Errata: A Theory of Nonseparable Preferences in Survey Responses

American Journal of Political Science, Vol. 45, No. 3. (Jul., 2001), p. 745.
Stable URL:
http://links.jstor.org/sici?sici=0092-5853\(200107\)45\%3A3\<745\%3AEATONP\>2.0.CO\%3B2-U
American Journal of Political Science is currently published by Midwest Political Science Association.

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/mpsa.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers, and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take advantage of advances in technology. For more information regarding JSTOR, please contact support@jstor.org.

A Theory of Nonseparable Preferences in Survey Responses

Dean Lacy

"A Theory of Nonseparable Preferences in Survey Responses" (American Journal of Political Science 45(2):239258) contains several printing errors, including the omission of all "not equal to" and "greater than or equal to" symbols that were to appear in the text. The following are corrections:

On page 240 , the sentence in the last two lines of the first column should read:
"To define nonseparable preferences formally, let $\mathbf{J}=$ $\{1, \ldots, J\}, J \geq 2$, be a set of issues."

On page 246, in the second line after the heading "A Model of the Survey Response," the text should read:
$" \ldots \mathrm{~J}=\{1, \ldots, J\}, J \geq 2$ is a set of issues \ldots. $"$

Also on page 246, in the sixth line after the heading "A Model of the Survey Response," the text should read: "... $\left\{o_{j}^{1}, \ldots, o_{J}^{L}\right\}$ is a set of possible outcomes on issue j, $L \geq 2$..."

Also on page 246 , in the second line of the second paragraph after the heading "A Model of the Survey Response," the text should read:
". . . about M issues, $M \geq 2 \ldots$ "

Also on page 246, in the fourth line of the second paragraph after the heading "A Model of the Survey Response," the text should read:
". . of responses $R_{J}=\left(r_{j}^{1}, \ldots, r_{j}^{N}\right), N \geq 2$."
Also on page 246 , in the second column, first paragraph after Assumption 2, footnote 78 should be numbered footnote 7.

On page 247, first column, the result should read:
Result: $r_{i}^{*}\left(q_{j}>q_{k} \mid \mathbf{r}_{i k}^{*}\right) \neq r_{i}^{*}\left(q_{j}<q_{k} \mid \mathbf{s}_{i k}\right)$ if and only if i has nonseparable preferences for issues j and k, and $\mathbf{r}_{i k}^{*} \neq \mathbf{s}_{i k}$.

On page 250, in footnote 15 "(Lacey 2001)" should be "(Lacy 2001)."

On page 257, Appendix B should read:
Proof: Drop i. For sufficiency, if i 's preference for issue j is nonseparable from issue or set of issues k, then there exists an \mathbf{o}_{k} and \mathbf{o}_{k}^{\prime} such that $\left(o_{j}, \mathbf{o}_{k}\right) \succ_{i}\left(o_{j}^{\prime}, \mathbf{o}_{k}\right)$ and $\left(o_{j}^{\prime}, \mathbf{o}_{k}^{\prime}\right) \succ_{i}$ ($o_{j}, \mathbf{o}_{k}^{\prime}$), which, by Assumption 3, implies $\left(r_{j}, \mathbf{r}_{k}\right) \succeq_{i}\left(r_{j}^{\prime}, \mathbf{r}_{k}\right)$ and $\left(r_{j}^{\prime}, \mathbf{r}_{k}^{\prime}\right) \succ_{i}\left(r_{j}, \mathbf{r}_{k}^{\prime}\right)$. If $q_{j}>q_{k}$, then $r_{j}^{*}=r^{*}\left(q_{j} \mid \mathbf{r}_{k}^{*}\right)$. If $q_{j}<q_{k}$, then $r_{j}^{*}=r\left(q_{j} \mid \mathbf{s}_{k}\right)$. If $\mathbf{r}_{k}^{*} \neq \mathbf{s}_{k}$, then $r^{*}\left(q_{j}>q_{k} \mid \mathbf{r}_{k}^{*}\right) \neq r^{*}\left(q_{j}<q_{k} \mid \mathbf{s}_{k}\right)$. For necessity, if $\mathbf{r}_{k}^{*}=\mathbf{s}_{k}$, then $r_{i}^{*}\left(q_{j}>q_{k} \mid \mathbf{r}_{k}^{*}\right)=r_{i}^{*}\left(q_{j}<q_{k} \mid \mathbf{s}_{k}\right)$. For the second necessary condition, if i 's preference for j is separable from k, then $\left(r_{j}, \mathbf{r}_{k}\right) \succeq_{i}\left(r_{j}^{\prime}, \mathbf{r}_{k}^{\prime}\right)$ and $\left(r_{j}, \mathbf{r}_{k}^{\prime}\right) \succeq_{i}$ $\left(r_{j}^{\prime}, \mathbf{r}_{k}^{\prime}\right)$, which implies $r_{j}^{*}(\cdot)=r_{j}^{*}(\cdot)$.

In the context of the spatial model, the same result can be proved as follows:

Proof: Individual i 's preferences are representable by the quadratic utility function:

$$
\begin{aligned}
U_{i}\left(o_{j} \mid o_{k}\right)= & -\left[a_{i k k}\left(o_{k}-\theta_{i k}\right)^{2}+2 a_{i j k}\left(o_{k}-\theta_{i k}\right)\left(o_{j}-\theta_{i j}\right)\right. \\
& \left.+a_{i j j}\left(o_{j}-\theta_{i j}\right)^{2}\right]
\end{aligned}
$$

Maximizing this function with respect to o_{j}, dropping i, and rearranging terms:

$$
o_{j} \left\lvert\, o_{k}=\theta_{j}-\left(\frac{a_{j k}}{a_{k k}}\right)\left(o_{k}-\theta_{k}\right)\right.
$$

which is i 's constrained ideal point on issue j. Person i 's response on j, conditional on her beliefs about the status quo on k, substituting s_{k} for o_{k}, is:

$$
r\left(q_{j} \mid s_{k}\right)=\theta_{j}-\left(\frac{a_{j k}}{a_{j j}}\right)\left(s_{k}-\theta_{k}\right)
$$

But i 's response on j conditional on a previous response of r_{k}^{*} to k, substituting r_{k}^{*} for o_{k}, is:

$$
r\left(q_{j} \mid r_{k}^{*}\right)=\theta_{j}-\left(\frac{a_{j k}}{a_{j j}}\right)\left(r_{k}^{*}-\theta_{k}\right)
$$

If preferences for j and k are nonseparable, then $\left(\frac{a_{j k}}{a_{j j}}\right)$ is nonzero. If $\left(s_{k}-\theta_{k}\right) \neq\left(r_{k}^{*}-\theta_{k}\right)$ and if $\left(\frac{a_{j k}}{a_{j j}}\right) \neq 0$, then $r\left(q_{j} \mid s_{k}\right)$ $\neq r\left(q_{j} \mid r_{k}^{*}\right)$. For necessity, if the respondent's preferences are separable, then $\left(\frac{a_{j k}}{a_{j j}}\right)=0$ and $r\left(q_{j} \mid s_{k}\right)=r\left(q_{j} \mid r_{k}^{*}\right)$.
Department of Political Science
Ohio State University
(dlacy+@osu.edu)

