climbing does not necessitate excessive 
flexion at the tibiotalar joint (DeSilva 2009).

Here we consider whether humans who climb habitually bear traits associated 
with vertical-climbing behavior. This investigation is premised on observational 
and quantitative studies of hunter-gatherers who climb trees in a manner that is 
kinematically similar to chimpanzees (Demps et al. 2012; Endicott and Endicott 
2008; Evans 1937; Isler 2005; Venkataraman et al. 2013). During this style of climb-
ing (Venkataraman et al. 2013: Figure 1), the climber places his or her foot against 
the tree and “walks” upward, advancing the hands and feet alternately (Endicott and 
Endicott 2008; Evans 1937). This style of climbing, termed changwod by the Jahai 
in Malaysia (Evans 1937), is accompanied by substantial ankle dorsiflexion (mean 
± SD, 40.7° ± 5.14°; Venkataraman et al. 2013) that is statistically indistinguish-
able, but only marginally so (p = 0.06; Venkataraman et al. 2013), from the mean 
observed value for maximal dorsiflexion by chimpanzees (45.5 ± 7.1°; DeSilva 
2009). Some humans, including hunter-gatherers, also climb with highly inverted 
feet and hyperflexed knees (Figure 1) as the plantar surface of the foot is placed 
against the tree surface with the hips in hyperabduction (Demps et al. 2012), termed 
the “frog” position (Peters 2001) or chinbodn by the Jahai in Malaysia (Evans 1937). 
Because ankle dorsiflexion and inversion involve movement at homologous joints 
(ankle and subtalar) in humans and chimpanzees (Calhoun et al. 1994; Corazza 
et al. 2005; DeSilva 2008; Driscoll et al. 1994; Kura et al. 1998), we hypothesize 
that climbing and nonclimbing humans will evince anatomical differences in the 
ankle joint.

This study aims to test the sensitivity of the distal tibia to fine-grained dif-
ferences in locomotor behaviors at intraspecific scales. Previously, species-level 
differences in characters of the distal tibia were found to broadly reflect diversity in 
positional repertoires across taxa (DeSilva 2008). The primate postcranial skeleton, 
including both shaft elements and articular surfaces, is determined by genetic 
influences in addition to those from the mechanical environment (Buck et al. 2010; 
Lieberman et al. 2001; Lovejoy et al. 1999; Pearson and Lieberman 2004; Ruff et 
al. 2006). Studies examining the features of lower limb morphology, including the 
distal tibia, indicate that this bone is sensitive to environmental effects, although this 
relationship is complex and the mechanistic basis for such a relationship remains 
poorly understood (Lieberman et al. 2001; Ruff 1988). Buck et al. (2010) found 
that distal limb segments respond more to habitual loading than do proximal limb 
segments, which appear to be largely controlled by climatic factors. This is perhaps 
attributable to the fact that mammal joint surface areas tend to be smaller in distal 
elements, causing relatively higher stresses (Lieberman et al. 2001). Importantly, 
osteogenic responses to loading are greater in juveniles than in adults (Lieberman 
et al. 2001; Pearson and Lieberman 2004). For humans, the frequency of climbing 
and its performance during early life among many hunter-gatherer populations 
would suggest that the habitual use of arboreal resources could be reflected in 
skeletal morphology.1 Climbing among rainforest hunter-gatherers usually begins at 
a young age, often before the age of seven (Endicott and Endicott 2008; Lye 2004; 
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Figure 1.  Photograph of a Batek 
(negrito) child climbing 
in the chinbodn or “frog” 
style (photograph by Lye 
Tuck-Po, reproduced with 
permission).

Kraft et al. in press). Overall, there is abundant theoretical and empirical evidence 
to predict that variation in climbing-related loading history, particularly within an 
ontogenetic context, will generate diagnostic skeletal correlates.

To further elucidate the ontogenetic basis, phenotypic plasticity, and 
intraspecific variability of climbing-related traits in the ankle, we compared zoo 
and wild great ape specimens (Pan, Pongo, Gorilla), with the expectation that 
wild apes, which are more arboreal than their zoo counterparts (Lukas et al. 2003; 
Remis 1998; Ross and Lukas 2006), would evince stronger correlates of climbing in 
response to habitual loading. We also performed a comparative analysis on the great 
apes, as well as between climbing (African pygmy and negrito) and nonclimbing 
humans to determine whether documented differences in naturalistic climbing 
frequency manifest as skeletal correlates.

Methods

Skeletal Measurements.  We examined several skeletal traits found by DeSilva 
(2008) to correlate with vertical climbing frequencies in wild primates: (1) 
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size-standardized dimensions of the talar facet of the distal tibia, (2) metaphyseal 
shape, (3) relative medial malleolus thickness, (4) depth of tibial articular surface, 
(5) tibial angle, and (6) talar wedging. The justification for measuring these traits is 
briefly described for each trait later and follows DeSilva (2008). We hypothesized 
that, relative to nonclimbing humans, habitually climbing populations will exhibit 
higher values for traits linked to vertical climbing by DeSilva (2008, 2009).

In this study we made five measurements with digital calipers on the distal 
tibiae and made one measurement of tali. We performed preliminary analyses 
on our data set and found that samples from the left and right elements did not 
differ significantly for any of the measurements. Because many of the specimens 
we studied had tibiae that were damaged or missing, the values reported here 
refer variously to available samples from the left or right legs. We also examined 
size-related patterns in each of the six measurements to test whether our analyses 
could be confounded by the effect of allometric scaling. We found that regressions 
between body size and all of the six measurements were nonsignificant with 
extremely low coefficients of determination (R2 < 0.02), indicating that body size 
is not a confounding factor in the analysis.

Size-Standardized Anterior Width of the Distal Tibia. Size-standardized anterior 
width (SSAW) quantifies the relative increase in the bone of the anterior portion 
of the articular surface. DeSilva (2008, 2009) hypothesized that this increase in 
bone will assist in dissipating compressive loads as the contact point between the 
tibia and the talus shifts anteriorly during dorsiflexion.

Six measurements were taken on the anterior aspect of the left tibial-articular 
surface. Our methods followed DeSilva (2009) closely to ensure direct comparabil-
ity between studies. Repeated measurements were taken four days apart and were 
found to be within 5% of each other. The following measurements were taken: (a) 
maximal mediolateral (ML) length of the anterior aspect of the articular surface, 
(b) the maximal ML length of the posterior aspect of the articular surface, (c) 
the maximal ML length at the midpoint of the articular surface, (d) the maximal 
anteroposterior (AP) width of the most medial aspect of the articular surface, (e) 
the maximal AP width of the most lateral aspect of the articular surface, and (f) the 
maximal AP width at the midpoint of the articular surface. The geometric mean 
was calculated by raising the product of the six measurements to the 1/6 power. 
To calculate SSAW, ML length of the anterior aspect of the articular surface was 
divided by the geometric mean, following the size-adjustment protocol established 
by Darroch and Mosimann (1985).

Metaphyseal Shape. We hypothesized that more bone in the ML dimension, 
resulting in a rectangular shape, would facilitate more mobility of the talocrural joint 
than a square-shaped distal tibia. This geometry of the metaphysis may also reflect 
skeletal adaptations for dissipating more ML-directed loads during inverted-foot 
climbing. AP-expanded metaphyses may better dissipate AP-directed loads, such 
as those incurred in parasagittal plane motions (e.g., bipedal walking).
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The ML width of the tibial metaphysis was determined by measuring the 
maximal ML dimension at the point where the medial malleolus begins to curve 
medially, immediately superior to the distal articular surface. The maximal AP 
dimension was defined as the maximal width perpendicular to the ML dimension. 
The relative expansion of the metaphysis in the ML dimension relative to the AP 
dimension, which is hypothesized to reflect the mobility of the talocrural joint and/
or ML-directed loads during climbing (DeSilva 2008), was defined as the ratio of 
the length of these measurements multiplied by 100.

Relative Medial Malleolus Thickness. Inversion at the talocrural joint shifts the 
contact point of the distal tibia onto the medial malleolus (Calhoun et al. 1994; Kura 
et al. 1998); thus, an ML-expanded malleolus would serve to dissipate loading in 
this region during inversion.

The thickness of the medial malleolus was measured at the midpoint at its 
superior junction with the articular surface of the distal tibia. Relative malleolus 
thickness, predicted to be associated with loading during ankle inversion, was 
calculated by dividing the thickness of the medial malleolus (MM) by the square 
root of the product of the mediolateral (MLmp) and anteroposterior (APmp) 
midpoint lengths of the tibial articular surface [(MM/(MLmp × APmp)1/2) × 100].

Depth of Tibial Articular Surface. This measure is taken to be a proxy for the 
mobility of the talocrural joint, with the prediction that a flatter tibia (in the AP 
direction) would facilitate more dorsiflexion. More curved tibia (more depth) 
would prevent a great degree of dorsiflexion because the anterior aspect of the 
tibia contacts the talar neck during dorsiflexion.

Photographs of tibiae were taken in lateral view with a size standard in the 
same plane as the measurement to be taken. Photographs were imported into the 
public domain software ImageJ version 1.46 (http://rsbweb.nih.gov/ij/), and the 
line tool was used to measure the distance between the anterior and most posterior 
distally extending lips of bone. Perpendicular to this line, another line was drawn to 
the point of maximal depth of the tibial articular surface. The depth of the articular 
surface, taken to be a proxy for ankle-dorsiflexion capability, was determined as 
the ratio of the length of these two lines multiplied by 100.

Tibial Angle. The tibial angle, defined as the angle formed between the long 
axis of the tibia and the articular surface at the distal end of the bone, is expected 
to reflect inversion capability. Climbers should bear higher angles compared with 
nonclimbers, indicating oblique orientations of the tibia over the foot.

The tibial angle is defined as the angle formed between the long axis of the 
tibia and the ankle-joint surface. We used a carpenter’s contour guide to assess the 
plane of the ankle-joint surface. Tibiae were pressed into the carpenter’s contour 
guide with the contour pins oriented parallel to the long axis of the tibial shaft. The 
impression was then laid flat, photographed, and then imported into the program 
ImageJ. With the angle tool, the tibial angle was calculated as the angle formed 
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between the plane of the articular surface and the long axis of the tibia (as judged 
by the straight contour pins).

Talar Wedging. Talar wedging is defined as the ratio of the maximal width of the 
talar trochlea at its most anterior aspect to the maximal width of the talar trochlea 
at its most posterior aspect. DeSilva (2008) found that this ratio produces results 
similar to those of a more complex calculation that models the talus as a cone. 
Similar to expanded SSAW, we hypothesize that an increased degree of talar 
wedging helps to dissipate loads incurred during extreme dorsiflexion.

Predictions.  For each trait, we make the following predictions for intraspecific 
comparisons. For SSAW, metaphyseal shape, medial malleolus thickness, tibial 
angle, and talar wedging, we expect climbers to evince higher values caused by 
the mechanical effects of this behavior. For the depth of the tibial articular sur-
face, climbers are expected to evince lower values. Interspecific comparisons and 
the functional interpretations of these analyses are discussed by DeSilva (2008, 
2009). As such, in this study we were concerned largely with intraspecific varia-
tion, particularly with respect to human rainforest foragers.

Specimens.  All human pygmy specimens used in this study were from the 
University of Geneva, Switzerland, and the Musée de l’Homme, Paris. The seven 
specimens from the University of Geneva labeled “Ituri pygmées” are likely from 
populations of Mbuti or Efe. Six of these specimens are male. The specimens from 
the Musée de l’Homme included skeletons from the Philippines labeled “Négrito” 
and eight African pygmies of variable origin, seven of which were BaBinga from 
Central Africa and one of which was from Gabon. The sex information for many 
of these specimens was available in Marquer (1972) and/or provided by W. L 
Jungers or H. Kurki. It is not possible to know the activity profiles of the individu-
als used in this study.

Data on the distal tibia from the Geneva sample of Ituri hunter-gatherers 
were incorporated into another publication (Venkataraman et al. 2013) and are 
also included here. The present study also includes data on agriculturalist humans 
collected from the ninth- through twelfth-century Paleoindian Libben collection 
housed at Kent State University (Lovejoy et al. 1977), the Hamann–Todd collection 
at the Cleveland Museum of Natural History (CMNH), and an unprovenanced 
sample of human tibiae from the Department of Anthropology, University of 
Michigan. Body weights are known for the CMNH humans (n = 35), allowed us 
to test whether any of these measures scaled allometrically. DeSilva (2008, 2009) 
found no detectable differences between the populations, and thus we report 
combined results for all variables. We also compared male and female human 
pygmy and negrito specimens because females in these populations tend to avoid 
climbing (Ichikawa 1981) and would be expected to evince no skeletal signals of 
climbing behavior. However, our analysis indicated no difference between males 
and females from these populations for any of the measured traits (Table 1), and 
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thus we report combined results hereafter. Data from 
wild ape specimens presented here were previously 
reported in DeSilva (2008, 2009). New data from 
zoo specimens of Pan, Gorilla, and Pongo are also 
included here.

Statistical Analyses.  To test for differences 
between groups, we performed Welch two-sample 
t-tests, with the significance level set at α = 0.05; 
all tests were one-tailed, reflecting our a priori hy-
pothesis that climbing individuals (or populations) 
will exhibit specific traits relative to nonclimbing 
individuals (or populations). When more than two 
groups were compared, one-way analysis of vari-
ance (ANOVA) was used to assess differences 
among groups. Post-hoc comparisons were made 
with Tukey’s honestly significant difference tests to 
examine the relationships between the three human 
groups in this study (nonclimbing humans, African 
pygmies, and Philippine negritos). Assumptions of 
normality for all statistical tests were assessed using 
Q-Q plots. Homogeneity of variance was tested for 
ANOVAs with modified robust Brown-Forsythe 
Levene-type tests, in addition to Bartlett’s tests. All 
analyses were performed in R, version 2.15.1 (R 
Development Core Team 2012).

Results

Comparisons between Zoo and Wild Specimens 
of Great Apes
SSAW of Distal Tibia. Figure 2 shows results for 
intraspecific comparisons between zoo and wild 
specimens. SSAW (Figure 2A) for Pan troglodytes 
was significantly expanded in wild specimens com-
pared with those from zoos (t = 3.71, df = 9.57, p = 
0.002). We observed the same trend in Gorilla gorilla 
gorilla (t = 3.71, df = 9.57, p = 0.0001). SSAW did 
not differ between wild and zoo specimens for Pongo 
(t = 1.3, df = 17.80, p = 0.10).

Metaphyseal Shape. Figure 2B shows results for 
intraspecific comparisons between zoo and wild Ta
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specimens for metaphyseal shape. Pan troglodytes individuals from the wild had 
relatively larger ML widths than zoo individuals, but the difference was marginally 
insignificant (t = 1.72, df = 10.87; p = 0.06). Wild specimens of Gorilla gorilla 
gorilla did not differ statistically from zoo specimens (t = 0.27; df = 19.13; p = 
0.39), nor did wild and zoo Pongo specimens (t = −0.14; df = 15.03; p = 0.56).

Medial Malleolus Thickness. Figure 2C shows results for intraspecific com-
parisons between zoo and wild specimens for medial malleolus thickness. Pan 
troglodytes from the wild and the zoo did not differ statistically (t = 0.54; df = 9.40; 
p = 0.30). Wild and zoo gorillas did not differ in this trait (t = 0.87; df = 16.04; p 
= 0.22), nor did wild and zoo Pongo (t = 1.33; df = 12.99; p = 0.10).

Talar Wedging. Figure 2D shows results for talar wedging. Talar wedging for Pan 
troglodytes was significantly greater in wild specimens compared with those from 
the zoo (t = 5.02, df = 15.78, p < 0.0001). The same trend was observed in Gorilla 
(t = 4.73, df = 22.73, p < 0.0001) and Pongo (t = 4.23, df = 11.02, p = 0.0007).

Comparisons within Homo and Wild Pan and Gorilla
SSAW of Distal Tibia. A one-way ANOVA revealed significant differences 
between the three human groups (p = 0.01; Table 2). Post-hoc Tukey’s honestly 
significant difference multiple comparisons revealed that nonclimbing humans 
evinced higher SSAW compared with African pygmies (p = 0.033) but not Philip-
pine negritos (p = 0.13). African pygmies and negritos did not differ statistically 
in SSAW (Table 2). Lowland gorillas (G. g. gorilla) evinced significantly higher 
SSAW than did mountain gorillas (G. g. beringei; p < 0.001; Table 2). Common 
chimpanzees (P. troglodytes) and bonobos (P. paniscus) did not have statistically 
different SSAW (p = 0.56; Table 2).

Metaphyseal Shape. A one-way ANOVA revealed no differences between 
climbing and nonclimbing human groups in metaphyseal shape (p = 0.18; Table 
2). Lowland gorillas (G. g. gorilla) evinced significantly more bone in the ML 
direction than did mountain gorillas (G. g. beringei) (p = 0.001; Table 2). Common 
chimpanzees (P. troglodytes) and bonobos (P. paniscus) did not have statistically 
different metaphyseal shapes (p = 0.56; Table 2).

Medial Malleolus Thickness. A one-way ANOVA revealed significant differences 
between climbing and nonclimbing human groups (p < 0.001; Table 2). Post-hoc 
Tukey’s honestly significant difference multiple comparisons show that nonclimb-
ing humans have significantly thicker medial malleoli in the ML dimension than do 
both African pygmies (p < 0.001) and Philippine negritos (p < 0.001). The t-tests 
do not reveal any statistical difference between Pan species (p = 0.30) but show a 
significant difference between lowland and mountain gorillas (p < 0.001).
Depth of Tibial Articular Surface. One-way ANOVA did not reveal any differ-
ences between climbing and nonclimbing human groups for this metric (p = 0.288; 
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Table 2), and lowland and mountain gorillas were statistically indistinguishable 
(p = 0.91).

Tibial Angle. A one-way ANOVA showed no differences between climbing and 
nonclimbing human groups (p = 0.137; Table 2).

Discussion

Previous work in skeletal biomechanics has suggested that diaphyseal and articular 
surface features of distal limb elements can respond plastically to habitual behav-
iors. Understanding the potential of the distal tibia to reflect habitual behaviors 
during life requires information about the developmental basis of traits in the 

Figure 2.  Intraspecific comparisons of the size-standardized anterior width of the distal tibia 
(SSAW; A), metaphysis dimensions (B), medial malleolus thickness (C), and talar wedg-
ing (D) for wild (gray) versus zoo (white) Pan troglodytes, Gorilla gorilla gorilla, and 
Pongo pygmaeus. Sample sizes for traits in the distal tibia (A–C) were as follows. Pan 
troglodytes: wild, n = 49; zoo, n = 8. Gorilla gorilla gorilla: wild, n = 44; zoo, n = 11. 
Pongo pygmaeus: wild, n = 35; zoo, n = 10. Sample sizes for talar wedging (D) were as 
follows. Pan troglodytes: wild, n = 46; zoo, n = 8. Gorilla gorilla gorilla: wild, n = 44; 
zoo, n = 9. Pongo pygmaeus: wild, n = 33; zoo, n = 7. Box plots show median (black bar), 
interquartile range (box), and ranges (whiskers), with outliers (values > 1.5 times the 
interquartile range) represented by circles.
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distal tibia. We compared zoo and wild specimens of vertically climbing great 
apes to test whether climbing-linked traits in the hominoid distal tibia result from 
phenotypically plastic osteogenic responses to habitual behaviors or genetically 
inherited growth patterns. This comparison is premised on the assumption that 
captive animals climb vertically less frequently than their wild counterparts. It 
should be stressed, however, that the individual locomotor profiles of the specimens 
used in this study are unknown.

Wild chimpanzees and gorillas displayed expanded SSAWs relative to captive 
conspecifics (Figure 2A). Wild chimpanzees also have ML-expanded metaphyses 
relative to zoo chimpanzees, but these differences do not extend to Gorilla or Pongo. 
The most parsimonious interpretation of the SSAW results is that vertical-climbing 
frequencies are higher among wild animals and that wild and zoo gorillas diverge 
in climbing frequencies to a greater extent than wild and zoo chimpanzees. This 
supposition is largely substantiated by comparisons of captive and wild great ape 
positional behavior (Doran and Hunt 1994; Lukas et al. 2003; Remis 1998; Ross 
and Lukas 2006), but it is difficult to conclusively demonstrate without further 
data on the locomotor habits of the individuals in the study. The lack of statistical 
significance in Pongo could be caused by a greater reliance on forelimb suspension 
and pedal grasping during locomotion; Pongo does not generally load the hind 
limb as much as other hominids do (Ruff 1988), often engages in “pulse climbing” 
(MacKinnon 1974), and climbs with the foot in a more elevated position relative to 
the hip joint than do African apes (Isler 2005). However, orangutans also engage in 
chimpanzee-like climbing (C. Knott, personal communication). It is also plausible 
that Pongo vertically climbs less frequently than does Gorilla or Pan (Remis 1998: 
table 5; but see discussion in Hunt 1991), yet the few data available for wild great 
apes are inconclusive: chimpanzees climb 96–117 m/day (Pontzer and Wrangham 
2004), and orangutan females climb 55.7–121.4 m/day (Singleton et al. 2009). 

Table 2. ANOVA and Welch’s t-Test Results for Comparisons within Homo 
and Wild Pan and Gorilla

ANTERIOR WIDTH OF DISTAL TIBIA

(SIZE STANDARDIZED) METAPHYSIS DIMENSIONS

μi– μiʹ df t p μi– μiʹ df t p

H. sapiens × H. sapiens 
(African pygmy)

0.034

a

0.033 –3.081

b

0.494

H. sapiens × H. sapiens 
(negrito)

0.026 0.131 2.836 0.378

H. sapiens (African pygmy) 
× H. sapiens (negrito)

–0.008 0.9 5.916 0.166

G. g. gorilla 
× G. g. beringei

0.06 42.417 3.708
***

<0.001
10.650 32.231 3.290

**
0.001

P. troglodytes 
× P. paniscus

–0.004 3.805 –0.164 0.561 6.348 3.257 0.968 0.2
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MEDIAL MALLEOLUS THICKNESS DEPTH OF TIBIAL ARTICULAR SURFACE TIBIAL ANGLE (DEGREES)

μi– μiʹ df t p μi– μiʹ df t p μi– μiʹ df t p

11.907

c

***
<0.001 –0.39

d

0.765 –0.958

e

0.553

14.390 ***
<0.001 0.66 0.407 –2.04 0.13

2.483 0.249 1.05 0.286 –1.083 0.626

6.362 30.585 3.594 ***
<0.001 –0.90 42.818 –1.371 0.911

1.602 3.374 0.582 0.299

aANOVA: F = 4.662; df = 2, 172; p = 0.011.
bANOVA: F = 1.744; df = 2, 98; p = 0.180.
cANOVA: F = 120.1; df = 2, 171; p < 0.001.

dANOVA: F = 1.262; df = 2, 95; p = 0.288.
eANOVA: F = 2.068; df = 2, 50; p = 0.137.
*p < 0.05; **p < 0.01; ***p < 0.001.

A final possibility is that our analysis is underpowered, because we did detect 
statistically significant differences between wild and captive Pongo in the degree 
of talar wedging (Figure 2D).

Intersex differences in positional behavior among wild great apes and 
humans offer further potential for testing the sensitivity of traits in the distal tibia 
to climbing frequencies. Vertical-climbing frequency (as measured by percentage of 
time spent climbing) does not differ between male and female chimpanzees (Doran 
and Hunt 1994) or between male and female lowland gorillas (Remis 1998). Male 
mountain gorillas climb less than do female mountain gorillas (Remis 1998). As 
in some of the great apes, climbing frequency among humans differs between the 
sexes. Ethnographic studies of hunter-gatherers show that women tend to avoid 
climbing, although there are exceptions (Bailey 1991; Endicott and Endicott 2008; 
Lye 2004; Marlowe 2010). Our study of small-bodied humans found no evidence 
that traits in the distal tibia reflect these behavioral differences between males and 
females (Table 1).

In summary, we interpret skeletal metrics of the distal tibia to reflect genuine 
differences in vertical-climbing frequencies among wild populations and zoo 
populations. This finding has two key implications for evaluating intraspecific 
differences in locomotor behaviors. First, they suggest that these traits, particularly 
SSAW in the hominids, are phenotypically plastic in response to habitual load-
ing and thus reflect ankle dorsiflexion and/or inversion during vertical ascent. 
Although it is possible that genetic constraints on the articular surface differ 
between Pongo and the African great apes, there is little evidence to support or 
refute such a possibility.
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The comparative analysis of wild lowland and mountain gorilla populations 
is consistent with the finding that mountain gorillas prefer terrestrial substrates 
and climb less frequently than do lowland gorillas (Remis 1998). Lowland gorillas 
have higher SSAW, ML-expanded metaphyses, and ML-expanded malleoli than do 
mountain gorillas (Figure 3, Table 2). This result is also consistent with the finding 
that medial cuneiform morphology tracks hallucal-abduction ability and relative 
frequency of arboreality in Gorilla (Tocheri et al. 2011). Male mountain gorillas are 
less terrestrial than female mountain gorillas (Remis 1998), although our data do 
not reflect this for SSAW (p = 0.48), metaphysis dimensions (p = 0.88), or medial 
malleolus thickness (p = 0.75).

A second implication of the zoo-wild comparative analyses is that they 
afford an estimate of the extent of phenotypic plasticity associated with broadly 
known locomotor differences. Our comparisons between wild and zoo apes can 
be used to predict the extent to which locomotor differences can drive phenotypic 
plasticity in the distal tibia. Comparing zoo and wild values of SSAW for Pan, 
Gorilla, and Pongo produces differences of 6.5%, 7.6%, and 2.5%, respectively. 
It is important to note that SSAW is a composite measure of six variables; thus, 
changes in this variable cannot be easily attributed to a single cause. Nevertheless, 
these results illustrate that an expanded SSAW in climbing humans might be quite 
modest relative to that of nonclimbing humans. As such, even subtle sources of 
variability might obscure any signal of vertical climbing in the human distal tibia.

We detected no skeletal evidence of vertical climbing in the distal tibiae of 
individuals drawn from two rainforest hunter-gatherer populations that are known 
to climb frequently (Figure 3, Table 2). Numerous possibilities could account for 
this finding. First, the activity patterns of the studied individuals were unknown, 
despite their being drawn from habitually climbing populations, as judged from 
a combination of quantitative and anecdotal data in the ethnographic literature. 
An alternative possibility is that the loading regime associated with climbing 
by the individuals in this study was either inconsistent in direction or form, or 
performed infrequently. Direct comparison between vertical-climbing frequencies 
in humans and chimpanzees is complicated by the absence of quantitative data on 
human-climbing behavior. It is important to note that chimpanzees climb rather 
quickly (~0.5 m/s; see discussion in Pontzer and Wrangham 2004), whereas human 
tree climbing tends to be slow and deliberate, and performed relatively less often 
(Kraft et al. in press). This difference in climbing velocity and frequency could 
result in comparatively lower stresses in the ankles of climbing humans. The use 
of material culture by humans could be a further confounding factor if climbing 
can be simplified to avoid extreme flexions. Yet even assisted climbing can be 
accompanied by extreme flexions (Venkataraman et al. 2013). Many climbing 
populations, however, do frequently use unassisted climbing, and it is sometimes 
the preferred style of ascent (Kraft et al. in press). A final point is that our data 
represent population-level characteristics. Because of the social underpinnings of 
some climbing behaviors (e.g., some men excel at climbing and tend to specialize 
in honey acquisition; Ichikawa 1981), the absence of climbing signals at the 
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population level is perhaps not surprising. Indeed, the small sample of specimens 
in our study with known sexes did not differ in distal-tibia morphology related 
to climbing behavior. Further research on the kinematics of human climbing that 
incorporate in vivo techniques will be necessary to gauge the impact of climbing 
behavior on skeletal growth in humans.

In fact, and contrary to our predictions, SSAW and medial malleolus thick-
ness differed between climbing and nonclimbing humans (Figure 3). Individuals 
from climbing populations had significantly less anteriorly expanded distal tibiae 
and thinner medial malleoli, suggesting that other behaviors in the locomotor 
repertoire, such as walking, may exert an opposing influence to that of climbing 
(Table 2). Furthermore, uneven terrestrial substrates common to rainforest habitats 
might require an increased stabilization of the ankle joint during walking. As such, 
any efforts to identify skeletal correlates of behaviors performed by rainforest 
hunter-gatherers, particularly climbing, must consider the full diversity of the 
human locomotor repertoire and the trade-offs therein, in addition to population-
specific ecologies.

Nevertheless, the discordance between a population-level behavior and 
skeletal morphology raises questions about our ability to detect fine-grained 
signatures of habitual locomotion in an arboreal milieu. Honey acquisition is all 
but invisible in the archaeological record (Laden 1992), yet it is a key component 
of foraging strategies among modern and ancient hunter-gatherer populations, and 
potentially for earlier hominins (Wrangham 2011). For instance, the Efe and Mbuti 
eat enormous quantities of honey for several months during the year, a habit that 
requires frequent climbing and clambering. Our study examined a suite of traits 
in the ankle, but other anatomies of the foot, knee, hip, back, and shoulder may 
also contribute to the extraordinary climbing abilities of hunter-gatherers. For 
example, the ontogeny of scapular morphology was used recently to infer substantial 
amounts of climbing behavior in Australopithecus afarensis (Green and Alemseged 
2012). Our study suggests that the detection of fine-grained differences in human 
locomotor behaviors at the ankle joint, particularly those involving arboreality, 
may be obscured by the demands of terrestrial bipedalism. It may thus be difficult 
to use population-level characteristics of ankle morphology to make inferences 
about the climbing behavior of hominins in the fossil record, even when facultative 
arborealism is associated with key fitness benefits.
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Note
 1. Lovejoy et al. (1999) provide a useful framework for interpreting the influences of genetics and 

habitual behaviors on observed skeletal morphologies. They note that morphologies can either 
reflect or permit functions, depending on their developmental origins. As discussed in the text, 
the traits in question likely reflect both genetic influences and behavior during life and should 
therefore be considered to reflect and/or permit the studied movements.
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