Failing to account for natural fluctuations in test scores could undermine

the very idea of holding schools accountable for their efforts-

or lack thereof

by THOMAS J. KANE, DOUGLAS O. STAIGER, AND JEFFREY GEPPERT

The accountability debate tends to devolve into a battle between the pro-testing and anti-testing crowds. But when it comes to the design of a school accountability system, the devil is truly in the details. A well-designed accountability plan may go a long way toward giving school personnel the kinds of signals they need to improve performance. H owever, a poorly designed scheme, which ignores the statistical properties of schools' average test scores, may do more harm than good.

The recent debate over the reauthorization of the federal Elementary and Secondary Education Act (ESEA) is a case in point. From his first days in office, President Bush promised to make education reform a centerpiece of his administration, using the reauthorization of the ESEA as an opportunity to give the state-led accountability movement a dramatic shove forward. W ithin six months of his taking office, both houses of Congress had passed bills that imposed new federal standards for the states' accountability efforts.

H owever, both bills were seriously flawed. They created standards that, over time, would have identified nearly every school in the nation as"low performing," forcing them to spend precious resources developing unnecessary school-improvement plans. A tide of paperwork would have crowded out time for learning. T his almost turned the most significant federal foray into education policy in decades into an embarrassment. Changes were made by a H ouse-Senate conference committee, so the law, as enacted, remedied the most glaring problems, but created others. T he saga illustrates the difficulties of designing an effective accountability system.

The H ouse and Senate Bills

At theheart of both bills was a detailed formula for determining when a school is making"adequate yearly progress."T heconsequences for schools that failed to meet their performance targets were progressively severe - after one year, districts would be required to offer public school choiceto all the students in a school; after several years, districts would be required to replace school staff, convert theschool into a public charter school, or hand the school over to a private contractor.

Theproblem is that such consequences place too much weight on single-year changes in test scores at the school level. Either bill would have required an increase in the proportion of students scoring above the proficient level in both math and reading, each and every year. H owever, test scores at the school level often fluctuate for reasons other than any underlying change in a school's performance. Such volatility arises from two sources. The first is variation due to differences in the groups of students being tested each year. Even if the students are being drawn from the same families and the sameneighborhoods, the average performance of a school can fluctuatefrom year to year depending on the attitudes and abilities of the students in each cohort. The average elementary school contains only 68 students per grade level. W ith a samplethis small, having five particularly bright students (or a few students with undiagnosed learning disabilities) in any one year can lead to large fluctuations in a school's test scores from one year to thenext. TheD epartment of Labor measures the monthly unemployment rate with a sample of nearly 60,000 households. Congress was proposing that the D epartment of Education measurethe performanceof thetypical elementaryschool grade with a sample nearly $1 / 1000$ the size.

The second source of variation is one-time factors that lead to temporary fluctuations in test performance. Some of thesefactors are likely to be unrelated to the educational practices of a school. For instance, a dog barking on theday of thetest, a severe flu season, or one particularly disruptivestudent in class could cause scores to fluctuate. T here may be other sources of volatility that are more related to the educational mission of a school, such as thefavorablechemistry between a teacher and a particular group of students or teacher turnover. W hatever the source of variation, singleyear changes in test performance are very unreliable indicators of where a school is headed over the long term.

Consider the examples of N orth Carolina and Texas. Between 1994 and 1999, these states were the educational envy of the nation, raising proficiency rates in math and reading by 2 to 5 percentage points in the average year. H owever, the vast majority of schools in those states exhibited much less consistent progress: less than 2 percent of schools witnessed an increase
in math and reading proficiency each and every year for thosefive years. Indeed, we estimatethat between 98 and 100 percent of the elementary schools in N orth Carolina and Texas would have failed the H ouse and Senate's initial definitions of annual yearly progress at least once between 1994 and 1999.

Furthermore, both bills would have compounded theerror by requiring annual increases in test scores for every racial subgroup in a school. The intent was admirable: to ensure that schools do not ignore minority children. But this provision was likely to haveharmed its intended beneficiaries, by arbitrarily sanctioning schools that enroll students from several different racial or ethnic subgroups. Suppose that a school is solidly on the path to improvement, with a 70 percent chance of increasing the proficiency of any racial subgroup in a given year. A school with two racial subgroups in its student body would have a less than $50-50$ chance of achieving an increase for both groups in a given year- because the year-to-year fluctuations are nearly independent for each racial group (therefore the probability is. 70 times .70 , or .49). Theodds would beeven longer for a school with threeracial subgroups (. 70 times .70 times .70, or .34). SinceA frican-A merican and Latino students aremore likely to attend schools with morethan one racial group, they are more likely to see their education disrupted arbitrarily.

A number of states have established accountability programs that track the performance of racial and ethnic subgroups separately. For example, California requires schools to meet certain growth targets for all "numerically significant" subgroups in a school. In order to be numerically significant, a group must either represent at least 15 percent of the student body and have more than 30 students or have more than 100 students regardless of what percentagethey are. T hereareeight different groups that can qualify as numerically significant, depending on the number of students in each group in a school: A fricanA merican, A merican Indian (or A laskaN ative), A sian, Filipino, H ispanic, Pacific Islander, white non-H ispanic, and "socioeconomically disadvantaged" students.

We calculated the likelihood of a California school's winning a G overnor's PerformanceA ward by size and by the number of numerically significant subgroups. A mong the smallest quintile of elementary schools, 47 percent of racially heterogeneous schools (those with four or more racial subgroups) won performance awards, versus 82 percent of similarly sized but racially homogeneous schools. T his is particularly ironic given the fact that overall growth in performancewas slightly higher for moreintegrated schools between 1999 and 2000. M oreover, the reason for a school's failure to win an award was often not that A frican-A merican and Latino students were lagging behind,
research
VOLATILITY KANE ET AL.
but that whitenon-H ispanic students experienced slower growth in achievement: the average school with multiple racial subgroups witnessed larger gainsfor A frican-A merican and Latino students than for white students.

Separate achievement targets for racial and ethnic subgroups seem to be neither necessary nor especially effective in coaxing schools to focus on the performance of racial and ethnic minorities. In N orth C arolina, wherethere are no separate racial targets, A frican-A merican and Latino students experienced slightly higher improvements in proficiency than white non-H ispanic youth. Until this year, the rating system in Texas specified separate targets for racial subgroups that accounted for morethan 10 percent of the student body (and more than 30 students). H owever, A frican-A merican and L atino students saw the sameimprovements in their test scores whether or not they attended schools with enough minority studentsto require a separate racial target.

Remaining Problems

The conference committee's compromise bill remedied some problems but created new ones. E arlier versions of the legislation rated schools according to their year-to-year improvements in the share of their students who achievea certain proficiency level. N ow schools will simply need to have a certain minimum percentage of their students (and of racial, ethnic, and socioeconomic subgroups within each school) deemed"proficient" each year. T heinitial minimum proficiency rate will bethegreater of theproficiency rate of the 20th-percentile school or the average statewide proficiency rate of the lowest-scoring subgroup. In many states, the effective minimum will be the proficiency rate of the 20th-percentile school. H owever, more than 20 percent of all schools are likely to fail, becausethe threshold will apply not only to theschool as a wholebut also to all the subgroups in a school. If any racial, ethnic, or socioeconomic subgroup within a school fails, the school fails. A sa result, adisproportionatenumber of theschools that enroll disadvantaged minority subgroups arelikely to fail. The minimum proficiency ratethat schools are required to meet will be raised gradually to 100 percent over the next 12 years.

Themain beneficiaries of the conference committee's changes will be suburban schools whose initial rates of proficiency are abovetheminimum, for they will no longer be penalized for temporary downward fluctuations in scores. The primary losers will beschools with initially low levels of proficiency for any subgroup. They will now be required to achievea 10-percentage point increase in proficiency for thosesubgroups to avoid the sanctions in a given year.

O ne flaw in the new formula is that it provides a strong incentive for states to lower the score students must exceed on their state tests in order to achieve"proficiency."T he problem is that redefining proficiency simply because of the new federal requirements may create a credibility problem for the
standards movement in a number of states.
A nother problem not remedied in thefinal bill is that any federal definition of adequate yearly progress is likely to conflict with at least one of the state accountability plans that are already in place. T here are three common variants in state accountability systems: some states, such as N orth C arolina, A rizona, and Tennessee, rate their schools with a measure of aschool's valueadded, using the growth in performancefor a given group of students sincetheend of the preceding school year; other states, such as Texas and Illinois, rate their schools on the percentage of students scoring above certain thresholds; still other states, such as California, rate their schools based on their change in test scores from one year to the next. (A fourth category of states rates schools based on some mixture of valueadded, levels, or changes.) Thus states that have been rewarding schools based on valueadded measures or on changes in scores may be required to sanction the very schools they have been rewarding.

The next battleground is likely to be the issue of how many students it takes to create a separate racial, ethnic, or socioeconomic subgroup for accountability purposes. Thelegislation only requires that there be a sufficient number of students to yield statistically reliable information in order for the subgroup to count separately.T he higher the threshold- say, requiring a subgroup to represent at least 15 percent of the student body, as opposed to 5 or 10 percent- the lower thefailure rate will be for schools with small percentages of di sadvantaged minority students.

D esign Principles

State and federal officials ought to keep threebasic principles in mind in designing test-based accountability systems:

- M ultiple years of data are required to measure improvements in

 performance reliably.Children arrive at school with widely varying levels of preparation. Even a mediocre school can expect high test scores if its students come from wealthy backgrounds. As a result, policymakers in many states have attempted to level the playing field by focusing on improvements in test scores. H owever, improvements are very difficult to discern with a couple of years' worth of data, for two reasons. First, schools differ much less in theextent to which they improve test scores from year to year than they do in their beginning level of performance. Second, any measure of change in performance is likely to amplify the effect of sampling variation and other one-time factors that lead to fluctuations in performance. In other words, identifying improvements in performance as opposed to levels of performance in a single year is like looking for a smaller needle in a bigger haystack. If policymakers intend to measure and reward improvements in test performance at the school level, they will need to rely on multiple years of data.

Improvements can be measured in two basic ways: the
improvement in performance for a given group of students from one year to thenext (known as a value-added approach), or the improvement in performance across different groups of students (which we will refer to as cross-cohort changes). The improvement of scores for at least two contiguous grades (for example, grades 4 and 5) from one year to the next is a mixture of value-added changes (the 4th gradestudents who become 5th graders) and cross-cohort changes (the 4th grade students this year are a different group from the 4 th gradestudents last year).
K ane and Staiger have analyzed thestatistical properties of value-added and crosscohort changes in test scores, using data from N orth C arolina(seeFigure1). (Full citations areavailableat www.educationnext.org.) We measured value-added with the average change in combined reading and math scores for a school's students between theend of 3rd grade and the end of 4th grade; we measured cross-cohort changes with the change in 4th grade scores from one year to the next. A mong median-sizeschools in N orth C arolina, roughly half of the variance between schools in value-added in 4th grade math and reading was dueto sampling variation and other one-timefactors. For the smallest quintile of schools, the percentage of variancedue to non-persistent factors was even higher (58 percent), while for the largest quintile of schools the percentage was somewhat lower (29 percent). Crosscohort changes in mean test scores from one year to the next were measured even moreunreliably. M orethan threequarters of the variancein the annual changein mean test scores amongthesmallest quintile of schools was due to one-time, non-persistent factors. T his percentage was only slightly smaller (73 percent) for the largest quintile of schools. Such volatility can wreak havoc when rewards and punishments are doled out on the basis of changes in test scores; school personnel are at risk of being punished or rewarded for results that are beyond their control.

Therefore, when policymakers seek to reward schools for improvements in test scores, they should do so based on multiple years rather than a single year of data. M oreover, while a simplearithmetic average of improvements over multipleyears would be an improvement, there are even more efficient ways to pool information over time. For instance, building on work by M cClellan and Staiger (1999) in ratinghospital performance, we have proposed a simple technique for pooling information over time, which improves on a simple arithmetic mean by taking into account the amount of "signal" and "noise" in a given measure of performance. For instance, for large schools, for which wewould expect less noise in any given year's measure, the proposed method would place moreweight on morerecent scores; for small schools, the method would place more equal weights
on each of several years' worth of scores.

- Incentives targeted at schools with test scores at either extreme- rewards for those with very high scores or sanctions for those with very low scores- affect primarily small schools and provide very weak incentives for large schools.

Each year since 1997, N orth C arolina has recognized the 25 elementary and middle schools in thestate with thehighest scores on the "growth composite," a measure reflecting the average gain in performanceamong students enrolled at a school. W inning schools receivefinancial awards.

O neindicator of the volatility of test scores is the rarity of repeat winners. Between 1997 and 2001, 101 awards were handed out for schools ranking in the top 25. (O ne year, two schools tied at the cut-off.) T hese 101 awards were won by 90 different schools, with only 9 schools winning twice and only 1 school winning three times. No school was in the top 25 in all four years.

Of the 840 elementary schools we analyzed, 59 were among the top 25 at somepoint between 1997 and 2000 (thetop 25 each year included middleschools, which wearenot analyzing here). A mong all the schools, the average gain score was not strongly related to school size, but the variance between schools was much larger for small schools. T he variancein mean gain scores among schools in the smallest size decile was nearly five times the variance among the largest decile of schools (.048 compared with .011). A s a result, schools in thesmallest decilewere much more likely to be among the top 25 schools at some point over the period: Even though their mean gains were not statistically different, the smallest schools were 23 times more likely to win a top- 25 award than the largest schools.

For the very samereason, small schools are also overrepresented among those with extremely low test scores. Beginning in 1997, thestateassigned assistanceteams to intervenein schools that performed poorly on statetests and failed to meet their growth targets from the previous year. All but one of theelementary schools assigned an assistanceteam were among the smallest 40 percent of schools. (The smallest decile of schools would have received an even larger shareof theassistanceteams, except for a rulerequiring that the proportion of students scoring below grade level be statistically significantly less than 50 percent.)

This year, the state of California distributed $\$ 100$ million to teachers in schools that started with test scores in the bottom half of schools in 1999 and achieved large gains in performance between 1999 and 2000. A thousand teachers in schools with the largest improvements received $\$ 25,000$ bonuses on average.

Small schools in California were considerably more likely to win one of these awards than were larger schools. G iven the importance of sampling variation and the fact that thelargest bonuses were reserved for teachers in schools with the most extreme increases in test scores, this is hardly a surprise.

A threshold at either extreme is likely to be irrelevant for largeschools, sincethey areunlikely to experiencesuch large swings in performance regardless of their efforts. If the marginal costs of improving are also higher at large schools, the problem of weak incentives for large schools would only be compounded. A remedy would beto establish different thresholds for schools of different sizes. For example, grouping schools according to size (as is done in high-school sports) and giving awards to thetop 5 percent in each sizeclass would tend to even out the incentives (and disparities) between large and small schools. A n alternative solution would beto establish thresholds closer to the middle of thetest-scoredistribution, wherethedisparity for large and small schools is less extreme.

H elen Ladd and Charles Clotfelter in 1996 and D avid Grissmer et al. in 2000 reported evidence suggesting that schools respond to incentives by raising student performance. H owever, thelong-term effects of incentives may bequitedifferent from their short-term effects. Even if teachers are not sufficiently aware of the statistical forces at work to recognize their rather limited influence on test scores in the short run, they may well become aware of this over time. If their best efforts are rewarded with failure oneyear and less work the following year is rewarded with success, they are likely to form negativeopinions regarding the value of their efforts.

- W hen evaluating the impat of polides on changes in test scores over time, the natural fluctuations in test scores must be accounted for.

In 1997, N orth C arolina identified 15 elementary and middle schools with poor performance in both levels and gains and assigned "assistance teams" of three to five educators to work in these schools. The next year, all of the schools had improved enough to escape being designated "low performing." The state D epartment of Public Instruction ascribed the improvements to the efforts of the assistance teams; the assistance teams were lauded in Education W edk's annual summary of the progress of school reform efforts in thestates as well. H owever, given the amount of sampling variation and other non-persistent fluctuations in test-

Value-Added and Change Scores Are Less Reliable (Figure 1)

Of three ways of meesuring a school's performance- the level of its test scores, valueadded techniques, and changes in the average level- test-score levels are the most reliable. T his is because schools differ more in their level of performance than they do in their relative rates of change, and a smaller portion of differences in levels is due to sampling noise or other non-persistent factors, such as a disruption on the day of the test. Reliability problems are most acute for small schools because of the smaller number of observations.

SOURCE: Thomas J. K ane and D ouglas O. Staiger, 2001

