
103

[ Journal of Political Economy, 2007, vol. 115, no. 1]
� 2007 by The University of Chicago. All rights reserved. 0022-3808/2007/11501-0004$10.00

Productivity Spillovers in Health Care: Evidence

from the Treatment of Heart Attacks

Amitabh Chandra
Harvard University and National Bureau of Economic Research

Douglas O. Staiger
Dartmouth College and National Bureau of Economic Research

A large literature in medicine documents variation across areas in the
use of surgical treatments that is unrelated to outcomes. Observers of
this phenomenon have invoked “flat of the curve medicine” to explain
it and have advocated for reductions in spending in high-use areas.
In contrast, we develop a simple Roy model of patient treatment choice
with productivity spillovers that can generate the empirical facts. Our
model predicts that high-use areas will have higher returns to surgery,
better outcomes among patients most appropriate for surgery, and
worse outcomes among patients least appropriate for surgery, while
displaying no relationship between treatment intensity and overall
outcomes. Using data on treatments for heart attacks, we find strong
empirical support for these and other predictions of our model and
reject alternative explanations such as “flat of the curve medicine” or
supplier-induced demand for geographic variation in medical care.
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I. Introduction

Since Sir Allison Glover (1938) first documented significant variation
in tonsillectomy rates across areas in the United Kingdom, an enormous
body of literature in economics and medicine has documented varia-
tions in the use of intensive treatments (i.e., surgical or technologically
intensive treatments) across comparable locales. Surprisingly, the use of
more intensive procedures is not associated with improved satisfaction,
outcomes, or survival but is associated with significantly higher costs.
Traditional explanations such as sampling variation, differences in in-
come and insurance, patient preferences, and underlying health status
do not explain these variations.1 These facts stand in sharp contrast to
the results of randomized clinical trials that consistently find gains from
the surgical management of acute conditions that are routinely inter-
preted as evidence in support of more intensive management of
patients.2

These apparently conflicting findings can potentially be explained by
a model of diminishing returns. Whereas randomized clinical trials are
performed on a group of patients most likely to benefit from the in-
tervention, the lack of a cross-sectional relationship between intensity
and outcomes is explained by a “flat of the curve” argument, where
physicians perform the intervention until the marginal return is zero
(Enthoven 1980; Fuchs 2004). This is the interpretation that is used by
McClellan, McNeil, and Newhouse (1994) and McClellan and Newhouse
(1997) to explain the small returns from more intensive treatments for
heart attacks. This explanation emphasizes inefficiency of medical
spending, suggesting that welfare improvements may be realized by re-
ducing spending in high-use regions. Indeed, Fisher et al. (2003a, 2003b)
use this logic to argue that a 30 percent reduction in Medicare spending,
such that spending in high-use regions is reduced to that of low-intensity
areas, would not have any deleterious effects on patient outcomes or
satisfaction.

While the diminishing returns model is intuitively appealing, it has
a number of problems. First, there is no reason to expect wide variation
in the use of treatments across areas that are similar, without making
additional assumptions such as area norms or supplier-induced demand.

1 Similar observations have been made by comparing treatments and outcomes in the
United States with those in Canada and Europe. Phelps (2000) provides an economist’s
perspective on the immense literature on geographic variation in physician practice style.
The medical literature on this topic is succinctly summarized in Fisher et al. (2003a, 2003b),
Baicker and Chandra (2004), and the Dartmouth Atlas of Health Care (Wennberg and Cooper
1999; Wennberg and Birkmeyer 2000).

2 In the context of treatments for heart attacks, see, e.g., Andersen et al. (2003) and
Jacobs (2003). A review of over 23 trials by Keeley, Boura, and Grines (2003) noted the
demonstrated superiority of the intensive intervention over alternative therapies for the
management of heart attacks.
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Second, such models still predict a positive relationship between medical
spending in a region and patient outcomes unless all areas are in the
range of zero or negative marginal benefits; this has never been found
in the literature. A more fundamental problem with the diminishing
returns model is that it predicts that the marginal benefit from more
intensive patient treatment is lower in areas that are more aggressive.
But U.S.-Canadian comparisons (Beck et al. 2003; Pilote et al. 2003)
suggest the opposite: the marginal benefit from more technologically
intensive treatment in heart attack patients is larger in the United States,
where management of heart attacks is much more aggressive. These are
facts that the flat of the curve model cannot reconcile. If it is the in-
correct model, then embracing its policy implications of cutting spend-
ing could result in deleterious outcomes for many patients.

In this paper we develop a simple model of specialization in health
care that uses a prototypical Roy model of treatment choice as its prin-
cipal building block. In our model, patients are treated medically or
intensively depending on their clinical appropriateness for these treat-
ments, but we allow productivity spillovers to also affect the returns from
each treatment choice. These spillovers may arise from knowledge spill-
overs, where physicians build experience by learning from one another,
but may also arise from other sources, such as the selective migration
of the best intensive physicians to certain areas and the corresponding
migration of physicians who specialize in less intensive treatments to
other areas. With these spillovers, as the proportion of patients in an
area who are treated intensively increases, productivity spillovers in-
crease the return to intensive treatment, while simultaneously reducing
the return to the competing medical treatment. Thus this model nat-
urally generates higher returns to receiving intensive treatment in in-
tensive areas yet, because of the negative externality on patients receiv-
ing the competing treatment, does not necessarily generate any
relationship between specialization and overall health outcomes. As we
discuss in Section II, the model generates a rich set of sharp predictions
that we test using detailed data on a sample of Medicare beneficiaries
who had a heart attack (clinically referred to as an acute myocardial
infarction [AMI]). Several of these predictions are consistent with other
models such as the flat of the curve model, but others are unique to
the Roy model with productivity spillovers. We find strong empirical
support for our model and reject alternative explanations, such as “flat
of the curve medicine” or supplier-induced demand, that are commonly
proposed to explain geographic variation in medical care.

In Section II, we generalize a prototypical Roy model of specialization
to allow for productivity spillovers and derive a wide range of testable
predictions of this model. In Section III, we justify our focus on heart
attacks to test this model and describe our data and estimation strategy.
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Section IV tests the implications of our model. Section V presents con-
clusions and discusses the policy implications of our work, including its
implications for the interpretation of randomized clinical trials. In the
Data Appendix to this paper we provide details of our estimation and
sample.

II. A Roy Model of Heart Attack Treatments with Productivity
Spillovers

We consider a simple Roy model of patient treatment choice in the
presence of productivity spillovers. In this model, an individual patient
chooses between two alternative treatments: nonintensive management
(emphasizing medical management, denoted with subscript 1) and in-
tensive intervention (emphasizing surgery, denoted with subscript 2).
The physician chooses the treatment option for each patient that max-
imizes utility on the basis of the expected survival rate (Survival1, Sur-
vival2) and cost (Cost1, Cost2) associated with each option. The survival
rate from a given treatment option depends on patient characteristics
(Z) but is also positively related to the fraction of all patients who receive
the same treatment (P1, ).3 Similarly, the cost from a givenP p 1 � P2 1

treatment option also depends on patient characteristics and may be
negatively related to the fraction of all patients who receive the same
treatment. Thus, a patient’s choice of a specific treatment has a positive
productivity externality, raising survival and reducing costs for all other
patients receiving the same treatment.

The fundamental assumption of productivity spillovers in our model
is quite plausible in health care. Much of physician learning about new
techniques and procedures occurs from direct contact with other phy-
sicians (“see one, do one, teach one”), which leads to natural Mar-
shallian knowledge spillovers from practicing in an area in which phy-
sicians have specialized in a particular style of practice. In their seminal
paper on knowledge spillovers in medicine, Coleman, Katz, and Menzel
(1957) found that doctors who were the most integrated in a social
network were the first to adopt a new drug. More recently, a randomized
control trial found that providing information to “opinion leaders” in
a hospital resulted in large increases in the use of appropriate medi-
cations following heart attacks and decreases in the use of outdated

3 This is similar to how network externalities are modeled by Katz and Shapiro (1985,
1986). The social network literature commonly uses the fraction of the population adopt-
ing a particular practice as a proxy for information flows since it captures the density of
adopters in a network (see Rogers 2003). An alternative model would have the production
externality depend on the number (rather than proportion) of patients in an area who
receive the ith treatment. In this alternative model, larger areas are better at the use of
both interventions, an implication that we test and reject (see table 8 below).
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therapies (Soumerai et al. 1998). Strong evidence of knowledge spill-
overs comes from Meltzer (2006), in which hospitalists (physicians who
specialize in hospital care as opposed to a specific disease) were ran-
domly assigned to physicians groups. Physicians in the randomized
groups exhibited social network effects by learning from the experience
of the hospitalists to whom they were randomized.

An alternative mechanism generating productivity spillovers may op-
erate through the availability of support services in area hospitals (cath
labs, cardiac surgeons, cardiac care units, nursing staff), which will de-
pend more on the overall practice style in the area than on any indi-
vidual patient’s needs. This second mechanism is analogous to the in-
creased availability of software as more users adopt a given computer
operating system, which has been emphasized in the literature on net-
work externalities (e.g., Goolsbee and Klenow 2002). Finally, produc-
tivity spillovers may occur through the matching process of physicians
to areas, since physicians who are more skilled at a particular treatment
may self-select into areas in which use of this treatment is more common.
Note that this last mechanism has different welfare implications, since
selection of physicians into one area imposes externalities on other
areas. We will return to this point in our discussion of welfare
implications.

A. The Model

More formally, conditional on the fraction of patients receiving the
treatment, let the survival rate and cost associated with each treatment
option take the following simple form:

s s sSurvival p b Z � a P � e for i p 1, 2 (1)i i i i i

and
c c cCost p b Z � a P � e for i p 1, 2. (2)i i i i i

The subscript i indexes the treatment option, and we omit the patient
subscripts for convenience. We assume that each patient’s indirect utility
function (U) depends on both the price and quality of care, as captured
by the expected survival rate and costs associated with each treatment
option:

U p Survival � lCost p bZ � a P � e for i p 1, 2, (3)i i i i i i i

where , , and . The parameter ls c s c s cb p b � lb a p a � la e p e � lei i i i i i i i i

represents the value of life (survival per dollar) and captures the trade-
off being made by the patient and physician between improved survival
and increased costs. A typical value of l used in cost-effectiveness studies
would place the societal value of a life year at around $100,000 (Cutler
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2004), although physicians and patients may use if they do notl p 0
pay directly for the cost of treatment (e.g., because of insurance). The
term biZ represents an index of how appropriate a given patient is for
each treatment on the basis of medically relevant characteristics (Z).
Patients who are more appropriate have greater utility from the treat-
ment. The second term (aiPi) captures the productivity spillover, which
is positive if : area specialization in a given treatment improvesa 1 0i

survival or reduces costs (or both) for all patients receiving that treat-
ment. The final term (ei) represents factors that influence survival and
costs and are known to the patient (or physician) at the time of choosing
a treatment option but unobserved to the econometrician.

An individual patient receives the intensive treatment ( ) only ifi p 2
his or her utility is higher from the intensive than from the nonintensive
treatment ( ). Therefore, the probability that an individual pa-U 1 U2 1

tient receives the intensive treatment is given by

Pr {intensive treatment} p Pr {i p 2} p Pr {U � U 1 0}2 1

p Pr {(a � a )P � a � (b � b )Z 1 e � e }1 2 2 1 2 1 1 2

p Pr {aP � a � bZ 1 e}, (4)2 1

where , , and . Integrating equationa p a � a b p b � b e p e � e1 2 2 1 1 2

(4) over the distribution of patients (Z) in the population yields the
market demand curve for the intensive treatment.

Among patients who choose the intensive treatment, the expected
utility gain is given by

E[U � U FU � U 1 0] p bZ � aP � a � E[eFU � U 1 0]. (5)2 1 2 1 2 1 2 1

Thus the expected utility gain among patients receiving the intensive
treatment (the treatment on the treated) depends on a patient’s relative
appropriateness for the treatment, the proportion of all patients who
receive the intensive treatment, and a term representing the selection
effect. Because equation (5) has a simple Tobit structure, the truncated
mean will increase with the mean of the underlying variable for any log
concave distribution for e (Heckman and Honore 1990). Thus patients
who choose the intensive treatment will have a higher expected utility
gain from the treatment (in terms of higher survival or lower costs) if
they are more appropriate (higher bZ) or live in more intensive regions
(higher aP2).

B. Equilibrium

Equations (3)–(5) represent a standard Roy model except that, in equi-
librium, P2 must be equal to the demand for the intensive treatment
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according to equation (4). If we let represent the distribution off(Z)
Z in the population, this implies that the following equilibrium con-
dition must hold:

P p Pr (aP � a � bZ 1 e)f(Z)dZ2 � 2 1
Z

{ G(P ). (6)2

Thus equilibrium in this model is defined as a solution to equation (6)
(a fixed point). In other words, in equilibrium the proportion of patients
choosing the intensive treatment must generate benefits to intensive
treatment that are consistent with this proportion actually choosing the
treatment. For example, if all patients choose the intensive treatment
but this generates utility benefits such that some patients would prefer
the nonintensive treatment, then rates of intensive treatment will de-
cline. As fewer patients choose the intensive treatment, costs will rise
and survival will fall (through the spillover mechanism), further low-
ering the benefits to intensive treatment. This process continues until
we reach an equilibrium in which only the most appropriate patients
are left receiving the intensive treatment. Thus cost and quality of care
determine demand for each treatment option and adjust to equilibrate
the market.

C. Empirical Implications

This simple model has a number of very strong empirical implications.
First, as illustrated in figure 1, equation (6) can generate variation across
areas in the proportion of patients receiving the intensive treatment for
two different reasons. For a given distribution of patients (which fixes
the function G), there can be multiple equilibria because of the pro-
ductivity spillovers. For example, figure 1A illustrates a situation with
two equilibria: an intensive equilibrium in which most patients receive
intensive treatment and the returns to this treatment are high, and a
nonintensive equilibrium in which few patients receive intensive treat-
ment and the returns to this treatment are low (the middle crossing
point represents an unstable equilibrium). Alternatively, differences
across areas in the distribution of patients (which changes the function
G) will also lead to different equilibria. For example, figure 1B illustrates
a situation in which most of the patients in one area are more appro-
priate for intensive treatment leading to an intensive equilibrium,
whereas most of the patients in the nonintensive area are not appro-
priate for intensive treatment. Even in the single-equilibrium scenario
the productivity spillover increases the differences across areas: Having



Fig. 1.—Characterizations of area variations: A, multiple equilibrium; B, single
equilibrium.
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more patients appropriate for intensive treatment in an area (a shift
upward in G) increases the return to intensive treatment for other pa-
tients, which in turn leads to a further increase in intensive treatment
(a move to the right along G). Thus small differences in the distribution
of patients can potentially generate large equilibrium differences in
specialization across areas.

A second empirical implication of the model that follows immediately
is that identical patients will be more likely to be treated intensively in
an area in which more patients are appropriate for intensive manage-
ment of the heart attack (on the basis of Z). Any shift in the distribution
of patients (Z) that results in a higher proportion being treated inten-
sively (P2) results in a higher probability of choosing intensive treatment
for each patient as a direct consequence of equation (4). This impli-
cation is similar to that tested by Goolsbee and Klenow (2002) for in-
dividuals’ purchase of home computers and is a unique implication of
spillovers: Preferences of the population have spillovers on the choice
of an individual. While this implication of the model is always true in
the single-equilibrium case, it may not hold in the multiple-equilibrium
case if a shift in the distribution of Z affects the choice among the
equilibria. Unfortunately, our static model is silent on what determines
the choice among multiple equilibria.4

A number of additional implications of the model are illustrated in
figure 2. For simplicity, we ignore unobserved patient characteristics
(e) in this figure in order to focus on the intuition of the model; under
standard regularity assumptions about e (see Heckman and Honore
1990), this results in no loss of generality but significantly simplifies
the exposition. Figure 2A plots patient utility (survival net of costs) as
a function of a patient’s appropriateness for intensive management
(which depends on Z) for each of the two treatment options (intensive
and nonintensive). Patients to the left of the intersection of these two
curves are treated nonintensively and patients to the right are treated
intensively. Patients further to the right are more likely to both receive
intensive treatment and experience higher returns to the treatment
if treated. Thus the model predicts that the return to intensive treat-
ment (treatment on the treated) is highest among patients with the
highest probability of treatment. This must occur through a combi-
nation of larger survival benefits or lower treatment costs among pa-

4 Arthur (1989) emphasizes the importance of “lock-in” by historical events. In our
application, two regions might have differed in terms of their distribution of initial patient
types. This difference is what caused the choice of present specialization.



Fig. 2.—Graphical illustration of the Roy model with productivity spillovers. A, Rela-
tionship between two alternative ways to treat patients within an area. The production
possibilities frontier describes the best treatment for a patient of given clinical appropri-
ateness. The model predicts that the returns to intensive management are increasing in
patients’ appropriateness for such interventions. B, Contrasts the care across two areas
that differ in their surgical intensity. As a result of the productivity spillover, patients
appropriate for intensive management are better off in the surgically intensive areas,
whereas patients appropriate for nonintensive management are worse off in such areas.
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tients with the highest probability of treatment (the “more appropri-
ate” patients).5

Figure 2B illustrates four additional implications of the model by
comparing patient utility in intensive and nonintensive areas. First, the
utility associated with nonintensive management is worse in areas that
are intensive. This suggests that there should be a negative relationship
between the proportion of patients who receive surgically intensive treat-
ment and indicators of the quality of care for patients treated medically;
that is, intensive surgical treatment crowds out good medical manage-
ment. A second implication of the model follows directly: In intensive
areas, patient utility will be higher among patients who are most ap-
propriate for intensive management, but lower among patients who are
more appropriate for medical management. In other words, the area’s
specialization in intensive management helps patients who are appro-
priate for this type of care through higher survival or lower costs, but
patients who require less intensive management are harmed by the
area’s specialization in intensive management. For example, to the ex-
tent that older age is a crude proxy for requiring less intensive man-
agement, our model predicts that very old patients will have lower sur-
vival and higher costs in an intensive area, whereas those who are
younger benefit through higher survival and lower costs from their
areas’ specialization in intensive management. On net, however, average
benefits across all patients may be higher or lower in surgically intensive
areas.

A third implication of our model is that the marginal patients re-
ceiving the intensive treatment in intensive areas will be less appropriate
for the treatment than the average patient receiving the intensive treat-
ment. As shown in figure 2A, patients are given the intensive surgical
treatment if their appropriateness is above the point at which the non-
intensive and intensive utility curves intersect. As seen in figure 2B, this
intersection is at a lower appropriateness level in intensive areas. There-
fore, the additional patients receiving the intensive treatment in these
intensive areas are less appropriate than the patients receiving the in-
tensive treatment in nonintensive areas.

A final implication of our model is that among those receiving in-
tensive treatment, the benefit to receiving intensive treatment in the
intensive area is larger than the benefit in the nonintensive area. In
other words, the treatment effect on the treated will be larger in more
intensive areas. As can be seen in figure 2B, this higher return is the

5 More precisely, our model makes unambiguous predictions about the utility gains to
a patient receiving the intensive treatment ( ). Utility can increase in three ways:U � U2 1

(1) survival increases or cost declines or both, (2) survival increases that outweigh cost
increases, or (3) cost declines that outweigh survival declines. Our discussion focuses on
the first case as the most relevant, but the others are possible.
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net result of a higher benefit if patients are treated intensively and a
lower benefit if patients are treated nonintensively in the intensive areas.
Thus the high return to intensive treatment in intensive areas is the
result of both a positive productivity externality on intensive treatment
and a negative productivity externality on medical treatment.

All the model’s implications are consistent with the key empirical
regularities summarized in the Introduction. In particular, our produc-
tivity spillovers model can generate (1) substantial differences across
areas in the use of intensive procedures that are unrelated to average
patient outcomes, (2) a negative correlation between surgical intensity
and the quality of medical management of a condition, and (3) large
returns to receiving the intensive intervention, particularly in high-
intensity areas. Thus a very simple equilibrium model of productivity
spillovers can rationalize all the main stylized facts in the literature.

Some of the empirical implications of our model are the result of
productivity differences across areas rather than spillovers per se. In our
model, productivity differences across areas arise solely through the
productivity spillover term ( ) in equation (3). But there may be othera Pi i

reasons for productivity differences across areas that are independent
of the fraction of patients receiving each treatment. If this were the
case, then areas that happened to be relatively good at the intensive
treatment (with high patient utility relative to nonintensive treatment)
would have high returns to intensive treatment and also be more likely
to use the intensive treatment for any given patient—just as predicted
by our productivity spillover model.

However, there are two empirical implications of our model that de-
pend on productivity spillovers. First, spillovers imply that a patient is
more likely to be treated intensively in an area in which other patients
are more appropriate for intensive treatment (on the basis of Z). This
implication would not arise without a direct link between productivity
and the fraction of patients being treated intensively. Second, spillovers
imply that specialization in the intensive treatment must help patients
who are most appropriate for intensive treatment, but at the same time
must harm patients who are least appropriate by reducing specialization
in the nonintensive treatment. This implication would not necessarily
arise without the negative relationship between the productivity of in-
tensive and nonintensive treatments that is implied by spillovers. For
example, suppose that productivity in both the intensive and noninten-
sive treatments was driven by a latent quality factor in the area, but that
this latent quality had a larger impact on productivity for the more
complex intensive treatment. Then areas with higher latent quality
would treat more patients intensively, but all patients in these areas
would have better outcomes.

Most of the empirical implications of our model would not be pre-
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dicted by the standard flat of the curve explanation for area variation
in treatment rates. In our modeling framework, the flat of the curve
argument has no spillovers ( ). Instead, areas vary in terms of thea p 0
trade-off they make between survival and costs (l varies): some areas
are willing to incur greater costs per life saved (lower l), perhaps be-
cause they have higher income, have excess hospital capacity, or are
paid on a cost-plus (e.g., fee for service) basis. In this flat of the curve
model, the areas that have the lowest l place the least weight on costs
in making treatment decisions and therefore are more likely to use the
intensive (and more costly) treatment for patients who receive little
survival benefit. But such a model predicts that the average survival
benefit of intensive treatment will be lower for patients receiving the
treatment in high-intensity areas, whereas the incremental costs will be
higher. That is, the flat of the curve story fundamentally implies that
high-intensity areas simply choose to treat additional patients who yield
relatively few lives saved per dollar. Moreover, since externalities play
no role in the flat of the curve argument, this model does not imply a
lower quality of medical management or worse outcomes among pa-
tients least appropriate for intensive treatment in high-intensity areas.
Finally, the appropriateness of other patients in the area plays no role
in determining treatment of a given patient in the flat of the curve
model, whereas this is a fundamental feature of models with productivity
spillovers. Instead, the flat of the curve model suggests that area factors
such as income and hospital reimbursement structure will determine
the area intensity.

D. Welfare Implications

Any change in the fraction of patients receiving the intensive treatment
has positive externalities on some patients and negative externalities on
others. Therefore, Pareto improvements over any equilibrium are not
possible in our model without side payments from winners to losers. We
focus instead on whether any deviation from a given equilibrium will
result in higher average utility in the population, implicitly assuming
that either appropriate side payments could be made or the societal
objective is to maximize average utility. Finally, for this to be an appro-
priate measure of welfare, we must assume that all spillovers are captured
within the model and, in particular, that specialization in one market
has no impact on other markets (e.g., the spillover mechanism is not
working through attracting quality physicians from other areas).

Because each patient’s choice of treatment affects the outcomes of
all other patients, there is no reason to expect that equilibrium in our
model is optimal. Let be the proportion of patients receiving theP*
intensive treatment in equilibrium (a solution to eq. [6]). Small in-
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creases in away from its equilibrium value, accomplished by changingP*
the treatment for the marginal patient, will not affect the marginal
patient who is indifferent between the two treatments in equilibrium.
Thus the effect of such an increase in on expected utility dependsP*
solely on the externality it has on other patients: the positive externality
on patients receiving the intensive treatment balanced by the negative
externality on patients receiving the nonintensive treatment. Let U be
the average utility in the population given the proportion of patients
receiving the intensive treatment ( ), so thatP U p max (U , U FP p∫Z2 1 2 2

. Then it is straightforward to show thatP)f(Z)dZ

�U
p a P* � a (1 � P*) p �a � aP*, (7)2 1 1F�P P pP*2 2

where .a p a � a1 2

Equation (7) is quite intuitive. The impact on expected utility of a
small increase in intensive treatment away from its equilibrium value is
simply the weighted average of the positive externality (a2) on the in-
tensive treatment and the negative externality (�a1) on the noninten-
sive treatment, where the weight is the proportion of patients receiving
the intensive treatment in equilibrium. For , increas-P* 1 a /(a � a )2 1 2

ing the intensive treatment above its equilibrium value will have a pos-
itive effect on expected utility, whereas for , the op-P* ! a /(a � a )2 1 2

posite is true. Thus expected utility of patients is not in general
maximized in equilibrium.

Note that the right-hand side of equation (7) is exactly the same as
the term representing the impact of spillovers on patient choice of
treatment in equation (4). Thus, if an area does more intensive treat-
ment in equilibrium than it would in the absence of spillovers (implying
that the right-hand side of eq. [7] is positive), then there are additional
welfare gains from doing even more intensive treatment. Similarly, if
an area does less intensive treatment in equilibrium because of spill-
overs, then there are additional welfare gains from doing even less. From
a welfare perspective, there will be too little area variation in treatment
rates if the marginal person ignores the externality that their treatment
decision has on others. Said a different way, if physicians maximize social
welfare (rather than patient welfare) and take this externality into ac-
count in making treatment decisions, then they will optimally do some
harm (in a utility sense) to the marginal patient because of the exter-
nality on other patients, and the result will be more variation across
areas in specialization.

In the case of multiple equilibria, the equilibria can be ranked in
terms of expected utility. Thus shifts from one equilibrium to another
can improve expected utility. Unfortunately, the model has no general



productivity spillovers 117

implications regarding which equilibrium will have the highest expected
utility (and recall that no equilibrium is Pareto dominant without side
payments). However, if all areas had identical patient distributions (Z)
and the variation in treatment rates across areas arose from multiple
equilibria, then one could compare patient survival and costs across
areas to determine the optimal equilibrium rate of intensive treatment.
This was the approach taken by Fisher et al. (2003b), who argue that a
30 percent reduction in Medicare spending (such that spending in high-
intensity regions is reduced to that of low-intensity areas) would not
have any deleterious effects on patient outcomes or satisfaction. Our
model suggests that this conclusion is justified only if the observed
variation represents multiple equilibria for regions with identical patient
distributions. In the single-equilibrium case, our model suggests the
opposite: when equilibrium treatment rates differ across regions because
of differences in the underlying patient distribution, then expected pa-
tient utility in more aggressive regions would be raised by increasing—
not decreasing—intensive treatment rates above their equilibrium
values.

III. Data and Estimation

A. Data

We focus our empirical work on the treatment of AMI for four reasons.
First, cardiovascular disease, of which AMI is the primary manifestation,
is the leading cause of death in the United States. Because mortality
post-AMI is high (survival rates at one year are less than 70 percent), a
well-defined endpoint is available to test the efficacy of alternative in-
terventions. Second, markets for heart attack treatment are geograph-
ically distinct. The acute nature of this condition requires immediate
treatment and generally precludes a patient from traveling long dis-
tances to seek care. Therefore, mobility is limited, and it is possible to
observe production in many distinct local markets. Third, the treatment
of heart attacks is characterized by the choice between two competing
interventions, both of which restore blood flow to the coronary arteries:
intensive management characterized by the use of angioplasty or bypass
and nonintensive management characterized by the use of fibrinolytics
therapy (also known as thrombolytics), which dissolve clots that may
have formed in a blood vessel. We measure the use of intensive therapy
by focusing on the use of cardiac catheterization since it is a well-
understood marker for surgically intensive management of patients (our
decision follows McClellan et al. [1994] and McClellan and Newhouse
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[1997]).6 Patients who received bypass or angioplasty are included in
the set of persons receiving catheterization and, therefore, intensive
treatment. Fourth, some geographic areas specialize in the intensive
management of heart attacks, whereas others specialize in nonintensive
management. But in contrast to other markets, neither production
choice can completely dominate a market because some patients are
always more appropriate for a particular intervention (e.g., 95-year-old
patients do not benefit from surgery and must be treated noninvasively).
Thus the productivity of both intensive and nonintensive management
can be observed in all markets.

Regardless of whether a patient is treated intensively or using throm-
bolytics, patients should also be prescribed beta-blockers during their
hospital stay, which reduce the uptake of adrenalin and thereby slow
the heart. Beta-blockers have been shown to improve outcomes for the
majority of patients, their use is substantially below what most experts
believe is appropriate, and the rate of beta-blocker use among AMI
patients is a widely used measure of the quality of medical care (Jencks
et al. 2000; Baicker and Chandra 2004). Because beta-blockers are a
form of medical management of patients, their use serves as a marker
of the quality of nonintensive medical management in an area.

Because AMI is both common and serious, it has been the topic of
intense scientific and clinical interest. One effort to incorporate
evidence-based practice guidelines into the care of heart attack patients,
begun in 1992, is the Health Care Financing Administration’s Health
Care Quality Improvement Initiative Cooperative Cardiovascular Project
(CCP). The CCP developed quality indicators that were based heavily
on clinical practice guidelines developed by the American College of
Cardiology (ACC) and the American Heart Association (AHA). Infor-
mation about more than 200,000 patients admitted to hospitals for treat-
ment of heart attacks was obtained from clinical records. The CCP is
considerably superior to administrative data (of the type used by Mc-
Clellan et al. [1994]) since it collects chart data on the patients: detailed
information is provided on laboratory tests, the location of the myo-
cardial infarction, and the condition of the patient at the time of ad-
mission. In the Data Appendix we provide a detailed account of the
estimation sample used in this paper.

6 In performing cardiac catheterization, a cardiologist inserts a thin plastic tube (cath-
eter) into an artery or vein in the arm or leg, from where it is advanced into the chambers
of the heart and into the coronary arteries. The catheter measures the blood’s oxygen
saturation and blood pressure within the heart. It is also used to get information about
the pumping ability of the heart muscle. Catheters are also used to inject dye into the
coronary arteries, which can then be imaged to assess arterial stenosis using an x-ray. The
procedure in which catheters with a balloon on the tip are inflated in order to compress
the atherosclerotic plaque to improve blood flow is referred to as angioplasty.
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B. Defining Geography

To construct local markets for health care, we exploit insights from the
Dartmouth Atlas of Health Care. The atlas divides the United States into
306 hospital referral regions (HRR), with each region determined at
the zip code level by the use of an algorithm reflecting commuting
patterns and the location of major referral hospitals. The regions may
cross state and county borders because they are determined solely by
migration patterns of patients. For example, the Evansville, Indiana,
HHR encompasses parts of three states because it draws patients so
heavily from Illinois and Kentucky. HRRs are best viewed as the level
at which tertiary services such as cardiac surgery are received (although
they are not necessarily the appropriate geographical level for primary
care services).

Analysis at the HRR level is preferable to analysis at the city or state
level since it uses the empirical pattern of patient commuting to deter-
mine the geographic boundaries of each referral region rather than
assuming that the arbitrary political boundaries of states and cities also
define the level at which the health care is delivered. Furthermore, for
the purpose of studying geographic productivity spillovers, an analysis
at the HRR level is superior to one at the level of an individual hospital
for two reasons. First, patients can be assigned to an HRR on the basis
of their residence rather than the hospital at which they received treat-
ment (which may be endogenous). In addition, geographic productivity
spillovers are likely to operate at a broader level than that of a given
hospital; for example, these spillovers are expected to reach beyond the
boundary of the firm to affect productivity of all firms in a region.
Physicians often have operating privileges in multiple hospitals and in-
teract (socially and professionally) with other doctors who may or may
not practice in their hospital, and patients are commonly referred to
other hospitals within the HRR for treatment. Through such interac-
tions, the entire area (as measured by HRRs) is more appropriate for
analyzing equilibrium implications of productivity spillovers.7

7 As an alternative to the use of HRRs we have also reestimated our analysis using the
U.S. Census Bureau’s metropolitan statistical area (MSA) designation of urban areas. In
general, HRRs may be thought of as encompassing the relevant MSA with the addition
of surrounding rural areas whose patients travel to the MSA to seek care. Using the MSA
sample results in a loss of sample size and introduces some noise into the instrumental
variable analysis since within an MSA (such as Manhattan or Boston) there is much less
variation in differential distance. The results reported in this paper are robust to the use
of MSAs, with the exception of the instrumental variable estimates, which, while not
statistically different from what we report, are very imprecise.
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C. Estimation

The key estimating equations in this paper take the following form:

Outcome p b � b Intensive Treatment � X P � u . (8)ijk 0k 1k i i k ijk

Here, Outcomeijk refers to either survival or costs for patient i in HRR
j; k is an indicator variable that indexes the different groups for whom
the effect of intensive management is sought (e.g., patients appropriate
for intensive management vs. not or, alternatively, high-intensity HHRs
vs. low-intensity HRRs). Following McClellan et al. (1994) and McClellan
and Newhouse (1997), Intensive Treatment is measured by the receipt
of cardiac catheterization (including angioplasty or bypass) within 30
days of the AMI. Alternatively, in some specifications we use total spend-
ing (Medicare Part A and Part B charges) in the first year after the AMI
as a proxy for intensive treatment. The vector includes the entire setX i

of CCP controls listed in the Data Appendix. These variables provide a
relatively complete summary of the patient’s condition at the time of
admission, that is, include all the relevant clinical information available
to the physician in the patient’s chart at the time of the heart attack.
Our tables report estimates of b1k and their difference between different
subsamples of the data; the latter is the central parameter of interest
for the purpose of testing our model. Standard errors are clustered at
the level of each area.

Both our model and common sense suggest that the choice of inten-
sive treatment for a patient will be endogenous. Even though we have
excellent information on the patient’s clinical condition at admission,
the attending physician or cardiologist is likely to make the treatment
choice on the basis of information that is not observable in the CCP
(e.g., using information observed in the weeks following the initial ad-
mission). In particular, the selection problem that confounds ordinary
least squares (OLS) estimation of the above equation is that intensive
treatment is recommended to patients who will benefit most, and these
patients are typically in better health (e.g., did not die in the first 24
hours after the heart attack). This selection of healthy patients into
treatment biases OLS estimates toward finding a large effect of intensive
treatment. We follow the work of McClellan et al. (1994) and estimate
equation (8) using instrumental variables. In particular, we use differ-
ential distance (measured as the distance between the patient’s zip code
of residence and the nearest catheterization hospital minus the distance
to the nearest noncath hospital) as an instrument for intensive treat-
ment, with a negative value of differential distance indicating that the
nearest hospital is a cath hospital. We capped differential distance at
�25 miles on the basis of preliminary analysis that suggested little effect
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of differential distances beyond 25 miles on the probability that a patient
receives catheterization.

In contrast to regressions in which we study an individual’s receipt
of cath (and in which an instrumental variable is clearly indicated), we
use OLS for tests of our model that require the use of area cath rates
as the key explanatory variable. Observed variation in area cath rates
would have to be driven by large differences in unobservable health
status across areas to bias our results. We doubt that this is true, given
the prior literature documenting that population health status is not
correlated with intensive treatment at the area level (e.g., Fisher et al.
2003a, 2003b). But even if it were, we would be biased toward observing
a positive association between cath rates and survival, which we do not.

To define a patient’s clinical appropriateness for intensive manage-
ment, we estimate a logistic regression model for the probability of
receiving cardiac catheterization within 30 days of the heart attack. Spe-
cifically, we estimate

Pr (Cardiac Cath ) p G(v � v � X F). (9)ij 0 j i

Here, vj is the risk-adjusted logistic index for the use of cardiac cathe-
terization in HRR j ( ). This equation is analogous toj p 1, 2, … , 306
equation (4) in our model, with the HRR fixed effects capturing the
externality that causes similar patients to be treated differently across
areas. Fitted values from this regression that exclude the HRR fixed
effect, , are used as an empirical mea-ˆPr (Cardiac Cath ) p G(v � X F)ij 0 i

sure of clinical appropriateness for cardiac catheterization.8 For sim-
plicity, in much of the empirical work we split the fitted values at their
median to yield two equally sized groups; those above the median are
appropriate for intensive management and those below are not. In order
to classify areas as being intensive versus not, we construct HRR-level
(risk-adjusted) catheterization rates by recovering the vj from the equa-
tion above.9

8 Our model suggests that omitting the HRR fixed effects will bias the coefficients on
the comorbidities (X) because places with more appropriate patients will tend to do more
cath. However, in practice this choice is empirically irrelevant for our estimates. The
correlation between our preferred measure of appropriateness (using all the CCP risk
adjusters and HRR fixed effects) and one that excludes the HRR fixed effects is 0.997 (at
the patient level). Similarly, the correlation between our preferred measure and simpler
measures using only age-gender-race interactions is 0.75.

9 To verify that more and less aggressive areas rank patients similarly, we estimated
separate logistic regression models (by whether an area’s risk-adjusted cath rate was less
than or greater than the median area’s rate) of a patient’s probability of receiving cath
on all the CCP risk adjusters. For every patient in the data, we obtained predicted values
from the two models and noted that their correlation was 0.986. This high correlation
suggests that areas rank people similarly.
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TABLE 1
Instrumental Variable Estimates of Intensive Management and Spending on

One-Year Survival by Clinical Appropriateness of Patient

Instrumental Variable Estimates of

Impact of Cath

Sample

On One-Year
Survival

(1)

On One-Year
Cost ($1,000s)

(2)

Impact of $1,000 on
One-Year Survival

(3)

A. All patients (N p 129,895) .142
(.036)

9.086
(1.810)

.016
(.005)

B. By cath propensity:
Above the median (N p

64,799)
.184

(.034)
4.793

(1.997)
.038

(.017)
Below the median (N p

65,096)
.035

(.083)
17.183
(3.204)

.002
(.005)

Difference .149
(.090)

�12.39
(3.775)

.036
(.018)

C. By age:
65–80 (N p 89,947) .171

(.037)
6.993

(1.993)
.024

(.009)
Over 80 (N p 39,948) .016

(.108)
16.026
(2.967)

.001
(.007)

Difference .155
(.114)

�9.033
(3.574)

.023
(.011)

Note.—Cath propensity is an empirical measure of patient appropriateness for intensive treatments. We define this
measure by using fitted values from a logit model of the receipt of cardiac catheterization on all the CCP risk adjusters.
Differential distance (measured as the distance between the patient’s zip code of residence and the nearest catheter-
ization hospital minus the distance to the nearest hospital) is the instrument. Each model includes all the CCP risk
adjusters, and the standard errors are clustered at the level of each HRR.

IV. Empirical Results

Our empirical results are organized into two sections. We begin by test-
ing the basic implications of the Roy model—that patients are sorted
into surgery versus medical management on the basis of the returns to
each type of treatment. We then turn to testing the model’s implications
that depend on the presence of productivity spillovers.

A. Testing Implications of the Basic Roy Model

Table 1 presents instrumental variable estimates of the impact of cath
(as a marker for intensive treatment) on one-year survival and one-year
costs (in thousands of 1996 dollars). In panel A of table 1 we present
the analysis for all patients, and then the remaining panels estimate
separate regressions by the clinical appropriateness of the patient. In
column 3 we instrument costs with differential distance to estimate the
cost-effectiveness of spending on survival. The results in table 1 suggest
that the returns to more intensive management of patients are increas-
ing in clinical appropriateness, as predicted by our model. Patients ap-
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propriate for catheterization who received the intervention saw an 18.4-
percentage-point survival gain relative to appropriate patients who did
not receive intensive therapy. For the less appropriate group, the effect
of receiving catheterization is not statistically different from zero.10 Col-
umn 2 of the table demonstrates that it also costs more to aggressively
treat a patient who is clinically inappropriate for intensive management.
One reason for this finding is the risk of iatrogenic (physician-induced)
complications that require additional rehabilitation days in the intensive
care unit or cardiac care unit. Column 3 uses total dollars spent on a
patient as a measure of intensity. By this measure, increasing intensity
(by spending an additional $1,000 on a heart attack patient) raises
survival by 3.8 percentage points for patients who are appropriate for
intensive management, but by nothing for patients who are not good
candidates for intensive management. Panel C of table 1 provides an
alternative breakdown of patients into appropriateness groups based on
age (65–80 vs. over 80). Clinical guidelines recommend that older pa-
tients not be treated surgically, suggesting that the returns to such treat-
ment should be negligible for the over-80 group. Panel C of table 1
confirms that this is indeed the case. Together, the results in table 1
provide support for our Roy model characterization of specialization:
patients most appropriate for intensive treatment benefit most from
such therapy, whereas those least appropriate for it do not benefit from
it.

Table 2 explores the validity of differential distance as an instrument
in our sample. Following McClellan et al. (1994), we split the sample
in half and compare average characteristics of the sample above and
below the median differential distance (�2.0 miles). Columns 1 and 2
show that among all patients, there is a 6.1-percentage-point difference
in the cath rate between the samples above and below the median, with
higher differential distance to a cath hospital associated with lower rates
of cath. A similar pattern is seen when the sample is restricted to patients
who are most or least appropriate for cath on the basis of their pro-
pensity score or their age. Even among the patients with low propensity
scores or over age 80, there is a three to four percentage-point decline
associated with being further from a cath hospital. These differences
are all highly significant, even after we control for the full set of patient

10 Following suggestions made by our anonymous reviewers, we note that our results are
robust to controlling for distance to the nearest hospital, as well as controlling for the
distance to the nearest hospital and rural classification of the zip code of the residence.
These results are available on request. Briefly, after we control for actual distance to the
nearest hospital, the coefficient (and accompanying standard error) on survival for ap-
propriate patients was 0.182 (0.033); for those less appropriate it was 0.051 (0.081). After
we controlled for distance and rural location, these coefficients changed to 0.181 (0.046)
and 0.084 (0.13), respectively.



TABLE 2
Relationship between Differential Distance (DD) and Probability of Catheterization and Survival, and Differential Distance and

Observable Characteristics (%)

Sample

30-Day Cath Rate One-Year Survival
One-Year Predicted

Survival

30-Day Predicted
Cath Rate for

Patients Getting
Cath

DD Below
Median

(1)

DD Above
Median

(2)

DD Below
Median

(3)

DD Above
Median

(4)

DD Below
Median

(5)

DD Above
Median

(6)

DD Below
Median

(7)

DD Above
Median

(8)

All patients (N p 129,997) 48.9 42.8 67.6 66.7 67.5 67.2 63.3 63.2
By cath propensity:

Above the median (N p 64,733) 74.0 67.1 84.6 83.8 83.4 83.5 72.6 72.6
Below the median (N p 65,244) 22.9 19.5 50.1 50.4 51.1 51.6 32.3 32.5

By age:
65–80 (N p 90,016) 61.1 54.9 74.3 73.5 73.9 73.9 67.4 67.3
Over 80 (N p 39,961) 20.3 16.5 52.1 52.1 52.6 52.7 34.6 34.1

Note.—Cath propensity is an empirical measure of patient appropriateness for intensive treatments. We define this measure by using fitted values from a logit model of the receipt of cardiac
catheterization on all the CCP risk adjusters. Differential distance is measured as the distance between the patient’s zip code of residence and the nearest catheterization hospital minus the distance
to the nearest hospital.
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controls from the CCP (the first-stage F-statistics on differential distance
are over 50 for all specifications reported in table 1).

Columns 3 and 4 of table 2 report survival rates for patients above
and below the median differential distance. If differential distance is
unrelated to patient mortality risk, then these estimates can be com-
bined with the difference in cath rates from columns 1 and 2 to form
a simple Wald estimate of the effect of cath on survival.11 Among all
patients, there is a 0.9-percentage-point decline in survival associated
with being further from a cath hospital, suggesting that the intensive
treatment associated with cath leads to improved survival. The Wald
estimate suggests that cath is associated with a 15-percentage-point im-
provement in survival (0.009 gain in survival/0.061 increase in cath),
an estimate quite close to the 14.2 percent estimate from table 1 that
included the full set of patient controls. The remaining rows show results
for other patient samples that are similarly consistent with the table 1
estimates, with a larger association between differential distance and
survival seen among patients who are more appropriate for cath and
no relationship seen among patients who are less appropriate for cath.
Given the similarity of the Wald estimates to instrumental variable es-
timates with a full set of patient controls, it appears that differential
distance is uncorrelated with observable differences in mortality risk.
Columns 5 and 6 show that, as expected, there is little difference in the
average one-year predicted survival rate (from a logit of survival on the
patient controls) for patients above and below the median differential
distance.

Columns 7 and 8 of table 2 compare average 30-day predicted cath
rates (the propensity to get cath) for only those patients getting cath
in the areas above and below median differential distance. If the ad-
ditional patients getting cath in the low–differential distance sample
were less appropriate for cath, we would expect to see that the average
patient getting cath in these areas would have a lower propensity. In
contrast, we see little difference in the sample that is nearer to a cath
hospital. Thus it appears that differential distance is an instrument that
increases cath rates among a sample of patients who are very similar
(at least on observable factors) to the average patient being treated.
Therefore, it appears reasonable to interpret the instrumental variable
coefficients as estimates of the treatment effect in the treated popula-
tion.

Finally, the Roy model predicts that as areas increase their intensity,
the additional patients receiving the intensive management should be

11 Further evidence that the differential distance instrument is uncorrelated with other
determinants of receiving intensive treatment is provided in McClellan et al. (1994),
MeClellan and Newhouse (1997), and McClellan and Noguchi (1998).
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TABLE 3
Relationship between the Average and Marginal Patient Receiving Cardiac

Catheterization (N p 303)

Patient Characteristic

Characteristic of Average
Patient Getting Cath across

All Areas
(1)

Difference between Marginal
Patient and Average Patient

Getting Cath in
Higher-Cath HRRs

(2)

Cath propensity .633
(.002)

�.045
(.008)

Over age 80 .125
(.002)

.063
(.012)

Not eligible for cath using
ACC/AHA guidelines

.028
(.001)

.010
(.003)

Note.—Cath propensity is an empirical measure of patient appropriateness for intensive treatments. We define this
measure by using fitted values from a logit model of the receipt of cardiac catheterization on all the CCP risk adjusters.
The sample is restricted to patients receiving cardiac catheterization within 30 days of an AMI. ACC/AHA guidelines
reflect a binary variable assigned to each patient in the CCP that measures whether the patient is ideal, appropriate,
or not eligible for catheterization on the basis of a review of the patient’s chart.

less clinically appropriate for the intervention. In contrast, a noneco-
nomic model would predict that intensive areas simply perform more
intensive treatments on all patients; there is no triage of patients into
the treatment based on their appropriateness. To test this insight we
estimate

Appropriateness p m � m ln (Cath Rate) � e . (10)ij 0 1 j i

The dependent variable is a measure of the appropriateness of a patient
for cardiac cath (e.g., the propensity score), and the equation is esti-
mated at the patient level only for individuals receiving cath. The explan-
atory variable of interest is the natural logarithm of the risk-adjusted
area cath rate. As in the logic of Gruber, Levine, and Staiger (1999),
the coefficient m1 measures the difference in mean appropriateness be-
tween the marginal and the average patient receiving the invasive treat-
ment. If average appropriateness among patients getting cath is declin-
ing as the cath rate rises ( ), we infer that the marginal patientm ! 01

getting cath was less appropriate than the average patient (analogously
to deriving marginal cost curves from average cost curves).

The results of estimating equation (10) are reported in table 3. As
the area’s intensity increases, the marginal patient is 4.5 percentage
points less likely to be appropriate for intensive treatments.12 As a ro-
bustness check, we included two alternative measures of clinical appro-
priateness: age and a measure of clinical ineligibility for cath as defined

12 Baicker, Buckles, and Chandra (2006) use this technique to demonstrate an identical
result for geographic variation in the use of cesarean delivery. In their analysis, counties
with higher cesarean rates are shown to perform the procedure in births that are less
appropriate for it.
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Fig. 3.—Relation between average patient and marginal patient receiving cardiac cath-
eterization. For each of the 306 HRRs we graph the average propensity to receive cardiac
catheterization (among patients who actually received it) against the log of the area risk-
adjusted cath rate. Using local regression, we estimated the relationship between the
average propensity and the risk-adjusted cath rate and the slope of this line at each point.
These estimates were then used to plot the average (upper line) and marginal patient
(lower line and estimated as the local difference in the average) receiving treatment.

by the ACC and the AHA. Table 3 indicates that by both measures, the
marginal patient is significantly less likely to be appropriate for cardiac
catheterization.13

Figure 3 provides a graphical illustration of this relationship. For each
of the 306 HRRs, we graph the average propensity to receive cardiac
catheterization (among patients who actually received it) against the
log of the area risk-adjusted cath rate. Using local regression, we esti-
mated the relationship between the average propensity and the risk-
adjusted cath rate and the slope of this line at each point (which we
also smoothed). These estimates were then used to plot average and

13 Both measures are included as covariates in our estimation of the empirical appro-
priateness for cardiac catheterization. As such, these results are not three separate con-
firmations of the same prediction. The ACC/AHA measures are based on an evaluation
of the patient’s chart characteristics and classify each patient as being ideal, appropriate,
or inappropriate for catheterization; see Scanlon et al. (1999) for details. This measure,
however, is not our preferred measure because, as others have noted, expert panels have
been shown to exhibit enormous variability, particularly for the use of procedures classified
as inappropriate, and to be greatly influenced by the composition of the panel (Shekelle
et al. 1998).
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TABLE 4
HRR-Level Measures of Intensive Treatment, Medical Management, Support of

Medical Treatment, and Demographic Characteristics

HRR Indicator Mean
Standard
Deviation

10th
Percentile

90th
Percentile

Correlation
with HRR
Cath Rate

Measures of intensive treatment:
Risk-adjusted 30-day cath rate 46.3% 9.1% 34.5% 58.3% 1.00
Risk-adjusted 30-day PTCA

rate 17.7% 5.1% 11.3% 23.6% .81
Risk-adjusted 30-day CABG

rate 13.4% 2.9% 10.2% 16.9% .51
Risk-adjusted 12-hour PTCA

rate 2.7% 2.6% .6% 5.8% .52
Measures of quality of medical

management:
Risk-adjusted beta-blocker rate 45.6% 9.5% 34.2% 58.3% �.31

Support for intensive treatment:
Cardiovascular surgeons per

100,000 1.06 .27 .70 1.40 .33
Cath labs per 10,000 2.40 .76 1.50 3.30 .39

Demographic characteristics:
Log of resident population 13.96 .89 12.72 15.18 �.05
Log of per capita income 9.55 .20 9.31 9.85 .02
Percent college graduates 19.3% 5.5% 13.1% 26.6% �.05

Note.—HRR surgical and medical intensity rates are computed as the risk-adjusted fixed effects from a patient-level
regression of the receipt of cath or beta-blockers on HRR fixed effects and CCP risk adjusters.

marginal patients receiving treatment. As seen in the figure, average
appropriateness of patients getting cath declines in more intensive areas.
The average appropriateness can decline only if the marginal patient
is less appropriate: as the lower line in figure 3 indicates, the appro-
priateness of the marginal patient appears to be below that of the av-
erage patient and also declines as areas become more surgically
intensive.

B. Testing Implications of Productivity Spillovers

The empirical results in tables 1–3 provide support for the basic as-
sumptions of the Roy model: that patients are sorted into surgery versus
medical management on the basis of the returns to each type of treat-
ment. The remaining tables focus on testing for the presence of pro-
ductivity spillovers. Table 4 tests the prediction that the quality of med-
ical management is worse in areas that are surgically intensive. To
measure the extent of intensive treatment in an area, we use the risk-
adjusted 30-day cath rate in each HRR. The risk-adjusted cath rate re-
flects variation across areas in the probability that observationally iden-
tical patients will receive cath and therefore measures the productivity
externality through its role of increasing the probability of receiving the
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TABLE 5
OLS Restimates of the Relationship between Probability of
Receiving Catheterization and HRR Patient Characteristics

(N p 138,873)

HRR-Level Independent
Variable

Probability of Receiving
Catheterization

(1) (2)

Average propensity to get cath .529
(.172)

.575
(.167)

Percent under age 65 .150
(.135)

Log of resident population �.003
(.005)

Log of per capita income .024
(.024)

Note.—The table reports OLS estimates of the relationship between a patient receiving catheterization
and the average appropriateness for catheterization in an HRR. Regressions control for patient risk
adjusters, and standard errors are clustered at the level of HRRs.

intensive treatment. To measure the quality of medical care in an area,
we use the risk-adjusted rate at which patients received beta-blockers in
the HRR. Use of beta-blockers is a widely used marker for the quality
of medical care. Not surprisingly, the risk-adjusted cath rate is positively
correlated with other risk-adjusted rates of intensive surgical treatment
such as bypass (CABG) and angioplasty (PTCA). More important, the
negative correlation between the risk-adjusted cath and beta-blocker
rates supports the view that the quality of medical management is worse
in surgically intensive areas.

The remaining rows of table 4 report the correlation between risk-
adjusted cath rates and other area-level characteristics of interest. Risk-
adjusted cath rates are positively associated with cardiovascular surgeons
per capita (physicians who perform cardiac surgery) and the number
of cath labs per capita. These correlations are consistent with the view
that a higher level of support services available in high-intensity areas
may contribute to the externalities. The last three rows of this table
demonstrate, perhaps surprisingly, that risk-adjusted cath rates are not
strongly associated with demographic characteristics of the HRR such
as population, income, or education.

A more fundamental implication of productivity spillovers is that the
characteristics of other patients in the population will influence the
treatment choice of an individual: all else equal, a patient will be more
likely to receive cath if she lives in an area in which the average patient
is more appropriate for cath. In column 1 of table 5 we regress a patient’s
receipt of cath on the average propensity to get cath in each HRR and
patient risk adjusters. The coefficient is statistically significant and im-
plies that for every one-percentage-point increase in the expected area
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TABLE 6
Instrumental Variable Estimates of Intensive Management and Spending on

Survival, by Surgical Intensity of Hospital Referral Region

Instrumental Variable Estimates of

Impact of Cath

Sample

On One-Year
Survival

(1)

On One-Year
Cost ($1,000s)

(2)

Impact of $1,000 on
One-Year Survival

(3)

A. All patients:
HRR risk-adjusted cath rate:

Above the median (N p
63,771)

.256
(.061)

6.691
(3.510)

.038
(.021)

Below the median (N p
66,124)

.09
(.059)

9.835
(3.155)

.009
(.007)

Difference .166
(.085)

�3.144
(4.720)

.029
(.022)

B. Patients above the median
cath propensity:

HRR risk-adjusted cath rate:
Above the median (N p

32,388)
.271

(.064)
.347

(4.370)
.78

(9.820)
Below the median (N p

32,411)
.168

(.046)
4.962

(2.890)
.034

(.021)
C. Patients below the median

cath propensity:
HRR risk-adjusted cath rate:

Above the median (N p
31,383)

.206
(.129)

16.21
(5.130)

.013
(.009)

Below the median (N p
33,713)

�.139
(.165)

22.064
(6.870)

�.006
(.007)

Note.—HRR intensity rates are computed as the risk-adjusted fixed effects from a patient-level regression of the
receipt of cath on HRR fixed effects and CCP risk adjusters. Differential distance (measured as the distance between
the patient’s zip code of residence and the nearest catheterization hospital minus the distance to the nearest hospital)
is the instrument. Each model includes all the CCP risk adjusters, and the standard errors are clustered at the level of
each HRR.

cath rate (based on patient characteristics), there is an additional 0.53-
percentage-point increase in the probability that an individual receives
cath because of spillovers. In column 2 we control for area demographics
that could potentially confound this relationship, but they are insignif-
icant and do not materially change the coefficient.

A key implication of our model (and any model in which productivity
differences across areas generate specialization) is that the return to
intensive management should be higher in high-intensity areas than in
low-intensity ones. This prediction provides a sharp test of our model
against the flat of the curve model, which predicts the opposite. To test
this prediction, we use our estimates of HRR-level intensity from the
estimation of equation (9) to classify patients as being treated in high-
or low-intensity regions (as measured by whether the risk-adjusted cath
rate is above or below the median rate). In table 6, we report instru-
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mental variable estimates of the effect of receiving intensive manage-
ment within each of these two groups. The results of this analysis are
reported in a manner that mirrors the estimates in table 1. The survival
return to intensive management in intensive areas is roughly three times
the return observed in low-intensity areas; there is no statistically sig-
nificant difference in the costs associated with the different areas.14 In
panels B and C of table 6, we further split the sample within high- and
low-intensity regions according to whether patients were more or less
appropriate for cath (on the basis of a cath propensity above or below
the median). As predicted by our model, the most appropriate patients
in high-intensity areas have the highest survival returns (and lowest
costs) associated with intensive management, whereas the lowest survival
returns (and highest costs) are seen among the less appropriate patients
in low-intensity areas.

Table 7 tests a unique implication of productivity spillovers: Patients
most appropriate for intensive treatments are better off being treated
in high-intensity areas, whereas patients who are least appropriate for
intensive treatments should be worse off in such areas. To test this
prediction, we split patients into three equal-sized groups of appropri-
ateness for intensive treatments. Within each group, we report the re-
lationship between survival and the area cath rate in column 1. We also
report the relationship between spending and the area rate in column
2. Panel A of table 7 replicates the central finding from the area vari-
ations literature: area intensity is associated with costs but not with im-
proved outcomes among patients as a whole. However, as panel B dem-
onstrates, this finding masks significant heterogeneity by patient
appropriateness. Patients appropriate for intensive management clearly
benefit from being treated in intensive areas. However, as the produc-
tivity externality predicts, patients least appropriate for intensive treat-
ments are harmed as a result of being treated in intensive areas. The
size of the negative externality is large: increasing area cath intensity by
10 percentage points (0.1) would reduce the survival of patients least
appropriate for cath by 0.75 percentage points. This finding holds true
(although is less significant) when we split the data by alternative in-
dicators of appropriateness for intensive treatment, including age and
ACC/AHA guidelines.15

14 Analogous to n. 10, controlling for distance to the nearest hospital barely changed
our coefficients. In these specifications, the instrumental variable returns to cath for more
and less intensive areas were 0.264 (0.059) and 0.094 (0.058), respectively. Further con-
trolling for rural designation of a patient’s zip code yielded estimates of 0.301 (0.098)
and 0.111 (0.077), respectively.

15 In results available from the authors, we have verified that our results are similar
(though less precise) in simpler specifications in which we replace the risk-adjusted HRR
rate with the difference between actual and expected rates based on only age, race, and
gender. For patients under age 80, the coefficient on the alternatively defined HRR rate
is 0.021 (0.029), whereas for those over the age of 80, it is �0.041 (0.038).
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TABLE 7
Relationship between HRR Catheterization Rate, Survival, and Costs, by

Clinical Appropriateness for Intensive Management

Sample

OLS Estimates of the Relationship between HRR
Risk-Adjusted Cath Rate and

One-Year
Survival

(1)

One-Year
Cost ($1,000s)

(2)

Beta-Blocker
in Hospital

(3)

Catheterization
within 30 Days

(4)

A. All patients (N p
138,873)

.007
(.019)

8.093
(1.410)

�.28
(.073)

.702
(.004)

B. By cath propensity:
Top tercile (N p

46,287)
.052

(.019)
10.012
(1.439)

�.366
(.073)

.802
(.032)

Middle tercile (N p
46,295)

.03
(.030)

11.154
(1.784)

�.271
(.082)

.906
(.021)

Bottom tercile (N p
46,291)

�.075
(.028)

2.763
(1.612)

�.209
(.073)

.369
(.021)

Difference (top �
bottom)

.127
(.034)

7.249
(2.161)

�.157
(.103)

.433
(.038)

C. By age:
65–80 (N p 96,093) .023

(.021)
9.616

(1.448)
�.311
(.072)

.775
(.012)

Over 80 (N p 42,780) �.031
(.028)

4.738
(1.603)

�.215
(.080)

.531
(.022)

Difference (top �
bottom)

.054
(.035)

4.878
(2.160)

�.096
(.108)

.244
(.025)

D. By AHA/ACC criterion:
Ideal (N p 89,569) .027

(.023)
9.845

(1.599)
�.302
(.076)

.769
(.010)

Appropriate (N p
31,800)

�.002
(.024)

6.174
(1.537)

�.282
(.080)

.752
(.026)

Not appropriate (N p
17,504)

�.08
(.040)

2.958
(1.511)

�.177
(.065)

.264
(.021)

Difference (top �
bottom)

.107
(.046)

6.887
(2.200)

�.125
(.100)

.505
(.023)

Note.—Cath propensity is an empirical measure of patient appropriateness for intensive treatments. We define this
measure by using fitted values from a logit model of the receipt of cardiac catheterization on all the CCP risk adjusters.
HRR surgical and medical intensity rates are computed as the risk-adjusted fixed effects from a patient-level regression
of the receipt of cath or beta-blockers on HRR fixed effects and CCP risk adjusters.

Our model suggests that patients who are inappropriate for cath are
worse off in intensive areas because (1) the quality of medical manage-
ment in these areas is worse than in other areas, and (2) few of these
patients receive intensive treatment, even in the more intensive areas.
Columns 3 and 4 of table 7 explore these two dimensions of care directly
by estimating the relationship between area cath intensity and the rate
at which patients receive beta-blockers (as an indirect marker of quality
of medical management) and cath (as a direct marker of intensive man-
agement). Use of beta-blockers is lower among all patient groups in the
high-intensity areas, suggesting that quality of medical management is
generally poor in these areas. At the same time, cath rates among those
patients least appropriate for cath rise much less in high-intensity areas
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than for other patients. Thus worse outcomes for this group appear to
result from worse medical management in areas with high cath intensity,
as our model predicts.

Finally, our analysis has assumed that productivity spillovers depend
on the proportion of patients receiving a given treatment rather than
on the absolute number. Alternatively, productivity spillovers could be
more prevalent in larger areas; larger HRRs such as Los Angeles or
Manhattan may excel at both the intensive and nonintensive delivery
of care. To explore this hypothesis further, we estimate the relationship
between alternative measures of HRR size and patient survival in table
8. We regress one-year survival on patient risk adjusters, the risk-adjusted
cath rate, and the log of the resident population (cols. 1–4) and log of
AMIs per hospital (cols. 5–8). Table 8 demonstrates that the size mea-
sures are largely insignificant: larger areas do not result in improved
survival. On the other hand, the “externality” (as measured by the HRR
cath rate) is always protective of patients who are appropriate for cath
and harmful for inappropriate patients.

V. Conclusion

A very simple equilibrium model of patient treatment choice with geo-
graphic productivity spillovers appears to rationalize the main stylized
facts concerning variation across areas in the use of technologically
intensive medical care. The model yields a range of additional empirical
implications, for which we found uniform support in our analysis of
treatment for heart attacks. Alternative models, such as those based on
“flat of the curve” medicine, have fundamentally different implications
that are clearly rejected by the data. Thus there appears to be strong
empirical support for the presence of productivity spillovers in medical
care.

Our findings suggest that productivity spillovers play an important
role in explaining geographic specialization in production, as first pro-
posed by Marshall (1890). A large medical literature has documented
the important role of social networks in physician adoption of new
technologies, suggesting that knowledge externalities are the source of
the productivity spillovers. While knowledge spillovers are the most nat-
ural interpretation of our model and empirical results, alternative mech-
anisms, such as the migration of specialized inputs into regions that
favor one type of production, could generate the productivity spillovers
we observe. These alternative mechanisms share the key feature that
specialization in one sector improves productivity in that sector while
reducing productivity elsewhere, thereby reinforcing the tendency to
specialize.

The presence of productivity spillovers may justify a policy interven-



TABLE 8
Relationship between Survival and Alternative Measures of HRR Size, by Clinical Appropriateness of Patient

HRR-Level Independent
Variable

All
Patients

(1)

By Cath Propensity

All
Patients

(5)

By Cath Propensity

Top
Tercile

(2)

Middle
Tercile

(3)

Bottom
Tercile

(4)

Top
Tercile

(6)

Middle
Tercile

(7)

Bottom
Tercile

(8)

Risk-adjusted cath rate .006
(.019)

.052
(.019)

.031
(.030)

�.077
(.028)

.008
(.019)

.053
(.019)

.031
(.030)

�.075
(.028)

Log of resident population �.002
(.002)

�.001
(.002)

.002
(.003)

�.007
(.003)

Log of AMIs per hospital .005
(.004)

.014
(.005)

.006
(.007)

�.007
(.006)

Observations 138,873 46,287 46,295 46,291 138,873 46,287 46,295 46,291

Note.—Cath propensity is an empirical measure of patient appropriateness for intensive treatments. We define this measure by using fitted values from a logit model of the receipt of cardiac
catheterization on all the CCP risk adjusters. HRR surgical and medical intensity rates are computed as the risk-adjusted fixed effects from a patient-level regression of the receipt of cath on HRR fixed
effects and CCP risk adjusters.
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tion to ameliorate the deleterious effects of the externality. However,
evaluating the welfare implications of any proposed intervention is not
a trivial exercise. With multiple equilibria we may be able to identify
areas stuck in a suboptimal equilibrium, and one-time interventions that
“shock” the system to a different equilibrium would be called for (see,
e.g., O’Connor et al. 1996). While other commentators (Phelps 2000;
Fisher et al. 2003a, 2003b) have emphasized the welfare cost of excess
geographic variation in practice style, our theoretical model (with a
single equilibrium) suggests that there is too little variation from a wel-
fare perspective: if aggressive areas became even more aggressive, av-
erage patient welfare would increase. Thus understanding the optimal
policy response hinges importantly on whether the variations observed
in the data are the consequence of single or multiple equilibria.

Our results also raise important questions about what can be learned
from randomized controlled trials in medicine. While randomized trials
are considered the gold standard for determining the effectiveness
of a given medical treatment, they are designed to provide a partial
equilibrium estimate of the treatment effect in a well-defined popula-
tion. But with productivity spillovers, the general equilibrium effect of
adopting a new treatment could be smaller or larger than the partial
equilibrium estimate of treatment effectiveness because of the negative
externality imposed on patients who are more appropriate for an al-
ternative treatment and the positive externality on patients who are
more appropriate for the new treatment. This general equilibrium effect
is not identified in a typical randomized trial, but could potentially be
estimated in a trial that randomized across areas rather than individuals.
In addition, the effectiveness of the treatment depends on where the
trial is conducted (just as our instrumental variable estimates depended
on intensity in the area): Surgical interventions may perform poorly in
an area that specializes in medical management of its patients and per-
form well in a more surgically intensive area. As such, the external
validity of a randomized trial is compromised.

The implications of our findings extend beyond the treatment of heart
attacks. To the extent that productivity spillovers are a common feature
of many sectors, our results provide compelling evidence that such spill-
overs are an important feature of geographic specialization. Moreover,
our results provide some of the first direct evidence of the negative
externalities imposed on a subset of the population because of equilib-
rium pressures toward specialization. Such negative externalities are a
central component of arguments for government intervention. Finally,
our model has interesting empirical implications when applied to the
more general question of human capital externalities. For example, our
model would suggest that people living in areas with higher-ability pop-
ulations would be more likely (with ability held constant) to go to col-
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lege, the return to going to college in these areas would be higher, but
wages of low-ability people in these areas would be lower. In principal,
these are all testable implications.

Data Appendix

A. Construction of Hospital Referral Regions

Hospital referral regions (HRRs) are constructed using a two-part algorithm.
Step 1: All acute-care hospitals in the 50 states and the District of Columbia

were identified from the American Hospital Association Annual Survey of Hos-
pitals and the Medicare Provider of Services files and assigned to a location
within a town or city. The list of towns or cities with at least one acute-care
hospital ( ) defined the maximum number of possible hospital serviceN p 3,953
areas (HSA). Second, all 1992 and 1993 acute-care hospitalizations of the Med-
icare population were analyzed according to zip code to determine the pro-
portion of residents’ hospital stays that occurred in each of the 3,953 candidate
HSAs. Zip codes were initially assigned to the HSA in which the greatest pro-
portion (plurality) of residents were hospitalized. Approximately 500 of the
candidate HSAs did not qualify as independent HSAs because the plurality of
patients resident in those HSAs were hospitalized in other HSAs. The third step
required visual examination of the zip codes used to define each HSA. Maps of
zip code boundaries were made using files obtained from Geographic Data
Technologies, and each HSA’s component zip codes were examined. In order
to achieve contiguity of the component zip codes for each HSA, “island” zip
codes were reassigned to the enclosing HSA or HSAs were grouped into larger
HSAs. This process resulted in the identification of 3,436 HSAs, ranging in total
1996 population from 604 (Turtle Lake, ND) to 3,067,356 (Houston) in the
1999 edition of the Dartmouth Atlas. Intuitively, one may think of HSAs as rep-
resenting the geographic level at which “front-end” services such as diagnoses
are received.

Step 2: HSAs make clear the patterns of use of local hospitals. A significant
proportion of care, however, is provided by referral hospitals that serve a larger
region. HRRs were defined in the Dartmouth Atlas by documenting where patients
were referred for major cardiovascular surgical procedures and for neurosurgery.
Each HSA was examined to determine where most of its residents went for these
services. The result was the aggregation of the 3,436 HSAs into 306 HRRs that
were named for the HSA most often used by residents of the region. Thus if a
Medicare enrollee living in Hartford, CT, was admitted to a hospital in Boston,
the utilization would be attributed to Hartford, and not to Boston. This assign-
ment avoids the serious shortcoming of unusually high utilization rates in large
referral centers such as Boston or Rochester, MN.

B. Construction of CCP Estimation Sample

The CCP used bills submitted by acute-care hospitals (UB-92 claims form data)
and contained in the Medicare National Claims History File to identify all Med-
icare discharges with an International Classification of Diseases, Ninth Revision,
Clinical Modification (ICD-9-CM) principal diagnosis of 410 (myocardial in-
farction), excluding those with a fifth digit of 2, which designates a subsequent
episode of care. The study randomly sampled all Medicare beneficiaries with
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AMI in 50 states between February 1994 and July 1995 and in the remaining
five states between August and November 1995 (Alabama, Connecticut, Iowa,
and Wisconsin) or April and November 1995 (Minnesota); for details, see
O’Connor et al. (1999). The Claims History File does not reliably include bills
for all the approximately 12 percent of Medicare beneficiaries insured through
managed-care risk contracts, but the sample was representative of the Medicare
fee for service patient population in the United States in the mid-1990s. After
sampling, the CCP collected hospital charts for each patient and sent these to
a study center, where trained chart abstracters abstracted clinical data. Abstracted
information included elements of the medical history, physical examination,
and data from laboratory and diagnostic testing, in addition to documentation
of administered treatments. The CCP monitored the reliability of the data by
monthly random reabstractions. Details of data collection and quality control
have been reported previously in Marciniak et al. (1998). Finally, the CCP sup-
plemented the abstracted clinical data with diagnosis and procedure codes ex-
tracted from Medicare billing records and dates of death from the Medicare
Enrollment Database.

For our analyses, we delete patients who were transferred from another hos-
pital, nursing home, or emergency room since these patients may already have
received care that would be unmeasured in the CCP. We transformed continuous
physiologic variables into categorical variables (e.g., systolic blood pressure !100
mm Hg or ≥00 mm Hg, creatinine !1.5, 1.5–2.0, or 12.0 mg/dL) and included
dummy variables for missing data. We used date of death to identify patients
who did or did not survive through one year after the AMI. For all patients, we
identified whether they received each of six treatments during the acute hos-
pitalization: reperfusion (defined as either thrombolysis or PCI within 12 hours
of arrival at the hospital), aspirin during hospitalization, aspirin at discharge,
beta-blockers at discharge, angiotensin converting enzyme inhibitors at dis-
charge, counseling for smoking cessation, and each of three treatments within
30 days of the AMI: cardiac catheterization, PCI, or CABG. We used the ACC/
AHA guidelines for coronary angiography to identify patients who were ideal
(class I), uncertain (class II), or inappropriate (class III) for angiography; these
details are provided in Scanlon et al. (1999).

For each AMI patient we computed Medicare Part A and Part B costs within
one year by weighting all diagnosis-related groups and relative value units na-
tionally. This measure of costs abstracts from the geographic price adjustment
in the Medicare program.

C. Construction of Clinical Appropriateness Index, HRR Catheterization Rates, and
HRR Beta-Blocker Rates

To compute this index we estimate a logistic regression model for the probability
of receiving cardiac catheterization within 30 days of the heart attack. We
estimate

Pr (Cardiac Cath ) p F(v � v � X F)ij 0 j i

and

Pr (Beta-Blockers ) p F(v � P � X F).ij 0 j i

Fitted values from this regression, Pr(CathFX), are used as an empirical measure
of clinical appropriateness for cardiac catheterization. The HRR fixed effects
for the use of cardiac catheterization and beta-blockers are obtained as vj and
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TABLE A1
Risk Adjusters Included in the Model

Age, race, sex (full
interactions)

hx angina missing (ref p
no)

Peak CK 11,000

Previous revascularization
(1 p y)

hx terminal illness (1 p y) Nonambulatory (ref p
independent)

hx old MI (1 p y) Current smoker Ambulatory with assistance
hx CHF (1 p y) Atrial fibrillation on

admission
Ambulatory status missing

History of dementia CPR on presentation Albumin low (ref ≥3.0)
hx diabetes (1 p y) Indicator MI p anterior Albumin missing (ref

≥3.0)
hx hypertension (1 p y) Indicator MI p inferior Bilirubin high (ref !1.2)
hx leukemia (1 p y) Indicator MI p other Bilirubin missing (ref

!1.2)
hx EF ≤40 (1 p y) Heart block on admission Creat 1.5–!2.0 (ref p

!1.5)
hx metastatic cancer (1 p

y)
CHF on presentation Creat ≥2.0 (ref p !1.5)

hx nonmetastatic cancer (1
p y)

Hypotensive on admission Creat missing (ref p !1.5)

hx PVD (1 p y) Hypotensive missing Hematocrit low (ref p
130)

hx COPD (1 p y) Shock on presentation Hematocrit missing (ref p
130)

hx angina (ref p no) Peak CK missing Ideal for cath (ACC/AHA
criteria)

Pj, respectively. Note that these fixed effects are not used to obtain our empirical
measure of appropriateness for cardiac catheterization. The risk adjusters in-
cluded in this model are listed in table A1.

The choice of variables was based on those selected by Fisher et al. (2003a,
2003b) and Barnato et al. (2005). With the exception of two variables that are
both measured by blood tests, albumin and bilirubin (where the rates of missing
data were 24 percent), we do not have a lot of missing data (rates were less
than 3 percent). Furthermore, there is no relationship between the presence
of missing values for albumin and bilirubin and the intensity of an area. Nor
does having missing values for these variables affect the probability of receiving
catheterization.
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