Our ultimate goal is to change the paradigm of disease detection through the development of label-free multiphoton microscopes that are ultimately brought to the patient to assess metabolic and micromechanical tissue function non-invasively (or via minimally invasive approaches). We perform studies with two-dimensional cell cultures1-5, three-dimensional engineered tissues6-17, C elegans models18, freshly excised tissues19-21, and living humans22, 23. We have performed studies to develop, establish, and/or validate a number of metabolic function metrics24, including an entirely novel method to characterize mitochondrial networks in vivo in human tissues22, 23. Our studies have been among the first to highlight the unique capabilities of these approaches to assess stem cell differentiation2-4, 11; further, they demonstrated the ability of depth-resolved, label-free assessments of metabolic function to yield a combination of quantitative morphofunctional metrics that lead to superb sensitivity and specificity of detection of high (and low) grade cervical squamous intra-epithelial lesions6-10, 21 and skin cancers22. Such metrics have also been used to gain new insights regarding metabolic dysfunction in vitiligo patients and treatment responses23, 25. Bringing the microscope to the patient will not only improve detection, it will enable monitoring of the evolution of diseases, such as pre-cancers, in the same patients and tissue locations over time. This new knowledge will lead to precision diagnostics that can distinguish, for example, pre-cancerous changes that are likely to evolve into lesions that need intervention from ones that regress on their own or patients that are responding to treatment from ones that are not23, 25.

Key Relevant Publications
  1. Mujat C, Greiner C, Baldwin A, Levitt JM, Tian F, Stucenski LA, Hunter M, Kim YL, Backman V, Feld M, Munger K, Georgakoudi I. Endogenous optical biomarkers of normal and human papillomavirus immortalized epithelial cells. Int J Cancer. 2008;122(2):363-71. Epub 2007/10/16. doi: 10.1002/ijc.23120. PubMed PMID: 17935126.
  2. Quinn KP, Sridharan GV, Hayden RS, Kaplan DL, Lee K, Georgakoudi I. Quantitative metabolic imaging using endogenous fluorescence to detect stem cell differentiation. Sci Rep. 2013;3:3432. Epub 2013/12/07. doi: 10.1038/srep03432. PubMed PMID: 24305550; PMCID: 3851884.
  3. Rice WL, Kaplan DL, Georgakoudi I. Quantitative biomarkers of stem cell differentiation based on intrinsic two-photon excited fluorescence. J Biomed Opt. 2007;12(6):060504. Epub 2008/01/01. doi: 10.1117/1.2823019. PubMed PMID: 18163799.
  4. Rice WL, Kaplan DL, Georgakoudi I. Two-photon microscopy for non-invasive, quantitative monitoring of stem cell differentiation. PloS one. 2010;5(4):e10075. Epub 2010/04/27. doi: 10.1371/journal.pone.0010075. PubMed PMID: 20419124; PMCID: 2855700.
  5. Stuntz E, Gong Y, Sood D, Liaudanskaya V, Pouli D, Quinn KP, Alonzo C, Liu Z, Kaplan DL, Georgakoudi I. Endogenous Two-Photon Excited Fluorescence Imaging Characterizes Neuron and Astrocyte Metabolic Responses to Manganese Toxicity. Sci Rep. 2017;7(1):1041. doi: 10.1038/s41598-017-01015-9. PubMed PMID: 28432298; PMCID: PMC5430620.
  6. Levitt JM, Hunter M, Mujat C, McLaughlin-Drubin M, Munger K, Georgakoudi I. Diagnostic cellular organization features extracted from autofluorescence images. Opt Lett. 2007;32(22):3305-7. Epub 2007/11/21. doi: 144676 [pii]. PubMed PMID: 18026288.
  7. Levitt JM, McLaughlin-Drubin ME, Munger K, Georgakoudi I. Automated biochemical, morphological, and organizational assessment of precancerous changes from endogenous two-photon fluorescence images. PloS one. 2011;6(9):e24765. Epub 2011/09/21. doi: 10.1371/journal.pone.0024765 PONE-D-11-08102 [pii]. PubMed PMID: 21931846.
  8. Xylas J, Quinn KP, Hunter M, Georgakoudi I. Improved Fourier-based characterization of intracellular fractal features. Optics Express. 2012;20(21):23442-55.
  9. Varone A, Xylas J, Quinn KP, Pouli D, Sridharan G, McLaughlin-Drubin ME, Alonzo C, Lee K, Munger K, Georgakoudi I. Endogenous two-photon fluorescence imaging elucidates metabolic changes related to enhanced glycolysis and glutamine consumption in precancerous epithelial tissues. Cancer Res. 2014;74(11):3067-75. Epub 2014/04/02. doi: 10.1158/0008-5472.CAN-13-2713. PubMed PMID: 24686167.
  10. Xylas J, Varone A, Quinn KP, Pouli D, McLaughlin-Drubin ME, Thieu HT, Garcia-Moliner ML, House M, Hunter M, Munger K, Georgakoudi I. Noninvasive assessment of mitochondrial organization in three-dimensional tissues reveals changes associated with cancer development. Int J Cancer. 2015;136(2):322-32. doi: 10.1002/ijc.28992. PubMed PMID: 24862444; PMCID: PMC4837461.
  11. Chang T, Zimmerley MS, Quinn KP, Lamarre-Jouenne I, Kaplan DL, Beaurepaire E, Georgakoudi I. Non-invasive monitoring of cell metabolism and lipid production in 3D engineered human adipose tissues using label-free multiphoton microscopy. Biomaterials. 2013;34(34):8607-16. Epub 2013/08/13. doi: 10.1016/j.biomaterials.2013.07.066. PubMed PMID: 23932290; PMCID: 3821986.
  12. Quinn KP, Bellas E, Fourligas N, Lee K, Kaplan DL, Georgakoudi I. Characterization of metabolic changes associated with the functional development of 3D engineered tissues by non-invasive, dynamic measurement of individual cell redox ratios. Biomaterials. 2012;33(21):5341-8. Epub 2012/05/09. doi: S0142-9612(12)00446-2 [pii]10.1016/j.biomaterials.2012.04.024. PubMed PMID: 22560200.
  13. Sood D, Chwalek K, Stuntz E, Pouli D, Du C, Tang-Schomer M, Georgakoudi I, Black LD, 3rd, Kaplan DL. Fetal brain extracellular matrix boosts neuronal network formation in 3D bioengineered model of cortical brain tissue. ACS Biomater Sci Eng. 2016;2(1):131-40. doi: 10.1021/acsbiomaterials.5b00446. PubMed PMID: 29034320; PMCID: PMC5636008.
  14. Sood D, Tang-Schomer M, Pouli D, Mizzoni C, Raia N, Tai A, Arkun K, Wu J, Black LD, 3rd, Scheffler B, Georgakoudi I, Steindler DA, Kaplan DL. 3D extracellular matrix microenvironment in bioengineered tissue models of primary pediatric and adult brain tumors. Nat Commun. 2019;10(1):4529. Epub 2019/10/06. doi: 10.1038/s41467-019-12420-1. PubMed PMID: 31586101.
  15. Speroni L, Whitt GS, Xylas J, Quinn KP, Jondeau-Cabaton A, Barnes C, Georgakoudi I, Sonnenschein C, Soto AM. Hormonal regulation of epithelial organization in a three-dimensional breast tissue culture model. Tissue Eng Part C Methods. 2014;20(1):42-51. Epub 2013/05/17. doi: 10.1089/ten.TEC.2013.0054. PubMed PMID: 23675751; PMCID: 3870574.
  16. Liaudanskaya V, Fiore NJ, Zhang Y, Milton Y, Kelly MF, Coe M, Barreiro A, Rose VK, Shapiro MR, Mullis AS, Shevzov-Zebrun A, Blurton-Jones M, Whalen MJ, Symes AJ, Georgakoudi I, Nieland TJF, Kaplan DL. Mitochondria dysregulation contributes to secondary neurodegeneration progression post-contusion injury in human 3D in vitro triculture brain tissue model. Cell Death Dis. 2023;14(8):496. Epub 20230803. doi: 10.1038/s41419-023-05980-0. PubMed PMID: 37537168; PMCID: PMC10400598.
  17. Snapper DM, Reginauld B, Liaudanskaya V, Fitzpatrick V, Kim Y, Georgakoudi I, Kaplan DL, Symes AJ. Development of a novel bioengineered 3D brain-like tissue for studying primary blast-induced traumatic brain injury. J Neurosci Res. 2023;101(1):3-19. Epub 20221006. doi: 10.1002/jnr.25123. PubMed PMID: 36200530.
  18. Yerevanian A, Murphy LM, Emans S, Zhou Y, Ahsan FM, Baker D, Li S, Adedoja A, Cedillo L, Stuhr NL, Gnanatheepam E, Dao K, Jain M, Curran SP, Georgakoudi I, Soukas AA. Riboflavin depletion promotes longevity and metabolic hormesis in Caenorhabditis elegans. Aging Cell. 2022;21(11):e13718. Epub 20220930. doi: 10.1111/acel.13718. PubMed PMID: 36181246; PMCID: PMC9649603.
  19. Alonzo CA, Karaliota S, Pouli D, Liu Z, Karalis KP, Georgakoudi I. Two-photon excited fluorescence of intrinsic fluorophores enables label-free assessment of adipose tissue function. Sci Rep. 2016;6:31012. doi: 10.1038/srep31012. PubMed PMID: 27491409; PMCID: PMC4974509.
  20. Liu Z, Hui Mingalone CK, Gnanatheepam E, Hollander JM, Zhang Y, Meng J, Zeng L, Georgakoudi I. Label-free, multi-parametric assessments of cell metabolism and matrix remodeling within human and early-stage murine osteoarthritic articular cartilage. Commun Biol. 2023;6(1):405. Epub 20230413. doi: 10.1038/s42003-023-04738-w. PubMed PMID: 37055483; PMCID: PMC10102009.
  21. Pouli D, Thieu HT, Genega EM, Baecher-Lind L, House M, Bond B, Roncari DM, Evans ML, Rius-Diaz F, Munger K, Georgakoudi I. Label-free, High-Resolution Optical Metabolic Imaging of Human Cervical Precancers Reveals Potential for Intraepithelial Neoplasia Diagnosis. Cell Rep Med. 2020;1(2). Epub 2020/06/25. doi: 10.1016/j.xcrm.2020.100017. PubMed PMID: 32577625; PMCID: PMC7311071.
  22. Pouli D, Balu M, Alonzo CA, Liu Z, Quinn KP, Rius-Diaz F, Harris RM, Kelly KM, Tromberg BJ, Georgakoudi I. Imaging mitochondrial dynamics in human skin reveals depth-dependent hypoxia and malignant potential for diagnosis. Sci Transl Med. 2016;8(367):367ra169. doi: 10.1126/scitranslmed.aag2202. PubMed PMID: 27903865; PMCID: PMC5176339.
  23. Shiu J, Zhang L, Lentsch G, Flesher JL, Jin S, Polleys C, Jo SJ, Mizzoni C, Mobasher P, Kwan J, Rius-Diaz F, Tromberg BJ, Georgakoudi I, Nie Q, Balu M, Ganesan AK. Multimodal analyses of vitiligo skin identify tissue characteristics of stable disease. JCI Insight. 2022;7(13). Epub 20220708. doi: 10.1172/jci.insight.154585. PubMed PMID: 35653192; PMCID: PMC9310536.
  24. Liu Z, Pouli D, Alonzo CA, Varone A, Karaliota S, Quinn KP, Munger K, Karalis KP, Georgakoudi I. Mapping metabolic changes by noninvasive, multiparametric, high-resolution imaging using endogenous contrast. Sci Adv. 2018;4(3):eaap9302. Epub 2018/03/15. doi: 10.1126/sciadv.aap9302. PubMed PMID: 29536043; PMCID: PMC5846284.
  25. Shiu J, Lentsch G, Polleys CM, Mobasher P, Ericson M, Georgakoudi I, Ganesan AK, Balu M. Noninvasive Imaging Techniques for Monitoring Cellular Response to Treatment in Stable Vitiligo. J Invest Dermatol. 2024;144(4):912-5 e2. Epub 20231110. doi: 10.1016/j.jid.2023.10.006. PubMed PMID: 37952609; PMCID: PMC11081004.