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Abstract

This paper introduces a new approach for evaluating the quality of health care providers
that provides an integrated solution to a number of problems that limit the usefulness of
available methods.  Our approach optimally combines information from all the quality
indicators available for a provider (e.g. from other years, other patients, or other
indicators for the same patients) in order to more accurately estimate the provider’s
previous or expected quality. The approach also provides an empirical basis for
comparing and combining alternative quality indicators, thereby enabling policymakers
to choose among potential indicators, explore the potential bias in alternative measures,
and increase the value of quality measures for assessing and improving care.  Using
hospital care for elderly heart attack patients as an example, we demonstrate that these
methods can be used to create reliable, precise predictions about provider quality.
Comparing quality of care across providers may be far more feasible than many now
believe.
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1. Introduction

Comparing quality of care across providers is becoming increasingly important,

both as a contracting and quality improvement tool for health plans and payers, and as

“report cards” to help consumers and others compare quality of care.  Examples include

rankings of the “best” hospitals published by magazines such as US News and World

Report, scorecards issued by state regulators in Pennsylvania and New York, and hospital

quality reports produced by the Health Care Financing Administration and the Agency

for Health Care Policy Research.

Despite enormous interest in developing such quality assessment tools in health

care, these measures have generated much controversy and skepticism.  The problem

with many of these rankings is that they simply are not viewed as very informative

(Hofer et al., 1999; Iezzoni, 1997).  This is especially true for measures based on

important patient outcomes which, because of the relatively small samples of patients

seen by most providers in a single year, tend to be very imprecise and particularly

susceptible to differences in patient severity and comorbidity.  In particular, providers

identified as providing high quality care in one year often appear to provide low quality

care in the subsequent year.  For example, Table 1 shows how hospital’s identified in

1990 as the “best” (top 10%) hospitals on one common quality indicator, 30-day

mortality rate following a heart attack, were ranked in subsequent years (this data is

described in more detail below).  Hospitals that were identified as the “best” in 1990 were

nearly as likely to be ranked among the worst (14.7%) as among the best (16.7%) by

1994.  In fact, average mortality rates among these hospitals were actually higher than
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average by 1994.  It is this type of evidence that has led many to wonder whether

rankings based on such data do more harm than good (Bindman, 1999).

Most of the existing provider report cards have responded to these perceived

problems by moving away from an emphasis on serious outcomes of important health

problems.  For example, HEDIS measures have emphasized screening and relatively

common process measures of care.  Other evaluators have focused on larger hospitals or

groups of physicians.  Others have argued for expensive collection of detailed case-mix

measures to reduce noise and bias.  Still others have advocated collecting large numbers

of measures and aggregating them according to a priori rules.

These perceived problems with provider report cards have resulted in

considerable debate over the uses of such information. But given the growing pressures

placed on health care providers to provide efficient high quality care, the trend toward

greater accountability will continue – with increasing pressure to develop and apply

measures to finer levels of analysis (e.g. individual physicians, particular groups of

patients).  The fundamental question, therefore, is whether we can develop better

methods for comparing quality across providers in such situations.

In a series of recent papers (McClellan and Staiger, 1999a,b,c) we have developed

methods that address these concerns, and have applied our approach in ongoing work to

implement better quality evaluation and improvement methods for private health plans,

health care purchasing groups, and Medicare.  We refer to our new quality indicators as

“filtered” estimates of provider quality, since one of the key advantages of these

indicators is that they optimally filter out the estimation error that plagues conventional

quality indicators and that leads to the type of instability seen in Table 1.   By integrating
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these methods with measures of important processes and outcomes of care, we can

develop more precise, comprehensive, and informative quality evaluations than have

previously been possible.  This paper provides an overview of the method, and illustrates

its application in evaluating the quality of hospital care for elderly heart attack patients.

Readers interested in the technical details, along with a more comprehensive empirical

evaluation of the performance of our approach, are referred to our earlier papers,

particularly McClellan and Staiger (1999a).

Our method optimally combines information from all the quality indicators

available for a provider (e.g. from other years, other patients, or other indicators for the

same patients) in order to more precisely estimate the provider’s current or future quality

level.  The basic idea is simple.  Any single quality indicator for a provider will be a

noisy (often very noisy) measure of that provider’s quality.  But the array of quality

indicators that we observe for a provider are likely to be related across different quality

measures and over time.  Therefore, the core idea of our method is to use these

relationships between multiple measures and over time to better extract the “signal” in

each particular measure.  In addition to improving the precision of the estimated quality

indicators, our method provides an empirical basis for comparing alternative quality

indicators and exploring potential biases.  This enables one to choose among potential

indicators and in many cases limit the number of quality indicators either collected or

reported.

Our particular application of these methods illustrates many of the challenges

facing quality evaluation in health care.  On the one hand, heart disease is the leading

cause of death in the United States, and is clearly a condition for which the quality of
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medical care may have a substantial impact on an individual’s health.  On the other hand,

most hospitals treat relatively few heart attack patients in any given year, and

conventional quality indicators of the most important outcomes, such as survival, are

very imprecise because of the influence of many factors besides hospital quality.  We use

this example to demonstrate how our filtering methods can be used to create reliable,

precise predictions about provider quality.  In the conclusion we discus additional

promising applications of our work to improving health care quality.
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2. Uses and Limitations of Conventional Quality Indicators

A. Uses of Quality Indicators

Comparing quality of care across providers is becoming an increasingly important

tool as the health care market becomes more competitive.  The Institute of Medicine

(1990) has defined quality as “the degree to which health services for individuals and

populations increase the likelihood of desired health outcomes and are consistent with

current professional knowledge.”  But to translate this general definition into concrete

quality indicators, one must ask to what end the indicators will be used and consider the

features that are required of a quality indicator in that use.

Why do we measure quality?  Ultimately, the goal is to help guide decision-

making and improve quality of care.  To achieve this goal, information on provider

quality is used primarily in three ways: for contracting with providers, for guiding

consumers to make informed choices among providers, and for identifying exemplary

providers to serve as models of best practice.

Quality information is used in contracts between purchasers and providers as a

way of providing incentives to the provider to maintain quality of care.  Such incentives

have become an increasingly important safeguard, as purchasers have moved toward

capitation and other fixed-price contracts that place financial pressure on providers to

reduce the cost of care.  This use of quality information is largely backward looking, for

example basing financial rewards on whether the provider achieved concrete and

quantifiable quality standards over the previous year.

Quality information is also used to guide consumers (and other purchasers such as

employers and health plans) in making informed choices among providers.  In today’s
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health care market, providers are increasingly competing for patients on the basis of

price, which in turn increases the incentives for providers to reduce the amount of care

being given to patients. Not surprisingly, lack of accurate quality information can result

in the under-provision of quality in a competitive market (Dranove and Satterthwaite,

1992). Therefore, providing purchasers with accurate quality information, so that they

can make informed tradeoffs between cost and quality, is a cornerstone of competitive

approaches (Enthoven and Kronick, 1989). This use of quality information is largely

forward looking, trying to forecast current or future quality based on available data from

the past.

Finally, quality information is used to identify exemplary providers that serve as

models of best practice (or to identify under-performing providers for some form of

intervention).  This approach is a management tool used to encourage the adoption of

best practice as part of many quality improvement initiatives. This use of quality

information also tends to be forward looking, using data from the past to identify

providers for which the quality of care is likely to currently be particularly good or bad.

B. Limitations of Conventional Quality Indicators

A key obstacle to using quality indicators in any of these ways is the substantial

amount of noise associated with virtually all important measures of provider quality.

Most serious health problems, such as heart attacks, are relatively infrequent;  many

hospitals may treat only a few dozen patients or fewer over an entire year.  And most

major outcomes, such as long-term mortality, will be influenced by an enormous number

of factors other than the quality of the provider.  Therefore, it is almost impossible to
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assess any single outcome measure for a particular provider with any degree of precision.

As a result, these measures are often poor indicators of past and future performance.

This lack of precision in conventional quality indicators limits their practical

value.  Contracts that reward providers based on a noisy indicator provide weak

incentives (since the reward is only weakly related to actual quality of care) while

exposing providers to unnecessary financial risk.  Inaccuracy can also lead to a lack of

trust in the quality indicators, leading both purchasers and health providers to ignore the

measures entirely in decision making (Bindman, 1999; Schneider and Epstein, 1998).

Finally, the noise in conventional quality indicators will lead to a mislabeling of many

ordinary providers as “exemplary” (as was suggested in Table 1), thereby limiting our

ability to learn from the experience of successful providers.

The natural response to this lack of precision is to refocus attention on measures

for which the noise problem is less of an issue:  Health plans or medical groups rather

than individual physicians; large teaching hospitals rather than all hospitals in a

community; or preventive care and common illnesses rather than more serious illness.

For example, the National Committee for Quality Assurance (NCQA), one of the leading

organizations in the development of quality assessment measures, has focused on

developing measures for which more than 400 cases per sample can reasonably be

collected in a specific time period (e.g. six months or a year).  This approach rules out

measures for small providers (e.g. physicians) and for nearly all conditions serious

enough to require hospital care.

Unfortunately, this push toward more aggregation moves us the wrong way in

terms of how consumers, purchasers, and health plans would like to use quality measures.
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Such aggregate measures provide poorly targeted incentives and are at best crude guides

for identifying “exemplary” providers.  By excluding many providers from consideration,

we reduce the relevance of the measures for guiding decisions – especially since quality

problems are often greater for lower-volume providers.

Another response to the lack of precision in conventional quality indicators has

been to collect and report information on a large number of indicators, in hopes that this

will overcome the limitations of any one indicator.  Most provider report cards report

information on a wide number of quality indicators, including measures of patient

satisfaction, preventive care, process of care, and patient outcomes such as death or

important complications.  For example, the California Healthcare Foundation medical

group report card (QA Tool) will have almost 1100 measures.

The multi-dimensionality of current quality information raises two important

problems.  First, the cost of collecting and processing this data is significant (Medicine &

Health, 1997).  Some measures, such as long-term mortality, require costly follow-up and

necessarily involve long reporting delays.  Other measures require detailed chart review,

which can be even more costly.  Thus, from a practical perspective we would like to

target scarce resources on a few core indicators, and eliminate redundant or otherwise

unnecessary measures, particularly those that require additional costly data collection or

lead to delay.  A second problem with the multi-dimensionality of current quality report

cards is that the complexity makes them difficult to interpret.  One expects that many of

the measures are capturing a similar dimension of quality (e.g. surgical skill, or quality of

the staff in a particular specialty such as obstetrics).  Thus, a systematic method that
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could reduce many closely related measures into one, or identify the one measure that

best summarized this dimension, would be valuable.

A final response to the perceived lack of reliability of conventional quality

indicators has been to collect more detailed information on patient condition (severity and

comorbity), often from patient charts, in order to better control for differences in patient

condition across providers.  The debate has been extensive over the potential bias in

conventional quality indicators because of not controlling carefully for patient condition,

but the empirical evidence for the existence of bias is mixed (Landon, et al., 1996;

Krakauer et al., 1992; Park et al., 1990).  This debate is critical to the future of quality

assessment, because the high cost of gathering detailed information on patient condition

could make quality assessment infeasible in the long term.  For example, in a recent

attempt to investigate this issue, HCFA collected chart information on all Medicare

hospital admissions for cardiac conditions in 1994-1995 but the cost was over $100 per

case (Jeffrey Newman, personal communication).  Obviously, it would be useful to have

a systematic method for determining whether the additional expense of such measures

was necessary.
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3.  A Brief Overview of the Filtering Method

Past work comparing quality of care in hospitals has generally relied on a single

hospital outcome measure in a given year.  For example, to compare mortality rates at two

hospitals, one would simply calculate the average mortality rate at each hospital, generally

adjusting for differences across hospitals in patient demographics and comorbidities, and

assess whether the difference in this risk-adjusted mortality rate between the two hospitals

was statistically significant.   The limitation of this approach is that the estimates of mortality

rates at any given hospital are generally very imprecise because of the typically small

samples of patients treated at a given hospital.  For example, in a sample with 100 patients in

each hospital, this approach generally cannot detect a significant difference if one hospital is

estimated to have a 16% mortality rate and the other a 24% mortality rate.  Typically, quality

indicators are based on even smaller samples and the imprecision is even worse.

Alternatively, one can combine information from all the outcome measures available

for a given hospital (e.g. other years, other patients, other outcomes for the same patients) in

order to more precisely estimate a hospital’s current quality.  This is the approach taken by

McClellan and Staiger (1999a).  We provide a non-technical overview of the method below.

Suppose we observe a vector of conventional quality indicators (Mi) for each hospital

(i).  Each quality indicator is an estimate of the average of some variable thought to be related

to quality of care, based on a sample of patients treated at that hospital over a specified period

of time (e.g. one year).  Thus, Mi might include measures of risk-adjusted mortality rates,

average length of stay, rates of certain treatments, complication rates, or patient satisfaction

levels. Each of these measures may be available for a number of patient samples such as

heart attack patients, very-low-birthweight infants, or samples differentiated by insurance
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coverage.   In addition, Mi might include past years of information on many of these

measures.  In other words, on can think of Mi as potentially including all of the conventional

quality indicators that have ever been collected for a given hospital.

Conventional quality indicators are based on a sample of patients, and therefore are

noisy estimates of what we really wish to measure.  In any given year, even a high quality

hospital may have poor patient outcomes because of chance events.  This is particularly true

when a quality indicator is based on only a handful of patients, so that the outcome of one or

two patients will materially influence that hospital’s estimate.  Thus, we can think of the

observed vector of quality indicators (Mi) as estimates of the true quality indicators (µi) that

are of interest:

(1) Mi  =  µi  +  εi

Where ε is the estimation error (which will tend to be larger for hospitals with

smaller samples of patients).

Our problem is how to use the entire vector of observed quality indicators for each

hospital (Mi) to best predict true quality differences across hospitals (µi).  Conceptually, we

can think of our problem as similar to that of minimizing the prediction errors (νi) in a

regression of the form:

(2) µi = Mi ßi + υ i

Where βi is a matrix of regression coefficients that provides the weights that should optimally

be put on each quality indicator in order to best predict the true quality differences across

hospitals.  One would expect these weights to vary by hospital, since the precision of the

observed quality indicators varies by hospital.
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Unfortunately, we cannot run a simple regression to estimate the weights in

equation 2 since the true quality differences across hospitals are unobserved.

Conventional provider report cards, therefore, simply report the observed quality

indicators as the best estimates of the true quality differences.  This is equivalent to

assuming that each quality indicator has no error and, by itself, is the best predictor of the

true quality differences – i.e. that the weight matrix in equation 2 (βi) has 1’s along the

diagonal and zeros everywhere else.

But there are two problems with this approach.  First, since the quality indicators

(Mi) are estimated with error, we can improve the mean squared error of the prediction by

attenuating the coefficient towards zero.  Moreover, this attenuation should be greater for

hospitals in which the quality indicators are not precisely estimated.  This is the basic

idea behind Bayesian shrinkage estimators (Morris, 1983): the observed variation in

quality indicators will tend to overstate the amount of actual variation across hospitals, so

by pulling all the estimates (especially the more imprecise estimates) back toward the

mean we can improve prediction accuracy.  The second problem with the conventional

method is that it does not use any of the information available in other quality indicators.

If the true quality differences across hospitals for other outcomes (e.g. other years, other

patients) are correlated with the quality difference we are trying to predict, then using the

information in estimates of these other quality indicators can further improve prediction

accuracy.

McClellan and Staiger (1999a) develop a simple method for creating estimates of µ,

based on equation 2, that incorporates both the shrinkage idea and information from all

available quality indicators.  The key to the solution is noting that estimating the optimal
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weights in equation 2 is analogous to estimating regression coefficients.  The standard

formula for estimating the regression coefficients in equation 2 is:

(3) ( )[ ] ( ) ( ) ( )[ ] ( )� ,β µ µ ε µi i i i i i iVar M Cov M Var Var Var= = +
− −1 1

Thus, to form the optimal predictions of true quality differences across hospitals based on

equation 2, one needs to estimate two things:

1. The variance-covariance matrix of the estimation error of the observed quality indicators

(Var(ε)), e.g. estimates of the standard errors for each quality indicator at each hospital.

This can be calculated in a straightforward manner, as is currently done when reporting

the precision for of conventional quality indicators.

2. The variance-covariance matrix of the true quality differences across hospitals (Var(µ)),

e.g. estimates of how correlated true quality differences are across measures and over

time.  To estimate this we note that Var(µ) = Var(M) - Var(ε).  Thus, we can estimate the

total variance in true quality differences across hospitals by subtracting the variance in

the estimation error from the variance in the observed quality indicators.

Finally, we summarize the correlation across measures and over time with a time-

series model (a vector auto-regression), which allows one to construct out-of-sample

forecasts.  This type of time-series model places very little structure on the correlations, and

is commonly used as a flexible model for forecasting.  For details of how this model is

estimated and its empirical performance see McClellan and Staiger (1999a).

To summarize, our method proceeds in 3 stages.  First, we calculate a vector of

conventional quality indicators for each hospital and for as many years as data are available.

Second, we estimate the variance of the estimation error for the observed quality indicators

(Var(ε)) and the variance of the true quality differences across hospitals (Var(µ)) as discussed
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above.  Finally, we use these variance estimates to form predictions of true quality

differences across hospitals based on equation (2), using optimal weights derived from

equation (3).  We refer to estimates based on equation (2) as “filtered” estimates, since these

estimates are attempting to filter out the estimation error in the conventional quality

indicators (and because our method is closely related to the idea of filtering in time series).
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4.  Comparing Hospitals Based on Outcomes for Elderly Heart Attack Patients

In this section, we summarize some of our recent work applying these methods to

compare hospitals based on their quality of care for elderly heart attack patients

(McClellan and Staiger, 1999a,b,c).  We begin by briefly describing the data.  We then

use three illustrative examples to demonstrate the value of our filtering method.  First, we

show that rankings based on the filtered measures are relatively stable over time, and able

to forecast sizeable differences across hospitals 2-4 years in the future.  Second, we show

that the filtered measures can be used to compare alternative quality indicators, choose

among potential indicators, and evaluate the bias in measures that do not fully control for

differences in patient severity and comorbidity across hospitals.  Finally, we show that

the filtered measures can be used to make meaningful comparisons across hospitals in a

large metropolitan region.

A. Data

We use the same data as in McClellan and Staiger (1999a) for this analysis.  Our

hospital performance measures include serious outcomes – mortality, and cardiac

complications requiring rehospitalization -- for all elderly Medicare beneficiaries hospitalized

with new occurrences of acute myocardial infarction (AMI, or heart attacks) from 1984

through 1994, as well as for all elderly beneficiaries hospitalized for ischemic heart disease

(IHD) from 1984 through 1994.  To evaluate quality of care from the standpoint of a person

in the community experiencing heart disease, we assign each patient to the hospital to which

she was first admitted with that diagnosis.  Our population includes over 200,000 AMI

patients and over 350,000 IHD patients per year.  We limit our analysis of hospital
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performance to U.S. general short term hospitals with at least two admissions in each year, a

total of 3954 hospitals that collectively treated over 92 percent of these patients.

For each AMI and IHD patient, our mortality measure is whether the patient died (for

any reason) within 7, 30, or 365 days of admission.  Mortality information includes all out-

of-hospital deaths.  Our complication measure is whether the patient was readmitted (at any

hospital) between 30 and 365 days of admission for a cardiac related diagnosis.  For each

hospital, we construct risk-adjusted outcome rates for each year and each diagnosis. These

are the estimated hospital-specific intercepts from a patient level regression (run separately

by year, diagnosis, and outcome measure) that estimates the average outcome rate in each

hospital, controlling for a fully-interacted set of indicators for age, gender, black or non-black

race, and rural location.  These estimates provide the conventional quality indicators, on

which our filtered estimates are based.

B. Identifying High Quality Hospitals

As was seen in Table 1, conventional quality indicators are unstable over time and

are poor predictors of future hospital performance.  In Table 2, we show that this is not

the case when hospitals are ranked based on our filtered quality estimates.  As in Table 1,

we focus on 30-day AMI mortality as the outcome measure.  Based on filtered estimates

(using data available from 1984-1990), we identified the “best” and “worst” hospitals in

1990 as those in the top and bottom deciles in terms of 30-day AMI mortality.   The

“best” hospitals are those with the best outcomes, e.g. in the lowest decile of filtered

mortality rates.  Table 2 indicates how these best (column 1) and worst (column 2)

hospitals performed 2 and 4 years later.
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In contrast with conventional methods (see Table 1), our filtering method is able

to consistently identify best and worst hospitals and forecast future performance.  Table 2

shows that of the hospitals ranked in the best 10% by filtered measures in 1990, 52.1%

are still ranked in the best 10% in 1992 and 42% are still in the best 10% in 1994.

Almost none of these hospitals show up in the worst 10% in 1992 and 1994.  The

performance of hospitals we rank in the worst 10% in 1990 is similar, with 53.8%

(43.4%) remaining in the worst 10% in 1992 (1994), and none showing up in the best

10%.  Obviously, the difference between the results for conventional measures of 30-day

mortality (Table 1) and the filtered measures (Table 2) reflect the fact that conventional

quality indicators in any given year are quite noisy.  As a result, the correlation in a

hospital’s ranking from one year to the next is quite low – below 0.2 between any two

given years for conventional 30-day AMI mortality rates.  In contrast, filtered estimates

of 30-day AMI mortality rates do not change much over time: filtered estimates are

correlated .96 between 1994 and 1992, and .89 between 1994 and 1990.

Even more importantly, mortality rates in 1992 and 1994 for the hospitals ranked

in the best and worst 10% in 1990 are significantly different from the remaining 80% of

hospitals (see Table 2).  Hospitals ranked in the best 10% in 1990 had, on average, 3.8

percentage points lower mortality in 1992, and 3.5 percentage points lower mortality in

1994, relative to the middle 80% of hospitals.  Conversely, hospitals ranked in the worst

10% in 1990 had 3.7 percentage points higher mortality in 1992, and 3.6 percentage

points higher mortality in 1994, relative to the middle 80% of hospitals.  These are quite

large difference in mortality relative to the average 30-day mortality rate for AMI

patients of about 19% in 1994.  They imply that the hospitals we rank in the best 10%
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using filtered data in 1990 had a mortality rate of 15.5% in 1994, while the hospitals

ranked in the worst 10% in 1990 had a mortality rate of 22.6% in 1994.  In fact, forecasts

derived from the filtering methodology, based only on data available through 1990,

accurately predicted these differences in 1992 and 1994 as seen in the 4th and 8th rows of

Table 2.  Thus, hospital rankings based on the filtered estimates appear to be able to

identify large and persistent differences across hospitals in patient outcomes.

C. Comparing Alternative Quality Indicators

Is 30-day AMI mortality the right quality indicator to focus on? Would hospital

rankings change if one controlled for additional (but costly) information on differences in

patient severity and comorbidity across hospitals?   Ideally we would like to limit the

number of quality indicators being collected and reported, both to reduce data collection

costs and to simplify reporting.  One method of doing this would be to compare hospital

rankings across quality indicators: If two quality indicators produce similar rankings,

then one of them (the more expensive, or the one that identifies smaller differences across

hospitals) might be eliminated.  Unfortunately, the noise found in conventional quality

indicators makes such a comparison difficult, since this can generate a low correlation

between any two quality indicators (as we saw in comparisons from one year to the next).

By eliminating the noise found in conventional quality indicators, filtered measures can

more easily be used to compare alternative quality indicators, choose among potential

indicators, and evaluate the bias in measures that do not fully control for differences in

patient severity and comorbidity across hospitals.
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Table 3 contains estimates from 1994 of the relationship between various quality

indicators and 30-day AMI mortality.  The first two columns are based on filtered

measures, and the second two columns are based on conventional estimates (unfiltered).

For both filtered and conventional estimates, we report the standard deviation of each

quality indicator across hospitals (a measure of the variation in the estimated outcome

rate across hospitals) and the correlation of each indicator with 30-day AMI mortality.

We consider a variety of alternative quality indicators. First, we consider an

alternative measure of 30-day AMI mortality that controls for a detailed set of patient

severity and comorbity variables developed from comprehensive chart reviews; these

patient data are far more detailed than the information available in claims.  These data,

which were developed for the hospitals in our study through HCFA’s Cooperative

Cardiovascular Project, can provide evidence on whether rankings based on claims data

are biased by the lack of detailed risk adjusters.  We also compare 30-day mortality to 7-

day and 1-year mortality for AMI patients.  The correct amount of follow-up time is

unclear, and shorter-term mortality is generally cheaper to collect.  In a third comparison,

we consider a measure capturing a broader range of adverse outcomes for AMI: Either

death or readmission for a cardiac diagnosis within 1 year. We do not count readmissions

in the first 30 days as adverse events because many of these are for appropriate follow-up

care, e.g. bypass surgery.  Finally, we consider a quality indicator for an entirely different

sample of patients:  1-year mortality for patients with Ischemic Heart Disease (IHD).

Like AMI, IHD is a cardiac condition and one would expect quality of care to be

positively correlated across these two closely related medical conditions.
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Two facts are apparent from Table 3.  First, the filtered measures vary

considerably across hospital (column 1), with a standard deviation of around 3 percentage

points for the AMI measures (7-day, 30-day and 1-year mortality, and 1-year mortality or

readmit), and 1.4 percentage points for 1-year IHD mortality.  Conventional estimates are

considerably more variable for every quality indicator (column 3) – but most of this

variation is because of the noise in conventional estimates.

The second fact apparent from Table 3 is that many of the filtered measures are

highly correlated.  Most importantly, we find that the filtered 30-day AMI mortality rate

(which only controls for differences across hospitals in a limited set of patient

demographics) is highly correlated (0.91) with a filtered 30-day AMI mortality rate based

on detailed risk adjustment.  In other words, filtered AMI mortality rates, based on

limited risk-adjustment using only the patient variables commonly available in claims

data, generate essentially the same rankings as measures based on more detailed risk

adjustment that require more extensive data collection. Thus, for this example, there

appears to be little bias in hospital rankings that rely on AMI mortality measures derived

from claims data.

Filtered 30-day AMI mortality rates are even more highly correlated (over 0.95)

with 7-day and 1-year mortality.  In other words, filtered short-term (even 7-day)

mortality rates generate essentially the same rankings as long-term mortality measures

that require more extensive patient follow-up.  Thus, at least for AMI admissions, there

appears to be little reason to incur the extra costs and delays involved in collecting long-

term mortality information.
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Finally, the correlation of filtered 30-day mortality with the remaining measures

(AMI mortality or cardiac readmission within 1 year, 1-year IHD mortality) is less

strong, but still above 0.6.  While these quality indicators are related to AMI mortality,

they do seem to capture independent information on hospital quality along other

dimensions.  Thus, these two measures may provide useful additional information for

comparing hospitals.

Our conclusions would have been quite different if we had tried to do a similar

analysis using conventional estimates of these quality indicators.  Because these

conventional estimates are based on small samples from a single year, they are quite

noisy.  As a result, they tend to understate the correlation between 30-day AMI mortality

and the alternative measures considerably.  This is especially true when making

comparisons to a measure from a different sample of patients (e.g. 1-year IHD mortality)

because the estimation error in such measures is uncorrelated.  For other measures (e.g.

30-day AMI mortality with detailed risk adjustment) the conventional estimates remain

highly correlated because the noise in the two measures is highly correlated – e.g. a

chance death for a few average patients will adversely effect both measures.

Overall, this example illustrates how comparisons across filtered quality measures

can be used to identify a subset of core quality indicators.  This provides and empirical

basis on which to eliminate redundant measures (such as long-term mortality).  It also

provides an empirical basis on which to explore the potential bias in claims-based

measures.

D. Comparing Hospitals in a Metropolitan Market
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One of the goals in developing quality indicators is to allow meaningful

comparisons to be made across hospitals in a given region or market.  Thus, from a

practical standpoint, quality indicators must be precise enough to allow one to

consistently identify the best (and worst) hospitals in a market.  The filtered estimates for

30-day AMI mortality are quite precise relative to conventional quality indicators, and

appear to be quite useful for making comparisons of hospitals within markets (for

example, see McClellan and Staiger, 1999b).

To illustrate this point, Figure 1 presents plots of filtered and conventional

estimates of 30-day AMI mortality rates for 1994 (relative to the national average) for 26

hospitals, ranging in size from 15 to 175 AMI admissions, located in a large metropolitan

area.  In this figure, hospitals are ordered from left to right according to how they rank

among the 26 hospitals in terms of the filtered (bottom panel) and conventional (top

panel) measures.  The vertical axis gives the estimated mortality rate (relative to the

national average), with a value of –0.1, for example, indicating that mortality at the

hospital was 10 percentage points below the national average.  Confidence bars indicate a

1.4 standard error confidence interval around each hospital’s estimate, so that hospital’s

with non-overlapping confidence intervals are statistically different at the 5% level.  In

each panel, we have drawn a horizontal line through the median mortality rate in the area

as a reference point.

It is apparent that the filtered estimates (bottom panel) are much more precise

than conventional estimates (top panel).  The confidence intervals on the filtered

estimates are roughly half the size of the intervals on the conventional estimates, with the
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improvement in precision much greater for the smallest hospitals.1  Moreover, the

extreme estimates apparent in the conventional measures (with a few hospital’s mortality

more than 15 percentage points away from the median) are not present in the filtered

estimates.  Nonetheless, the filtered estimates identify large differences in mortality rates:

six hospitals (marked “L” in Figure1) have filtered confidence intervals lying entirely

below the median, while another five hospitals (marked “H” in Figure1) have filtered

confidence intervals lying entirely above the median.  The difference in average

estimated mortality rates between hospitals in these low and high mortality groups is over

8 percentage points.

Another way to demonstrate the ability of the filtered estimates to consistently

identify differences across hospitals is to plot the measures over time.  Figure 2 plots

conventional estimates of 30-day AMI mortality rates for each hospital in the region

between 1984 and 1994.  To reduce clutter, we have broken the sample into four roughly

equal sized groups, based on the average annual number of AMI admissions at each

hospital over this time period, and plot the data for each group separately.  For

comparison, we continue to label those hospitals identified by the filtered measures as

having high (H) and low (L) mortality in 1994.

The noise in conventional estimates is immediately apparent from Figure 2.  The

conventional mortality estimates change dramatically from year to year following no

apparent pattern.  As a result, it is nearly impossible to identify hospitals that have

consistently low or high mortality, and equally impossible to discern any trends in these

measures over time.

                                                          
1 Note that one cannot make direct comparison across the two panels, because hospitals
are ranked differently by the two measures.
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In contrast, the same plot using filtered data (Figure 3) is able to clearly identify

differences across hospitals and over time.  Hospitals that were ranked as having high (H)

mortality in 1994 are seen to have consistently had high mortality over this period,

although some showed more improvement over time than others.  Similarly, hospitals

that were ranked as having low mortality in 1994 tended to be larger hospitals and have

low mortality throughout the period.  Among the largest hospitals (115-175 AMI

admissions) the filtered estimates are able to identify interesting changes in the relative

rankings among the three best hospitals in the region.  Thus, this example suggests that

the filtered measures can be used to make meaningful comparisons across hospitals and

over time within a large metropolitan region.
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5. Implications

This paper provides a brief overview of how our method for extracting the signal

from many noisy quality measures can support better evaluations of the quality of health

care providers. The simple examples presented here illustrate how the method may offer

an integrated solution to the key problems that limit the usefulness of currently available

quality indicators.  Compared to existing methods for assessing the quality of health care

providers, our approach has a number of advantages.  It limits measurement costs, by

providing a sound empirical basis for comparing and choosing among alternative quality

indicators.  More importantly, our method performs far better than alternative approaches

for eliminating the noise problem that has plagued efforts to develop and apply practical

quality indicators.

We are applying these methods to a larger range of health problems, patient

populations, and provider networks, and integrating them into quality improvement

programs.  These efforts require collaboration between analysts, health plans, providers,

purchasing groups, and government agencies to collect and integrate relevant information

to construct the quality measures, and to use them to help guide decision-making and

improve provider quality.

One feature of our collaborative work is the use of meaningful quality measures

that would be difficult or impossible for individual participants in the collaboration to

obtain.  For example, the most important performance measures for serious health

conditions like heart disease and cancer involve long-term outcomes (e.g., 2-year

mortality), which are costly or impossible for providers and health insurers to collect.  In

contrast, government agencies commonly collect mortality and disease surveillance data
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needed for constructing such measures, but they may not have information on the

responsible medical groups or physicians for the patients involved.  Through the

participation of all of these groups, constructing measures of quality for serious health

conditions becomes feasible.

Another feature of our approach is to optimize the use of detailed but costly

clinical data to account for patient characteristics that may result in biased measures of

quality.  As we illustrated here, we include some measures based on clinically-detailed

risk adjustment (e.g., with data drawn from chart abstracts) for some of the patients in our

analysis, to evaluate potentially important differences across providers in patient severity

of illness.  Using these ‘gold standard’ measures, we can identify valid proxy measures

that are less costly and more readily available, or adjust these measures appropriately.  As

a result, we can extract more “signal” about true provider quality from the lower-cost

measures.  These steps help minimize the overall resource burden of our data collection

and measure development, and improve their validity.

A third component of our collaboration has involved integrating our new

outcome-based measures with those developed in established continuous quality

improvement initiatives, for example the standardized measures of patient satisfaction

and process of care developed by NCQA.  These measures have been extensively tested

and applied, but their relationship with important outcomes of care is not well

understood.  We are investigating the relationship between performance in these

dimensions of quality and important outcomes of care, to determine the extent to which

these readily-available measures can substitute for more comprehensive outcome

evaluations.
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The most important goal for many of our collaborators is to use these measures to

improve quality of care.  First, we are identifying the structural features and processes of

care that are most closely related to important outcomes, to identify specific practice

changes that are most likely to improve provider quality.  Our methods provide empirical

evidence of the magnitude and direction of relationships between these modifiable factors

and outcomes.  Such evidence can be used to assure that continuous quality initiatives

focus on identifying and changing provider practices where there is the greatest ‘bang for

the buck.’ Second, our methods can be used to obtain much more precise estimates of the

impact of interventions such as provider training or patient education.

Through all of these steps, our collaborative approach to quality evaluation and

improvement is developing performance measures that are precise and reliable, and

therefore more acceptable to providers and payers.   This is a complex and long-term

undertaking, but our results to date suggest that the potential for quality improvement in

health care is much greater than many experts now believe.
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Table 1.  Comparisons of hospital rankings: 1990, 1992 and 1994.
Rankings based on conventional profiling methods.

Outcome measure: Risk-adjusted 30-day AMI mortality among the elderly.

Ranked in best 10%
(lowest mortality rate)

in 1990
Of the hospitals ranked in the best 10%
in 1990:

1992

    What percent were still ranked in the
    best 10%?
    (lowest mortality rates)

17.0%

    What percent were ranked in the
    worst 10 %?
    (highest mortality rates)

10.4%

    Average difference in mortality rate
    from all other hospitals
    (standard error of estimate)

-.014
(.005)

1994

   What percent were still ranked in the
    best 10%?
    (lowest mortality rates)

16.7%

    What percent were ranked in the
    worst 10 %?
    (highest mortality rates)

14.7%

    Average difference in mortality rate
    from all other hospitals
    (standard error of estimate)

+.005
(.006)
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Table 2.  Comparisons of hospital rankings: 1990, 1992 and 1994.
Rankings based on filtering methods.

Outcome measure: Filtered risk-adjusted 30-day AMI mortality.

Ranked in best 10%
(lowest mortality rate)

in 1990

Ranked in worst 10%
(highest mortality rates)

in 1990
Of the hospitals ranked as indicated
in 1990:

1992

Percent that were
ranked in best 10%
(lowest mortality rates)

52.1% 0%

Percent that were
ranked in worst 10 %
(highest mortality rates)

0.3% 53.8%

Difference in mortality rate from
middle 80% of hospitals

-.037
(.004)

+.037
(.005)

Predicted difference in mortality
from middle 80% of hospitals,
based on 1990 forecast

-.038 +.042

1994

Percent that were
ranked in best 10%
(lowest mortality rates)

42.0% 0%

Percent that were
ranked in worst 10 %
(highest mortality rates)

0% 43.4%

Difference in mortality rate from
middle 80% of hospitals

-.035
(.004)

+.036
(.006)

Predicted difference in mortality
from middle 80% of hospitals,
based on 1990 forecast

-.029 +.032
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Table 3.  Comparisons across alternative outcome measures.
Filtered versus conventional estimates.

Filtered Estimates Conventional Estimates

Standard
Deviation

across hospitals

Correlation
with 30-day

AMI mortality

Standard
Deviation

Across
hospitals

Correlation
with 30-day

AMI mortality

30-day AMI
mortality with
detailed risk
adjustment.*

.029 .91 .096 .91

7-day AMI
mortality .024 .99 .079 .82

30-day AMI
mortality .028 1 .095 1

1-year AMI
mortality .031 .95 .107 .75

Mortality or
Cardiac readmit
Within 1 year

.032 .72 .109 .56

1-year IHD
mortality .014 .62 .065 .04

* Comparison of 30-day AMI mortality adjusted for patient demographics with 30-day
AMI mortality adjusted for detailed patient risk factors is based on data from HCFA’s
Cooperative Cardiovascular Project.  All other comparisons are based on measures
derived from Medicare claims data as described in the text.
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A. Unfiltered 30-day AMI mortality rates, 1994

B. Filtered 30-day AMI mortality rates

Figure 1.  Comparison of unfiltered (panel A) and filtered (panel B) 30-day AMI mortality
rates at hospitals in a large metropolitan region, 1994.

Absolute difference between each hospital’s mortality rate and the national average in 1994,
adjusted for patient demographics.  Error bars provide a 1.4 SE confidence interval, so that
hospitals with non-overlapping intervals are statistically different at the 5% level.  The horizontal
line marks the median mortality rate in the region.  Hospitals labeled “H” and “L” were identified
as high and low mortality hospitals based on filtered mortality rates in 1994.
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Figure 2.  Comparison of Unfiltered 30-day AMI mortality rates at hospitals in a large metropolitan region, 1984-1994.

Plotted separately by average annual AMI volume: 16-44 admissions per year (upper left), 44-80 admissions per year (upper right), 80-115
admissions per year (lower left), and 115-175 admissions per year.  The vertical axis gives the absolute difference between each hospital’s
mortality rate and the national average in that year, adjusted for patient demographics.  Hospitals labeled “H” and “L” were identified as
high and low mortality hospitals based on filtered mortality rates in 1994.

U
nf

ilt
e

re
d

 3
0

-d
a

y 
A

M
I m

o
rt

a
lit

y 
ra

te
re

la
tiv

e
 to

 n
a

tio
na

l a
ve

ra
g

e

Year
 

16-44

-.2

-.1

0

.1

.2

H

H

H

H

H

H

H

H

H
H

H

H

44-80

H
H

H

H

H

H

L
L

L

L

L

L

80-115

85 88 91 94

-.2

-.1

0

.1

.2

L L

L L
L

L

H
H

H H
H H

L
L

L L L

L

115-175

85 88 91 94

L
L

L L L
L

H
H H H H H

L L
L

L L

L

L
L

L

L

L

L



35

Figure 3.  Comparison of Filtered 30-day AMI mortality rates at hospitals in a large metropolitan region, 1984-1994.

Plotted separately by average annual AMI volume: 16-44 admissions per year (upper left), 44-80 admissions per year (upper right), 80-115
admissions per year (lower left), and 115-175 admissions per year.  The vertical axis gives the absolute difference between each hospital’s
mortality rate and the national average in that year, adjusted for patient demographics.  Hospitals labeled “H” and “L” were identified as
high and low mortality hospitals based on filtered mortality rates in 1994.
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