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ARISING FROM M. Bhme et al. Nature https://doi.org/10.1038/s41586-019-1731-0 (2019)

Danuvius guggenmosi is a species of Miocene hominoid from the
11.62-million-year-old site of Hammerschmiede. On the basis of inter-
pretations of its vertebrae and limbs, B6hme and colleagues' infer
that Danuvius exhibited ‘joint positions and loading patterns of both
hominin bipedalism that emphasize hindlimb extension and spinal
curvatures, and extant great ape suspension’. Although we agree that
Danuvius was suspensory, we find the functional interpretation of
bipedalismto be unfounded on morphological grounds. We therefore
callinto question the evolutionary scenario for the origin of hominin
bipedalism proposed by Bohme and colleagues.

On the basis of differences in the orientation of the spinous pro-
cess (41°) between purported ‘first’ and ‘lower’ thoracic vertebrae,
Bohme and colleagues infer biped-like cervical lordosis and thoracic
kyphosis for the upper spine of Danuvius. However, their comparative
data (drawn from ref.?) are misleading, because they represent a sub-
stantially higher thoraciclevel (T7 inhumans and T8 in chimpanzees)
than s represented by the Danuvius specimen GPIT/MA/10000-16
(described as the ‘penultimate or ante-penultimate [thoracic] posi-
tion’, in the supplementary information of Béhme et al."). When the
relevant comparative data?are used, only minor differences in the incli-
nation of the spinous process are found (T1:ante-penultimate thoracic,
8.4° in humans and -0.1° in chimpanzees; Tl:penultimate thoracic,
4.2° in humans and 3.2° in chimpanzees). Danuvius does not resem-
ble humans or chimpanzees in this metric, although it does overlap
with some gorillas and orangutans (Fig.1). Moreover, in the absence of
mid-thoracic or lumbar vertebrae, claims regarding the spinal curvature
and lumbar lordosis' of Danuvius are unsubstantiated.

Theinterpretation of along lower back in Danuvius'is based not on
aseries of vertebrae, but rather on a single lower thoracic vertebra.
On the basis of a well-developed costotransverse facet, Bbhme and
colleagues' argue for ‘a non-ultimate thoracic position for the dia-
phragmatic vertebraand therefore afunctionally longer lower back, as
inearly hominins, stem-hominoids and cercopithecids. Although the
last thoracic vertebrain humanslacks costotransverse facets, they are
infact commonly presentin great apes (in 30 out of 42 specimens exam-
ined; personal observations of S.A.W.) and—in some cases—are large and
cranioventrally directed (contraref.") (Fig.1). Therefore, the presence
ofacostotransverse facet onavertebra doesnot precludeitsidentifica-
tionasanultimate thoracic vertebra (Fig. 1). Moreover, the position of
the diaphragmatic vertebradoes notdirectly relate to thelength of the
lumbar column or to lumbar curvature. All extant hominoid species
demonstrate some frequency of cranial displacement of the diaphrag-
matic vertebrarelative to the last thoracic vertebra—approximately
33% of many hominid species, and up to 55% in hylobatids—yet do not
have long lumbar columns?. Similarly, atelines, which converge with
hominoids on lower back morphology related to suspensory behav-
iour*, exhibit similar frequencies of cranial displacement and possess

shortlumbar columns (Fig. 2). Stem hominoids possessed six lumbar
vertebrae and cranial displacement by one to two elements and are
therefore considered long-backed®, whereas Oreopithecus bambolii
possessed five lumbar vertebrae and demonstrates cranial displace-
mentby at least one element® (Fig. 2). As with Oreopithecus®, Danuvius
may have had an‘intermediate’ lower back similar to that of hylobatids
rather than along, monkey-like lower back or a short lower back that
recalls those of the extant great apes (Fig. 2). Regardless, neither the
morphology of GPIT/MA/10000-16 nor its potential position in the
vertebral columnindicate the length of the lumbar column or suggest
adaptation to bipedal posture or locomotion.

Bohme et al.'argue that Danuvius had a valgus knee and hominin-like
hip abductor mechanics that were associated with extended-limb arbo-
real bipedalism. They suggested that ‘the more medial position of the
lesser trochanter may resultin amore exclusively extension function of
iliopsoas, particularly if theilium were rotated laterally on the hip joint’
(supplementary information of Bhme etal.!). Yet, givenits anatomical
position, the iliopsoas functions exclusively as a hip flexor and lateral
rotator of the thigh, with no contribution to hip extension’. Instead, a
more medially positioned lesser trochanter may further diminish the
ability of the iliopsoas to contribute to lateral rotation of the thigh,
which has no clear connection to bipedalism. Additionally, B6hme
etal.linfer that theilium was more ‘inferolaterally’ oriented in Danuvius
on the basis of a high femoral neck-shaft angle and a posterosuperior
expansion of the articular surface of the femoral head, implying an
increased hip abductor function of the lesser gluteal muscles. However,
as shown by Bohme et al.}, neither of these traits is unique to bipeds.
Notably, the Danuviusfemur appearsto lack the elongated femoral neck
(figure 1in ref.?) that is characteristic of bipeds, and which increases
the internal moment arm of the lesser gluteal muscles to counteract
external moments at the hip during the single support phase of the
gaitcycle®,

Atibia with a damaged diaphysis (GPIT/MA/10000-15) is central to
arguments for an extended lower limb and bipedalism in Danuvius,
as it purportedly displays a hominin-like, relatively large and anter-
oposteriorly flattened lateral condyle with a ‘buttressing of the tibial
metaphysis, combined with a talocrural joint oriented orthogonally
tothe diaphyseal long axis. However, the analysis of the tibial condyle
shape performed by Bohme etal.'is preliminary and includes only eight
individuals and seven species, which precludes statistical tests of taxon
orlocomotor group differences. We agree that the morphology of the
proximal tibial metaphysis could reflect knee-joint loading regimes
associated with various locomotor and postural modes, but Bohme
and colleagues' do not provide comparative data to support their claim
that the tibial metaphysis of Danuviusis expanded relative to those of
apes. Moreover, the analysis of the surface area of the tibial plateau
relative to tibial length shows Danuvius to be most similar to Pan and
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Angle of the spinous process of
the lower thoracic vertebrae (°)

Fig.1|Lower thoracic vertebra of Danuvius (GPIT/MA/10000-16) in
comparative context. a, The cranially oriented costal facets and ‘rod-like’
laminapophysis of GPIT/MA/10000-16 (colour) (fromref.') can be found onthe
last thoracic vertebrae of great-ape specimens (for example, on agorilla (grey))
(nottoscale). Therefore, the contention that GPIT/MA/10000-16 cannot be the
ultimate or penultimate thoracic vertebra on the basis of the presence of these

Pongo (extended data figure 3 in ref.'). The inference that Danuvius
habitually loaded its proximal tibia in extended-knee bipedalism on
the basis of comparisons of proximal tibia morphology is therefore
currently unsubstantiated.

As noted by B6hme and colleagues', the anteroposteriorly thin
patellaof Danuviusresembles those of extant great apes and Miocene
hominoids suchas Pierolapithecus. The relatively thin patellae of great
apesreflect the use of varied knee positions during orthograde climb-
ing and suspension, including extended positions. By contrast, the
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Fig.2|Evolution of vertebral formulae in anthropoids. a, Regional numbers
ofthoracic (blue or purple squares, starting at T9 (vertebra16)) and lumbar (red
squares) vertebrae are shown, along with the modal diaphragmatic vertebra
(purplesquares, with the frequencies listed). Hypothesized ancestral patterns
of lower back (lumbar column) length are indicated. LCA, lastcommon
ancestor. b, IntheIGF11778 Oreopithecus skeleton, two additional lumbar
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morphologiesisincorrect.b, Angles of the spinous process of upper and lower
(ultimate, penultimate and ante-penultimate) thoracic vertebrae of arange of
hominoids: Pongo (n=7), Gorilla (n=11), Pan (n=37) and modern humans
(n=30). Danuvius falls near some of the specimens of Gorilla and Pongo, which
indicatesthatitis neither unique nor humanlike.

thicker patellae of cercopithecoids are associated with the generation
of higher-magnitude knee extension moments from more-habitually
flexed positions as pronograde quadrupeds’. However, patellar thick-
ness does not distinguish among living great apes’. Although we agree
that the Danuvius patellais anteroposteriorly thin and great-ape-like,
its morphology cannot therefore support the conclusion that Danuvius
used ‘slow and deliberate movements, most similar to Pongo’ (supple-
mentary information of Bohme et al.!). In addition, the great-ape-like
patella of Danuvius reduces the moment arm of the quadriceps at
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vertebrae (L4 and L5) are entrapped between the iliac blades of the pelvis®.
Additionally, the last thoracic vertebrais post-diaphragmatic, as evidenced by
acup-shaped, sagittally oriented superior articular facet with amammillary
processlateral toit; thisindicates that the specimenis characterized by cranial
displacement.



the knee’®, which diminishes the ability of the quadriceps to coun-
teract sagittal-plane moments that flex the knee in the early part of
the stance phase of the bipedal gait cycle'. Finally, the damaged tibial
diaphysis and distal metaphysis preclude accurate measurement of
the frontal-plane angle of the talocrural joint. The intact sections of
the tibial diaphysis clearly indicate frontal-plane curvature, particu-
larly along the lateral border of the midshaft and below—potentially
resultinginamore obliquely oriented talocruraljoint, whichis charac-
teristic of African apes'. The lower limb of Danuvius shares morpho-
metric affinities with great apes that are consistent with a positional
repertoire thatincluded orthogrady and suspension, but the evidence
for bipedalismis equivocal.

In summary, Danuvius lacks features associated with bipedal pos-
ture and locomotion. Its preserved morphology appears to reflect
the increased limb mobility and powerful hallucal grasping that are
expected to characterize a relatively large-bodied, tailless arboreal
ape®. Thediscovery of Danuvius substantially contributes to our under-
standing of hominoid evolution, but relevant comparative data do not
support the hypothesis of Bohme et al.! that the last common ancestor
of humans and chimpanzees was along-backed, lordoticand arboreal
biped3,14,15_

Reporting summary

Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability

The datasets generated and/or analysed in this article are available
from the corresponding author upon reasonable request.
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REPLYING TO S. A. Williams et al. https://doi.org/10.1038/s41586-020-2736-4 (2020)

In the accompanying Comment’, Williams and colleagues question
our interpretation of the evolutionary importance of extended limb
clambering for the emergence of great ape suspension and hominin
bipedalism?by casting doubt on the morphological evidence for bipe-
dalism in Danuvius. Specifically, they question the hip mechanics,
the reported orthogonal set to the distal tibia and the evidence for a
functionally elongated lumbar spine by re-interpreting the position
of the diaphragmatic vertebra.

Williams et al.! discovered a typographical error regarding hip
mechanics in the supplementary information of our original paper*
iliopsoas is obviously a hip flexor, as Williams et al. state (as well as
being an external rotator). However, our inference of the probable
orientation of the ilium in Danuvius is based on the morphology of
the proximal femur, which is consistent with habitual extension and
enhanced gluteal abduction at the hip joint.

The main focus of the Commentby Williams et al.'is our interpreta-
tion of the vertebrae. The GPIT/MA10000-16 specimen is a transitional
(diaphragmatic) vertebra with large, round, anterosuperiorly oriented
costotransverse facets and flat articular surfaces (Fig. 1a,b). Thisindi-
cates articulation with a well-developed, flat and inferiorly oriented
coastal rib tubercle, which means that this specimen could not be a
last or penultimate thoracic vertebra.

Theanatomy of costotransversejoints changes in humans? (Fig. 1c) and
orangutans according thoraciclevel. Costotransverse facets of the upper
thoracic vertebrae (T1-T7) are anterolaterally oriented, with oval and
convex hollows that articulate with the concave tubercle of the sternal
ribs and allow rotation and torsional movement of ribsin the pulmonary
thorax. In mid-thoracic vertebrae (T8, T9 or T10), both the orientation
and shape of the costotransverse facets change (Fig. 1c). The facets are
round, flatand oriented anterosuperiorly. They articulate with the pos-
teroinferior rib tubercle (see figure 5inref.*), which allows the costals of
the diaphragmatic thorax a planar gliding movement’. The lower thoracic
(T11and T12) vertebrae of humans and orangutans lack costotransverse
joints, because the floating ribs have only one articular facet.

The costotransverse facets of the thoracic vertebrae of African apes
show less variability. These facets remain anterolaterally oriented at
mid-thoracic positions, in which the rib tubercle is convex and pos-
terosuperiorly oriented (figure Sinref.*). Some gorillas have a caudally
shifted transitional vertebra (L1). Here, the last thoracic rib retains a
tubercle and the last thoracic (pre-transitional) vertebra (T13) bears a
costotransverse facet. This facet resembles the upper- and mid-thoracic
costotransverse facetsin shape and orientation—for example, in being
convex and anterolaterally oriented—and is different from those of
Danuvius (as visible in figure 1a of Williams et al.!). In Pan, the lower
(transitional) thoracic vertebra always lack costotransverse facets.

In nearly all extant hominoids, the transitional vertebra occurs
at the last thoracic level (or first lumbar level in some individuals of
Gorilla) and lacks costotransverse facets. On the basis of the shape

and orientation of the costotransverse facet, we conclude that GPIT/
MA10000-16 represents a mid-thoracic vertebra (a T8, T9 or T10)
and would have articulated with the costal ribs. Depending on the
number of thoracic vertebrae in Danuvius, we expect at least two or
three post-transitional thoracic vertebrae, similar to the condition in
Nacholapithecus, Ekembo and cercopithecids®”. Although the number
oflumbar vertebrae in Danuviusis unknown, the cranial shift of the tran-
sitional vertebraisindicative of afunctionally elongated lumbar spine,
as hasrecently been reported for Rudapithecus®. Williams et al.! concede
that ‘[als with Oreopithecus, Danuvius may have had an ‘intermediate’
lower back similar to that of hylobatids ...: recent work on the lower
torso of Oreopithecus has concluded that it was ‘certainly more capable
of bipedal positional behaviors than extant great apes”®. Danuvius and
Oreopithecus differ in femoral, ulnar and hallucal morphology as well
as dentition, but the point remains that an intermediate lower back—
which Danuvius minimally possessed—predisposed Miocene apes such
as Oreopithecus, Rudapithecus and Danuvius to upright postures. As
it probably possessed more than five functionally lumbar vertebrae
(two or three post-transitional vertebrae, and an unknown number of
lumbar vertebrae), lordosis was possible for Danuvius. Consistent with
ourinterpretation of GPIT/MA10000-16 as amid-thoracic vertebra (a
T8,T9 or T10), the data fromref.'° are appropriate for comparing to the
inclination of the spinous process in the thorax of Danuvius.

We agree with Williams et al.! that Danuvius possessed a highly
mobile hip joint thatis characteristic of arboreal hominoids, and that
its femur does not have some of the apomorphies that are typical
of the hominin bipeds. However, it is unclear why we might expect
Danuvius to have possessed the full suite of features of a terrestrial
biped (ananteroposteriorly thick patella, elongated femoral neck and
so on). Bipedal adaptations evolved piecemeal, as the early hominin
fossil record indicates—and as has recently been reinforced by find-
ings that the valgus knee and human-like pelvic drop did not evolve
in concert'. We emphasize the arboreal adaptations of Danuvius and
define extended limb clambering as a pattern of arboreal behaviour.
Atthe same time, we draw attention to bipedal attributes in Danuvius.
The posterosuperior expansion of the articular surface of the femoral
head, whichis found inmany mammals, is nevertheless consistent with
enhanced hip extension in Danuvius.

Compared with the fossils of other European Miocene apes, the
preserved skeletal elements of Danuvius are notably complete: the
tibia and the ulna are the only complete specimens known from the
Neogene hominid record. Even though the distal tibia is detached at
the metaphysis, the orthogonal set of the ankle joint relative to the
tibial shaft—which is found only in bipeds***—can be measured with
confidence (91.5+5°) and falls clearly outside the ranges of the great
apes (100-108°). The orthogonal tibial angle can be inferred from the
epiphysis alone. We measured the set of the ankle joint atits midpoint
relative to the medial border of the medial malleolus and found a value
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Fig.1| Transitional vertebra of Danuvius guggenmosi.a,b, Specimen GPIT/
MA10000-16 insuperior (a) (mirror-imaged) and left lateral view (b). Scale bar,
10 mm. ¢, Human thoracic spine (fromref.3), showing the shape and orientation
of costotransverse facets (indicated by arrows).d, Artist’s reconstruction (by

of95.5° for Danuvius, whichis well outside the range of the tibiae from
other Miocene apes (Hispanopithecus, Sivapithecus and Ekembo,104.0-
107.3°) and Gorilla (n=29,104.0+2.6°). The set of the ankle joint from
the epiphysis alone in Danuvius falls between the range of Pan (n=32,
100.6+4.6°) and Homo sapiens (n=29,91.8+2.3°) andis closest in value
to that of Australopithecus (n=9,93.412.7°).

Extended limb clambering should not be confused with striding
terrestrial bipedalism, which represents another form of positional
behaviour.Just as knuckle-walkers are also suspensory, extended limb
clamberersincorporate bipedalisminto their positional repertoire. This
does not make them human bipeds: Danuvius has attributes that we
interpret as functionally enabling arboreal bipedalism, but not striding
terrestrial bipedalism. Very few of the morphologies we describe and
quantify are identical to the corresponding hominin features related
to terrestrial striding bipedalism. One of these differencesisindeedin
the patella, as Williams et al.' note. However, the flat patellar surface in
Danuviusis suggestive of slow, deliberate orangutan-like movements'*,

The ability of Danuvius to walk bipedally on branchesisanapomor-
phicbehaviour that was enabled by the suite of unique morphological
adaptations that characterize extended limb clambering. Besides the
spinal and tibial characters, the strongly developed cruciate ligaments
and the hinge-like morphology of the talocrural joint are consistent
with extended limb clambering in Danuvius. Together with a laterally
torqued and robust opposable hallux, these features—which are not
presentin thiscombinationin striding terrestrial bipeds or any extant
apes—contributed toincreased foot and knee stability during slow and
careful bipedal walks on narrow arboreal supports (Fig. 1d).

Reporting summary

Furtherinformation on experimental designis available in the Nature
Research Reporting Summary linked to this paper.

Data availability

The datasets generated during and/or analysed in this article are avail-
able from the corresponding author on reasonable request.

V.Simeonovski, according to scientific instructions of the authors) of the foot
and knee postures of D. guggenmosi during deliberate bipedal walks on
horizontal arboreal branches.
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