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Abstract

■ Semantic concepts relate to each other to varying degrees to
form a network of zero-order relations, and these zero-order
relations serve as input into networks of general relation types
as well as higher order relations. Previous work has studied the
neural mapping of semantic concepts across domains, although
much work remains to be done to understand how the localiza-
tion and structure of those architectures differ depending on
various individual differences in attentional bias toward different
content presentation formats. Using an item-wise model of
semantic distance of zero-order relations (Word2vec) between
stimuli (presented both in word and picture forms), we used
representational similarity analysis to identify individual

differences in the neural localization of semantic concepts and
how those localization differences can be predicted by indi-
vidual variance in the degree to which individuals attend to
word information instead of pictures. Importantly, there were
no reliable representations of this zero-order semantic rela-
tional network when looking at the full group, and it was only
through considering individual differences that a stable localiza-
tion difference became evident. These results indicate that
individual differences in the degree to which a person habitually
attends to word information instead of picture information sub-
stantially affects the neural localization of zero-order semantic
representations. ■

INTRODUCTION

Relational reasoning, the ability to identify and apply pat-
terns of relationships present in a situation to another sim-
ilar situation, is a critical component of abstract thought.
Much of the research on relational reasoning examines
second-order relations (see Krawczyk, 2012, for a review),
which refer to the way that first-order relationships
between items relate to first-order relationships between
other items, such as part–whole relationships (e.g.,
door–house) or similarity between category comembers
(e.g., lemon–lime). A second-order relationship would be
the relationship of the relationships between two pairs of
words, such as saying that toe–foot and finger–hand are
both part–whole relationships and are analogous. The
first-order relationship is the specific relationship be-
tween items, such a toe–foot. Finally, at the most basic
level, zero-order relationships are the way that all items
relate semantically to each other when there is no explicit
consideration of that relationship. Ultimately, first-order
relationships are rooted in zero-order relationships, just
as each subsequently higher level of relationships is rooted
in the level below. Therefore, a better understanding of
the neural basis of zero-order relationships (i.e., semantic

similarity) will also inform an understanding of the repre-
sentational structure underlying first-order and higher
relationships.
Second-order reasoning is a critical feature of relational

reasoning because the ability to observe patterns of relations
among one set of items and compare those patterns of re-
lationships to those observed between other sets of items
provides the basis for transfer of skills from one problem to
another, insight on how to approach novel situations, and
abstract thought as a whole (Hummel & Holyoak, 1997).
Second-order reasoning is theorized to function through
the representation of conceptual networks throughout
posterior sensory-based regions of the brain (Binder,
Desai, Graves, & Conant, 2009; Martin, 2007; Patterson,
Nestor, & Rogers, 2007; Thompson-Schill, 2003), and
domain-general relational reasoning networks, including
inferior parietal lobe and rostrolateral pFC, receive input
during semantic retrieval and analogical reasoning and
identify the second-order relations (e.g., analogies) when
similar zero-order relations are co-active (Green, Kraemer,
Fugelsang, Gray, & Dunbar, 2010; Green, Fugelsang,
Kraemer, & Dunbar, 2008; Wendelken, Nakhabenko,
Donohue, Carter, & Bunge, 2008; Green, Fugelsang,
Kraemer, Shamosh, & Dunbar, 2006; Bunge, Wendelken,
Badre, & Wagner, 2005).
Here, we focus on the nature of the zero-order represen-

tations that serve as input into the relational reasoning pro-
cess, including where these zero-order relational networks
are localized in the brain and how that localization differs
between individuals. The question of how concepts and
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the zero-order relationships between them serve as input
into second-order relationships is still the subject of inves-
tigation. One possibility is that relational reasoning relies
on directly activating the nodes and connections in the
semantic network each time a second-order relationship
is perceived. However, a recent study indicates that the
brain may implement a more efficient solution, in which
a network of general relation types (e.g., similar, contrast,
part–whole) exists independently of the conceptual
network and serves as the direct input to second-order
reasoning (Chiang, Peng, Lu, Holyoak, & Monti, 2020).
However, as the focus of relational reasoning studies has
typically been on second-order relations or general relation
types, these studies tend to use a relatively constrained set
of potential relationships between items. To better under-
stand the semantic networks that form the foundation of
relational reasoning, as well as how zero-order reasoning
inputs into higher-order reasoning, more work needs to
be done to investigate how the foundational zero-order re-
lations are represented, and how the neural instantia-
tion of those representations can vary between individuals.
Because concepts relate to each other in relational similar-
ity space that reflects semantic distance (Mikolov, Chen,
Corrado, & Dean, 2013), we can use representational
similarity analysis (RSA; Kriegeskorte et al., 2008) to
localize regions of the brain where the neural patterns of
activity in response to these concepts are similar to that
predicted semantic relational structure.
This study provides insight into the fine-grained patterns

of semantic similarity and how representations ofmeaning-
ful words and pictures can reliably and systematically vary
between individuals. This analysis leverages the Word2vec
model of semantic similarity (Mikolov et al., 2013) on the
level of individual items. This process results in a search-
light RSA model that will localize patterns of neural activity
where items like “wrench” and “screw” are represented
similarly, and differently from items like “bicycle” and
“fox.” Importantly, whereas the Word2vec model captures
fine-grained differences in the similarity of different items,
the Word2vec model used in the searchlight RSA is agnos-
tic to whether the item was originally presented to the par-
ticipant as a word or a picture. By using this pure semantic
model, similarities between items will not be confounded
by the format of item presentation, and we will be better
able to determine that any material-specific processing is
because of individual differences in the format of concep-
tual representation. We aim to use this analysis to put a
finer point on the results from our previous study (Alfred,
Hayes, Pizzie, Cetron, & Kraemer, 2020), in which we iden-
tified stable patterns of individual variation to localized
regions that are common between participants and which
are the result of individual differences in representation
because of differences in habitual attention bias to word
versus picture representations of concepts.
For both our prior study (Alfred et al., 2020) and the

current study, we use a measure of attentional bias as our
primary measure of interest for individual variation. The

way a stimulus is encoded is shaped largely by which of
its features the viewer is attending. For example, when
looking at directions to a new place, one person may
remember the step-by-step directions, whereas another
person may create a mental map of the area. The theory
ofmaterial-specific encoding states that the format of a pre-
sented stimulus (e.g., the word “cat” vs. a picture of a cat)
affects which areas of the brain are recruited during encod-
ing and retrieval (Grady, McIntosh, Rajah, & Craik, 1998;
Wagner et al., 1998). Earlier research has shown that there
is a divide between cognition, which is primarily linguisti-
cally mediated (verbal cognition) and that which primarily
operates on visuospatial representations (visual cogni-
tion), and that these are localized to different areas of the
brain. For example, Milner, Corsi, and Leonard (1991)
found that lesions in the left medial temporal lobe interfere
with verbal memory, whereas lesions in the right temporal
lobe interferewithmemory for nonverbalmaterial. Further
research has concluded that language processing is associ-
ated with the left hemisphere, whereas visuospatial pro-
cessing is associated with the right hemisphere (Golby
et al., 2001; Gross, 1972; Milner, 1971). However, mental
representations of almost any object encompass a large set
of properties including its appearance; the word for the
item; how it sounds, feels, or smells; and the context in
which it is encountered (Martin, 2007; Lacey & Campbell,
2006; Malt, 1990). An individual’s perception of the item
depends on which of these properties they preferentially
attend to. As a result, different individuals may encode verbal
and visual stimuli differently relative to one another on the
basis of habitual attention to word or picture representations
regardless of the original format of presentation. Building on
the results of our previous study, we predict that peoplewho
show an attentional bias toward words will encode stimuli in
language-specific regions, such as the speech production
network, despite the fact that half of the stimuli were only
presented in picture form.

METHODS

This study is a novel analysis of the data set originally used
in Alfred et al. (2020) and Hayes, Alfred, Pizzie, Cetron, and
Kraemer (2020). The previous two studies focused on the
similarity in the neural representation of studied word and
picture stimuli (compared to abstract pictures and pseudo-
words) and differences in white and gray matter structure
associatedwith verbal attentional bias. In this study, we aim
to use the same data set to examine the neural representa-
tion of zero-order semantic relations. Compared to the
study of Alfred et al. (2020), which utilized a basic level
dissimilarity matrix (DM) to localize regions of the cortex
that represented meaningful words and pictures similarly
to each other and differently from pseudowords and
abstract pictures, this study leverages a rich dissimilarity
structure calculated with Word2vec to identify a specific
zero-order relational structure.
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Participants

Twenty-eight (16 female,Mage = 20.7 years) undergraduate
and graduate students at Dartmouth College participated in
this study. All participants were right-handed native English
speakers with normal or corrected-to-normal vision, with no
history of neurological or psychiatric disorders. All partici-
pants provided informed written consent and were com-
pensated with a choice of cash or course credit for their
participation. This study has been approved by the
Dartmouth Committee for the Protection of Human
Subjects. The data from two participants had significant
problems going through the analysis pipeline (described
below) and could not be analyzed, leaving data from a total
of 26 participants for analysis.

Verbal Attentional Bias Task

We designed a novel behavioral task to measure the
degree to which participants attended to visual and verbal
information. This task was administered as part of a battery
of measures of visual and verbal cognitive ability, as well as
the Verbalizer-Visualizer Questionnaire measure of cogni-
tive style. In each trial, a card suit symbol was displayed
with an accompanying text label, and participants were
asked to press a key to identify whether they were being
shown club, spade, or heart (Figure 1A). The experi-
menters gave the participants the specific instructions to
“Please respond as quickly and as accurately as you can.
Use three fingers on J, K, L pressed by the index, middle,
and ring fingers respectively. ‘J’ corresponds to club. ‘K’

corresponds to heart. ‘L’ corresponds to spade (in alpha-
betical order). Open the door and get me when the exper-
iment is complete.”
The experiment consisted of 192 trials, where 144 (75%)

presented congruent information—that is, the text labels
matched the symbols shown. In 48 (25%) of the trials, how-
ever, the picture and the text label had conflicting
information (e.g., a picture of a club with text that says
“spade”). Participants were not informed that there may
be any incongruency between the picture and word
presented, and all practice trials with the experimenter
present were congruent. The experimenter then left the
room, so when encountering incongruent trials, the partic-
ipant would need to determine which piece of information
was most salient. A measure called “word attentional bias”
was calculated as the percentage of incongruent trials for
which the participant pressed the key corresponding to
the verbal label (Figure 1B). Each of the three suits was
the target in an equal number of times, and the location
of the text was counterbalanced for presentation above
and below the picture. The center of the screen was
between the picture and the text. This task was completed
in the same session as the other behavioral measures,
within a week after the initial fMRI session.

Word and Picture Intentional Encoding Task
(fMRI Task)

During the fMRI session, participants were presented with
sequences of items to study for a later test. The items were

Figure 1. Structure of
attentional bias task.
(A) Participants were instructed
to press J for club, K for heart,
and L for spade, and to respond
as quickly and accurately as
possible. Most trials (75%)
presented congruent word and
picture information. (B) Some
trials (25%) unexpectedly
presented a word and picture
that were incongruent.
Participants had to rapidly decide
to select the key corresponding
to the picture (in this case,
responding K for heart) or
word (in this case, responding
L for spade). Figure used with
permission from Alfred et al.
(2020).
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presented in lists that were blocked by content type—
object names, pseudowords, object pictures, and abstract
pictures—designed to measure neural activity during in-
tentional encoding (Figure 2). Participants were instructed
to pay attention to the stimuli for a later test, specifically
being told, “In this section you will see a series of words.
Pay attention to each word and try to remember it—your
memory for these words will be tested later. You should
also pay attention to when an item has been presented
more than once. When you see a word appear for the sec-
ond time, press the button with your right index finger.
Otherwise do not press a button.” The same instructions
were used for the object name and pseudoword condi-
tions. In conditions with object pictures and abstract pic-
tures, the instructions remained the same except that
“word” was changed to “picture” to match the stimulus
type being presented. Participants completed 4 study
blocks and two test blocks, and were only tested on object
names and object pictures.
During study blocks, while participants studied the items

for the test, they simultaneously watched for repeated
items, andmade a button response during the study blocks
only if they identified a repeated item. After memorizing a
list of English object names and a list of pronounceable
pseudowords, participants took a test on the object names
they had studied. Tests contained 120 trials, and partici-
pants indicated if an item was studied or new, as well as if
they had a “high” or “low” level of confidence, or if they
were making a “guess.” Half of the trials contained one of
the 60 items studied in the word block, and 60 items were
new. Whereas the participants took the test in the scanner,

anatomical and diffusor tensor imaging sequences were
collected instead of functional scans. After the object name
test, participants studied a set of object pictures and a set of
abstract pictures and then took a test on the object pictures.
Participants were not given tests on either the pseudo-
words or abstract pictures. Each block contained 60 items
that would appear on the test for that block (presented
2.5 sec each), six repeat items that were shown twice (total
of 12 presentations, 2.5 sec each), and variable-duration
fixation crosses (72 fixation periods, 2.5 sec each, with up
to three fixation periods in a row) all interleaved together.
In the object picture block, the critical items were readily
nameable black line drawings from the Snodgrass item set
(Snodgrass & Vanderwart, 1980). In the object name block,
the words used were the names of pictures from the object
picture block, although no participant saw the set of object
names that labeled the object pictures presented to them.
Abstract pictures were black line drawings with both
straight and curved lines, but did not resemble any object.
Pseudowords were drawn from the Deacon, Dynowska,
Ritter, and Grose-Fifer (2004) set of pronounceable non-
words that did not have English roots. Repeat items to
check for continued attention were present during all four
blocks and were composed of the same type of stimuli but
werenot used in the test. Although it is possible participants
could have become aware that they were not going to be
tested on abstract picture/pseudoword blocks after not
being tested on the presentation of the first of those two
blocks, this did not affect participant engagement in the
encoding task, as evidenced by performance on the repeat
detection task.

Figure 2. Overview of fMRI session and stimuli. Participants were instructed to study a block of items with object names, such as “windmill,” followed
by a block of pseudowords, such as “gworp.” After studying pseudowords, participants were tested on the object names they had studied earlier. This
procedure was repeated with object pictures and abstract pictures, with a test on the object pictures. Whether participants saw the object name +
pseudoword block first or the object picture + abstract picture block first was counterbalanced between participants. Figure used with permission
from Alfred et al. (2020).
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Regardless of which of the two abstract blocks partici-
pants were exposed to first, participants had nearly identi-
cal signal detection rates for repeated items, indicating
engagement in the encoding process, especially given
most of the repeated trials had a large number of interven-
ing items between the initial presentation and the repeat.
Participants showed virtually identical signal detection
rates regardless of if the object name+ pseudoword block
was presented before or after the object picture + abstract
picture block (d0

first-pres.:M= 2.48, SD= 0.78; d0
second-pres.:

M = 2.56, SD = 0.83), t(26.5) = −0.24, p = .81; and simi-
larly showed no difference in signal detection for abstract
pictures (d0

first-pres.:M= 1.47, SD= 0.90; d0
second-pres.:M=

1.55, SD=0.64), t(25.3)=−0.28, p= .79. These data were
not used for any further individual differences analyses be-
cause of the limited number of repeat trials per participant.
Asmentioned above, with the exception of attention check
repeat trials, none of the items were repeated between
conditions (i.e., a word studied in one block would not
be the name of a picture studied in a later block), and
the lists were counterbalanced between participants. The
fMRI session lasted approximately 2.5 hr (Figure 2).

MRI Scanner Information

Scans took place at the Dartmouth Brain Imaging Center
with a Phillips 3T Achieva Intera using a 32-channel sense
head coil. For the functional runs, there were four runs of
150 volumes per run for 600 functional (T2*-weighted)
volumes with a repetition time of 2.5 sec. The functional
scans were a gradient-echo EPI with 42 transverse slices at
3 mm per slice. Echo time was 35, and flip angle was
90°. The scan image acquisition order used was Philips
interleaved.

Univariate Functional Imaging Analysis

Neural data were preprocessed for analysis using the FSL
tools for motion correction and registration (MCFLIRT:
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MCFLIRT; Jenkinson,
Bannister, Brady, & Smith, 2002). After preprocessing, each
participant’s neural response to each itemwas thenmodeled
using a gamma-convolved hemodynamic response function
after onset of thedisplay of the itemsduring the study blocks
and were smoothed with a 5-mm FWHM Gaussian kernel.
Regressor covariance estimates output by FSL during uni-
variate analysis confirmed that these portions of the trial
were statistically separable (no two regressors were corre-
lated at greater than 0.25) because of the jittered-duration
fixation periods inserted between each trial. Beta values
used in the RSA (described below) were calculated from
the contrast of studied item (separated by study block by
a run-level regressor to account for the blocked design)
compared to jittered fixation baseline. Participant anatom-
ical data for the searchlight RSA were prepared from 1-mm
T1-weighted images using FreeSurfer and PyMVPA’s prep-
afni-surf function (Fischl, 2012).

Searchlight RSA

We used a surface-based searchlight mapping technique
with a 5-voxel radius and with white matter excluded
(Oosterhof, Wiestler, Downing, & Diedrichsen, 2011) to
produce a whole-brain map for each participant (registered
to Montreal Neurological Institute space). The resultant
value at each surface node reflected the z-scored cosine
similarity between local neural DM (untargeted neural
dissimilarity between all of the items) and the target similar-
ity structure (the a priori Word2vec model). The a priori
Word2vec semantic DM was created to probe for semantic
similarity with a model that is sensitive to fine-grained
semantic differences between words but does not account
for differences between whether the itemwas presented in
word or picture form. Specifically, the DM for the search-
light RSA was created using the Word2vec (Mikolov et al.,
2013) dissimilarity between each pairwise combination of
the items viewed by participants in the object name and
object picture blocks, with the diagonal values discarded
and not used in further analyses (Figure 3). One item was
not able to be modeled by Word2vec (“rollerskate”) and
was discarded from further analysis, leaving 119 total items
in the analysis.
The local neural DM for each participant at each surface

node was computed using z-scored cosine similarity
between activity patterns for all possible pairings of the
119 items (7021 pairwise dissimilarities, total). Activity
patterns were defined by the (2mm3) voxel-wise estimated
hemodynamic responses from general linear model analy-
sis of the functional data, outlined in detail above. These
analyses were performed using Python and PyMVPA
(www.pymvpa.org; Hanke et al., 2009), SciPy (scipiy.org),
and NumPy (numpy.scipy.org). At each searchlight loca-
tion, we calculated the z-scored cosine similarity between
the resultant DMs with the semantic itemmodel DM, yield-
ing a whole-brain map for each participant. To correct for
multiple comparisons and determine the likelihood that
the observed correlations could have occurred because
of chance, we conducted a permutation test to compare
our observed results to a null distribution of 10,000 random
permutations of themodeled semantic DM (Winkler et al.,
2016). The values displayed in our RSA results were calcu-
lated as the number of times the actual observed average
mean-centered cosine similarity exceeded the average
mean-centered cosine similarity at a given searchlight
across participants for permuted observations, divided by
10,000 (Figure 4).

Whole-Brain Correlation with Attentional Bias

Using the whole-brain permutation-corrected z-map RSA
results for each participant as input, we correlated these
results with each participant’s individual word attentional
bias score, which was calculated by subtracting the per-
centage of trials that a participant responded to pictures
from the percentage of the time the participant responded
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to the word. The resulting score ranged from 1 (responded
only to words) to −1 (responded only to pictures). A
participant with a score of 0.8 would respond to the word
80% of the time, a participant with a score of −0.6 would
respond to the picture 60% of the time, and a participant
with a score of 0 would respond to words and pictures at
equal rates. Any trials where participants provided invalid
responses (such as responding “club” to a trial with a pic-
ture of a heart and the word “spade”) were discarded and
not included in the calculation of this score. After correla-
tion with RSA maps, this resulted in a single surface map
where the value at each node was the correlation between

how biased the participant was toward stimuli presented as
a word and the permutation-corrected z-score of how
closely the pattern of neural activity at that node reflected
the patterns of semantic relationships between items. In
summary, the correlation map identifies neural regions
where the patterns of neural activity match the patterns
of semantic similarity better for participants who attend
to words more than pictures. This correlation map was
permutation corrected to account for the large number
of correlations in a similar way to how the individual partic-
ipant RSA correlations were corrected. We generated a
distribution of 1000 potential correlations at each node

Figure 4. Permutation
correction process. The a priori
Word2vec model of semantic
similarity is first shuffled
(or permuted) 10,000 times to
create a distribution of possible
correlations at each surface
node. Because this distribution
is based off of the actual data,
no assumptions about the
distribution need to be made.
We then calculate how much
greater the actual observed
similarity was compared to the
average similarity, and that
resulting z value is displayed on
our later RSA surface maps.

Figure 3. Semantic model of dissimilarity of zero-order relations, using Word2vec. Each item had its pairwise semantic dissimilarity calculated using
Word2vec, and this model of semantic dissimilarity was used in the searchlight RSA with participant neural dissimilarity for each item.
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by shuffling the ordering of the word attentional bias score
vector and calculated the z score of the likelihood that the
correlation at that node was because of chance. The final
surface map shows the permutation corrected z scores,
which represent the strength of the patterns of neural
activity similar to the Word2vec model of semantic similar-
ity for participants who attend to word information relative
to participants who attend to picture information.

NeuroSynth “Speech Production”
Correlational Analysis

Based on the results of our previous studies (Alfred et al.,
2020; Hayes et al., 2020) and the fact thatmany participants
in the previous study reported a strong preference for
subvocal repetition strategies (e.g., “Repeated the names
of the items to yourself”) compared to other types of verbal
strategies (e.g., “Constructed a story based on the items”)
in thememory task, wewanted to determine if the strength
of a participant’s word attentional bias score predicted the
strength of the similarity between the Word2vec model of
semantic similarity and patterns of neural activity in speech
production regions. Rather than use an anatomically
defined region, we used the NeuroSynth (www.neurosynth
.org; Yarkoni, Poldrack, Nichols, Van Essen, & Wager,
2011) term-based association test meta-analytic map for
“speech production.” This association test meta-analytic
map identifies brain regions that are selectively active in
studies about speech production by comparing the rates
of being identified as an active region in studies mention-
ing “speech production” (86 studies) to the rates of being
identified as an active region in all other studies (14,371
total studies). The “speech production” association test
map is thresholded at false discovery rate-corrected p <
.01. This speech production map was binarized and used

to mask each participant’s permutation-corrected RSA
z-map. Inside the mask, each participant’s average z score
was calculated, so that each participant had one value
corresponding to the average degree of similarity that
their patterns of neural activity in that mask corresponded
with the Word2vec model. These values were correlated
with each participant’s word attentional bias score to cal-
culate the degree to which the strength of the semantic
representation correlated with the degree to which each
participant was attentionally biased toward words over
pictures.

RESULTS

Attentional Bias Task

The purpose of this task was to measure how frequently
participants selectively attended to information provided
by words instead of pictures. For each participant, we calcu-
lated a word attentional bias score, which was the rate that
participants responded based on the word in the incon-
gruent trials instead of the picture, or the percentage of
trials that a participant responded to pictures subtracted
from the percentage of the time the participant responded
to the word, resulting in a score that ranged from 1 (re-
sponded only to words) to−1 (responded only to pictures).
were split on whether they preferentially responded to
words or pictures, although participants tended to be
internally consistent across trials (Figure 1). Many partici-
pants had a clear preference for either words or pictures,
and even the three participants with the attentional bias
scores closest to 0 still chose their preferred content type
between 10% and 20% more than the other content type
(Figure 5).
Word attentional bias was significantly negatively corre-

lated with higher accuracy during the picture memory test,

Figure 5. Distribution of
attentional bias scores. The
majority of participants showed
a clear attentional bias toward
either word or picture
information. Although three
participants seemed to be split
between the two, they still
preferred one content type
between 10% and 20% more
than the other.
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r(24) =−.46, p= .018, Cohen’s d=1.04. The comparable
verbal–visual cognitive style subtraction score did not cor-
relate significantly with the picture memory test, r(24) =
−.18, p = .38, Cohen’s d = 0.36. Furthermore, this
measure of attentional bias has been shown to be able to
predict behavioral outcomes that were not predicted by
any other measure (for details, see the Supplementary
Material of Alfred et al., 2020).

Searchlight RSA

We ran a whole-brain surface searchlight RSA on the indi-
vidual participant level to understand where in the brain
patterns of neural activity best reflect the structure of
semantic similarity (as defined by the Word2vec model).
To identify potential brain surface regions where all partic-
ipants had patterns of brain activity that correlated well
with patterns of semantic similarity between items, we
created one map that was the average map of all partici-
pants. There were no significant clusters (area ≥ 136 mm2,
p < .05, calculated through AFNI’s surface-based imple-
mentation of ClustSim bootstrapped cluster extent thresh-
old, slowsurfclustsim), indicating that there were no brain
regions that reliably represented the semantic structure
predicted by Word2vec across all participants.

Correlation between RSA and Word
Attentional Bias

To check for effects of individual differences in the localiza-
tion of the representation of the structure of the zero-order
semantic relations, we created a whole-brain map that cor-
related each participant’s permutation-corrected z score at
each node with that participant’s word attentional bias
score. This resultant map shows which brain regions have

a higher degree of similarity between the patterns of neural
activity and the modeled semantic structure predicted by
the degree towhich an individual selectively attends to infor-
mation presented as a word instead of a picture. The RSA
and word attentional bias map was permutation corrected
for multiple comparisons, similarly to how participant data
were permutation corrected for the original searchlight
RSA. Using the same bootstrapped cluster extent threshold
(area ≥ 136 mm2), we identified three significant surface
clusters (see Figure 6 and Table 1). Two of the three clusters
were left-lateralized, in the supramarginal (SMG) and supe-
rior temporal sulcus, which have previously been found to
be associated with language processing (Sliwinska,
Khadilkar, Campbell-Ratcliffe, Quevenco, & Devlin, 2012;
Stoeckel, Gough, Watkins, & Devlin, 2009; Xu, Kemeny,
Park, Frattali, & Braun, 2005; Crinion, Lambon-Ralph,
Warburton, Howard, & Wise, 2003). The cluster in the left
SMG is similar to a cluster identified by Kraemer, Rosenberg,
and Thompson-Schill (2009) as beingmore active in partic-
ipants with a verbal cognitive style (as defined by the
Visualizer-Verbalizer Questionnaire; Kirby, Moore, &
Schofield, 1988). Furthermore, Kraemer, Hamilton,
Messing, DeSantis, and Thompson-Schill (2014) found that
rapid TMS applied to the left SMG during a task that
required applying verbal labels to pictures affected the
performance of participants with a higher verbal cognitive
style compared to participants with a visual cognitive
style. These results indicate that the left SMG in particular
is not only important for language cognition, but that this
region is particularly important for individuals who prefer
verbal material and may be using a strategy that involves
verbal labeling of visual items.

We also calculated the same correlation map with the
word attentional bias scores flipped (calculated as % of
incongruent trials participant responded to picture − %

Figure 6. Brain regions where
word attentional bias scores
predict strength of semantic
representation. In the displayed
clusters, participants with a
stronger attentional bias toward
words show patterns of neural
activity that more closely reflect
the semantic structure of
zero-order relations predicted
by Word2vec than participants
with attentional bias toward
pictures.
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of incongruent trials participant responded to word) to
check for regions where patterns of activity that better
reflect semantic structure are more likely in participants
who are attentionally biased toward pictures. There were
no clusters that were significant at the bootstrapped extent
(area ≥ 136 mm2). The closest three clusters were 83, 76,
and 59 mm2, and were located in the left middle orbito-
frontal cortex, left superior occipital gyrus, and right pre-
central gyrus.

Correlation within Speech Production Regions

The NeuroSynth “speech production” association test
meta-analytic map was used to define which regions were
considered to be related to speech production (for more
details about the speech production map, see Methods
section). This speech production map was used to mask
each participant’s individual permutation-corrected RSA
z-map. We then calculated the average z in the speech pro-
duction map for each participant and correlated that value
with participant word attentional bias scores. We found
that, inside the NeuroSynth speech production network,
the average z values from the permutation-corrected
semantic Word2vec RSA correlated with participant word
attentional bias scores, r(24) = .41, p = .038, Cohen’s

d=0.9 (Figure 7). This is consistent with our prior findings
(Alfred et al., 2020) and indicates that individuals who
demonstrated a stronger attentional bias toward words
have stronger representations of zero-order semantic rela-
tions in speech production regions.

DISCUSSION

Overall, these results indicate that there is a significant
degree of reliable individual variation along the dimension
of attentional bias and that measure predicts different
localization of zero-order semantic relations as well as the
strength of that representation. Furthermore, individual
differences are critical to being able to identify the brain
regions where the pattern of neural activity reflects the
zero-order semantic structure between those items.
When the analysis was run across all participants, there
were no regions that significantly represented the zero-
order semantic structure. However, when testing for the
correlation between the zero-order semantic structure
and word attentional bias, several brain regions showed
that word attentional bias modulated the strength of the
representation of zero-order relationships in these regions.
(as shown in Figure 6). No regions were found to show
activity correlating with picture bias. However, it is possible

Table 1. Significant Clusters from Permutation-Corrected Whole-Brain Correlation with RSA

Region
Average

Permuted z
Maximum
Permuted z

Cluster Size
(mm2)

Peak Coordinates
(x, y, z), MNI

Left SMG 2.185 3.593 160.06 −56, −36, 0

Right Middle Cingulate 2.158 3.212 385.29 8, −20, 62

Left STS 2.151 3.553 194.46 −52, −42, 30

MNI = Montreal Neurological Institute; STS = superior temporal sulcus.

Figure 7. Word attentional bias
score significantly correlates with
the strength of the zero-order
relations of semantic
representation in speech
production regions. Participant
average permutation-corrected
z scores from the RSA with the
Word2vec semantic model were
predicted by participants’ word
attentional bias scores, indicated
stronger representation of
semantic information in speech
production regions for
participants who selectively
attend to word information.
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that such regions exist, despite the fact that our analysis did
not detect them. Furthermore, research by Blazhenkova
and Kozhevnikov (2009) has suggested that rather than a
single, unified visual cognitive style, some individuals
might respond preferentially to object imagery and spatial
imagery. The present task was not designed to assay that
distinction, so it is possible that individual differences in
nonverbal attentional bias are not captured here. These
results are also consistent with the results of our earlier
study, Alfred et al. (2020), which identified regions reflect-
ing coarse semantic similarity (where activity patterns
during the object names condition and object pictures
conditionwere similar to each other, but dissimilar to pseu-
dowords and abstract pictures conditions) that differed
based on word attentional bias. That study showed that in-
dividual biases toward verbal or visual processing affected
the encoding of semantically meaningful content regard-
less of the format (word or picture) in which that content
was presented. Participants with strong implicit bias toward
visual cognition gave responses that corresponded to the
pictorial information presented, whereas those who
responded preferentially to presented words were said to
have a verbal bias. At the condition level, these attentional
biases predicted differences in behavioral performance
for a picture-only memory test and gave rise to distinct
patterns of neural activation in response to both words
and pictures (e.g., participants with a verbal attentional
bias had neural patterns of activity that were similar for
both words and pictures in verbally-associated regions).
Importantly, these individual differences were only ob-
served for semantically unambiguous and meaningful
content (i.e., highly imageable words and easily namable
pictures) and not for easily pronounceable pseudowords
or abstract pictures. Searchlight RSA revealed that brain
areas associated with content-general semantic encoding
were more similar between participants, consistent with
previous research (Frankland & Greene, 2015; Shinkareva,
Malave, Mason, Mitchell, & Just, 2011; Binder, Westbury,
McKiernan, Possing, & Medler, 2005; Thompson-Schill,
2003), whereas individual differences were reflected in
material specific areas (such as the speech production net-
work). Particularly, this study expands on the results of
Shinkareva et al. (2011), who were able to use multivariate
pattern analysis to decode object category from cross-format
stimuli (e.g., identify a picture’s category based on the
viewing of the word that labeled that picture). Through
our approach in this study, we were able to similarly identify
cross-format semantic structure, even with participants
only seeing a single presentation of each item in one for-
mat rather than seeing the item in both word and picture
form. The results of the current study also provide a signif-
icant advance over our earlier study by using Word2vec
to model the pairwise zero-order relational semantic
similarity between items, regardless of whether the item
was originally presented as a word or a picture, instead of
a condition-level analysis that could only probe for regions
that represented meaningful content in two formats (word

and picture) similarly to each other while controlling for
basic stimulus features. Despite the significant changes in
the analysis approach, both studies highlight the impor-
tance of considering individual differences in the represen-
tation of zero-order semantic relations.

Other research has suggested that the dimensions of
verbal and visual cognition represent an important domain
of individual differences in cognition (for a review, see
Alfred & Kraemer, 2017). Prior research has shown that
individuals differ in the extent to which they prefer to
attend to information in each of these dimensions (Miller
et al., 2009; Kirchhoff & Buckner, 2006; Casasanto et al.,
2002; Miller et al., 2002). For example, Zarnhofer et al.
(2013) found that individuals who have a verbal cognitive
bias show increased activation in language-associated
areas of the left hemisphere (e.g., the left angular gyrus)
during mental calculation. Neural differences in informa-
tion encoding and retrieval that are biased toward either
verbal or visual cognition are stable across time (Miller,
Donovan, Bennett, Aminoff, & Mayer, 2012; Miller et al.,
2009), and correlate with self-reported verbal or visual
habits of thought (Kraemer et al., 2009, 2014, Miller et al.,
2012; Hsu, Kraemer, Oliver, Schlichting, & Thompson-
Schill, 2011; Kirchhoff & Buckner, 2006). Given the exten-
sive body of work that has continued to demonstrate that
there are high degrees of reliable variation between individ-
uals in the processing of zero-order semantic relations,
more studies should include measures of individual differ-
ences when attempting to model the structure of these
representations.

Acknowledgments

The authors would additionally like to thank Daniel J. Harris
and Carissa A. Crawford for their contributions toward design-
ing the attentional bias measure and collection of behavioral
and neural data for this study.

Reprint requests should be sent to Katherine L. Alfred, Department
of Psychological and Brain Sciences, Dartmouth College, 6207
Moore Hall, Hanover, NH 03755, or via e-mail: katherine.l.alfred
.gr@dartmouth.edu.

Funding Information

The authors would like to thank the National Science
Foundation (DRL-1661088 to D. J. M. K.) for funding this
research.

REFERENCES

Alfred, K. L., Hayes, J. C., Pizzie, R. G., Cetron, J. S., & Kraemer,
D. J. M. (2020). Individual differences in encoded neural
representations within cortical speech production network.
Brain Research, 1726, 146483. DOI: https://doi.org/10.1016
/j.brainres.2019.146483, PMID: 31585067

Alfred, K. L., & Kraemer, D. J. M. (2017). Verbal and visual
cognition: Individual differences in the lab, in the brain,
and in the classroom. Developmental Neuropsychology,

Alfred, Hillis, and Kraemer 399



42, 507–520. DOI: https://doi.org/10.1080/87565641.2017
.1401075, PMID: 29505308

Binder, J. R., Desai, R. H., Graves, W. W., & Conant, L. L. (2009).
Where is the semantic system? A critical review and meta-
analysis of 120 functional neuroimaging studies. Cerebral
Cortex, 19, 2767–2796. DOI: https://doi.org/10.1093/cercor
/bhp055, PMID: 19329570, PMCID: PMC2774390

Binder, J. R., Westbury, C. F., McKiernan, K. A., Possing, E. T., &
Medler, D. A. (2005). Distinct brain systems for processing
concrete and abstract concepts. Journal of Cognitive
Neuroscience, 17, 905–917. DOI: https://doi.org/10.1162
/0898929054021102, PMID: 16021798

Blazhenkova, O., & Kozhevnikov, M. (2009). The new object-
spatial-verbal cognitive style model: Theory andmeasurement.
Applied Cognitive Psychology, 23, 638–663. DOI: https://doi
.org/10.1002/acp.1473

Bunge, S. A., Wendelken, C., Badre, D., & Wagner, A. D. (2005).
Analogical reasoning and prefrontal cortex: Evidence for
separable retrieval and integration mechanisms. Cerebral
Cortex, 15, 239–249. DOI: https://doi.org/10.1093/cercor
/bhh126, PMID: 15238433

Casasanto, D. J., Killgore, W. D. S., Maldjian, J. A., Glosser, G.,
Alsop, D. C., Cooke, A. M., et al. (2002). Neural correlates of
successful and unsuccessful verbal memory encoding. Brain
and Language, 80, 287–295. DOI: https://doi.org/10.1006
/brln.2001.2584, PMID: 11896642

Chiang, J. N., Peng, Y., Lu, H., Holyoak, K. J., & Monti, M. M.
(2020). Distributed code for semantic relations predicts
neural similarity during analogical reasoning. Journal of
Cognitive Neuroscience, 1–13. DOI: https://doi.org/10.1162
/jocn_a_01620, PMID: 32762520

Crinion, J. T., Lambon-Ralph, M. A., Warburton, E. A., Howard, D.,
& Wise, R. J. S. (2003). Temporal lobe regions engaged during
normal speech comprehension. Brain, 126, 1193–1201. DOI:
https://doi.org/10.1093/brain/awg104, PMID: 12690058

Deacon, D., Dynowska, A., Ritter, W., & Grose-Fifer, J. (2004).
Repetition and semantic priming of nonwords: Implications
for theories of N400 and word recognition. Psychophysiology,
41, 60–74. DOI: https://doi.org/10.1111/1469-8986.00120,
PMID: 14693001

Fischl, B. (2012). FreeSurfer. Neuroimage, 62, 774–781. DOI:
https://doi.org/10.1016/j.neuroimage.2012.01.021, PMID:
22248573, PMCID: PMC3685476

Frankland, S. M., & Greene, J. D. (2015). An architecture for
encoding sentence meaning in left mid-superior temporal
cortex. Proceedings of the National Academy of Sciences,
U.S.A., 112, 11732–11737. DOI: https://doi.org/10.1073
/pnas.1421236112, PMID: 26305927, PMCID: PMC4577152

Golby, A. J., Poldrack, R. A., Brewer, J. B., Spencer, D., Desmond,
J. E., Aron, A. P., et al. (2001). Material-specific lateralization
in the medial temporal lobe and prefrontal cortex during
memory encoding. Brain, 124, 1841–1854. DOI: https://doi
.org/10.1093/brain/124.9.1841, PMID: 11522586

Grady, C. L., McIntosh, A. R., Rajah, M. N., & Craik, F. I. M.
(1998). Neural correlates of the episodic encoding of pictures
and words. Proceedings of the National Academy of
Sciences, U.S.A., 95, 2703–2708. DOI: https://doi.org/10.1073
/pnas.95.5.2703, PMID: 9482951, PMCID: PMC19469

Green, A. E., Fugelsang, J. A., Kraemer, D. J. M., & Dunbar, K. N.
(2008). The micro-category account of analogy. Cognition,
106, 1004–1016. DOI: https://doi.org/10.1016/j.cognition
.2007.03.015, PMID: 17511980

Green, A. E., Fugelsang, J. A., Kraemer, D. J. M., Shamosh, N. A.,
& Dunbar, K. N. (2006). Frontopolar cortex mediates abstract
integration in analogy. Brain Research, 1096, 125–137. DOI:
https://doi.org/10.1016/j.brainres.2006.04.024, PMID: 16750818

Green, A. E., Kraemer, D. J. M., Fugelsang, J. A., Gray, J. R., &
Dunbar, K. N. (2010). Connecting long distance: Semantic

distance in analogical reasoning modulates frontopolar cortex
activity. Cerebral Cortex, 20, 70–76. DOI: https://doi.org/10
.1093/cercor/bhp081, PMID: 19383937

Gross, M. M. (1972). Hemispheric specialization for processing
of visually presented verbal and spatial stimuli. Perception
& Psychophysics, 12, 357–363. DOI: https://doi.org/10.3758
/BF03207222

Hanke, M., Halchenko, Y. O., Sederberg, P. B., Olivetti, E., Fründ,
I., Rieger, J. W., et al. (2009). PyMVPA: A unifying approach to
the analysis of neuroscientific data. Frontiers in
Neuroinformatics, 3, 3. DOI: https://doi.org/10.3389
/neuro.11.003.2009, PMID: 19212459, PMCID: PMC2638552

Hayes, J. C., Alfred, K. L., Pizzie, R. G., Cetron, J. S., & Kraemer,
D. J. M. (2020). Individual differences in white and grey matter
structure associated with verbal habits of thought. Brain
Research, 1742, 146890. DOI: https://doi.org/10.1016/j
.brainres.2020.146890, PMID: 32439344

Hsu, N. S., Kraemer, D. J. M., Oliver, R. T., Schlichting, M. L., &
Thompson-Schill, S. L. (2011). Color, context, and cognitive
style: Variations in color knowledge retrieval as a function of
task and subject variables. Journal of Cognitive Neuroscience,
23, 2544–2557. DOI: https://doi.org/10.1162/jocn.2011.21619,
PMID: 21265605

Hummel, J. E., &Holyoak, K. J. (1997). Distributed representations
of structure: A theory of analogical access and mapping.
Psychological Review, 104, 427–466. DOI: https://doi.org
/10.1037/0033-295X.104.3.427

Jenkinson, M., Bannister, P., Brady, M., & Smith, S. (2002).
Improved optimization for the robust and accurate linear
registration and motion correction of brain images.
Neuroimage, 17, 825–841. DOI: https://doi.org/10.1016
/s1053-8119(02)91132-8, PMID: 12377157

Kirby, J. R., Moore, P. J., & Schofield, N. J. (1988). Verbal
and visual learning styles. Contemporary Educational
Psychology, 13, 169–184. DOI: https://doi.org/10.1016/0361
-476X(88)90017-3

Kirchhoff, B. A., & Buckner, R. L. (2006). Functional-anatomic
correlates of individual differences in memory. Neuron, 51,
263–274. DOI: https://doi.org/10.1016/j.neuron.2006.06.006,
PMID: 16846860

Kraemer, D. J. M., Hamilton, R. H., Messing, S. B., DeSantis, J. H.,
& Thompson-Schill, S. L. (2014). Cognitive style, cortical
stimulation, and the conversion hypothesis. Frontiers in
Human Neuroscience, 8, 15. DOI: https://doi.org/10.3389
/fnhum.2014.00015, PMID: 24523687, PMCID: PMC3905265

Kraemer, D. J. M., Rosenberg, L. M., & Thompson-Schill, S. L.
(2009). The neural correlates of visual and verbal cognitive
styles. Journal of Neuroscience, 29, 3792–3798. DOI: https://
doi.org/10.1523/JNEUROSCI.4635-08.2009, PMID: 19321775,
PMCID: PMC2697032

Krawczyk, D. C. (2012). The cognition and neuroscience of
relational reasoning. Brain Research, 1428, 13–23. DOI:
https://doi.org/10.1016/j.brainres.2010.11.080, PMID:
21129363

Kriegeskorte, N., Mur, M., Ruff, D. A., Kiani, R., Bodurka, J.,
Esteky, H., et al. (2008). Matching categorical object
representations in inferior temporal cortex of man and
monkey. Neuron, 60, 1126–1141. DOI: https://doi.org
/10.1016/j.neuron.2008.10.043, PMID: 19109916, PMCID:
PMC3143574

Lacey, S., & Campbell, C. (2006). Mental representation in
visual/haptic crossmodal memory: Evidence from interference
effects. Quarterly Journal of Experimental Psychology, 59,
361–376. DOI: https://doi.org/10.1080/17470210500173232,
PMID: 16618639

Malt, B. C. (1990). Features andbeliefs in themental representation
of categories. Journal of Memory and Language, 29, 289–315.
DOI: https://doi.org/10.1016/0749-596X(90)90002-H

400 Journal of Cognitive Neuroscience Volume 33, Number 3



Martin, A. (2007). The representation of object concepts in the
brain. Annual Review of Psychology, 58, 25–45. DOI: https://
doi.org/10.1146/annurev.psych.57.102904.190143, PMID:
16968210

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient
estimation of word representations in vector space. arXiv
preprint arXiv:1301.3781.

Miller, M. B., Donovan, C.-L., Bennett, C. M., Aminoff, E. M., &
Mayer, R. E. (2012). Individual differences in cognitive style
and strategy predict similarities in the patterns of brain activity
between individuals. Neuroimage, 59, 83–93.DOI: https://doi
.org/10.1016/j.neuroimage.2011.05.060, PMID: 21651986

Miller, M. B., Donovan, C.-L., Van Horn, J. D., German, E.,
Sokol-Hessner, P., & Wolford, G. L. (2009). Unique and
persistent individual patterns of brain activity across different
memory retrieval tasks. Neuroimage, 48, 625–635. DOI:
https://doi.org/10.1016/j.neuroimage.2009.06.033, PMID:
19540922, PMCID: PMC2763594

Miller, M. B., Van Horn, J. D., Wolford, G. L., Handy, T. C.,
Valsangkar-Smyth, M., Inati, S., et al. (2002). Extensive
individual differences in brain activations associated with
episodic retrieval are reliable over time. Journal of Cognitive
Neuroscience, 14, 1200–1214. DOI: https://doi.org/10.1162
/089892902760807203, PMID: 12495526

Milner, B. (1971). Interhemispheric differences in the localization
of psychological processes in man. British Medical Bulletin,
27, 272–277. DOI: https://doi.org/10.1093/oxfordjournals
.bmb.a070866, PMID: 4937273

Milner, B., Corsi, P., & Leonard, G. (1991). Frontal-lobe contribution
to recency judgements. Neuropsychologia, 29, 601–618. DOI:
https://doi.org/10.1016/0028-3932(91)90013-x, PMID: 1944864

Oosterhof, N. N., Wiestler, T., Downing, P. E., & Diedrichsen, J.
(2011). A comparison of volume-based and surface-based
multi-voxel pattern analysis. Neuroimage, 56, 593–600. DOI:
https://doi.org/10.1016/j.neuroimage.2010.04.270, PMID:
20621701

Patterson, K., Nestor, P. J., & Rogers, T. T. (2007). Where do you
knowwhat youknow?The representationof semantic knowledge
in the human brain. Nature Reviews Neuroscience, 8, 976–987.
DOI: https://doi.org/10.1038/nrn2277, PMID: 18026167

Shinkareva, S. V., Malave, V. L., Mason, R. A., Mitchell, T. M., &
Just, M. A. (2011). Commonality of neural representations
of words and pictures. Neuroimage, 54, 2418–2425. DOI:
https://doi.org/10.1016/j.neuroimage.2010.10.042, PMID:
20974270

Sliwinska, M. W., Khadilkar, M., Campbell-Ratcliffe, J., Quevenco,
F., & Devlin, J. T. (2012). Early and sustained supramarginal
gyrus contributions to phonological processing. Frontiers in

Psychology, 3, 161. DOI: https://doi.org/10.3389/fpsyg.2012
.00161, PMID: 22654779, PMCID: PMC3361019

Snodgrass, J. G., & Vanderwart, M. (1980). A standardized set of
260 pictures: Norms for name agreement, image agreement,
familiarity, and visual complexity. Journal of Experimental
Psychology: Human Learning and Memory, 6, 174–215.
DOI: https://doi.org/10.1037/0278-7393.6.2.174, PMID:
7373248

Stoeckel, C., Gough, P. M., Watkins, K. E., & Devlin, J. T. (2009).
Supramarginal gyrus involvement in visual word recognition.
Cortex, 45, 1091–1096. DOI: https://doi.org/10.1016
/j.cortex.2008.12.004, PMID: 19232583, PMCID: PMC2726132

Thompson-Schill, S. L. (2003). Neuroimaging studies of semantic
memory: Inferring “how” from “where.” Neuropsychologia,
41, 280–292. DOI: https://doi.org/10.1016/s0028-3932
(02)00161-6, PMID: 12457754

Wagner, A. D., Poldrack, R. A., Eldridge, L. L., Desmond, J. E.,
Glover, G. H., & Gabrieli, J. D. E. (1998). Material-specific
lateralization of prefrontal activation during episodic
encoding and retrieval. NeuroReport, 9, 3711–3717. DOI:
https://doi.org/10.1097/00001756-199811160-00026, PMID:
9858384

Wendelken, C., Nakhabenko, D., Donohue, S. E., Carter, C. S., &
Bunge, S. A. (2008). “Brain is to thought as stomach is to??”:
Investigating the role of rostrolateral prefrontal cortex in
relational reasoning. Journal of Cognitive Neuroscience,
20, 682–693. DOI: https://doi.org/10.1162/jocn.2008.20055,
PMID: 18052787

Winkler, A.M.,Webster, M. A., Brooks, J. C., Tracey, I., Smith, S. M.,
& Nichols, T. E. (2016). Non-parametric combination and
related permutation tests for neuroimaging. Human Brain
Mapping, 37, 1486–1511. DOI: https://doi.org/10.1002
/hbm.23115, PMID: 26848101, PMCID: PMC4783210

Xu, J., Kemeny, S., Park, G., Frattali, C., & Braun, A. (2005).
Language in context: Emergent features of word, sentence,
and narrative comprehension. Neuroimage, 25, 1002–1015.
DOI: https://doi.org/10.1016/j.neuroimage.2004.12.013,
PMID: 15809000

Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C.,
& Wager, T. D. (2011). Large-scale automated synthesis of
human functional neuroimaging data. Nature Methods, 8,
665–670. DOI: https://doi.org/10.1038/nmeth.1635, PMID:
21706013, PMCID: PMC3146590

Zarnhofer, S., Braunstein, V., Ebner, F., Koschutnig, K., Neuper, C.,
Ninaus, M., et al. (2013). Individual differences in solving
arithmetic word problems. Behavioral and Brain Functions,
9, 28. DOI: https://doi.org/10.1186/1744-9081-9-28, PMID:
23883107, PMCID: PMC3728072

Alfred, Hillis, and Kraemer 401


