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Summary. Two-stage instrumental variable methods are commonly used for estimating average
causal effects in the presence of an unmeasured confounder. In the context of the proportional
hazard Cox regression models, this problem has recently received attention with several meth-
ods being proposed. Previously, we developed an improved estimator under the incumbent
two-stage residual inclusion procedure called ‘2SR’ by adding a Gaussian frailty in the second
stage. We now consider the more complex situation in which the treatment and the unmeasured
confounders can have time varying effects, illustrating the method with the case of a step func-
tion with one prespecified change point. We prove that, in situations where the effects of the
unmeasured confounder or the treatment change during the follow-up, the first stage of the 2SRl
algorithm induces a frailty with time varying coefficients in the second stage, which enables in-
cumbent methods and our previously developed procedure to be improved on. A Monte Carlo
simulation study demonstrates the superior performance of the proposed extension of 2SRl
that we develop. We apply the new procedure to estimate the effect of endarterectomy versus
carotid artery stenting on the time to death of patients suffering from carotid artery disease by
using linked vascular quality initiative registry—Medicare data.

Keywords: Causal inference; Control function; Cox regression model; Time-dependent
coefficients; Time-modified confounding

1. Introduction

The semiparametric Cox proportional hazard model (Cox, 1972) provides a useful approach
for understanding time-to-event processes. It assumes that each covariate effect on the hazard
is the same through the entire study period. The hazard function, which is the instantaneous
risk that a subject at risk till 7 suffers the event at time ¢, is given by

A X, U)= X)) exp(Bx X + By ),
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where X and U are covariates and \y(-) is the baseline hazard function. When U is observed and
adjusted for, the model accounts for the possible relationships between the covariates X and
U and between the covariate U and the time-to-event 7. Assuming that the model is correctly
specified, Oy is the log-causal-hazard ratio of X on the studied event and measures the average
change in the risk produced by X when U is fixed. One relevant handicap of Cox regression mod-
els is the loss of causal interpretation if U is not included in the model, even when there is no
interaction between X and U (Aalen et al., 2015a; Martinussen and Vansteelandt, 2013), i.e., if in
the above model By #0, then estimating A(r] X) = \§ (1) exp(3% X) yields estimates 3% # 3x even
when X and U are independent. Note that the subjects who are at risk beyond each particular
event time are a subset of the individuals who have not previously failed. Therefore, the balance
in the distribution of the potential confounder between treatment groups is lost by the implicit
conditioning. In this context, instrumental variable (IV) methods that are used to adjust for un-
measured confounding frequently report biased results (Wan et al., 2015). Martinez-Camblor
et al. (2019) proposed to add an individual (univariate) frailty term in the second stage of the
two-stage residual inclusion procedure called ‘2SRI’ (Terza et al., 2008) for dealing with this bias.
The frailty term in the second stage accounts for the noise in the residual from the first stage. Un-
der general conditions, the new two-stage residual inclusion—frailty procedure (called 2SRI-F’)
obtains unbiased estimates of the log-hazard ratio in the presence of unmeasured confound-
ing. Monte Carlo simulations revealed substantial bias reductions even when some theoretical
assumptions were not satisfied. Despite detractors from a non-parametric causal perspective
(Hernan, 2010), the proportional hazard assumption and the hazard ratio are a useful way of
summarizing a (potentially) complex reality. However, in research fields like biomedicine, it is
not unusual that patients experience varying risk over the follow-up period following procedural
interventions. For example, risks of mortality immediately after surgery from many procedures
are transiently higher as patients recover from their procedure and may be subject to compli-
cations (see, for instance, Goodney et al. (2011)). After patients have recovered from surgery,
their risks of mortality return to their baseline rate, perhaps even a lower rate if their surgery
mitigated a risk to their survival. Fortunately, one of the Cox model’s strengths is its ability to
encompass different scenarios such as time-dependent covariates and/or coefficients.

Most of the circumstances that are associated with time-dependent events can change during
follow-up. Many references have dealt with this type of problem. For instance, Robins (1986)
considered the case where there is a time varying cause of disease that brings about changes
in a time varying treatment. Platt et al. (2009) studied the case where the relationship between
the treatment and confounding changes across follow-up (time-modified confounding). Gran
et al. (2018) dealt with the problem of estimating the treatment effect on the treated under time-
dependent confounding. Recently, Burne and Abrahamowicz (2019) proposed and compared
alternative methods for controlling for a time varying unmeasured confounder in large data sets
by using additional information from small validation samples.

To estimate a causal effect in a non-linear model in the presence of unmeasured confounding,
the most commonly used two-stage procedures are two-stage predictor substitution (Greene
and Zhang, 2003) and the 2SRI (also called control function) methods. Whereas both methods
share a first stage in which the relationship between the treatment and the IV is estimated by
using any consistent estimation technique, the second stage differs: in the two-stage predictor
substitution the observed exposure is replaced by its prediction obtained in the first stage; 2SRI
includes in the second stage the residuals that are computed in the first stage as an additional
covariate. To the best of our knowledge, no published work has studied the performance of
these procedures in Cox regression models with time-dependent treatment effects.

In this paper, we deal with the problem of estimating the causal hazard ratio exp(8x) in the
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presence of unmeasured covariates when it is time dependent, denoted as Sx (¢). In particular, we
consider the simple case in which Gy (1) = Bx,1 Ijo,i+) (t) + Bx.2 L[+ 00) (), With 1* a fixed (known)
point of time and 14 the indicator function (14 (¢) takes the value 1 if r € A and 0 otherwise).
In addition, the behaviour of the 2SRI-F procedure when the unmeasured confounding effect
changes at this point of time (By () = Bu,1 Tjo,i) () + Bu,2 Ij+,00) (1)), 1.€. the presence of time-
modified confounding is also explored. The two-stage framework is presented in Section 2. In
Section 3, we prove that, when the unmeasured covariates are time modified, the procedure 2SR1
induces time-dependent frailty in the second stage. We propose to estimate the parameters of the
resulting model by maximizing the integrated partial likelihood function (Therneau et al., 2003).
In Section 4, we study the behaviour of the 2SRI-F algorithm on finite samples via Monte Carlo
simulations. In Section 5, we estimate the therapeutic effect on all-cause mortality of the received
treatment (endarterectomy versus carotid stenting) on carotid artery disease patients from the
‘vascular quality initiative’ registry—Medicare linked, the problem which motivated this research.
The initiative is a national registry of patients treated for vascular disease, where the benefits
of treatment—such as removing blockages from the carotid arteries, which supply blood to the
brain—are measured over time. This treatment, which includes procedures known as carotid
endarterectomy and carotid stenting, is proffered by a surgical intervention, which carries an
up-front risk during the acute period of complications from surgery. This risk is then observed
to equalize and eventually to be surpassed by a time-dependent treatment effect, measured in
terms of long-term stroke risk reduction. We allow both the treatment effect and the unmeasured
confounding to change between the acute period (the first 30 days) and the long-term follow-up
(10 years). The proposed model and estimation approach enable a better understanding of the
treatment effect than the simple application of 2SRI-F. Finally, in Section 6, we present our
main conclusions, whereas Appendix A provides some additional figures and some R code that
was used for implementing the proposed procedures.
The programs that were used to analyse the data can be obtained from

https://rss.onlinelibrary.wiley.com/hub/journal/14679876/series-
c-datasets

2. The two-stage instrumental variable framework

In the two-stage modelling framework (Terza et al., 2008) it is typically assumed that both
the outcome studied, T, and the treatment assignment, X, share the same unmeasured covari-
ates. In the linear context, this is not a restrictive assumption because of the greater affinity
of procedures with explicit additive error terms for dealing with independent unmeasured co-
variates (i.e. variables that predict the outcome but not the treatment assignment). However,
this is a concern in the Cox proportional hazard model. Indeed, the causal interpretation of
the hazard ratio is compromised in the presence of unmeasured covariates that are unrelated to
the treatment (Aalen et al., 2015a), which manifests as an individual random effect in the sur-
vival model—known as a frailty in survival analysis parlance. In addition, Martinez-Camblor
et al. (2019) proved that, in the control function method, a first-stage including unmeasured
covariates related to the treatment assignment but unrelated to the main outcome induces a
frailty in the second-stage survival model. Under the causal proportional hazard model given
by

A1 X, U) = Xo(1) exp(Bx X + Sy U), €]

U depicts the unmeasured confounding, Gy is the log-hazard (coefficient) of the unmeasured
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covariates, X is the received treatment, Sy is our target and Ao (-) is the baseline hazard function.
The treatment received is the result of the selective process depicted by the equation

X=ap+awW+ayU +¢, )

with e white noise and W a measured random variable satisfying the following conditions.
Condition 1. (W L. X)|U.
Condition 2. (W 1L T)|X,U.

Condition 3. W 1L U (randomization assumption).

Then W can be considered an I'V. The strength of the instrument reflects the strength of the
relationship between W and X. In a randomized trial, assigned treatment is an instrument.
Assumptions 1-3 can be reformulated and combined with the stable unit treatment value as-
sumption and the monotonicity assumption (Hernan and Robins, 2006) between the treatment
and the IV to complete the conditions under which the IV W identifies the effect of X non-
parametrically (i.e. without relying on equations (1) and (2)). Common instruments include
prior institutional affinity for using a particular procedure, geographic region of residence, an
individual’s differential access to certain treatments and an individual’s genes (also known as
Mendelian randomization (Thanasassoulis and O’Donnell, 2009)). Although our method re-
quires that W be independent of U and associated with X, but does not require that W have a
causal effect on X, the key point is that, in the first-stage model for the treatment assignment,
W captures information about confounders: it is not required that W be causal. Fig. 1 depicts
the directed acyclic graph (Pearl, 1995), with W a non-causal and W* a causal IV (Swanson
and Hernan, 2018). Pathways connecting covariates with the outcome at different moments (the
grey arrows) are the main handicap of the I'V in the time-to-event context. Of course, a vector of
measured covariates can be easily accommodated within this framework. We do not explicitly
depict any measured covariate herein. Without loss of generality and to gain simplicity in the
expressions reported, we assume that U and W are centred at 0.

In the first stage of procedure 2SRI, we estimate the residuals

R=X—(ag+awW)=ayU +c¢,

that are included in the estimation of the survival model in the second stage:
P{T>t|X=x,U= oz{,l (r—e)}=E. {exp { - /Ol Ao (s) exp{,@xx~|—ﬂuozl_;1 (r— e)}ds} }
=E {exp{ - /Ot z(e)Ao(s) exp(ﬁxerﬂRr)dSH
=P(T >t|X=x,R=r),
U
N
w X > Tt

0

Ty

Fig. 1. Directed acyclic graph showing a causal W”* and a non-causal W IV: U stands for an unmeasured
confounder
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where z(¢) = exp(—ﬂyaz,l €) and Br= Bya[,l, i.e. a Cox regression model with frailty term is
determined as the statistical model to estimate in the second step. To identify the model, we
assume that the frailties follow a parametric distribution. Herein, we suppose that the frailty
term z(e) that is included in the final Cox regression model follows a log-normal distribution
MO, oe).

In the current work we consider the more complex situation in which both the treatment and
the unmeasured confounder effects are allowed to change with time, i.e. we assume the causal
model

At X, U)=Xo (D) exp{Bx (X + Bu (U}, ©)

where U depicts an unmeasured confounder, 5y (-) is the log-hazard (coefficient) of the un-
measured covariates and X is the received treatment. Our goal is to estimate the treatment
effect Bx(-), assuming the assignment model (2), the hypothesis 1-3 and the specified frailty
distribution.

3. Frailties in the 2SRl algorithm

The concept of a random effect is translated to time-to-event models as a frailty (Hougaard,
1995), i.e. a frailty Cox proportional hazard regression model is a standard Cox regression model
which includes a random effect (frailty). The frailty reflects the susceptibility of a subject (uni-
variate frailty) or a group (multivariate frailty) suffering the event studied. There is an increasing
number of references dealing with both theoretical and practical aspects of this topic. Readers
who are interested in technical aspects of frailties are referred to Wienke (2010) and the refer-
ences therein. Several real world situations in which the frailty term is useful for understanding
the time-to-event process were reported by Aalen et al. (2015b).
The previous framework (Section 2) directly implies that

t
P(T>t|X=x,R:r)=[E6{exp[—/ )\O(s)exp{ﬁx(s)x—i—ﬁu(s)aul(r—e)}ds”
0
t
=L, {exp { - /0 2(s, €) Ao (s) exp{ Bx (s)x +5R(s)r}ds” , ()

where r =x — ag — aww, z(s, ) =exp{—LSu (s)a[/1 e} and Bgr(s) =0y (s)aal, i.e. the previous Cox
proportional hazard model with frailty term enables the targeted parameter Bx(s) to be esti-
mated. Note that, under assumptions 1-3 and for adequately distributed frailties, all components
of the model can be estimated from observed data.

In general, it is easy to control for measured confounders. For simplicity, we do not include
the term Z in the method’s development. However, in the case that a measured confounder Z is
included in both the survival and the assignment models with coefficients 5z and az respectively,
it is not possible to assure that the estimate of R=X — (o + aw W 4+ azZ) is unbiased without
assuming Z 1L U; we do not have an unbiased estimator for az and, therefore, this bias transmits
to the final estimation of 3z (-). When there are interactions between the treatment and measured
confounders, the procedure can control for this effect and report consistent estimates for the
treatment effect but cannot report the correct effect of the interaction itself. An alternative
procedure for estimating the interaction with measured confounders is to estimate separate
models.

Particular families of frailties have been considered in the survival analysis literature. For
instance, Unkel et al. (2014) considered time-dependent frailties in the context of infectious
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disease. In the problem currently considered, the identifiability of both the frailty time-dependent
coefficient ﬁu( ) Ul and the variance of the random component, ¢, is well studied. However,
since — Oy (- )aU scales the frailty distribution, we can fix the variance of € to be equal to 1.
Although frailties are helpful towards obtaining good estimates for the parameters of
interest, they complicate the estimation of the predicted values for new subjects. The effect of the
treatment on the difference between the survival curves depends on the length of follow-up, z,
and on the value of the unmeasured confounder. This effect is smallest for the most extreme val-
ues of the survival probabilities, i.e. at the greatest and lowest U-values (see Fig. 6 in Appendix

A.l).

3.1. Parameter estimation

In practice, we often have the sample {(y;, Ai)},'l\;l, where y; =min{z;, ¢;} and A; = I oo, (),
and ¢; and ¢; are the censoring and the survival times for the ith subject (1 < i < N) respectively.
For each subject we also know the IV values, {w,-}fi 1> and the treatment received, {xi}i’\; - To
guarantee asymptotic convergence for the standard Cox regression model estimator, a sufficient
condition is that the censoring times C satisfy (C 1L Y)|X, U, W. The second-stage goal is then
to fit the model

A11X, R, 6) =X () exp{Bx () X + Br() R+ Br (1)},
5~ MO, 1),

where Or(f) is the frailty time-dependent coefficient. Assuming that, for a fixed point of time
+*, we have that

B(s) = (Bx(s), Br(s), BF (s))
= (Bx,1, Br,1, BF,1) 1j0,r11() + (Bx.2, BRr.2> BF,2) L1+,00) (s) = B1 + Bo.

We can then define the usual Cox partial likelihood function and integrate out the random
effects to create the integrated partial likelihood (Therneau et al., 2003):

i(B),By) = z / / A [m ,+nz,—log{ S° ¥, () exp(ny ,+nz,)}]go<6i)d6,- dr

Z::/ (/0 [771,1 —log{]Zl Yy,;(®) exp(m ,)H

0 n
+/ A [772,1' - log{ Zl Y0 eXP(nz,;)H df) (6;) dé;
r* j=

where g ;= Bx xxi1+ Briri+ Br b (k=1,2and [=1,. .., n), Y;(r) describes the risk set (¥;(r) =1
if the /th subject is still under observation (without the event) at time # and Y;(¢) =0 otherwise)
and (-) is the density function of a standard normal distribution. Ripatti and Palmgren (2000)
showed the connection between the Gaussian frailty Cox model and a penalized likelihood
procedure and used this result to derive an estimation procedure. Next, we propose an algorithm
for approximating the solution to the above equation.

The algorithm proposed estimates the first-period frailties and then solves for the implied
second-period frailty term. The algorithm is as follows.

Step I: estimate the treatment assignment model X = & W and compute R=X — dw W (first
stage).

Step 2: compute the first-period Cox regression model with an individual frailty term and R
as covariate. Times are censored at time ¢* if the event studied has not occurred by then.
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Step 3:

(a) from the first- period model, compute B | (the estimator of Bx,1), and Ri=R+73, R. lqﬁl,
where ¢1 are the log-frailty estimates prov1ded in the estimation of the Cox regression
model with individual frailty term (second stage—first period);

(b) estimate a second-period Cox regression model with individual Gaussian frailties inclu-
ding X, and R; as covariates; the resulting BI)}’Z is the estimator for Bx > (second stage—
second period). j

Note that, under model (2), assuming without loss of generality that cg =0, conditions 1
and 2 guarantee that R is an unbiased estimator for R =ayU + €. Assuming that e is normally
distributed white noise, theoretical developments in Martinez-Camblor ez al. (2019) guarantee
that, if the censoring time and the time to event given X, U and W are independent, Jn{BIU\fl —
Bu.1} converges weakly to a normal distribution. Therefore, under these assumptions, step 3(a)
provides a consistent estimator for Sy 1.

We show in equation (4) that Sy U = (g 1R+ ¢, where ¢ (=040) is the frailty that is ac-
tually present in the estimation of the first-period model in step 2 above (A\(t|X =x,R=r) =
Xo(0) exp(Bx,1x+ Or,1u+ ¢) w1th t€[0,*) and ¢ follows an A0, o) distribution). Since Sg 1 =
Bu. laUl, then ayU = R+ﬂR 1(;5 R1. Arguing as in equation (4), we have for r € [t*, co) that

P(T>t|X=x,R1=r1)
=P(T>t|X=x,U=ay'r)

t* t
ZCXP{—/O Ao(s) eXp(ﬂx,lx-FﬂU,laElrl)dS-F/ >\0(S)eXp(ﬂx,zvaﬂU,zaElrl)ds}
-

We cannot guarantee that the individual values of R; (the empirical estimator of R;) converge to
the individual values of R;. However, assuming that q§~ M, 04) (this assumption is true if ¢ is
a Gaussian frailty term) and that R ~ A(R, o) (the usual assumption for making inference in
linear models), then R = R| + 7, where 7 is a normally distributed random variable. In general,
&y AL Ry. Therefore,

P(T>t|X=x,Ri=f))=PT>t|X=x,Ri=r +7)
t
=E, {exp [ —/ 2% (5, 7)Ao (s) exp{Bx (s)x — ﬂU(s)aglrl}ds” ,
0

where z*(s, 7) = exp{—fu (s)o@lT}, i.e. the Cox proportional hazard model with Gaussian
frailty term that is proposed in the second stage for the second-period estimates the param-
eter Ox . Arguing as in Martinez-Camblor et al. (2019), under correctly assumed parametric
assumptions for the error terms, we have that the estimator is consistent and asymptotically
normally distributed.

Although some asymptotic theory has been developed for different frailty structures and es-
timation procedures (see, for instance, Murphy (1995) and Kosorok and Lee (2004)), in the uni-
variate case computational approximations or other idiosyncrasies in available software pack-
ages mean that, even under optimal situations, some bias remains. Barker and Henderson (2005)
pointed out that, for univariate gamma frailties, the usual expectation—-maximization approach
leads to finite sample underestimation of the frailty variance, with the corresponding regression
parameters also being underestimated as a result. Fig. 7 (in Appendix A.1) illustrates this issue.

3.2. Alternative 2SRI-F extensions to account for time varying treatment effects
The theory underlying equation (3) suggests that the above algorithm is the correct extension



992 P. Martinez-Camblor, T. A. MacKenzie, D. O. Staiger, P. P. Goodney and J. O’'Malley

of the 2SRI-F estimation procedure to the time-dependent treatment effect set-up. However,
although direct application of 2SRI-F to the first period is clearly appropriate, other natural
alternatives can be applied for estimating the coefficient for treatment in the second period.
Here, we briefly present two alternatives. These reflect a practitioner who

(a) naively treats survival across the two time periods as unrelated problems or

(b) naively directly applies the 2SRI-F algorithm (Martinez-Camblor et al., 2019) by includ-
ing the first-stage residual and a single frailty both with fixed coefficients across both time
periods.

By evaluating the relative performance of these two alternative procedures that could unwittingly
be assumed by practitioners to be the appropriate generalization of 2SRI-F, this section of the
paper emphasizes an important contribution that is distinct from prior work (Martinez-Camblor
etal.,2019).

The first alternative approach, called ‘2SRI-F[;;’, directly applies 2SRI-F to the second time
period. By using this algorithm, the estimated frailties in the first and second periods may bear
no relationship to one another. The second-period frailties are computed by using only the
subset of subjects surviving to the beginning of the second period. Because survivor subsets are
selective, the distribution of the frailties for the survivors to the second period is likely to be quite
different from that of the full distribution, which we conjecture is likely to confound the frailty
term strongly with the treatment effect in the second period and to result in substantial bias.

In the second alternative approach, we conjecture that not allowing the residual and frailty
terms to be scaled differently in the second period will fail to capture any change in the true effect
of the unmeasured confounder on survival. This claim stems from the following argument. The
estimated treatment selection mechanism in the first time period has the form 5y 1 U =g 1 R +¢,
from which the unmeasured confounder U is estimated. We include the estimates of U, the
first-stage residual, as a covariate in the second period to control approximately for U whose
coefficient is fixed to 1; this is only supported by the model if 5,1 = 8y ,2. In addition, under this
second alternative procedure, called ‘2SRI-Fpp)’, the additional frailty that is used to account
for estimation-induced random error is excluded altogether. In short, from the Cox regression
model with Gaussian frailty,

A1 X, R) =Ec[Ao (1) exp(Bx,1 X + Br1 R +¢€)] 1€[0,1),
we estimate Oy 1. Then, from the Cox regression model,
A(t1X, R) = Xo(1) exp(Bx 2 X + Br.1 R+ ¢) re[r*,00),

we estimate (x . Note that € are the frailties that are computed in the first period. A critical
problem is that, without the additional frailty, the individual frailties that are estimated in the
second stage have a sample error which depends on the sample size and, therefore, are not
asymptotically null.

4. Monte Carlo simulations

We simulate 1000 values (the sample size) for three random variables (U, e and W) follow-
ing independent standard normal distributions. Then, the continuous treatment assignment or
propensity is computed from the model X = awW + U + 2¢ with aw =1 (the final variabil-
lity of the random term in the treatment assignment model is 4). Survival times are generated
from a distribution with hazard function A\(¢|X,U) = %texp[{ﬁx,ll[w) (O + Bx 213,000 } X +
{Bu,1110,3)(t) + Bu,2113,00) (1) }U]. Censoring times are independently generated from a gamma
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model. Observed times above 10 were censored at this point. Censoring distribution parame-
ters are selected to obtain a final censorship average between 15% and 30%. Fig. 2 depicts the
median of the 2000 simulated quadratic errors, E* = (B X1— /BX,I)Z + (B X2~ ﬂX’2)2, for the real
(including unmeasured covariates), naive (omitting the presence of unmeasured confounding),
2SRI (two-stage residual inclusion letting the residuals effects change with time) and 2SRI-F
(two-stage residual inclusion with Gauss1an frailty) procedures for various values of Ox 1 (the x-
axis), Bx.» and By 2 and By 1 = log( ). The case Gy 2 _log( ) represents the case when the effect
of the unmeasured confounder does not change with time. As already mentioned, to implement
procedure 2SRI-F we estimate the first-period frailties and they are included as a covariate in the
second period with an additional frailty term (full details about the implementation are reported
in Appendix A). The best scenario for using the procedure proposed is the presence of strong
effects of the unmeasured covariates in both periods (i.e. when Gy 5 is log( ) or log(3)) and like-
wise for the treatment effects (8x,1 = log( ) and Bx > =1log(3)). The results that were obtained
by the algorithms 2SRI-F[;; and 2SRI- F[z] are also depicted in Fig. 8 (in Appendix A.1).

These Monte Carlo simulations reveal that the proposed implementation for procedure 2SRI-
F performs well for continuous treatments; it improves the median quadratic error E2 obtained
for 2SR1 in all situations considered, especially in the most extreme cases (strongest changes in
the coefficients).

In general, the two considered alternative extensions of 2SRI-F to the time varying case,
2SRI-Fjj; and 2SRI-F[;, produce worse results than the procedure that we developed, which
controls for the unmeasured confounder in all the situations considered. The results for 2SRI-
F[1j are, however, still better than those for 2SRI-F[y), which produces erratic outcomes (see Fig.
8 in Appendix A.1). Therefore, the procedure that is developed in this paper provides a clear
enhancement of the procedure that we previously developed by appropriately accounting for
the change in the effect of the unmeasured confounder and the additional random noise that is
induced by the inclusion of the frailty estimated in the first time period as a covariate.

We finally consider a binary treatment. Retaining the previous notation and distributions,
the treatment assignment is given by the model X = Ijp, o) (W + U +¢) or, equivalently, X =
W+U+e+pwhere p=W + U + € — I[o,00) (W + U +¢). The quantity ¢ is obviously not normally
distributed (see Fig. 3 (d)) and is related to W, implying that assumption 3 is violated and that the
operating characteristics of the procedure will not be as optimistic as when X is continuous. We
considered the following parameter settings: ﬁU 1 —log( ), Bu.2 =log(3) all with Bx > =log(3).
The median behaviour in the quadratic error, E?, is s1mildr to that obtained for the continuous
treatment case although the scale of the error is larger (Fig. 3(a)). The biases of the frailty in both
the first and the second period treatment seem to be smaller than in the continuous treatment
case. In general, it is noteworthy that 2SRI-F controls the bias of Gx 1 by the largest amount
relative to other procedures at the extreme ends of the range of X (Fig. 3(b)). This finding
suggests that substantial unmeasured confounding must be present for the new estimator that
accounts for treatment effect heterogeneity to improve substantially on the naive adaptation of
2SRI-F and other procedures.

5. Real world data application

We apply 2SRI-F to nationwide data from the vascular quality initiative (http: //www.vas
cularqualityinitiative.org), on patients who were diagnosed with carotid artery dis-
ease (carotid stenosis). These data contain comprehensive information on all patients suffering
from carotid stenosis and are continually updated over time. They facilitate determination of the
best procedure or treatment approach to use on average and to determine which types of patient
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benefit the most from each procedure. However, the data are exposed to a plethora of selection
biases, raising concerns that naive analyses will yield biased results. Because the outcomes of
most interest are events such as stroke or death that can occur at any point during follow-up,
and such events are often thought to have different risk profiles after the acute period in the
first 30 days after the surgery, which is often referred to as the perioperative period, these data
are ideal for application of 2SRI-F with time-period-specific treatment effects.

We employed 2SRI-F with time-dependent coefficients to estimate the comparative effective-
ness of endarterectomy, CEA, versus carotid stenting, CAS, the two surgical procedures that
are used to intervene on patients with carotid stenosis. The data consist of 73312 patients who
received CEA and 12705 who received CAS, between 15 and 89 years of age, over 2003-2016.
During the follow-up a total of 8005 events (6600 in CEA) were collected, 730 of them (530
in CEA) during the first 30 days. Fig. 4 shows the short-term Kaplan—Meier estimates for the
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cumulative distribution function (Fig. 4(a)) and the long-term Kaplan—Meier survival percent-
age (Fig. 4(b)) estimates for both the CEA and the CAS groups.

The effect of the procedure received on all-cause mortality risk seems to be stronger in the
acute period (hazard ratio (HR) 0.46; 95% confidence interval (0.39; 0.54)) than in the long-
term follow-up (HR 0.71 (0.67; 0.76)). When we adjust for observed potential confounders (see
Martinez-Camblor et al. (2019)) the estimated HRs are only minimally affected: 0.48 (0.40; 0.56)
and 0.72(0.68; 0.77) in the acute and long-term periods respectively. However, the presence of an
unmeasured confounder may bias these estimates. We consider as an IV the centre level relative
frequency of CEA versus CAS procedures over the 12 months before the current patient, i.e.
number of CEA/(number of CEA + number of CAS). This IV estimates the propensity of each
particular centre to perform CEA. It is justified as an instrument because

(a) hospitals that perform a high relative amount of a certain procedure in the past are likely
to keep doing so,

(b) there should be no effect of the relative frequency of CEA versus CAS on a patient outcome
except through its effect on treatment choice for that patient and

(c) we know of no factors that would influence both the relative frequency of CEA and a
patient’s outcome.

Reasons (b) and (c) are contingent on adjusting for the total number of CEA and CAS procedures
performed at the centre over the previous 12 months, which accounts for the collective experience
of the centre at treating carotid artery disease.

On the vascular quality initiative data the IV is highly associated with the choice of treatment,
confirming that condition 1 is satisfied. The probability that a randomly selected subject under-
going CEA has a larger value of the instrument than a randomly selected subject undergoing
CAS was 0.809 (95% confidence interval (0.805; 0.813)). This IV was uncorrelated with each of
the measured confounders, suggesting anecdotally that it may also be uncorrelated with any un-
measured confounder. Hence, it is reasonable to assume that the relationship of the instrument
with mortality is solely due to its relationship with the treatment. Fig. 5(a) shows the histogram
and Fig. 5(b) the boxplot for the IV in both the CEA and the CAS groups.

When the cut-off point is omitted and we assume that the treatment effect does not change
along the follow-up, CEA has some advantage over CAS (HR 0.68 (0.64; 0.71)) which is slightly
diluted in the adjustment model (HR 0.69 (0.65; 0.73)). The effect that was reported by 2SRI-F
is still significant: 0.81 (0.69; 0.96), but considerably more modest.

The effect of CEA versus CAS is more extreme when we allow the treatment effect to change
with time. Standard 2SRI (with the total number of procedures per hospital in the previous 12
months as an additional covariate) reports HRs of 0.57 (0.46; 0.72) for the acute period and a
non-significant 0.87 (0.74; 1.03) (p-value 0.103) for the long-term follow-up. 2SRI-F yields the
same effect estimate reported by the unadjusted and adjusted procedures in the acute period
(HR 0.48 (0.31; 0.74)) and a non-significant effect in the long-term period (HR 0.89 (0.74; 1.07)
with a p-value of 0.220). These results were the same under both normal- and gamma-distributed
frailties. Table 1 shows the results reported by procedure.

The naive results, ignoring the potential effect of unmeasured confounders, imply a clear
change in the survival risk during and after the acute period. Although CEA has a clear
advantage in the first 30 days after the surgery (HR 0.46; 95% confidence interval (0.39; 0.54))
the benefit decreases over long-term follow-up (HR 0.71 (0.67; 0.76)). The standard 2SRI pro-
cedure reduces the effect in the first period whereas the frailty correction preserves it. None
of the IV procedures find significant effects in the long-term period. Note that our Monte Carlo
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Table 1. HRs and 95% confidence intervals by estimation method
Method HR (95% confidence interval)
Acute period Long-term follow-up Proportional hazard
assumption
Unadjusted Cox model 0.46 (0.39; 0.54) 0.71 (0.67; 0.76) 0.68 (0.64; 0.71)

Adjusted Cox model (naive)
2SRI

2SRI-F (Gaussian)

2SRI-F (gamma)

0.48 (0.40; 0.56)
0.57 (0.46; 0.72)
0.48 (0.31; 0.74)
0.48 (0.31; 0.74)

0.72 (0.68; 0.77)
0.87 (0.74; 1.03)
0.89 (0.75; 1.07)
0.89 (0.75; 1.07)

0.69 (0.65; 0.73)
0.83 (0.70; 0.97)
0.81 (0.69; 0.96)
0.79 (0.65; 0.93)

fProportional hazard assumption stands for the HRs fixed along the follow-up.

simulations suggest that both 2SRI and 2SRI-F obtained similar results when there is no effect
of the treatment, but 2SRI-F improves on the results of 2SRI when the effect is strong. In this
case the threshold for a strong treatment effect is close to log(%) (see Fig. 2).

6. Discussion

Several approaches for I'V estimation of Cox proportional hazard regression models have been
studied recently (see, for instance, Burne and Abrahamowicz (2019), Li et al. (2015), MacKenzie
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et al. (2014), Tchetgen Tchetgen et al. (2015), Martinussen et al. (2019) or Wang et al. (2018)).
Martinez-Camblor et al. (2019) proved that, in the two-stage residual inclusion procedure, the
first stage introduces a frailty in the second stage which, if not considered, leads to biased
estimates. Martinez-Camblor et al. (2019) proposed to consider in the second stage a frailty
Cox regression model and, via Monte Carlo simulations, showed that the new algorithm, 2SR1-
F, improves the 2SRI results. This paper extends the methodology to the case when the effect
studied is time dependent. In the simplest case, in which there is a known point of change, there
exist different possibilities: to include one or two instruments and to include an independent,
shared or correlated univariate frailty. In this paper, we deal with the estimation of a time-
dependent coefficient (time modified) in the presence of unmeasured confounding. The case in
which there is greater than one time when the treatment effect changes is straightforward. When
the time points are not known, a useful strategy is to explore the estimated unadjusted survival
curves and/or to make a discrete grid of potential change points and, joint with clinicians’
insight, to select those producing relevant changes in the HRs.

Theoretical developments show that the Cox model on which model parameters should be es-
timated require only a single I'V but the residual from the estimated treatment selection equation
and a univariate frailty both with time-dependent coefficients must be added to the second-stage
equation. We develop an easy-to-implement approximate estimation procedure to overcome the
lack of available software for obtaining exact estimates. Our procedure estimates the individual
frailty in the first period and adds it as a covariate in the second period, satisfying the constraint
that the frailty does not itself vary with time but only its effect varies. To deal with the estimation
errors, an additional independent frailty is added in the second period (see Appendix A for an
illustrative implementation). The key finding is that this approach works better than two alter-
native extensions for 2SRI-F that practitioners might first think of as appropriate for the time
varying treatment effect case (see Fig. 8 in Appendix A.1). In future work, customized software
should be developed for this particular problem to enable the exact inference procedure and
potentially improvements could be made to our easy-to-compute estimation procedure.

Monte Carlo simulations reveal that the 2SRI-F procedure performs well in this context.
For continuous treatments, it improves the median quadratic error E2, obtained for the 2SRI
method in all the situations considered, especially, in the most extreme cases (strongest changes
in the coefficients). The results with a binary treatment are also good; however, in this case, the
theoretical assumptions do not strictly hold. In the scenario considered, condition 3 is violated
and some bias is introduced in the second stage. This bias does not depend strictly on the
frailty term but on the relationship between the first-stage residuals and the V. Recall that the
second-stage procedure conditions on X and then U is partially controlled. This theoretical
problem is always present in two-stage IV procedures with binary treatments. Note that, with
a binary treatment, outcomes frequently do not provide enough information to overt problems
like those that occur with weak instruments. Even when we know the correct model from which
the outcome was generated and the value of the covariates, we cannot reproduce the value of a
single unknown covariate: just a predictive value. Further research about how to deal with this
problem is required.

Another interesting point is how to transform the results to survival differences. The new
procedure produces good treatment effect estimates but, without additional assumptions, it
fails in the estimation of the rest of the parameters involved in the model. In addition, as
highlighted in Fig. 6 in Appendix A.1, survival curve differences behave differently from HR
estimates. Because of the relevance of this issue for effective communication of treatment risk
to patients, the transformation of HRs to more meaningful scales should also be the focus of
future research.
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In the CEA versus CAS comparative analysis, naive results imply a clear change in the survival
risk during and after the acute period. Although endarterectomy has a clear advantage in the first
30 days after the surgery (HR 0.46; 95% confidence interval (0.39; 0.54)) the benefit decreases
over long-term follow-up (HR 0.71 (0.67;0.76)). The standard 2SRI procedure reduces the effect
in the first period whereas the frailty correction preserves it. None of the I'V procedures find
significant effects in the long-term period. Note that our Monte Carlo simulations suggest that
both 2SRIand 2SRI-F obtained similar results when there is no effect of the treatment, but 2SR1-
F improves on the results of 2SRI when the effect is strong. In this case the threshold for a strong
treatment effect is close to log(%) (see Fig. 2). To ignore the presence of a time varying treatment
effect and a change point (i.e. a step function relationship) leads to misinterpretation of the true
effect of the treatment, implying that CEA has a small protective effect compared with CAS.

We conclude with the recommendation of using the extension of 2SRI-F to the time-dependent
treatment effect context that we developed in this paper, which crucially constrains each individ-
ual’s frailty to be the same in both periods but allows the coefficients of the first-stage residual
and the frailty to change between time periods as well as including an additional frailty to ac-
count for estimation error in the second stage. This is a non-obvious extension of the procedure
that we developed previously for the proportional hazards case that, because of its remarkably
good performance, is a significant methodological advance with broad applicability. There exist
some computational wrinkles to solve for obtaining exact estimates of individual frailties (Fig. 7
in Appendix A.1). Another important theoretical issue is to adapt the stage 1 equation to obtain
exact (and not just approximate) procedures in the case of binary treatments.
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Appendix A
A.1. Additional figures

Fig. 6 illustrates the problem of transforming HRs to survival curve differences in the presence of unmea-
sured confounding. It assumes the survival model with hazard function \(¢| X, U) = —texp{log(Z)X +U}
where X takes values 0 or 1 and deplcts the differences between the curves Sy(z, u) =exp{— f A(s| X =
0,U =u)ds} and S (1, u) =exp{— fo A(s|X=1,U =u)ds} against u for 1 €[0, 10]. The effect of the treat-
ment on the survival difference strongly depends on time ¢ and on the unmeasured confounder values.
This effect is smallest for the most extreme values of the survival probabilities, which occur at the greatest
and lowest values of U.

Fig. 7 reports simulation results for the problem of estimating the HR in a proportional hazard Cox
regression model with individual frailties. We consider the simple situation in which the hazard function
is of the form A\(#|X,U) = %texp(ﬁXX—i— ByU) where X follows a standard normal distribution and U
is independently drawn from a standard normal distribution (Fig. 7(a)) or a gamma distribution with
parameter 1 (Fig. 7(b)). Fig. 7 shows the boxplot for the 5, -values based on 2000 Monte Carlo simulations
with sample size n = 500. The horizontal broken line represents the real value of Sy (=log(2)) for various
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values of By. The cases that were considered include X and U in the model (real), only include X (naive),
only include X with an individual Gaussian frailty and only include X with an individual gamma frailty.
Results show that, except for the case Sy =log(1) (no unmeasured covariate), frailty models reduce but
do not remove the bias. When the simulations were repeated with a group frailty instead of an individual
frailty, we found that the problem reduced but was still present with two members per group but largely
disappeared for three or more members per group.

Finally, Fig. 8 reports the results that were obtained by the two alternative extensions of 2SRI intro-
duced in Section 3.2, the algorithms 2SRI-F;; and 2SRI-F[y, in the first Monte Carlo simulation scenario
considered (continuous treatment). In general, 2SRI-F is clearly better than the alternative procedures
although they obtain better results when the unmeasured confounding effect is null in the second period.

A.2. Computational considerations

Numerical computation plays an important role in the proportional hazard Cox regression models with
univariate frailty (see Fig. 7). There is an increasing number of R packages uploaded to the Comprehensive
R Archive Network (www. r-project . org) that deal with different approaches to this problem. A non-
exhaustive list includes survival, coxme, frailtypack, frailtyEM, frailtyHL, frailtySurv,
parfm and PenCoxFrail. These packages include mainly gamma and Gaussian frailties but other
distributions such as the Student z-distribution are implemented as well. Parametric survival models are
also considered along with univariate, shared, correlated and individual frailties.

The computations in this paper have been implemented by using the survival package in R. For
simulations, once the parameters have been fixed we draw the standard normal random samples: eps
(e), W (IV) and U by using eps=rnorm (n) (all in the same way). We then compute the treatment value
X=W+U+2eps for the continuous case and X= (W+U+eps>0) for the binary case. Then, given the observed
time and the status variables, (time, exitus), we compute the first-stage residuals:

res=as.vector (lm(trt™W) Sres).
We then prepare the data set to be used in the second stage:

surv=as.data.frame (cbind(time, exitus, X, res))
survl=survSplit (Surv(time, exitus)”., surv,cut=tl, episode="timegroup")

where t1 is the change point (equal to 3, in the Monte Carlo simulations).
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Fig. 7. Boxplots for the gy-estimations of 2000 Monte Carlo simulations from the hazard function

X, 0) = —texp(ﬁXX + GyU) with X from a standard normal distribution and U independently drawn from
(a)—(c) a standard normal distribution or (d)—(f) a gamma distribution with parameter (= — —, true value of
Bx(=log(2)) (the estimation procedures were to include X and U in the model (real), just to include X (naive),
to mclude X with an individual Gaussian frailty (Fr.(N)) and with an individual gamma frailty (Fr.(G))): (a), (d)

By =log(3); (b), (e) By =log(1); (¢), (f) By =log(3)

The first period of the second stage is computed from a Cox regression model with Gaussian frailties
in which the first-stage residuals are included as covariates:

Il<-which (survl$timegroup==0);nl=length(I1)

Ml<-coxph(Surv(start, time,exitus) trt+res+frailty(l:nl,dist="gaus"),

data=survl[I1,])
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We save the individual frailties and the transformed residuals R;. Those are included in the second-period
model, i.e.

Fl<-Ml$frail

R1<-Ml$coef[2]"{-1}xfray+res

surv=as.data.frame(cbind(id, time, exitus, trt,F1,R1))

survl<-survSplit (Surv(time,exitus)”.,surv,cut=tl, episode="timegroup")

The two last lines update the data set to include the new variables. Finally, we compute a Cox regression
model with individual Gaussian term including R, as an additional covariate:

I2<-which (survl$Stimegroup==1);n2=1length(I2)
M2<-coxph (Surv (start, time,exitus) trt+R1+Fl+frailty(1:n2,dist="gaus"),
data=survl[I2,])
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