Probability and Decision Making
 NDC Class Feedback (19 February 2021)

Prof. Jeffrey A. Friedman
Dartmouth College
jeffrey.a.friedman@dartmouth.edu

Thank you for taking the time to complete the survey. This document describes performance for the class as a whole and then for individual participants. As mentioned in the lecture, my colleagues and I welcome feedback on this material. The goal of our research is to support sound national security analysis and decision making, and we hope you found this exercise to be useful.

Calibration

The "calibration graph" presented above shows how students' assessments of uncertainty compared to the actual chances that statements in the survey were true. The good news is that students were quite good at determining which statements were more likely to be true than others. That is not a trivial fact: it means that students consistently drew meaningful distinctions among different levels of certainty. The bad news is that students were overconfident when assigning certainty to their judgments. For instance, when students assigned a 100 percent probability to statements being true, those statements were actually true about 70 percent of the time.

Brier Scores

Another for evaluating students' probability assessments is to calculate Brier Scores. The Brier Score is a measurement of judgmental error: it is the squared difference between the probability estimate that you made, and the probability estimate that you would have made if you knew the answer for certain. As in golf, lower scores are better. We evaluated students' Brier Scores against several baselines:

- A group of Harvard teaching fellows, who are intelligent and who have been trained in probabilistic reasoning, but who have no special knowledge of foreign policy and national security. Their average Brier Score was 0.234 .
- The Wise Fool, who guesses 50% for every question we pose. The Wise Fool provides no useful information, but he never suffers from overconfidence. His Brier Score is always 0.250 .
- The Chimp, who guesses answers at random. The Chimp's expected Brier Score is 0.335 .

Among the 63 NDC students who took this year's survey, 23 percent beat the Harvard assessors and another 8 percent others beat the Wise Fool. That meant 69 percent of the class would have done better by saying they simply had no idea when responding to every question that we posed.

Brier Scores for NDC Students, 2021

These results are not surprising. In almost every context we know of, individuals who have not previously received explicit feedback on their assessments of uncertainty prove to be substantially overconfident in their capabilities. The following graph shows that there is indeed a clear relationship between the certainty that NDC students assigned to their judgments and how well they performed on the probability assessment exercise on the whole. ${ }^{1}$

[^0]

Prospects for improvement

Almost any major decision we make is surrounded by uncertainty. Any time that you state an opinion that you do not know as a fact to be true, you are making a probability assessment, however explicitly you say what these chances are. Yet most people do not receive structured feedback at any point in their lives on how well they perform this task. This creates what decision theorists call the "illusion of validity" - almost all of us believe we are better at assessing uncertainty than we really are.

The good news is that once people see these evaluations, they generally improve immediately and substantially. In courses at Harvard and Dartmouth (where we usually run such surveys twice), we find that students' performance typically improves by about 20 percent the second time around. A major research project at the University of Pennsylvania, funded by the Intelligence Advanced Research Projects Activity, found that just one hour of probability assessment training improved people's capabilities by about 15 percent. Those training sessions had noticeable impacts on performance as long as four years out (and presumably further: four years is as long as the project has been running). If this feedback provides you with only a small fraction of this common improvement, then we hope you believe that this exercise was worthwhile.

Additional references

Philip Tetlock and Daniel Gardner, Superforecasting (Crown, 2015). State-of-the-art insights on political forecasting based on a four-year Intelligence Community-backed research project that involved thousands of participants.

Daniel Kahneman, Thinking, Fast and Slow (FSG, 2011). A Nobel Prize-winning economist's lucid overview of common biases in decision making.

Nate Silver, The Signal and the Noise: Why Most Predictions Fail - And Some Don't (Penguin, 2012). An overview of how people make predictions in many different professions, focusing especially on the need to balance analysis and intuition when making important decisions.

Gerd Gigerenzer, Calculated Risks: How to Know When Numbers Deceive You (Simon \& Schuster, 2002). Explores common problems that emerge when making decisions based on uncertainty, and makes practical, evidence-based suggestions for how to address that challenge.

Jeffrey A. Friedman, War and Chance: Assessing Uncertainty in International Politics (Oxford, 2019). Analyzes the logic, psychology, and politics of assessing uncertainty in a national security context.

Individual performance

The remainder of this document presents individual students' calibration graphs, in ascending order of respondent ID. We processed every survey received by the end of 17 February. If you do not see your results here, please contact jeffrey.a.friedman@dartmouth.edu with your ID number. Even if you took the survey after the appointed time, we can usually track down students' results. If you forgot your ID number, it is usually possible to recover your graph if you can recall a few answers that you gave on the survey.

Each graph contains your Brier Score. Across NDC students as a whole, the average Brier Score was 0.298 . Here are the percentiles for Brier Scores across the group:

$100^{\text {th }}$ (best)	0.179
$90^{\text {th. }}:$	0.205
$75^{\text {th. }}:$	0.239
$50^{\text {th }}$ (median)	0.285
$25^{\text {th. }}:$	0.344
$10^{\text {th. }}:$	0.445

ID: 11604
Brier Score: . 179

ID: 13456
Brier Score: . 38

ID: 15484
Brier Score: . 247

ID: 17106
Brier Score: . 49

ID: 18275
Brier Score: . 313

ID: 18657
Brier Score: . 354

ID: 20769
Brier Score: . 269

ID: 25417
Brier Score: . 211

ID: 28066
Brier Score: . 449

ID: 28473
Brier Score: . 371

ID: 28801
Brier Score: . 293

ID: 29567
Brier Score: . 261

ID: 30384
Brier Score: . 306

ID: 31786
Brier Score: . 289

ID: 34017
Brier Score: . 421

ID: 34323
Brier Score: . 391

ID: 36515
Brier Score: . 239

ID: 36791
Brier Score: . 257

ID: 37758
Brier Score: . 195

ID: 40200
Brier Score: . 285

ID: 40937
Brier Score: . 379

ID: 41027
Brier Score: . 312

ID: 41470
Brier Score: . 236

ID: 48610
Brier Score: . 218

ID: 49853
Brier Score: . 294

ID: 53469
Brier Score: . 344

ID: 54245
Brier Score: . 287

ID: 54288
Brier Score: . 282

ID: 54540
Brier Score: . 341

ID: 57997
Brier Score: . 209

ID: 58373
Brier Score: . 529

ID: 58677
Brier Score: . 207

ID: 64011
Brier Score: . 253

ID: 64187
Brier Score: . 208

ID: 65974
Brier Score: . 298

ID: 66115
Brier Score: . 445

ID: 67713
Brier Score: . 271

ID: 71534
Brier Score: . 342

ID: 72031
Brier Score: . 269

ID: 74768
Brier Score: . 285

ID: 74910
Brier Score: . 261

ID: 75920
Brier Score: . 374

ID: 76860
Brier Score: . 233

ID: 78764
Brier Score: . 298

ID: 78881
Brier Score: . 216

ID: 86094
Brier Score: . 222

ID: 87701
Brier Score: . 251

ID: 88045
Brier Score: . 225

ID: 92763
Brier Score: . 205

ID: 93329
Brier Score: . 411

ID: 94867
Brier Score: . 242

ID: 95554
Brier Score: . 344

ID: 96400
Brier Score: . 368

ID: 97351
Brier Score: . 337

ID: 99043
Brier Score: . 192

[^0]: ${ }^{1}$ The horizontal axis in this graph represents "certitude," which is the average difference between a student's probability estimates and 50 percent. Thus, an estimate of 30 percent and an estimate of 70 percent each have a "certitude" of 0.20 - they are equally-distant from an ignorant guess.

