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TECHNICAL APPENDIX 

 

Details of the process used to create the composite measure.  We constructed risk-

adjusted mortality rates for each hospital using standard methods. For patients 

undergoing elective AVR, let yij be a dichotomous indicator that is equal to 1 if patient j 

admitted to hospital i died following surgery. The risk-adjusted mortality (Yi) for hospital 

i is the ratio of observed (Oi) to expected (Ei) mortality, so that: 

(1)   Yi = Oi/Ei ,   
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where ni is the number of patients at hospital i, and ijp̂ =pr(yij=1|Xij) is the predicted 

probability that mortality occurred for each patient conditional on patient characteristics 

X.  We derived the predicted probability that the outcome occurs for each patient ( ijp̂ ) 

from a logistic regression model estimated on all patients undergoing elective AVR. The 

dependent variable in the logistic model is the patient’s outcome (yij) and the independent 

variables (Xij) are patient covariates potentially associated with mortality.  These 

included patient age, gender, race, admission acuity, and comorbidities as described in 

the manuscript.  

Our hospital-level analysis was based on a hierarchical model, in which data at 

the first (patient) level provided noisy estimates of hospital-level parameters at the second 

(hospital) level. At the first level, the mean and variance of the estimates conditional on 

the hospital-level parameters is: 

(1)  E(Yi | µi) =  µi, and Var(Yi | µi) = Vi, 

where Yi is a 1xK vector of risk-adjusted mortality rates for hospital i, µi is the 

corresponding vector of underlying hospital-level quality parameters that represent the 
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average mortality or complication rate that a typical patient could expect at this hospital, 

and Vi is the KxK sampling variance-covariance matrix for the estimates in Yi. 

Note that the hierarchical nature of the data allow us to estimate Vi in a 

straightforward manner for each hospital, since this is simply the sampling variance of a 

vector of estimates derived from a sample of patients at hospital i. Our estimates of the 

sampling variance and covariance for these measures were derived using methods that are 

standard in linear models, but that are only approximations when the outcome data are 

Bernoulli. This is an approximation that simplifies the analysis and allows for the method 

to be applied to any outcome measure (whether Bernoulli or continuous). For simple 

composites such as Model 3 in Table 3 (combining volume and mortality for one surgery) 

we have found that the linear approximation yields very similar results to assuming that 

the data are Bernoulli.  

  More specifically, let k
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ij pyr ˆ  be the patient-level residual for measure k. 

We can write the kth element of Yi as: 
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Thus, each element of Yi is a sample average of k
ijr multiplied by a constant. We simplify 

by assuming that the k
ijr have constant variance ( 2

k ) and covariance ( kk  ) – ignoring 

that these depend on k
ijp̂  for a Bernoulli – and a hospital-specific mean (the risk-adjusted 

mortality rate).  Under these assumptions the sampling variance of k
iY  (the diagonal 

element of Vi) is 
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. For two elements of Yi from different procedures there is 

no sampling covariance (the off-diagonal element of Vi is zero) because there is no 
overlap in patients. When two measures are estimated from the same patient sample (e.g., 
mortality and morbidity rates for the same procedure), the sampling covariance of k

iY and 

k
iY  is 
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k  and kk  with sample variances and 
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covariances in k
ijr , after removing hospital-specific means from k

ijr , and adjusting for the 

loss of degrees of freedom. 
 

At the second level, the mean and variance of the hospital-level quality 

parameters conditional on observed hospital characteristics is: 

(2) E(µi) =  Ziβ  and Var(µi) = Σ, 

where Zi is a 1xJ vector of observable characteristics of hospital i that are thought to be 

related to patient outcomes (e.g. including a constant, volume and the other structure 

measures), β is a JxK matrix of coefficients capturing the effect of hospital characteristic 

j on patient outcome k, and Σ is the variance-covariance matrix in the hospital-level 

quality parameters summarizing the relationships across different dimensions of hospital 

quality. 

Estimation in our hospital-level analysis proceeded in two stages.  First, we 

construct estimates of the variance-covariance matrix of the hospital-level quality 

parameters (Σ), and use this to evaluate the strength of the correlation of outcomes across 

the procedures. Then, using subsets of procedures for which outcomes are estimated to be 

strongly related, we combine information across all quality measures for these procedures 

to construct estimates of the underlying hospital-level quality parameters (µi) for each 

hospital. These estimates are derived from the data (Yi, Zi, Vi) observed for a sample of N 

hospitals, where in our application N is large (all hospitals in the United States 

performing elective aortic valve replacement on Medicare patients, approximately 1,000 

hospitals).  

To estimate the variance-covariance matrix of the hospital-level quality 

parameters (Σ), we calculated the covariance matrix of the risk-adjusted rates (Yi), and 
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adjusted for sampling variability by subtracting the mean sampling-error covariance 

matrix (Vi): 
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where the coefficients ( ̂ ) on the observable hospital characteristics are estimated using 

a weighted least squares regression of Y on Z (weighting by ni, the number of patients in 

hospital i). We estimate the i-j element of Σ weighting by the product of ni and nj, since 

these weights lead to more efficient estimates in theory and improved the accuracy of our 

forecasts in practice. One problem with using equation (3) is that it can obtain estimates 

of the variance-covariance matrix that are not positive-semi-definite (e.g., that imply 

correlations greater than 1).  When this occurred we replaced the estimated correlation 

matrix with the nearest positive-semi-definite correlation matrix. 

To estimate the underlying 1xK vector of hospital-level quality parameters (µi) 

for each hospital, we again used an empirical Bayes approach.  The empirical Bayes 

estimates are a weighted average of the noisy data (Yi) and the regression predictions 

( ̂iZ ), where the weights depend on both the signal and noise variance ( ̂ and Vi).  The 

equation is: 

(4)  ))(ˆ(ˆ iiiii WIZWY   , 

where I is a KxK identity matrix, and Wi is a KxK weighting matrix estimated by 

(5)    
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This weight is the matrix equivalent of the ratio of signal variance to total 

variance. Thus, equation (4) is the matrix version of a standard empirical Bayes (or 

shrinkage) estimator that places more weight on a hospital’s own outcome rate (Yi) when 

the signal ratio is high, but shrinks back toward a (conditional) mean when the signal 
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ratio is low. But where the usual shrinkage estimator is a weighted average of a single 

outcome measure and its mean, the version in equation (4) is a generalized shrinkage 

estimator that is a weighted average of all outcome measures and their means. Note that 

equation (4) yields a generalized empirical Bayes estimator for the mortality measure of 

each procedure that is a linear combination of the mortality and complications measures 

for all procedures in Yi, along with all of the observable hospital characteristics in Zi 

(such as volume) that are thought to be related to patient outcomes.  

This composite measure of surgical mortality has a number of attractive properties. 

First, it incorporates information in a systematic way from many quality measures into the 

predictions of any one outcome. Moreover, if all of the estimated parameters in equation 

(4) were known (β, Σ, and Vi), the composite measure represents the optimal linear 

predictors, based on a mean squared error criterion. Since these parameters are 

consistently estimated as the number of hospitals increases, these composite estimates are 

asymptotically (in the number of hospitals) the optimal linear predictor. Finally, these 

estimates maintain many of the attractive aspects of existing Bayesian approaches, while 

dramatically simplifying the complexity of the estimation.  For example, beginning with 

the raw patient-level data, it takes approximately seven minutes to estimate all the 

parameters and the composite estimates for Model 4 running STATA on a standard PC. 

The programs used to construct all of the estimates reported in this paper are available 

upon request. 


