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Abstract—We draw on macroeconomic models of diffusion and produc-
tivity to explain empirical patterns of survival gains in heart attacks.
Using Medicare data for 2.8 million patients from 1986 to 2004, we find
that hospitals rapidly adopting cost-effective innovations such as beta
blockers, aspirin, and reperfusion had substantially better outcomes for
their patients. Holding technology adoption constant, the marginal returns
to spending were relatively modest. Hospitals increasing the pace of tech-
nology diffusion (“tigers”) experienced triple the survival gains com-
pared to those with diminished rates (“tortoises”). In sum, small differ-
ences in the propensity to adopt effective technology lead to wide
productivity differences across hospitals.

1. Introduction

HERE were large regional differences in per capita

price-adjusted 2010 U.S. Medicare expenditures, ran-
ging from $6,911 in Lacrosse, Wisconsin, to $13,824 in
McAllen, Texas. Yet the evidence is mixed on whether
more spending is associated with better outcomes (e.g.,
Fisher et al., 2003b; Skinner, Fisher, & Wennberg, 2005;
Doyle, 2011; Doyle et al., 2015), and some have estimated
the level of waste in health care spending equals 3% of
GDP or more (Cutler et al., 2013; Fisher et al., 2003a,
2003b). This lack of association between spending and out-
comes has sometimes been interpreted as “flat-of-the-
curve” health care spending, or variations along a common
production function with a very low or zero marginal value
of health care spending.'

The flat-of-the-curve explanation is problematic for
many reasons. Some studies find a negative association
between state-level quality measures and per capita Medi-
care expenditures (Baicker & Chandra, 2004). Why should
spending more be associated with providing worse quality
care? Second, given results from Cutler et al. (1998),
Berndt et al. (2002), and others that over time, survival and
functioning have improved because of often expensive new
medical technology, it would be surprising if the “wasted”
health care spending equal to 3% of GDP should provide no
benefit whatsoever.

In this paper, we draw on macroeconomic models of pro-
ductivity to provide a better explanation for this empirical
puzzle. That differential rates of technology adoption can
explain long-term variations in per capita GDP across coun-
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tries is by now well understood. Crespi et al. (2008) found
as much as 50% of total factor productivity growth arises
simply from the flow of knowledge across firms. Parente
and Prescott (1994, 2002) showed that surprisingly small
differences in the rates of technological adoption could
imply large disparities in country levels of income, while
Eaton and Kortum (1999) estimated that countries realized
just two-thirds of the potential productivity gains because
of the slow diffusion and adoption of ideas across borders
(see also Hall, 2004; Comin & Hobijn, 2010; Comin &
Mestieri, 2013).

A parallel literature in health care documents similar lags
in adoption and with similar adverse effects on overall pro-
ductivity. Despite powerful evidence from a 1601 experi-
ment demonstrating the effectiveness of lemon juice in pre-
venting scurvy, the British Navy did not require foods
containing vitamin C until 1794 (Berwick, 2003).% Simi-
larly, beta blockers, drugs costing pennies per dose, were
shown during the early 1980s to reduce mortality by as
much as 25% following a heart attack (Yusuf et al., 1985),
yet by 2000/2001 median state-level use was still only 68%
(Jencks, Huff, & Cuerdon, 2003).

We develop a general model in which hospitals and phy-
sicians seek to maximize the health of their patients by
adopting new technologies in the face of financial and
knowledge-based barriers. Variation across hospitals in
these barriers leads to differences in the diffusion rate of
new technologies. We apply this model to the treatment of
patients diagnosed with an acute myocardial infarction
(AMI, or a heart attack) during the period 1986 to 2004, a
time of particularly rapid diffusion for new technologies.

We first consider three types of innovations that are
highly effective and highly cost-effective in saving lives
following AMI: aspirin, beta blockers, and reperfusion
within 12 hours of the heart attack. (Reperfusion consists
either of thrombolytic clot-busting drugs, or percutaneous
coronary interventions, PCI, also known as angioplasty.)3
We also consider the diffusion of technology, first intro-
duced in 2003, drug-eluting stents, to identify how changes
over time in the speed with which new (and valuable) hos-
pital innovations diffuse affect health outcomes. Finally, we
test whether hospitals adopting these three highly effective
treatments also adopted less cost-effective technologies

2 In his 1601 voyage to India, Captain James Lancaster fed sailors in
one of his ships three teaspoons of lemon juice every day, while in the
other three ships, no lemon juice was provided. By the midpoint of the
journey, 110 of the 278 sailors in the control group had died of scurvy
(40%), while none of the sailors in the treatment group had been affected
(Berwick, 2003).

3 Strictly speaking, neither aspirin nor beta blockers were “innova-
tions*; they had been in use for decades. The innovation was to use these
drugs in treating AMI patients.
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such as lidocaine, a drug with initially favorable results but
whose effectiveness was questioned in the late 1980s,
“late” surgical angioplasty (PCI) more than 24 hours after
the AMI (again with less clear clinical effectiveness), and
coronary artery bypass graft surgery (CABG).

The model is tested using a sample of 2.8 million heart
attack patients drawn from the fee-for-service Medicare
population from 1986 to 2004. Like Eaton and Kortum’s
(1999) study of aggregate productivity, we find substantial
differences in the extent to which some hospitals lag behind
in the diffusion of highly effective technologies and that
this differential lag can explain a nearly 3 percentage point
difference in one-year survival between rapid-diffusing and
slow-diffusing hospitals, almost one-third of the overall
improvement in outcomes from 1986 to 2004. These pro-
ductivity effects swamp the influence of differences in fac-
tor inputs, a result also found in the macroeconomics litera-
ture (Hall & Jones, 1999). We demonstrate that the “Asian
tiger” hospitals, which between 1994-1995 and 2003-2004
demonstrated dramatic improvements in diffusion rates,
also experienced above-average survival growth and three
times the growth of the “tortoise” hospitals that experi-
enced a decline in diffusion rates.

Finally, we found evidence that hospitals investing in
highly effective medical innovations (aspirin, beta blockers,
dropping the use of lidocaine) were quite different from
those continuing the use of lidocaine and, most notably,
adopting a mix of less cost-effective surgical innovations
(early reperfusion, late PCI angioplasty, bypass surgery).®
Consistent with Hall (2014), the survival benefits arising
from the more effective medical innovations are estimated
to be larger than those arising from the less effective mix of
treatments. This evidence suggests that barriers to the diffu-
sion of knowledge about the effectiveness of new technolo-
gies play an important role in explaining productivity differ-
ences across hospitals, rather than barriers to the adoption of
new technologies per se.

These results can potentially reconcile two seemingly
divergent views of the U.S. health care system. Technologi-
cal progress has led to dramatic improvements in survival
for heart attack patients (as in Cutler, 2004), but these
improvements are largely associated with the adoption of
effective new technologies rather than more factor inputs
(Chandra & Skinner, 2012). Holding technology diffusion
constant, however, we find modest improvements in out-
comes associated with greater factor inputs, with a pre-
ferred estimate of between $94,000 and $155,000 per life-
year. Chandra et al. (2013) found similar variation in pro-
ductivity across firms in nonhealth industries as in hospitals,
suggesting that the differences across firms in technology
adoption may not be unique to health care. The real puzzle,
therefore, is why many physicians and hospitals—and firms

* The distinction between medical and surgical treatments for AMI fol-
lows Chandra and Staiger (2007).
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more generally—fail to adopt highly efficient (or even mod-
estly efficient) innovations.

II. The Model

We focus on the “production” of survival following
AMI. There are compelling reasons to focus on heart
attacks. Nearly every AMI patient who survives the initial
attack is admitted to a hospital, and ambulance drivers gen-
erally take the patient to the nearest hospital (although see
Doyle et al., 2015). The outcome, survival, is accurately
measured, and there is broad clinical agreement that survi-
val is the most important end point, particularly in the
elderly population. The measurement of inputs is also accu-
rate, as is risk adjustment, including the type of heart attack.
Finally, many of the studies focusing on the value of medi-
cal technology have used AMI as an example (Cutler et al.,
1998; Cutler, 2004; Doyle, 2011).

A. The Hospital Production Function

We develop a simple model of hospital productivity that
distinguishes between inputs that require substantial contri-
butions of capital and labor (e.g. hospital bed-day or surgi-
cal procedures) and technology innovations where barriers
are unlikely to arise solely from financial constraints. Sup-
pose that medical care per patient (e.g., quantity of medical
services) at hospital i in year ¢ (X;;) is produced with con-
stant returns technology,

Xir = hlzétkiltiév (1)
where [;, and k; represent labor and capital inputs per
patient at hospital i in year ¢, and / is a constant measure of
productivity in producing X. Letting r denote the cost of
capital and w the wage rate, the efficient marginal expendi-

1—
ture per X (the implicit price) is P;; = h™! (%)i(l"jé) é.
Because our data measure X;; more accurately than capital
and labor inputs, we focus on the composite factor input
rather than on capital and labor separately.’

While it seems reasonable to assume constant returns for
producing medical care services (doubling staff and beds at
a hospital can produce twice the number of admissions), we
assume that medical care per patient has declining returns
in terms of patient survival (or quality-adjusted life years).
We assume initially a simple production function that speci-
fies a linear relationship between survival per patient (y;;,),
the log of composite medical care inputs x;, = In(X;,,), and
the level of technology at hospital i at time ¢, a;;,

Yir = ajr + Bxit~ (2)

3 In theory one could measure physical inputs as hospital days and phy-
sician resource-value units (RVUs), but neither captures treatment inten-
sity. See Jacobs, Smith, and Street (2006) for an excellent discussion of
productivity in the quantity of medical services, X.
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We adopt this special case to simplify the modeling of our
balanced-growth path of technological innovation.

B. The Diffusion of Technology

Technology is modeled as the sum of many separate
innovations, and for simplicity we assume a model of cer-
tainty in which one new innovation becomes available each
year. Letting j index the year the innovation first appeared
yields

t
ajip = Z ;. (3)
J=1

In equation (3), m;j, is the fraction of appropriate patients at
hospital i receiving treatment j (or the proportion of physi-
cians who have adopted innovation j) by time ¢, while a; is
the return to adopting innovation j. The diffusion rate in
turn is written as

My = Mjjr—1 + Wi (1 — mjir—y). (4)

This year’s usage rate m is equal to last year’s rate plus the
institutional- and innovation-specific diffusion rate m;,
times the gap between best-practice (100% use among
appropriate patients) and last year’s usage.

The frontier technology available at time ¢, a;, is the
technology that could be achieved if a hospital had fully
adopted all innovations available:

t
a=> a. (5)
j=1

To solve the dynamic model below, we collapse the entire
matrix of innovation-specific diffusion rates m;; = {my;,
T - -+ T} INto @ common “core” diffusion rate m;, for
hospital i. Combining equations (3) to (5) to express the
technology level at a given point in time is

Airp1 = ay + T (d — ajy). (6)

Equation (6) is the Nelson-Phelps (1966) partial adjustment
model for productivity, where the diffusion rate (m;,) deter-
mines the rate of partial adjustment in productivity toward
the frontier that is achieved each year.

C. The Hospital Objective Function

There is considerable debate about the objective function
of hospitals (e.g., Horwitz & Nichols, 2007). To avoid hav-
ing to choose a specific model, we instead adopt a general
objective function depending positively on survival and
profitability,
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Vi = Z[Ti(ait + Bxit) - (p[PitXit - Ci(TCit) + Kit]
t=0
x (141", (7)

where r is the discount rate, ‘¥ is the implicit social (dollar)
value of improved health (assumed for simplicity to be con-
stant over time), and K, represents either fixed costs or sub-
sidization from endowments or non-Medicare patient rev-
enue. If the hospital were acting to maximize social benefit,
¢; would equal 1, but increasing certain inputs (e.g., cardiac
surgery) could improve profitability; thus in general
¢; < 1. As we show in the online appendix, other models
of hospital behavior reflecting the tension between financial
profits and social welfare imply values of either ¥'; below
the value corresponding to a social planner, or ¢; < 1, or
both.

We assume that there is a cost of diffusion, equal to
Ci(m;), with C" > 0 and C” > 0. The costs may include the
obvious expenses of, say, computerized information sys-
tems that prompt physicians when beta blockers or aspirin
have not been administered, quality improvement initia-
tives, fixed costs of new technologies such as catheteriza-
tion laboratories, or higher wages and research time to help
recruit smarter or more technically skilled physicians (Bero
et al., 1998; Bradley et al., 2001). These costs (and marginal
costs) are likely to differ substantially across hospitals and
will likely reflect physician search costs, the quality of insti-
tutional leadership, and other factors affecting the speed
of diffusion (Rogers, 2003; Bradley et al., 2001; Phelps,
2000).

D. Solving the Dynamic Model

The maximization is subject to the equations denoting
the evolution of technology over time and is expressed as a
discrete-time Lagrangian:®

o0

=V, — Z Nielai — aie — mi(ay,, — ai)). (8)
t=0

Under constant productivity growth, where o, = o and
a;,, = a; + o, the first-order conditions (shown in appendix
equations A.4a through A.4d) yield a dynamic steady-state
path with an equilibrium (and stable) diffusion rate m;; = w;
that is constant over time.

From the first-order conditions, optimal factor inputs are
given by

Xi = ViB/Pud;. )

% This model can also be written in continuous time as a current-value
Hamiltonian, but we maintain a discrete time structure to be consistent
with the empirical data.
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Not surprisingly, factor inputs are greater when there is a
higher implicit value by the hospital on saving a life-year
¥, there is a higher return to factor inputs 3, when the price
of producing a factor input P;, is lower, and when finan-
cially motivated hospitals are reimbursed generously for
care (¢; is small).’

For a constant growth rate o, it is straightforward to show
that productivity in the steady state is given by

" 1—TC,'
ai[:at_a .
T

Equation (10) states that the steady-state distance that a
hospital lags behind the productivity frontier is a constant
nonlinear function of the steady-state diffusion rate (m;), in
which small differences in diffusion can lead to very large
differences in productivity (Parente & Prescott, 1994). Note
that the term (1 — 7;)/7; can be interpreted as the number
of years a hospital lags behind the frontier (since o is annual
productivity growth). Thus, a hospital with a 20% diffusion
rate lags four years behind, and a hospital with a 5% diffu-
sion rate lags nineteen years behind. Equation (10) also
implies that there is no convergence; productivity at all hos-
pitals grows at the same rate as the frontier — a. This prop-
erty has been noted in other papers as well (Eaton & Kor-
tum, 1999) and is a consequence of the Nelson-Phelps
(1966) partial adjustment model implied by equation (6).

Finally, the optimal diffusion rate is chosen to set its mar-
ginal cost equal to its marginal benefit:

(10)

Ci(m) = [Wi(a} — an)]/(r +m). (11)
The numerator of the right-hand side of equation (11) mea-
sures the immediate benefit, in dollar terms, of moving to
the frontier today, while the denominator converts this to
the present value, as the value of today’s innovation decays
in the future. Equation (11) shows that differences across
hospitals in rates of diffusion are implicitly determined by
corresponding variations in the marginal cost of adopting
those new technologies.

III. Empirical Specification of the Model

We now translate the theoretical model to a stochastic
specification with measurement error. We rewrite equation
(2) but add an error term u;, without yet making any claims
for its statistical properties:

Yie = @i + Pxis + wir. (12)

7 Optimal factor inputs are independent of the level of technology
because the production function, equation (2), assumes that the marginal
product of factor inputs (B) does not depend on technology. In a more
general specification that allowed interactions between technology and
factor inputs, optimal factor inputs would increase (decrease) if new tech-
nology increased (decreased) the marginal product of factor inputs.
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Using the steady-state assumption from equation (10),
equation (12) is rewritten as

_Tcl.

(13)

1

. 1
Yi=a, —o + Boeir + ujy.-

This suggests a very simple estimation model, regressing
survival (y;,) on log inputs (x;,), a linear trend (or year fixed
effects) to reflect growth over time in the frontier ¢,*, and a
variable reflecting the hospital-specific rate of diffusion ;.
However, several challenges remain: x;, and y;, must be con-
structed from individual-level data; 7, is not directly observa-
ble and must be estimated, and may change over time; the lin-
ear estimation equation may be too restrictive; and u could be
correlated with x. We consider each of these issues in turn.

A. Creating Hospital-Level Survival and Input Measures

We create hospital-level measures of survival and factor
inputs from the individual data in the Medicare claims data.
Let one-year mortality following a heart attack be expressed as

H
St = Ziie + Z Yir + €lir- (14)
—1

1

The dependent variable, S;, is a 1-0 variable reflecting
whether the individual / who had an AMI in year ¢ (and was
admitted to hospital i) survived for at least one year, with
Z;;; a matrix of individual risk adjusters, I' a vector of coef-
ficient, v;, a vector of hospital-year specific intercepts, and
e the error term. Similar equations are also estimated for
two measures of total factor inputs in the year following
the heart attack: hospital expenditures (in constant 2004
dollars) and the sum of diagnostic-related group (DRG)
weights across all hospital admissions, which reflect the
Centers for Medicare and Medicaid Services (CMS) assess-
ment of resources necessary for specific services. The hos-
pital-year intercepts from equation (14), v,;, are used in our
subsequent estimation as risk-adjusted measures of survival
and factor inputs.

B. Estimating Each Hospital's Rate of Diffusion

We use data on the adoption of various innovations at a
point in time to estimate each hospital’s rate of diffusion
(my). In steady state, equation (4) implies that the current rate
of use (m;;;) of an innovation j depends simply on the number
of years it has been available (¢ — j) and the hospital-specific
rate of diffusion (r;), where m;; = 1 — (1 — m;)" /. Taking a
first-order approximation so that 1 — (1 — m;) ™/ ~ (¢t — j)m;
and adding a stochastic term (vj;;) to allow for random fluc-
tuations over time allows us to express m;;; as

(15)

mjiy = (t — J)Ti + Vjir.

The structure in equation (15) is consistent with a factor
model in which the adoption rate of all technologies in a
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given year depends on a common factor (m;) that captures
each hospital’s rate of diffusion, and the factor loading for
each technology (¢ — j) reflects the length of time the inno-
vation has been available. Therefore, we fit a factor model
to hospital-level data on the adoption rate of various inno-
vations and use the prediction of the common factor as a
proxy for each hospital’s underlying diffusion rate.

There are two approaches to estimating the influence of
this diffusion parameter on survival in equation (13). One
is to simply enter the common factor, proportional to m;
(but normalized to have mean 0 and standard deviation 1)
linearly, or to estimate the model by creating quintiles of
hospitals according to their estimated m; Second, in some
specifications of equation (13), we include hospital fixed
effects to proxy for each hospital’s specific diffusion para-
meters. Hospital fixed effects do not provide a direct esti-
mate of how diffusion is associated with patient survival,
but they avoid concerns about poorly measured estimates
of 7;, yielding estimates of [ less subject to omitted vari-
able bias.

C. Relaxing the Assumption of a Steady-State Model

If hospitals are not in steady state (e.g., because of chan-
ging costs of diffusion), then w; will not be constant over
time, leading to changing rates of diffusion. A rising
diffusion parameter m; for effective innovations will tend
to accelerate health outcomes relative to its initial steady
state, and the converse. We will therefore test empirically
whether risk-adjusted survival rates of hospitals experien-
cing large improvements in measured diffusion (the produc-
tivity tigers) are higher than those at hospitals experiencing
downward shifts (the productivity tortoises).

D. The Error Term Could Be Correlated with Factor Inputs

Estimates of the return to factor inputs () in equation
(13) may be biased by correlation between factor inputs
(x;) and the error term, whether because hospitals with a
greater degree of unobserved efficiency (as reflected in the
error term) may also experience greater skill in the use of
X;; (Chandra & Staiger, 2007) or because of unobservable
technological innovations that make inputs x;, more produc-
tive. The typical approach to this problem is to instrument
for inputs, but we could not think of a plausible instrument
that affected x;, but not productivity. Thus we interpret the
estimate of 3 with caution.

A second cause for x;; to be correlated with the error term
arises from our construction of y;, and x; from individual
data. Small numbers of people in each hospital-year obser-
vation could create a spurious positive correlation between
vi and x;,, given that (as we find in the data) people who live
longer on average account for more spending. To address
this issue, we also present estimates that limit the sample
size to hospitals with at least fifty patients.
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E. The Cost-Effectiveness Ratio

To provide a basis for comparison with other studies, we
also calculated the cost-effectiveness (CE) ratio, or the cost
per life-year gained, defined as

dC /|dydL
E=ax [dXdy]’ (16)
where X measures DRGs (and dC/dX is the cost per DRG,)
y is the probability of surviving one year, dy/dX is derived
from the regression estimate, and dL/dy, the change in life
expectancy conditional on surviving an extra year, is set to
5.25 based on estimates in Cutler et al. (1998).

There is some debate over the appropriate hurdle for
whether a treatment is cost-effective. Generally values below
$100,000 per life year pass muster, although some clinical
willingness-to-pay estimates are well below $50,000 (King
et al., 2005). Conversely, economists typically favor much
larger estimates, of up to $250,000 per life year for older peo-
ple (Hirth et al., 2000; Murphy & Topel, 2006).

IV. The Diffusion of Efficient Treatments for Acute
Myocardial Infarction

A. Data on the Treatment of Patients

The 1990s were marked by fundamental changes in the
treatment of AMI. Technology diffusion was measured in
the Cooperative Cardiovascular Program (CCP) data set,
which involved chart reviews for over 160,000 AMI
patients over age 65 during 1994-1995, matched to the
admitting hospital (Chandra & Staiger, 2007). We consider
three innovations resulting in major reductions in cardio-
vascular disease between 1980 and 2000 (Ford et al., 2007).

The first, aspirin, reduces platelet aggregation and helps
to limit clotting, thereby improving blood flow to oxygen-
starved tissue. By 1988 it was included in standard guide-
lines for care (ISIS-2, 1988).

The second, a beta blocker, is an inexpensive drug that
blocks the beta-adrenergic receptors and reduces the de-
mands on the heart. In a meta-analysis from 1985, Yusuf
et al. summarized the existing literature: “Long-term beta
blockade for perhaps a year or so following discharge after
an MI is now of proven value, and for many such patients
mortality reductions of about 25% can be achieved” (p.
335).

The third measure is reperfusion within 12 hours of the
AMI. Reperfusion, or restoring blood flow to the oxygen-
starved heart muscles, can be effected using thrombolytics,
drugs that help break down the clots blocking the blood, or
a percutaneous coronary intervention (PCI) in which a
“balloon” is threaded into the blocked artery and expanded,
thus restoring blood flow. Each was considered a highly
effective treatment strategy at the time (Ryan et al., 1993).
Since 1995, cardiologists have increasingly adopted stents,
cylindrical wire meshes, to maintain blood flow following
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TaBLE 1.—AssocIATION oF CoMMON FACTOR FROM ONE-FACTOR ADOPTION MODEL WITH ADOPTION AND OTHER CHARACTERISTICS OF THE HOSPITAL

Quintile 5 Quintile 1

(quickest) Quintile 4 Quintile 3 Quintile 2 (slowest) Overall
Fraction aspirin 0.90 0.86 0.81 0.77 0.65 0.80
Fraction [ blocker 0.66 0.53 0.46 0.41 0.31 0.47
Fraction reperfusion within 12 hours 0.22 0.20 0.19 0.18 0.15 0.19
Average hospital AMI volume® 91 104 94 86 67 89
Fraction major teaching hospital 0.45 0.30 0.24 0.16 0.06 0.24
Fraction for-profit hospital 0.04 0.08 0.07 0.09 0.17 0.09
Fraction government hospital 0.11 0.09 0.13 0.10 0.17 0.12
Average state income (1994-1995) 43,790 42,603 42,168 42,215 41,648 42,495
% of hospitals performing stents in 2003-2004 0.74 0.69 0.63 0.49 0.32 0.57
Of those, % drug-eluting stent 2003-2004 0.62 0.60 0.59 0.57 0.52 0.59

Each column of the table reports average hospital and patient characteristics by adoption quintile and overall (in the final column). All averages are weighted by number of AMI patients in each hospital. Adoption
quintiles were defined based on the common factor estimated from a one-factor model of hospital use of aspirin, beta blockers, and reperfusion. All estimates except for stent data come from the Cooperative Cardio-
vascular Project (CCP), 1994-1995, with a sample of 139,847 AMI patients and 2,999 hospitals. Estimates for each quintile are based on samples of approximately 28,000 AMI patients. Stent data are derived from

Medicare Part A (hospital) claims from 2003-2004 for the same sample of hospitals.
“Volume for Medicare patients only.

the angioplasty. While not all hospitals had the catheteriza-
tion laboratories necessary for PCI, thrombolytics were a
viable option for nearly every hospital.

B. A Factor Model of Diffusion

We estimate a factor model based on equation (15), in
which the proportion of patients in each hospital receiving
each of the three treatments depended on a single common
factor. Hospital-level data on each of the three treatments
was available for 2,999 hospitals in 1994-1995 from the
CCP data.® Factor analysis normalizes the underlying fac-
tors to have a mean of 0 and variance of 1.

Table 1 summarizes the extent to which the common fac-
tor was associated with each of the individual variables.
Quintiles across hospitals based on this common factor
show clear differences in the use of aspirin (from 90% in
the highest-adopting quintile to 65% in the lowest), beta
blockers (66% to 31%), but with more modest differences
in reperfusion (22% to 15%).° One could interpret these
patterns as reflecting demand; patients in high-quintile
regions ask for and get beta blockers, for example. How-
ever, elderly supine heart attack patients are unlikely to be
requesting specific treatments, and hospitalized patients
should not have to ask their physicians for these treatments
given their clear benefits.

Table 1 also demonstrates that hospitals in the quintiles
with quicker adoption also have higher patient volume, are
much more likely to be major teaching hospitals and less
likely to be for-profit hospitals, and are located in states
with slightly higher average income. Teaching hospitals
and those with higher volume are particularly likely to
experience lower informational barriers to rapidly adopt

8 Hospitals in this sample were required to have remained in existence
throughout the period 1986 to 2004 in the Medicare claims data, as
described in section VI.

° These averages are for all patients and not for “ideal” patients, since
it is often difficult in practice to define ideal or appropriate patients. While
a high fraction of patients should receive beta blockers and aspirin, the
optimal rate for revascularization is substantially lower.

new technologies. Moreover, the positive association
between patient volume and the speed of diffusion of highly
effective technologies suggests that the market may reward
rapid adopters with higher demand (Chandra et al., 2013).

We can use estimates from the randomized trials for
aspirin, beta blockers, and reperfusion to make predictions
about the gaps in mortality across our diffusion quintiles.
Using the disparities in utilization from table 1, multiplied
by treatment effects estimated in clinical trials,'® yields a
predicted one-year survival different of 3.9% between the
highest and lowest diffusion quintiles. In the next section,
we compare this estimate, based solely on clinical studies
and the CCP diffusion data, with results from Medicare
risk-adjusted mortality data.

The final rows of table 1 show patterns of diffusion a
decade later for a quite different innovation: drug-eluting
stents. In April 2003, the FDA approved new drug-eluting
stents, which were coated with antibiotics to reduce the
likelihood of the blockage reappearing at the site of the ori-
ginal stent.'' We linked the hospital-specific measures of
the diffusion of drug-eluting stents, as described in Malenka
et al. (2008), to the earlier diffusion quintiles. Hospitals
with the most rapid diffusion of cardiac technology in
1993-1994 were both more likely to implant stents in
2003-2004 and, conditional on having catheterization facil-
ities, were more likely to have adopted drug-eluting stents.
Knowing rates at two different points in time allows us to
measure changes over time in hospital diffusion rates,
which we consider in the next section.

19 The estimated effect of beta blockers is a 22% decline in one-year
mortality arising from beta blockers (Phillips et al., 2000), times a base-
line 33% mortality probability. For aspirin, mortality was 18% lower
(Krumbholz et al., 1995). For 12-hour reperfusion, we use as a lower bound
the impact of fibrinolytic therapy, of about 25% mortality decline (FTT,
1994). Each of these was multiplied by the gap across quintiles (from
table 1) in the corresponding diffusion measures.

' While there has been some controversy about the health benefits of
drug-eluting stents (see Malenka et al., 2008), there was widespread con-
sensus among cardiologists in 2003 that this new technology was better
than the older bare-metal stents. Also note that the estimated diffusion
rates are for all stenting patients, and not solely AMI patients.
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FIGURE 1.—SURVIVAL RATES BY YEAR AND DIFFUSION QUINTILES, 1986-2004
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The figure reports risk-adjusted one-year AMI survival rates annually from 1986 to 2004 for hospitals
in each adoption quintile. Adoption quintiles were defined based on the common factor estimated from a
one-factor model of hospital use of aspirin, beta blockers, and reperfusion (see table 1). Risk-adjusted
survival was derived from Medicare claims data on 2.8 million AMI admissions from 1986 to 2004.

V. The Relationship between Patient Survival and a
Hospital’s Diffusion Rate

A. Data on Patient Cost and Survival

The primary data set is a 20% sample of the Medicare
Part A (hospital) claims data for all heart attack (AMI)
patients age 65 and over in the United States from 1986 to
1991 and a 100% sample from 1992 through 2004, with
updated information on mortality through 2005. (We limit
the follow-up period to ten years following the 1994-1995
CCP data on diffusion.) The original sample comprises 3.3
million people. We eliminated hospitals with fewer than
five patients in any of the 100% sample years (and any hos-
pital that closed during the period of analysis), resulting in
a final sample of 2.8 million people.

To create hospital-year risk-adjusted survival and (infla-
tion-adjusted) expenditures, we estimated equation (14) at
the patient level using identical specifications for three
dependent variables: one-year survival, total Part A (hospital)
Medicare reimbursements during the year following the
AMI, and total DRG weights per patient during the year fol-
lowing the AMI as a measure of factor inputs.'? These regres-
sions included categorical variables indicating the presence
of seven comorbid conditions, anatomical location of the MI,
and full interactions of each five-year age bracket, by sex and
race. The risk-adjustment regressions for one-year survival
and one-year expenditures are shown in appendix table A.1.

B. Descriptive Results

We begin by showing graphically the association
between technology adoption and risk-adjusted survival in
figure 1, which displays the weighted average of risk-

12 For example, an AMI patient fitted with a drug-eluting stent would
qualify for 3.12 DRG “units” in 2003, and this was common across all
hospitals. Note that DRG weights may change slightly over time.
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adjusted one-year survival (y;) by year and quintile of dif-
fusion. The average gap in survival between the slowest
and most rapid adopters is 2.7 percentage points, somewhat
less than the predicted gap of 3.9 percentage points based
on evidence from randomized trials discussed in the prior
section. The lag in terms of years between the most rapid
and slowest hospital adopters varies over the time period,
but the average annual (horizontal) gap is roughly five to
ten years. In our model, (1 — m;)/m; can be interpreted as
the number of years a hospital lags behind the frontier.
Thus, we would observe a gap of ten years if the most rapid
adopters had a diffusion rate of 10% (nine years behind the
frontier) and the slowest adopters had a diffusion rate of 5%
(nineteen years behind the frontier). Diffusion rates of 10%
and 5% are in line with the adoption rates of the quickest
and slowest hospitals in table 1, again suggesting that dif-
ferences in survival are broadly consistent with observed
differences in diffusion."?

C. Convergence

A key implication of the model is the lack of conver-
gence; the low-diffusion hospitals are predicted to grow at
the same rate as high-diffusion hospitals. This can be seen
visually in figure 1. But we can also test another implication
of the model: that the hospital-level variance in risk-
adjusted survival is not predicted to narrow over time
(o-convergence). We do not find evidence of such conver-
gence: our estimate of the (weighted) standard deviation of
hospital fixed effects, correcting for estimation error (by
subtracting the variance of the “noise” component of the
fixed effect), is 0.043 in 1986 and 0.042 in 2004.

D. Estimates of Technology Diffusion on Survival

Table 2 presents estimates of the regression model in
equation (13). We begin with the simplest regression model
in which survival is a function of the continuous diffusion
index, log DRG inputs, and year fixed effects. Recall that
the diffusion index is normalized to have a standard devia-
tion of 1. Thus, the coefficient implies that a 1 standard
deviation increase in the diffusion rate is associated with a
1.4 percentage point increase in patient survival, which
yields a similar survival benefit as the predicted doubling of
DRG inputs (0.022In(2) = 0.015). Column 3 replaces the
continuous diffusion index with dummies for the hospital-
specific diffusion quintile and demonstrates again that con-
trolling for DRG inputs, the most rapidly diffusing hospitals
(quintile 5) experience a 2.7 percentage point higher survi-
val rate compared to the slowest-diffusing hospitals.

i aspirin began diffusing in 1975, beta blockers in 1985, and reperfu-
sion in 1992 (all start dates), then by 1995 diffusion rates of 10% and 5%
would generate aspirin use of 88% and 64%, beta blocker use of 65% and
40%, and reperfusion use of 27% and 14%, which are reasonably consis-
tent with estimates in table 1.


http://www.mitpressjournals.org/action/showImage?doi=10.1162/REST_a_00535&iName=master.img-000.jpg&w=228&h=160

958

TABLE 2.—REGRESSION ESTIMATES OF SURVIVAL ON DRG INPUTS AND THE
EFrFECTIVE TREATMENTS DIFFUSION FACTOR

One-Year One-Year
Dependent Variable Survival Survival
Diffusion factor (continuous) 0.014
(0.001)
Diftusion quintile 2 0.009
(0.002)
Diffusion quintile 3 0.016
(0.002)
Diffusion quintile 4 0.024
(0.003)
Diffusion quintile 5 0.027
(0.002)
log (DRG) 0.022 0.023
(0.004) (0.004)
R? 0.09 0.09

Each column reports estimates from a separate regression in which an observation is a hospital-year,
with N = 49,937 hospital-years. All regressions are weighted by the number of patients in each hospital-
year. The dependent variable is the risk-adjusted one-year survival rate among AMI patients. The diffu-
sion factor and quintiles are based on the common factor estimated from a one-factor model of hospital
use of aspirin, beta blockers, and reperfusion. Log(DRG) is the log of the risk-adjusted total DRG
weights per patient in the year following his or her AMI. Year dummy variables are included in all
regressions. Risk-adjusted survival and DRG weights are derived from Medicare claims data from 1986
to 2004. The sample is limited to hospital/year observations with at least five observations per hospital.
Standard errors (clustered at the hospital level) are in parentheses.

E. Estimates of B, the Marginal Productivity of Inputs

Table 3 examines how the specification of the model
affects estimates of B and interprets them in the context of
the cost-effectiveness ratio. Column A of the table reports
estimates for all hospitals, while column (B) is limited to
hospitals with at least fifty AMI patients. Rows 1 and 2
show the traditional regressions of risk-adjusted survival on
risk-adjusted expenditures and DRG inputs. These regres-
sions show either a negative association between spending
and survival or, in one case (with In(DRG) on the right-
hand side of the regression across all hospitals), a very
small positive coefficient of B = 0.017, with a weak cost-
effectiveness ratio of $301,000.

As noted earlier, these estimates may reflect the fact that
lower-spending hospitals were those with greater diffusion
of effective technologies. When we control for either the
continuous measure of diffusion (row 3) or quintiles (row 4),
we find a positive and more favorable association between
DRG inputs and survival, with the all-hospital sample yield-
ing cost-effectiveness ratios of $227,000 and $216,000 per
life-year (although the sample of hospitals with N > 50
shows insignificant estimates). Finally, as shown in row 5,
including hospital fixed effects (which potentially capture
additional differences across hospitals in diffusion not mea-
sured by our diffusion index) raises the estimate of B to
0.053, with an implied cost-effectiveness ratio of between
$94,000 and $155,000. The estimate of f is higher in the per-
10d 1986—-1994 than in 1995-2004, when the estimated cost-
effectiveness ratio ranges from $115,000 to $171,000.

This pattern of coefficients is consistent with our model
if the return to DRG inputs is lower in hospitals with higher
technology diffusion, as represented graphically in figure 3
for a given year. Consider just two hospitals, given by
A (on the production function PF(1)) and B (on the produc-
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tion function PF(2)). If the researcher does not control for
technology adoption, she would estimate the dotted line
connecting points A and B—effectively, flat-of-the-curve
health care, as shown in row 1 or 2 of table 3. As we control
with more accuracy for each hospital’s technology level in
table 3, the estimated (marginal) slope of the production
function becomes steeper, to approximate aa’ or bb’ in
figure 2.

F. Changes over Time in Diffusion Rates

A prediction of the theoretical model is that hospitals that
manage to improve their diffusion parameters will, like
countries such as Japan or Korea in the postwar period,
experience rapid growth in outcomes (Parente & Prescott,
2002), and conversely. Table 4 further considers risk-
adjusted survival among hospitals that were initially in the
slowest diffusion quintile (1) or the highest diffusion quin-
tile (5) during 1994—-1995. For the slow-diffusion hospitals
in 1994-1995 remaining a slow-diffusion hospital (in drug-
eluting stents) in 2003-2004, one-year survival rates rose
from 65.2% in 1994-1995 to 69.1% in 2003-2004, an
increase of 3.9%. Similarly, hospitals initially in the high-
est-diffusing quintile (5) in 1993—1994 that remained in the
highest-diffusing quintile by 2003—2004, increased survival
by 3.5 percentage points—very similar to the stable low-
quintile hospitals, as predicted by the model.

Hospitals initially in the lowest-diffusion quintile during
1994—1995 that moved up to the highest-diffusion quintile
for drug-eluting stents in 2003-2004 (the tigers) experi-
enced a gain of 5.5 percentage points. By contrast, the hos-
pitals experiencing a decline in diffusion rates from quintile
5 in 1994-1995 to quintile 1 in 2003-2004 (the turtles)
showed a survival gain of just 1.5 percentage points, signifi-
cantly lower than the tigers (p = 0.03)."* These patterns
are consistent with the view that changes in technology dif-
fusion can be directly linked to changes in hospital out-
comes as measured by patient survival.

VI. Did the Rapid-Diffusion Hospitals Adopt
Every New Innovation?

Thus far, we have considered only three of the many new
innovations for heart attack patients during the period 1984
to 2004. Did the rapidly innovating hospitals also adopt
other technologies across the board? Or does the adoption
of these highly effective innovations reflect specific skills
of the hospital management, as in the Lucas (1978) model
of managerial skills? In this section, we consider three addi-

14 One hypothesis is that hospitals that were early adopters of surgery in
1994-1995 would also be early adopters of drug-eluting stents in 2003—
2004, and so the improved survival of the tiger hospitals was simply the
consequence of surgical innovations paying off in the 2000s. However,
drug-eluting stents were no more correlated with surgical procedure rates
in 1994-1995 than beta blockers or aspirin in 1994—1995.



TECHNOLOGY DIFFUSION AND PRODUCTIVITY GROWTH IN HEALTH CARE

959

TABLE 3.—REGRESSION ESTIMATES OF SURVIVAL ON INPUTS FOR ALTERNATIVE SPECIFICATIONS

Period of Adjusted for (A) All (B) Larger
Input Analysis Diffusion Hospitals Hospitals (N > 50)

1 Log(Expend) 19862004 No —0.015 —0.026
(0.003) (0.004)

[Undefined] [Undefined]
2 Log(DRG) 19862004 No 0.017 —0.016
(0.004) (0.006)

[$301,000] [Undefined]
3 Log(DRG) 1986-2004 Continuous measure 0.022 —0.009
(0.004) (0.006)

[$227,000] [Undefined]
4 Log(DRG) 19862004 Diffusion quintiles 0.023 —0.009
(0.004) (0.006)

[$216,000] [Undefined]
5 Log(DRG) 19862004 Hospital fixed effects 0.053 0.032
(0.003) (0.005)

[$94,000] [$155,000]
6 Log(DRG) 1986-1994 Hospital fixed effects 0.069 0.044
(0.004) (0.013)

[$72,000] [$113,000]
7 Log(DRG) 1995-2004 Hospital fixed effects 0.043 0.029
(0.004) (0.005)

[$115,000] [$171,000]

See notes to table 2. Each row of the table reports the coefficient on a measure of inputs from separate regressions of risk-adjusted one-year survival on inputs using different specifications as indicated. Column A
reports estimates for all hospitals, while column B is limited to hospitals with at least fifty AMI admits in the year. All regressions control for year dummies. The cost-effectiveness ratios are in brackets and assume

2004 average costs of $26,063 and an average length of life among incremental survivors of 5.25 years.

FIGURE 2.—INTERPRETING THE EVIDENCE ON SURVIVAL AND HEALTH OUTCOMES:
FLAT-OF-THE-CURVE VERSUS PRODUCTIVITY DIFFERENTIALS

Survival

PF(I)

PF(2)

Factor Inputs

This figure illustrates the idea that when two health care systems are on different production functions
PF(1) and PF(2), trying to make inferences about the marginal value of spending from a comparison of
the two health systems can lead to biased results. In the graph, even though the marginal value of addi-
tional spending is positive for both health systems (with slopes of the marginal value given by aa and bb,
respectively), a regression line based on a cross-sectional comparison (the dotted line passing through
AB) yields a biased estimate of the true returns.

tional innovations with less cost-effective and more hetero-
geneous benefits.

The first is lidocaine, a drug used to prevent ventricular
fibrillation in AMI patients. While this was viewed as a pro-
mising approach in the early 1980s, by the late 1980s, a
consensus had emerged that the use of lidocaine for uncom-
plicated AMIs could actually increase mortality (Hine
et al., 1989). As of 1994-1995, average rates of use were
20.4%.

The second is late PCI, or the use of angioplasty more
than 12 hours after the index AMI. Beyond a small group of
patients, its use was supported by either weak evidence or
was contraindicated (Ryan et al., 1993). Within a year of

the AMI, 16.4% of all patients received such treatment. The
third is coronary artery bypass graft surgery (CABG). The
1991 American College of Cardiology/American Heart
Association (ACC/AHA) guidelines suggested strict criteria
for CABG following AMI, and for many broad classes
of patients, guidelines are not supportive.'> On average,
14.6% of AMI patients received CABG within a year of the
AML

With these three additional technologies, we have six dif-
fusion measures created by averaging across all AMI
patients in each hospital. We then estimated a factor model
allowing for more than one factor using a varimax rotation,
which facilitates interpretation of the factors by identifying
each treatment rate with a single factor to the extent possi-
ble. The BIC goodness-of-fit criterion indicated just two
distinct factors, labeled factor A and factor B. Note that we
have not imposed any a priori restrictions on how these fac-
tors are estimated. As before, factor analysis normalizes the
underlying factors to have a mean of 0 and variance of 1.

Factor A is nearly identical to our simple diffusion mea-
sure above; the correlation between the two is 0.98. To
facilitate comparisons between factors A and B, we present
in table 5 the difference between quintile 5 (fastest) and
quintile 1 (slowest) innovations, with the factor scoring
weights (these weights are used to combine the six mea-
sures to form predictions of each factor). Factor A loads
heavily on medical treatments that are highly effective such
as aspirin (a weight of 0.41), beta blockers (0.35), and

'3 For example: “The coronary artery bypass operation probably has lit-
tle place in the management of most patients with uncomplicated acute Q
wave myocardial infarction, but the matter remains arguable” (Kirklin
etal., 1991, p. 1141).
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TABLE 4.—GROWTH IN RisK-ADJUSTED SURVIVAL BY DIFFUSION QUINTILES IN 1994—1995 anDp 1IN 2003-2004

Survival: 1994-1995

Change in Survival:

Survival: 2003-2004 1994-1995 to 2003-2004

2003/04 2003-2004 2003-2004 2003-2004 2003-2004 2003-2004
Quintile 1 Quintile 5 Quintile 1 Quintile 5 Quintile 1 Quintile 5
(slowest) (Fastest) (slowest) (fastest) (slowest) (fastest)
1994-1995 quintile 1 (slowest) 0.652 0.655 0.691 0.710 0.039 0.055
(0.008) (0.019) (0.009) (0.012) (0.009) (0.016)
1994-1995 quintile 5 (fastest) 0.686 0.684 0.701 0.719 0.015 0.035
(0.006) (0.005) (0.007) (0.006) (0.008) (0.006)

The table reports patient-weighted risk-adjusted one-year survival rates in 1994-1995 and 2003-2004 and the change in survival rates from 1994—-1995 to 2003-2004. Each cell identifies hospitals according to
whether they were in the fastest or slowest adoption quintile of effective treatments in 1994-1995 and whether they were in the fastest or slowest adoption quintile of drug-eluting stents in 2003-2004 (see table 1).

All standard errors are clustered at the hospital level.

TABLE 5.—ASSOCIATION OF FACTOR A AND B FROM Two-FACTOR ADOPTION MODEL WITH ADOPTION AND OTHER CHARACTERISTICS OF THE HOSPITAL

Factor A Factor B
Quintile 5 Quintile 1 Factor Scoring Quintile 5 Quintile 1 Factor Scoring

(fastest) (slowest) Weight (fastest) (slowest) Weight
Aspirin 0.90 0.65 0.41 0.82 0.75 0.07
B blocker 0.65 0.31 0.35 0.41 0.51 —0.15
12- hour reperfusion 0.19 0.15 0.05 0.26 0.12 0.27
Lidocaine 0.17 0.21 —0.08 0.32 0.11 0.34
PCI after 12 hours 0.22 0.12 0.13 0.23 0.10 0.20
CABG 0.18 0.12 0.10 0.18 0.10 0.15
Average hospital volume® 103 83 77
Fraction major teaching hospital 0.50 0.05 0.11 0.28
Fraction for-profit hospital 0.04 0.16 0.14 0.08
Fraction government hospital 0.10 0.17 0.14 0.13
Average state income (1994—-1995, thousands) 43.99 41.77 41.37 43.65
Fraction of hospitals performing stents 2003—2004 0.82 0.28 0.75 0.31
Of those, % drug-eluting stent 2003—2004 0.62 0.51 0.55 0.61

Each column of the table reports average hospital and patient characteristics in the fastest and slowest adoption quintiles and factor scoring weights for defining each factor, based on the factors estimated from a
two-factor model. The two factors were estimated from a factor model of hospital use of aspirin, beta blockers, reperfusion, lidocaine, PCI after 12 hours (late PCI), and CABG (coronary artery bypass graft surgery).
All averages are weighted by number of AMI patients in each hospital. All estimates except for stent data come from the Cooperative Cardiovascular Project (CCP), 1994-1995, with a sample of 139,847 AMI
patients and 2,999 hospitals. Estimates for each quintile are based on samples of approximately 28,000 AMI patients. Stent data are derived from Medicare Part A (hospital) claims from 2003-2004 for the same sam-

ple of hospitals.
*Volume for Medicare patients only.

avoiding lidocaine (—0.08). By contrast, factor B loads
more heavily on surgical innovations that tend to be less
cost-effective, such as reperfusion (0.27), PCI after 12
hours (0.20), and CABG (0.15), as well as lidocaine (0.34).
One interpretation of the two factors is that factor A identi-
fies hospitals that are able to accumulate new knowledge
more quickly and thereby more rapidly identify highly
effective technologies, while factor B identifies hospitals
that are able to accumulate new technology more quickly
(whether or not it is effective). Thus, factor A seems to
identify “smart” hospitals, while factor B seems to identify
“aggressive” hospitals.

There are other differences between the factor A and B
hospitals, also shown in table 5, that are broadly consistent
with this interpretation of the two factors. Unlike factor A,
there were no differences in patient volume across quintiles
of factor B, suggesting that the market may be rewarding
“smart” adoption rather than the adoption of any new tech-
nology. Factor B hospitals also exhibit a higher fraction of
for-profit hospitals (0.14 in the highest quintile versus 0.08
in the lowest) and a lower fraction of teaching hospitals
(0.11 versus 0.28), suggesting that factor B adoption is less
related to knowledge of the medical staff. In sum, these two

factors identify very different types of hospitals with very
different strategies of technology adoption.

We first estimate the equivalent of equation (13) with
both factors, shown in table 6; survival is a function of the
continuous diffusion indices, log DRG inputs, and year
fixed effects.'® As before, hospitals in the top quintile of
factor A are associated with 2.6 percentage point higher
survival. By contrast, hospitals in the top quintile for factor
B exhibit only 0.9 percentage point higher survival. Thus,
adoption of the types of technologies associated with factor
B has less of an impact on survival than the highly effective
technologies associated with factor A.

Finally, one might expect the return to factor inputs to be
higher in hospitals that adopt technologies associated with
factor B, since these tend to be more expensive surgical
interventions. We therefore estimate the more flexible
“translog” production function (Christiansen, Jorgenson, &

16 We show in the appendix that a model in which there are two types
of innovations that appear in each year, a higher-value and lower-value
innovation, leads to an estimation equation that is identical to equation
(13), except to include both of the diffusion parameters for factor A, my;,
and factor B, 1tg;.
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TABLE 6.—REGRESSION ESTIMATES OF SURVIVAL ON DRG INPUTS AND ON BoTH
DirrusioN FacTors FROM THE Two-FAcTorR MODEL OF DIFFUSION

Dependent One-Year One-Year
Variable Survival Survival

Factor A 0.014

(0.001)
Factor A: 0.008
Quintile 2 (0.002)
Factor A: 0.013
Quintile 3 (0.002)
Factor A: 0.023
Quintile 4 (0.002)
Factor A: 0.026
Quintile 5 (0.002)
Factor B 0.005

(0.001)
Factor B: 0.005
Quintile 2 (0.002)
Factor B: 0.007
Quintile 3 (0.002)
Factor B: 0.012
Quintile 4 (0.003)
Factor B: 0.009
Quintile 5 (0.003)
Log (DRG) 0.020 0.021

(0.004) (0.004)
R? 0.09 0.09

Each column reports estimates from a separate regression in which an observation is a hospital-year,
with N = 49,937 hospital-years. All regressions are weighted by the number of patients in each hospital-
year. The dependent variable is the risk-adjusted one-year survival rate among AMI patients. The diffu-
sion factors and quintiles are based on the two-factor model described in table 5. Log(DRG) is the log of
the risk-adjusted total DRG weights per patient in the year following their AMI. Year dummy variables
are included in all regressions. Risk-adjusted survival and DRG weights are derived from Medicare
claims data from 1986 to 2004. The sample is limited to hospital-year observations with at least five
observations per hospital. Standard errors (clustered at the hospital level) are in parentheses.

Lau, 1973) to allow for diminishing returns to m, x;, and
interaction between diffusion and the productivity of x;,:

Vit = OaTA; + WpTg; + Pxi + Y1 aaiXis + YoapiXis

(17)

+ Y3apioai + Y4af;i + Ysafg; + ”/6)5;2, + Ujr.

This allows, for example, a higher marginal return to the
level of spending x;; when hospitals invest more heavily in
B-type innovations than A-type innovations.

The results of the fully interacted regression analysis are
in appendix table A.2, with illustrative examples shown in
figure 3. We consider three types of hospitals. The first
eschews all types of technology adoption; it lies 1 standard
deviation below the mean for both factors A and B; the sec-
ond is for hospitals like the first, except that the rate of dif-
fusion for factor A treatments is 41 standard deviation
above the mean. As shown in figure 3, the rapid factor A—
adopting hospitals exhibit substantially better outcomes for
their patients at all levels of spending, with marginal returns
to additional inputs falling off rapidly above $25,000 per
enrollee, roughly the mean value of spending in 2004."” By
contrast, the marginal returns to spending are strongly posi-

17 To facilitate the interpretation of the regression, we multiplied the
DRG inputs times a constant, the national average reimbursement per
DRG in 2004, leading to a dollar amount that corresponds to the DRG
inputs.
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FiGure 3.—EsTIMATED 2004 PropucTION FUNCTION FOR ONE-YEAR AMI
SurvivAL: Low DirrusioN (SoLip), HiH DiFrusioN FOR FACTOR A (DOTTED),
AND HiGH DirrusioN FOR FAcTOR B (DASHED)

One-Year Survival

20000 25000 30000 35000

Adjusted Expenditures
Low Factor A, Low FactorB — -—— Low Factor A, High Factor B

«e--eee- High Factor A, Low Factor B

The figure plots predicted one-year survival, based on regression analysis reported in appendix table
A.2 with hospital fixed effects, for three hypothetical hospitals: a hospital that is 1 standard deviation
below average on both adoption factors (low factor A, low factor B), a hospital that is 1 standard devia-
tion below average on factor B but 1 standard deviation above average on factor A (high factor A, low
factor B), and a hospital that is 1 standard deviation below average on factor A but 1 standard deviation
above average on factor B (low factor A, high factor B). While the slope and shape of the production
function come directly off the estimated coefficients, the intercepts for each of these three curves are
derived from a between-hospital regression of the hospital fixed effects regressed on the two factors, their
squares, and their interactions.
tive for hospitals with factor B at +1 standard deviation
above its mean. This is consistent with hospitals spending
more if they are more rapid adopters of factor B inputs,
since the technologies typically entail billing more to Medi-
care. This is also consistent with Chandra and Staiger
(2007), who find that hospitals specializing in surgical treat-
ments can attain similar levels of outcomes to those specia-
lizing in medical treatments, albeit at higher costs, and with
Doyle, Ewer, and Wagner (2010), who find that patients
treated by physicians from a lower-ranked medical school
attain similar outcomes but require more resources to do so.

VII. Conclusion

In this paper, we have attempted to peer inside the black
box of hospital productivity changes over time and across
hospitals. We found that varying rates of adoption for low-
cost but highly effective treatments explained a large frac-
tion of the persistent differences in risk-adjusted survival
during the period 1986 to 2004. Hospitals with the most
rapid propensity to adopt these new innovations experi-
enced survival rates nearly 3 percentage points above the
lowest-quintile hospitals, or nearly one-third the entire im-
provement in survival since 1986.

We also found distinct differences across hospitals with
regard to which kinds of technologies were adopted. Some
hospitals were far more likely to adopt beta blockers and
aspirin, highly effective and inexpensive treatments, and
these experienced consistently better survival outcomes
than hospitals that invested more heavily in surgical treat-
ments such as PCI and CABG. While both types of hospi-
tals experienced better overall outcomes than hospitals that
failed to adopt any of the new technologies that became
available during the 1990s, hospitals that rapidly adopted


http://www.mitpressjournals.org/action/showImage?doi=10.1162/REST_a_00535&iName=master.img-002.jpg&w=228&h=158

962

beta blockers and aspirin had higher patient survival. Hall
(2014) found similar results; regions adopting the cost-
effective innovations like screening for colon cancer had
better outcomes, while those with more rapid diffusion of
low-effectiveness treatments, like breast cancer screening
for women under age 50, did not."® Our evidence suggests
that knowledge about which technologies are most effective
is a larger contributor to variation in productivity across
hospitals than the adoption of new technology writ large.

Our model of health care productivity reconciles both the
dramatic improvements in life expectancy for AMI patients
over time (Cutler, 2004) and the mixed evidence on the effi-
ciency of spending at a point in time (e.g., Fisher et al.,
2003a, 2003b; Doyle et al., 2015). Much of the dramatic
growth in survival occurred as remarkably cost-effective
treatments diffused across hospitals during the past few
decades. For example, Ford et al. (2007) found aspirin and
beta blockers to be among the most important factors redu-
cing the number of AMI-related deaths between 1980 and
2000, followed by PCI and CABG. Of course, these esti-
mates are specific to heart attacks, where the quality of clin-
ical evidence is particularly good and may not apply to
other diseases where clinical guidelines are much weaker.

Chandra et al. (2013), using similar data on AMI
patients, developed an explicit model of productivity differ-
ences across hospitals (log survival minus log costs) and
demonstrated that firms in nonhealth industries exhibit
similar degrees of variation in productivity as do hospi-
tals—in other words, that health care is not uniquely ineffi-
cient. Economists have identified a variety of optimizing
economic models by which some firms adopt new innova-
tions and others do not, which naturally lead to such pro-
ductivity variations. For example, rational agents may adopt
slowly because they are waiting for the price to decline
(e.g., flat-screen TVs) or because of expertise in the older
technology (Jovanovic & Nyarko, 1996). Alternatively, het-
erogeneity in production functions may lead to profit-maxi-
mizing differences in rates of diffusion (Griliches, 1957) or
the presence of liquidity constraints may slow diffusion
(Suri, 2011). Finally, there may be differences in education
across workers (Nelson & Phelps, 1966) or technology
complementary with skilled workers (Caselli & Coleman,
2006). While these theories may explain productivity differ-
ences in nonhealth sectors (and perhaps differences in adop-
tion of new surgical innovations), they are less successful in
explaining the slow diffusion of inexpensive beta blockers
and aspirin by highly educated physicians.

Perhaps informational or organizational barriers explain
the slow diffusion in both health and nonhealth sectors of
the economy. Recall equation (11), in which the marginal
cost of speeding up diffusion C'(1) was set equal to the

18 She also found that high-adoption hospitals tended to adopt all new
technologies (Hall, 2014). In the principal component model that she
uses, the first component splits out regions that adopt anything (either fac-
tor A or factor B) versus those that do not. When we estimate a principal
components model, we find results similar to hers.
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marginal benefit of innovating more rapidly. Using plausi-
ble parameters for measuring the social value of more rapid
adoption suggests a very high equilibrium cognitive barrier
facing physicians equal to $11,200 annually to move up
one diffusion quintile.'” While this may appear to be im-
plausibly high, previous research has shown that the quality
of management, and in particular the presence of staff
“opinion leaders,” can exert a disproportionate influence on
individual physician adoption (Bradley et al., 2001, 2005).
This points to a more nuanced model of diffusion in which
organizational support and “tactile” learning from peers (as
in Keller, 2004) are critical for rapid diffusion. For this rea-
son, we expect organizational inefficiencies, whether in
nonhealth industries (Bloom & van Reenan, 2007) or car-
diac health centers for AMI patients (McConnell et al.,
2013), are central to explaining why some hospitals were
quick to adopt beta blockers and aspirin and others were
not.

Leibenstein (1966) used the term X-efficiency to describe
residual differences in firm-level productivity that could not
be readily explained by measured inputs or other factors. In
many respects, the puzzle of slow diffusion for beta block-
ers and aspirin provides a textbook case of X-inefficiency.
The underuse of aspirin and beta blockers was allowed to
persist for so long because there was so little pressure
exerted by markets or management to change old habits and
adopt the new innovations. It is telling that the increased
public hospital-level reporting of beta blocker use for AMI
patients has been central to its nearly universal diffusion in
the last decade, so much so that it is no longer used as a
quality measure (Lee, 2007). More difficult is to explain
why adoption behaviors are correlated between nonhealth
sectors and health sectors, as in the close correlation across
states in the adoption of hybrid corn in the 1930s and beta
blockers in the 2000s (Skinner & Staiger, 2007).

There are several limitations to this study. First, our unit
of analysis is the hospital, which by necessity aggregates up
the adoption decisions of the physician. While some studies
have used overlapping physician-hospital affiliations to
identify hospital diffusion patterns (Sacarny, 2014), we are
unable to determine which physician initiated specific treat-
ments inside the hospital. Second, while we have direct evi-
dence on why the rapidly diffusing hospitals experienced
better outcomes in 1994-1995 from the CCP, we know
much less about subsequent adoption patterns of the newer
technologies such as the use of angiotensin receptor block-
ers (ARB) and angiotensin-converting enzyme inhibitors
(ACE inhibitors). Finally, our data are limited to Medicare
enrollees age 65 and over, and there is little evidence on
how, for example, beta blocker use in this population corre-
lates with its use in the under-65 population.

!9 We assume that the average lag from the frontier, a; —a;,=0.02,¥ =
$100,000, the one-year survival following AMI translates to an additional
5.25 life-years, r = .05, T, must increase by 0.016 to shift to the next quin-
tile, and there are ten AMI patients per physician.



TECHNOLOGY DIFFUSION AND PRODUCTIVITY GROWTH IN HEALTH CARE

Parente and Prescott (2002) provide a ready explanation
for why some countries lag so far behind frontier countries:
government restrictions and monopoly restraints that inter-
fere with the benefits of efficient technology adoption. If
patients knew about the benefits of aspirin, beta blockers,
and reperfusion and were sensitive to published and reliable
information about hospital quality, physicians would be
forced to respond rapidly to new innovations or face the
loss of patients. But when quality measures are limited,
patients are not well informed, and markets are distorted,
remarkably large inefficiencies can persist across hospitals
and over time.
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