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Using the force: STEM knowledge and experience construct
shared neural representations of engineering concepts
Joshua S. Cetron1,2, Andrew C. Connolly3, Solomon G. Diamond4, Vicki V. May4, James V. Haxby 3 and David J. M. Kraemer 2✉

How does STEM knowledge learned in school change students’ brains? Using fMRI, we presented photographs of real-world
structures to engineering students with classroom-based knowledge and hands-on lab experience, examining how their brain
activity differentiated them from their “novice” peers not pursuing engineering degrees. A data-driven MVPA and machine-learning
approach revealed that neural response patterns of engineering students were convergent with each other and distinct from
novices’ when considering physical forces acting on the structures. Furthermore, informational network analysis demonstrated that
the distinct neural response patterns of engineering students reflected relevant concept knowledge: learned categories of
mechanical structures. Information about mechanical categories was predominantly represented in bilateral anterior ventral
occipitotemporal regions. Importantly, mechanical categories were not explicitly referenced in the experiment, nor does visual
similarity between stimuli account for mechanical category distinctions. The results demonstrate how learning abstract STEM
concepts in the classroom influences neural representations of objects in the world.
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INTRODUCTION
Learning changes perception. Over the course of learning,
advanced students and experts grow to see the world differently
from novice learners as a function of their knowledge and prior
experience (e.g., chess1, physics2). For example, seminal work in
cognitive psychology has demonstrated that when given the
same set of physics practice problems, individuals with advanced
knowledge of physics categorize the problems according to the
abstract concept knowledge underlying each problem, whereas
novices categorize problems according to the perceivable surface-
level features of each problem2. Although a large body of
neuroscience research has focused on the neural representation
of visually perceivable categories3–6, the way in which abstract
STEM concept knowledge is represented in the brain remains less
explored. Here, using a cross-sectional design, we investigate how
prior classroom-based and lab-based learning experiences influ-
ence the neural patterns that represent abstract conceptual
categories when presented with naturalistic stimuli.
To date, only a few neuroimaging studies have investigated

physics and engineering concept knowledge7–10. Results of this
research implicate dorsal stream regions—including motor cortex
—in the explicit retrieval of task-specific physics knowledge.
However, in a naturalistic test of conceptual understanding, an
important outcome of successful learning should be the ability to
observe real-world stimuli and implicitly retrieve conceptual
category information not available to novices1,2. Because prior
fMRI studies of physics knowledge have focused on explicit
retrieval of information about non-naturalistic stimuli, the ques-
tion of how abstract physics and engineering knowledge is
implicitly activated by real-world stimuli remains unresolved.
Within other concept domains, numerous fMRI studies have tied

both explicit and implicit visual categorization—including cate-
gories based on real-world stimuli—to patterns of brain activity in
the ventral visual stream3–6,11. For example, Connolly et al.3 have

demonstrated that patterns of neural activity in ventral occipito-
temporal cortex can reliably classify images of animals (viewed
during an incidental task) into abstract conceptual categories. In
the present study, we apply this analytical approach to the
domain of mechanical engineering. Our aim is to identify patterns
of brain activity associated with real-world stimuli that implicitly
reflect learned abstract mechanical category information.
In pursuit of this aim, we recruited two groups of participants: a

group of undergraduate mechanical engineering students with
knowledge drawn from engineering lecture courses and hands-on
laboratory experiences, and a control group of their peers: novice
students at the same university matched for educational
attainment. (Note that engineering students at the present
institution do not have separate admissions criteria from students
in other disciplines; the distinction between novice and engineer-
ing students in the present study is simply that engineering
students had completed certain engineering and physics courses,
whereas novice students had not elected any advanced courses in
engineering or physics.) Both groups performed an fMRI concept
knowledge task in which participants evaluated the Newtonian
forces acting on a set of real-world structures. Using multivariate
pattern analysis (MVPA) of neuroimaging data, we first identified
convergent patterns of neural activity among engineering
students and among novices. Then, for each group, we performed
an informational network analysis7, a variant of representational
similarity analysis (RSA12), to query those activity patterns for the
presence of concept knowledge information about the mechan-
ical categories of structures. As a control, we also evaluated the
contribution of bottom-up perceptual information to these neural
patterns using a forward-encoding model of primary visual cortex
(HMAX13). In this way, we identified reliable neural patterns
reflective of mechanical category knowledge elicited by real-world
stimuli. By comparing these patterns across the two groups of
students, our results reveal the influence of prior learning
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experiences on the neural representation of abstract STEM
concepts.

RESULTS
Engineering students demonstrate knowledge of Newtonian
forces
Figure 1 shows the trial structure and behavioral results from the
free body diagram (FBD) task that participants completed during
fMRI scan. The FBD task required participants to evaluate the
Newtonian forces interacting with real-world structures (see
“Methods” section for a complete description of the FBD task).
On average, engineering students significantly outperformed
novices on this task (Meng= 76%, Mnov= 66%, t(29)= 2.44, p=
0.02; Fig. 1b inset). A linear mixed-effects model revealed
significant main effects of both run (β= 0.03, SE= 0.01, p=
0.01) and group (engineering students > novices, β= 0.24, SE=
0.06, p= 0.0005). There was also a significant two-way interaction
(β= 0.05, SE= 0.01, p= 0.0005) in which novices improved more
than engineering students over time (Δeng= 7.55%, Δnov=
23.61%, t(29)= 3.47, p= 0.002). On the individual runs, the
greatest difference in performance between groups was at run 1
(Meng= 74%, Mnov= 53%, t(29)= 4.18, p= 0.0002). By run 4, both
groups demonstrated mastery of the FBD task, and did not
perform significantly differently from each other (t(29)= 1.34, p=
0.19).

Overview of neural results
The neural results discussed here will consider only fMRI results
from the first fMRI run. Task performance at fMRI run 1 maximally
reflects the variance in prior knowledge and experience among
participants. Consequently, fMRI data from run 1 are the most
likely to show distinct patterns of brain activity associated with
concept knowledge for engineering students compared to
novices, if such a distinction should occur at all. In contrast, by
fMRI run 4 we observe that participants from both groups have
mastered the FBD task. It is therefore difficult to dissociate the
effects of task-specific learning from the effects of prior knowl-
edge and experience in any analysis of fMRI data from run 4. Thus,
neural data from run 1 are analyzed here to identify the distinct
and overlapping patterns of neural activity by group (Fig. 2) and

the neural patterns reflecting mechanical and visual information
by group (Fig. 3).

Novices and engineering students show distinct and overlapping
patterns of neural activity
In order to identify whether engineering students and novices
showed unique patterns of brain activity when considering the
stimulus items during the FBD task, we used a data-driven
multivariate intersubject correlation analysis to discover any brain
regions where participants within a group showed convergent
neural representations of the stimulus items. For each individual
participant at every surface node in the brain, we computed a
dissimilarity matrix (DM) from the pairwise comparisons of item-
level beta estimates at each node. Then, separately for each group,
we computed the average (z-transformed) intersubject correla-
tions of the DMs at each node. Finally, we used the negative
extent of the correlation results as an estimate of the range of
correlation values attributable to chance, resulting in a noise
threshold of z= 0.02 (see Supplementary Methods and Supple-
mentary Fig. 1 for a validation of the noise threshold using
permuted null distributions of intersubject correlation values). For
each group, nodes with an average intersubject DM correlation of
z > 0.02 (cluster-corrected) are shown in Fig. 2, alongside a
schematic of the analytical pipeline described here (whole-brain
maps of the average intersubject correlation values before
thresholding are shown in Supplementary Fig. 2). Importantly,
this analysis was entirely data-driven; at no point was an a priori
representational model introduced. (This analysis is described in
full detail in the “Methods” section; see the subsection “Multi-
variate neural pattern analysis”, steps 1 and 2).
Out of 20,484 total nodes across the brain surface, there were

1,863 nodes where only engineering students showed above-
threshold intersubject correlations (Fig. 2, green), 842 nodes
where only novices showed above-threshold intersubject correla-
tions (Fig. 2, blue), and 2,426 nodes where both groups show
above-threshold intersubject correlations (Fig. 2, red). Representa-
tional convergence among engineering students was notably
localized to motor regions including primary motor cortex (M1),
portions of ventral prefrontal cortex (PFC), and inferior parietal
regions. Representational convergence among novices was
predominantly localized to more anterior frontal regions and

Fig. 1 Engineering students significantly outperformed novices on the FBD task at the first fMRI run as well as on average. a FBD task
structure for the fMRI paradigm. b FBD task results by group. By the final fMRI run, novices improved enough on the FBD task that they no
longer significantly differed from engineering students in performance. Error bars indicate standard error of the mean. Note: The photos used
in this figure are credited to Vermont Timber Works Inc. (the building awning stimulus example) and Steve Morgan (the truss bridge example
stimulus). These images were edited and reused here with permission under the Creative Commons Attribution-ShareAlike 3.0 Unported
license (https://creativecommons.org/licenses/by-sa/3.0/legalcode). Edits to these images were made by the authors, including the red
highlighting and force arrow labels that were applied for use in the free body diagram task. All other elements of Fig. 1 were created by the
authors.
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superior parietal regions. The representational convergence maps
for the two groups overlapped in regions including visual cortex,
dorsal occipital cortex, and ventral occipitotemporal (vOT) cortex,
although the groups remained distinct in the most anterior
representations in vOT.

Neural patterns reflect mechanical category knowledge in
engineering students
To unpack the neural distributions of mechanical and visual
information for each group within the regions of distinct and
overlapping neural representations identified in Fig. 2, we
computed an informational network analysis (see subsection
“Multivariate neural pattern analysis”, steps 3 and 4 in the
“Methods” section). First, for each group, we identified networks of
brain regions within each of the distinct and overlapping areas
with similar representations for the stimulus items, independent of
any a priori representational model. Within the regions of high
representational convergence among engineering students, a
split-half repeated cross-validation procedure yielded 65 informa-
tional networks for engineering students and 67 informational
networks for novices. Within the regions of high representational
convergence for novices, the same procedure yielded 46
informational networks for engineering students and 28 informa-
tional networks for novices. Finally, within the regions where both
groups showed high representational convergence, we identified
100 informational networks for each group.
After identifying the informational networks at the group level,

we returned to the level of the individual participant. We
computed the average representational DM for each informational

network separately for each participant. The informational net-
work DMs for each participant were then correlated with a
mechanical category information model DM, as well as a visual
similarity model DM as a control analysis. The mechanical category
DM was generated using the pairwise similarity ratings of a
mechanical engineering expert, and delineated three discrete
categories of mechanical structures into which the stimulus set
could be divided: cantilevers, trusses, and vertical loads. The visual
similarity model DM for the stimulus items was generated using
the HMAX forward-encoding model of primary visual cortex.
Finally, we computed a summary statistic for the mechanical and
visual correlation results at the group level using one-sample t
tests against zero.
Figure 3 shows the cortical surface maps for mechanical

category representations and the visual similarity representations
for each group. Engineering students as a group showed a
significant peak correlation with the mechanical category
representation model in a bilateral anterior vOT informational
network (t(15)= 2.27, p= 0.038), with a nonsignificant secondary
peak in an M1 informational network (t(15)= 1.93, p= 0.073).
Novices as a group showed a nonsignificant mechanical category
representation peak in a right anterior vOT informational network
(t(14)= 2.06, p= 0.058). Peak mechanical category representa-
tions for both groups came from group-specific distinct regions:
the peak bilateral vOT and left M1 informational networks for
engineering students came from areas with high representational
convergence only among engineering students, suggesting that
convergence among engineering students’ representations in
those brain regions reflects a convergence upon mechanical
representations. Figure 4 shows the peak informational networks

Fig. 2 Novices and engineering students show distinct and overlapping patterns of neural activity. The schematic to the left describes the
analytical procedure: First, in each subject’s brain, we computed a data-driven neural dissimilarity matrix (DM) at each surface node, consisting
of the pairwise comparisons between stimulus items. Then, these individual subjects’ node-level DMs were correlated across subjects within
each group. A noise threshold was applied using the negative extent of the intersubject correlations as a chance estimate. Finally, results were
subjected to a spatial cluster correction on the cortical surface, retaining only clusters of at least five contiguous surface nodes. The brain
surface maps on the right show regions where intersubject DM correlations were above the chance threshold for engineering students only
(green), novices only (blue), and both groups (red). Anatomical reference labels have been added for M1, vOT, intraparietal sulcus (IPS), and
calcarine sulcus (V1). Engineering students showed unique representational convergence in motor regions including M1, as well as ventral
PFC and inferior parietal regions. Novice-specific regions included more anterior frontal regions and more dorsal parietal regions. Groups
overlapped in representational convergence in occipital regions, including vOT until the most anterior regions.

J.S. Cetron et al.

3

Published in partnership with The University of Queensland npj Science of Learning (2020)     6 

1
2
3
4
5
6
7
8
9
0
()
:,;



Fig. 3 Neural patterns reflect mechanical category information within group-specific regions, whereas visual similarity information is
represented in overlapping regions. Mechanical category informational gradients for engineering students (top left) and novices (top right),
accompanied by the model DM for the mechanical categories of the stimuli. Engineering students showed a gradient of increasing
mechanical category information moving from posterior-to-anterior in vOT, peaking in a bilateral anterior vOT informational network.
Engineering students also showed a gradient of increasing mechanical category information in the dorsal stream moving toward M1. Novices
showed no significant mechanical category information, but still showed a similar posterior-to-anterior gradient of increasing mechanical
category information in the ventral stream. In the bottom panel, complementary results from the visual similarity analysis are shown,
alongside the visual similarity model DM produced by HMAX. Both groups show peak visual similarity information in V1, with visual similarity
information increasing along an anterior-to-posterior gradient in the ventral stream (the opposite direction from the mechanical category
information gradient).

Fig. 4 The peak regions for each mechanical category informational gradient shown in Fig. 3 each came from informational networks
localized to group-specific regions (as identified in Fig. 2). Engineering students showed mechanical informational gradient peaks in a
bilateral vOT informational network and an M1 informational network, each of which were localized to regions where engineers showed
uniquely high representational convergence. Novices showed a mechanical informational gradient peak in a right vOT informational network,
which was localized to a region where novices showed uniquely high representational convergence.
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for mechanical category information and visual information along
the informational gradients shown in Fig. 3, identifying the distinct
and overlapping regions from Fig. 2 to which those peak regions
belonged. The peak right vOT informational network for novices
came from an area with high representational convergence only
among novices. Additionally, engineering students showed a
gradient of increasing mechanical category information moving
from posterior-to-anterior in the ventral stream in the direction of
the vOT mechanical representational peak, as well as a similar
gradient in the dorsal stream in the direction of M1. Novices
showed a similar posterior-to-anterior gradient of increasing
mechanical category representation along the ventral stream
toward the nonsignificant mechanical representational peak in
right vOT.
In an almost exact reversal from the results of the mechanical

category analysis, the gradient of visual representations along the
ventral stream for both groups showed visual similarity informa-
tion increased from anterior-to-posterior along the ventral stream.
Significant peak informational networks from the visual similarity
analysis in both engineering students (t(15)= 8.92, p < 0.001) and
novices (t(14)= 6.48, p < 0.001) occurred in primary visual cortex
(V1), and were localized to regions where both groups exhibited
high representational convergence. Thus, the visual similarity
analysis affirms that the mechanical category representations
cannot be accounted for by a model of item-level visual
similarity alone.
As a descriptive visualization to contextualize the data-driven

informational networks, the average informational network DMs
for each peak informational network are displayed at the stimulus

item level in Fig. 5, produced through multidimensional scaling
into a three-dimensional embedding space. Concentration prob-
ability ellipsoids are plotted for each mechanical category (R
package “rgl”14). This visualization highlights the mechanical
category structure that is discernable even in the
dimensionality-reduced representations for the mechanical cate-
gory informational gradient peaks. By contrast, mechanical
category structure is not as clearly identifiable within the visual
informational gradient peak representations (nor in the visual
similarity model representation itself).

Evidence for task-specific learning by final fMRI run
As discussed above, the primary results of this study derive from
the first fMRI run, because group differences in neural activity at
the first fMRI run can be attributed to interindividual differences in
prior knowledge of physics and engineering concepts. However,
to provide a thorough treatment of the data, we also analyzed the
results of the fourth and final fMRI run using the same multivariate
intersubject correlation and RSA methods applied to fMRI run 1.
The results of this analysis show that the neural and behavioral
changes that take place between run 1 and run 4 of the fMRI task
were likely predominantly associated with task-specific learning
(i.e., identifying the now-familiar stimulus as either the correct or
incorrect exemplar), and were not clearly associated with changes
in conceptual knowledge over the course of the experiment.
Participants did still show distinct neural representations between
groups at run 4 (Fig. 6), although there were fewer overall
convergent representations for each group (15 unique

Fig. 5 Descriptive visualization showing that the mechanical categories are most discernable among the peak informational networks
from the mechanical category analysis. In contrast, the visual similarity model and the peak informational networks from the visual similarity
analysis are not optimized to dissociate the mechanical categories. Item-level representations are shown for mechanical and visual
representational models (top row), peak mechanical category informational networks for each group (bottom left), and peak visual similarity
informational networks for each group (bottom right). Plots were generated using a three-dimensional embedding from a nonmetric
multidimensional scaling algorithm. Points are color-coded by stimulus mechanical category: cantilevers (green), trusses (blue), and vertical
loads (orange). The stimuli in each category are also surrounded by an ellipsoid of concentration identifying the region in which points
belonging to that category are likely to occur with 95% probability under the assumption that points are drawn from a trivariate normal
distribution.
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informational networks for engineering students, 2 unique
informational networks for novices, and 43 informational networks
for each group in regions of overlapping representational
convergence). Furthermore, regions of representational conver-
gence overall were almost entirely localized to vOT, with just one
posterior parietal region of convergence for each group in the
right hemisphere and no convergent representations in dorsal
premotor or primary motor areas. Finally, results from the RSA for
run 4 revealed that those convergent representations that did
emerge for each group were no longer as strongly reflective of
mechanical category information (but remained as strongly
reflective of visual feature information as at run 1; Supplementary
Fig. 3).
These results provide additional evidence that neural repre-

sentations of Newtonian force concept knowledge are best
identified at fMRI run 1. At the beginning of the experiment, the
fact that there were group differences in neural representations at
all must depend on the prior exposure to STEM education of the
participants, because that is the only task-relevant dimension on
which the participants varied upon beginning the experiment. By
the end of the experiment, however, participants from both
groups had improved on the behavioral task (although engineer-
ing students appear to encounter a ceiling effect; Fig. 1), despite
not receiving any feedback about their task performance. This
behavioral change is therefore not likely to derive from changes in
conceptual understanding of physics and engineering, and indeed
the observed changes in neural representational content are not
consistent with an increase in the representation mechanical
category information for either group (Fig. 6, Supplementary Fig.
3). Thus, the results from fMRI run 4 reveal that our multivariate
analytical approach is particularly sensitive to the representations
that participants are using at a given point during the fMRI

experiment, and fMRI run 1 is the only point in the experiment
where participants’ representations can be reasonably inferred to
derive from differences in STEM concept knowledge.

DISCUSSION
The results of the present study demonstrate that classroom-
based knowledge and experience inform the neural representa-
tions that students access when applying this knowledge in a
naturalistic context. Our results show that engineering students
exhibited convergent multivariate neural response patterns for
real-world structures that strongly reflected information about the
mechanical categories of those structures (Figs. 2–4). This finding
is additionally striking because no explicit mention of any
structural categories was made at any point during the experi-
ment. Therefore, viewing of the task stimuli in the context of
mechanical force evaluation was sufficient to activate the
conceptual category information that engineering students had
previously learned.
Results from the informational network analysis and the FBD

task further support the interpretation that these neural patterns
reflect abstract concept knowledge. At the beginning of the
experiment, while engineering students explicitly demonstrated
knowledge about mechanical force (Fig. 1b; high FBD task
accuracy), their brain activity implicitly reflected mechanical
category information about the structures considered in the task
(Fig. 3). In contrast, novices showed poor explicit understanding of
mechanical force during the first fMRI run (Fig. 1b; low FBD task
accuracy), and their brain activity during this run reflected no
significant mechanical category representations (Fig. 3). Taken
together, these results demonstrate that (1) abstract concept
knowledge that engineering students acquire in school is
activated in response to real-world stimuli, and (2) this learned
categorical knowledge can be identified within their multivariate
neural response patterns.
The group differences in neural representation of engineering

concept knowledge become more pronounced when compared
with the results of the visual similarity control (HMAX) analysis.
Unlike mechanical category information, visual feature informa-
tion was significantly represented in brain regions where both
engineering students and novices showed convergence in their
multivariate neural response patterns (Figs. 2–4). These regions
where both groups exhibited strong representations of item-level
visual similarity were localized to posterior visual cortex, as
expected. Notably, the anterior-to-posterior gradient of increasing
visual similarity information in the ventral stream was opposite to
the posterior-to-anterior gradient of increasing mechanical
category information exhibited in the same region, leading us to
conclude that visual and mechanical representations are sup-
ported by distinct brain regions, and that effective mechanical
categorization of the stimulus items cannot be achieved using
only the items’ visual feature similarities.
In terms of the localization of abstract mechanical force

knowledge, it is interesting that we observe ventral stream results
consistent with prior work3–5,15. Here, engineering students
showed categorical concept knowledge represented in bilateral
anterior vOT. We also observe a gradient of increasing mechanical
category information in the dorsal stream, which is notable given
prior research on the neural correlates of learned physics concepts
(e.g., torque8, forces and causal motion10). In fact, these previous
studies have localized explicit knowledge of linear and rotational
force to many of the same specific regions we observe for the
representation of mechanical force categories, including in
particular M1, in which we observe representational convergence
only for engineering students (Figs. 2 and 4). An intriguing
possibility—to be explored by further research—is that the
involvement of M1 in representing abstract concept knowledge
for engineering students might be a function of their prior hands-

Fig. 6 Participants in each group show less convergent neural
activity at the last fMRI run. Brain surface maps of the results from
fMRI run 4 for the same analysis applied to fMRI run 1 in Fig. 2.
Compared to run 1, participants at run 4 showed fewer regions
where intersubject DM correlations at run 4 were above the chance
threshold for engineering students only (green), novices only (blue),
and both groups (red). Each group had some representational
convergence in right posterior parietal cortex, but otherwise
convergent representations were found only in vOT. Engineering
students showed more anterior representational convergence in
vOT than novices. Groups continued to overlap in representational
convergence in occipital regions.
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on experiences in their lab-based coursework. Such an interpreta-
tion would be consistent with the studies cited above, as well as
with our finding that novices show only premotor representations
and not primary motor representations.
An additional aspect of the representational localization results

that is worth highlighting is the comparison between the
multivariate representational analyses employed here and tradi-
tional univariate contrasts of neural activity levels between the
two participant groups. A supplementary univariate analysis
(detailed in Supplementary Methods) revealed a convergent
finding that engineering students’ cognition during these tasks
is supported by motor and premotor and parietal regions in a way
that is not observed for novices (Supplementary Fig. 4). However,
that finding alone does not answer the question of where the
item-level representations are housed and whether those
representations differ between groups. Our multivariate analysis
suggests that there is indeed a critical difference in item-level
representations of conceptual information, but that those
representational differences are most pronounced in the anterior
ventral stream—a region that does not come out of the univariate
general linear model (GLM). This difference between an analysis of
global signal change and an analysis of representational geometry
is precisely the advantage offered by MVPA techniques such
as RSA.
One important feature distinguishing our current study from

prior work is our use of naturalistic task stimuli in the form of real-
world photographs, whereas these previous studies used fMRI
tasks that were modeled after a specific lab task8 or that
resembled taking a physics test10. Furthermore, the dorsal stream
regions we observe have been consistently implicated in the
extensive body of neuroimaging and neuropsychology investiga-
tions of the neural system underlying tool use and object
knowledge15–22.
The research presented in the current study is not without

certain limitations. As with any cross-sectional study, it is possible
that some of the differences we observe derive from individual
differences that are not related to participants’ educational
background. However, there are several reasons why we believe
extraneous individual differences are unlikely to have influenced
the primary findings in this study. First, participants in this study
were all enrolled in a university with among the most highly
selective admissions criteria in the United States. As a result,
factors such as general cognitive ability and even specific
proficiencies (e.g., as represented by SAT math scores) are of a
highly restricted range for both groups of participants. Moreover,
unlike other institutions where technical or engineering schools
have separate admissions criteria from the liberal arts college, the
institution where the research was conducted requires identical
admissions criteria for students entering into any discipline,
including engineering. This reduces the likelihood of selection bias
in terms of admission to the population from which participants
were drawn.
In the present study, we demonstrated that STEM knowledge

that students learned in school influenced their neural representa-
tions of real-world objects. The multivariate neuroimaging
approach used here effectively differentiated groups of students
on the basis of their prior knowledge and experience in the
domain of mechanical engineering. Moreover, beyond merely
demonstrating similar neural patterns among engineering stu-
dents, our analyses revealed expert-like engineering knowledge
within these patterns. Using this and other similar approaches,
future research will elucidate the neural underpinnings of
knowledge in other STEM concept domains, as well as investigate
changes in neural representations of concept knowledge as STEM
learning takes place over time.

METHODS
Participants
Thirty-three students at Dartmouth College participated in this study. Two
participants were dropped due to incomplete behavioral and scan data for
a sample of N= 31 (Nfemale= 19; Mage= 20.65 years, SD= 1.70). Half of the
participants (N= 15) had no background in engineering (referred to here
as novices). Half (N= 16) were engineering students who, at the time of
their participation, had taken or were nearly finished taking an engineering
course intended for majors focusing on solid mechanics including a lab
section (referred to here as engineering students). A lab-based course in
advanced physics was a prerequisite for this engineering course. Of the
engineering students, five had taken additional advanced structural
engineering courses. Participants were recruited primarily through email
listservs, provided informed consent prior to participation, and were
compensated either with cash or curricular extra credit points. All protocols
were approved by the Dartmouth Committee for the Protection of Human
Subjects.

Stimuli and design
Stimuli for the behavioral and scanner tasks (i.e., the similarity probe and
the FBD task, detailed in the section “Procedure”) were 24 photographs of
real-world, engineered structures. For each image, a component was
selected to be the focal point of the FBD analysis, and that component was
indicated with a red outline. For evaluation in the FBD task (described
below), two more versions of each image were created, each labeled with
arrows indicating the forces and moments acting on the component of
interest. One arrow-labeled version was labeled correctly, and the other
was labeled incorrectly, for use in the FBD task completed during scanning.

Free body diagram (FBD) task
Figure 1a illustrates the concept knowledge task regarding the interaction
of Newtonian forces with real-world structures. Our goal was to design a
task that elicited knowledge of Newtonian force, but for which mechanical
category information about the structures was incidental. Therefore, we
never mentioned the mechanical category names during the task, nor did
we even refer to the existence of categories in the task instructions or at
any time during the experiment.
In the scanner, participants completed the following analytical task

concerning the equilibrium state of a segment of interest in each of 24
images of real-world structures: Participants saw each structure image first
for 2 s without any additional markings, and then for 4 s with the
component of interest outlined in red. This was followed by a jittered
fixation period during which participants had been previously instructed to
imagine the forces and moments acting on the component of interest to
maintain static equilibrium in the system. Functional imaging data
collected from this fixation/consideration period were those used in all
neural analyses. Finally, the component-highlighted image reappeared for
4 s, this time with arrows labeling the forces and moments either correctly
or incorrectly. Participants had to assess whether the labeling was correct
or incorrect based on the model they had imagined during the fixation
period, and indicate their evaluation via button press during the 4-s
window. This was followed by one more jittered fixation period, to round
off the duration of the trial at exactly 15.5 s. Finally, each trial was
separated by 15.5 s of fixation to establish a baseline for the fMRI analysis.
Each participant completed four runs of the FBD task, and each run

included all 24 stimulus images. On each run, 12 images (50%) were
correctly labeled. The specific images that were correctly or incorrectly
labeled varied pseudo-randomly from run to run such that by the end of
the experiment, every participant had seen both the correct and incorrect
versions of every stimulus twice.

Procedure
Participants completed two sessions within a period of at most 7 days: a
behavioral session followed by functional magnetic resonance imaging
(fMRI) scanner session. In the behavioral session, participants first
completed a similarity ratings task where they rated the complete set of
stimuli for nonspecific interitem similarity. They then completed two
standardized tests of engineering and physics knowledge: the Statics
Concept Inventory (SCI23) and the Force Concept Inventory (FCI24). Results
of the similarity ratings task and the standardized evaluations are not
discussed in the present study; see our prior work7 for analysis and
discussion of these results.
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In the fMRI session, all participants were given an introduction to the
concepts of Newtonian force, static equilibrium, and FBDs. After viewing
the concept primer twice, they were shown the 24-item experimental
stimulus set for familiarization and completed practice trials of the FBD
task with a separate set of practice stimuli. Participants then completed the
FBD task in the scanner over the course of four functional runs. Feedback
(“correct” or “incorrect”) was given for practice trials, but not for
experimental trials. At the end of the scanner session, participants
completed a post-scan version of the similarity ratings task (results not
discussed here).

Imaging acquisition parameters
Brain images were acquired using a 3T Philips Achieva Intera scanner with
a 32-channel head coil, using gradient-echo echo-planar imaging. For
functional scans, an 80 × 80 reconstruction matrix was used with a
240mm2 FOV for whole-brain coverage over 42 transverse slices (Flip
angle= 90°; TE= 35ms; TR= 2500ms; 3 mm3 voxels; no gap). Slices were
acquired in an interleaved order. Data were collected over four functional
runs, each run consisting of 298 volumes. Data from of these functional
runs—the first and the last—were used in the present analyses. For each
participant, a single high-resolution T1-weighted anatomical scan was also
collected (TE= 3.72ms; TR= 8.176ms; voxel resolution= 0.938 × 0.938 ×
1.0 mm).

Functional image preprocessing
Preprocessing of fMRI data was carried out using the FSL FEAT software
package25,26. First, for each participant, a high-resolution T1-weighted
anatomical image was skull-stripped using the FSL brain-extraction tool27.
Then, for each functional run, skull-stripping, motion correction, slice
timing correction, prewhitening, and highpass temporal filtering (cutoff at
100 s) were applied to the EPI volumes. The functional images were then
registered to the participant’s individual anatomical volume using the FSL
linear registration tool28–30.
Next, in order to calculate beta-value estimates for each stimulus, an

item-level univariate regression model was computed for each functional
run using the GLM. To accomplish this, an explanatory variable was set up
to model the brain activity associated with each individual stimulus.
Activity was sampled from the initial 6 s of each trial, during which
participants were shown an image of the stimulus and asked to imagine
the Newtonian forces acting upon a given section of the structure (see Fig.
1a: analyzed period). This portion of the trial was separated from the
remainder of the trial by a jittered fixation period, to allow for an
unconfounded estimate of the BOLD signal. In order to model this brain
activity separately from the rest of the trial, during which the participant
responded via button press, a separate explanatory variable was set up to
model brain activity associated with the response period (4 s per trial)
combined across all trials. Brain activity associated with the response
period was excluded from further analysis. The beta estimates associated
with the individual stimuli (first 6 s of each trial) were then used in a
multivariate analysis, described below.
In the final preprocessing step, we used the Freesurfer recon-all suite31;

http://surfer.nmr.mgh.harvard.edu) to carry out cortical surface reconstruc-
tion for each subject-level T1-weighted image. These cortical surfaces were
then transformed to Surface Mapping (SUMA) format32; http://afni.nimh.
nih.gov/afni/suma/). Each participant’s cortical surface map was then fitted
to standard mesh grids defined by an icosahedron with 32 linear divisions,
yielding 20,484 nodes for the whole-brain cortical surface. Using sulcal
alignment of each participant’s cortical surface to the common MNI
template provided by Freesurfer, this inflated surface mapping allowed for
anatomical correspondence between surface nodes across participants.

Multivariate neural pattern analysis
Our goal was to determine whether the two groups of participants
displayed unique neural activity patterns while processing the task stimuli,
and to characterize and localize those patterns if they emerged. We
employed a series of multivariate neuroimaging analyses detailed below,
using the fMRI data collected during the first run of the FBD task (the point
of maximal task performance disparity between the two groups). The
analyses proceeded in four steps as follows:
Step 1: Identify emergent neural representations for each subject. First,

we constructed for each subject an item-level dissimilarity matrix (DM) at
every one of the 20,484 searchlight locations in the brain. This was
achieved in python33 using the PyMVPA toolkit34 by calculating, for each

searchlight node, every pairwise correlation of item-level beta estimates at
that node. The result of this analytical step was a set of subject-level
surface maps, where each surface node contained a DM reflecting that
node’s representation of the stimulus set (Fig. 2, left panel).
Step 2: Intersubject correlations by group. To identify whether the two

groups showed group-level convergence of neural representations, we
then calculated intersubject correlations between the subject-level DM
surface maps. The intersubject correlation analysis proceeded as follows:

1. We computed the pairwise intersubject DM correlation values within
each group at every surface node on the brain.

2. We applied a Fisher z-transformation (using the hyperbolic
arctangent) to each intersubject correlation value.

3. We computed the average intersubject correlation (now a z value)
for each surface node. This yielded a whole-brain correlation map of
average z values for each group at the first fMRI run (Supplementary
Fig. 2).

4. In order to threshold the whole-brain maps for correlation values we
could reasonably attribute to noise, we applied the following
threshold: because a negative intersubject correlation value in this
type of multivariate analysis is most likely due to noise, we used the
negative extent of the observed intersubject correlation values as an
estimate of the noise distribution of the data. For each whole-brain
correlation map we computed, the negative extent of the data was
approximately z=−0.02, so we applied a noise threshold of z > 0.02
to the correlation maps. This threshold was further validated using
permuted null distributions35 (details of this permutation analysis
are reported in Supplementary Methods).

5. Finally, to produce the visualization shown in Fig. 2, we compared
the two group-level average intersubject correlation maps by simply
overlaying them on a common cortical surface projection. Regions
where both groups exhibited average intersubject correlation values
of z > 0.02 were labeled as “overlapping” regions, while regions
where only one group exhibited average intersubject correlation
values of z > 0.02 were labeled as “distinct” regions. For visualization
in Fig. 2, spatial clustering was also applied to the final cortical
surface map using the AFNI SurfClust function36 to retain only
clusters of at least five contiguous surface nodes.

The above steps were applied separately to DMs from the first and last
fMRI runs.
Step 3: Informational network analysis. In order to query the brain for

mechanical category information to identify any neural representations
that reflected STEM concept knowledge, we performed an informational
network analysis7. The analysis proceeded as follows: First, for each group,
average node-level DMs were extracted from the distinct and overlapping
brain regions defined in the intersubject correlation analysis in Step 2 (Fig.
2). Next, the average node-level DMs for each group were subjected to
Ward hierarchical clustering separately for the engineering-student-
specific, novice-specific, and overlapping regions shown in Fig. 2. The
number of hierarchical clusters was determined using a split-half cross-
validation procedure used by Connolly et al.37 testing cluster solutions
from 2 to 100 clusters over 1000 repetitions37. The clusters identified for
each group within each set of distinct and overlapping brain regions are
designated as informational networks, because they are defined according
to their shared informational content without reference to any external or
a priori representational model.
Having defined the informational networks at the group level, an RSA

was performed at the individual participant level on the representations
within each informational network. Separately for each participant, an
average DM was computed for every informational network. Next, the
normalized correlations were calculated between each informational
network DM and a model DM representing the mechanical structure
category for each stimulus item. Mechanical category information for the
stimulus set was determined in consultation with a field expert (author
SGD), and was never explicitly identified or discussed during the
experiment to any participant. Normalized correlations were computed
by first normalizing each informational network DM as well as the
mechanical category target DM, and then computing the dot product of
each informational network DM and the mechanical category DM. Finally,
within each group, participant-level correlation distributions (z-values)
across the informational networks were subjected to a one-sample t-test
against zero to identify the degree to which each informational network’s
representation consistently correlated with the mechanical or visual DM
across the members of a group.
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The group-level results from the one-sample t-tests were projected onto
the cortical surface, yielding a surface map for each group showing the
gradient of mechanical category information represented across the
informational networks for each group (Fig. 3). As a supporting
visualization of the item-level representations in each informational
network, the average informational network DMs for the peak regions of
mechanical category information from each group were extracted, and
item-level representations were rendered using 3-dimensional nonmetric
multidimensional scaling (MDS; “smacof” R package38). Those item-level
MDS representations are displayed in Fig. 5.
Step 4: Visual similarity control model. To validate our analysis of

mechanical information from neural activity patterns, we performed a
control analysis using a model of visual similarity between items in the
stimulus set. For this control analysis, we computed a visual similarity
model of the stimuli using a forward-encoding model of primary visual
cortex (HMAX, C1 layer13). RSA was then applied over the same
informational networks defined in Step 3, using the identical approach
as for the mechanical category model but this time targeting the visual
similarity model. The surface maps for each group showing the correlations
between neural representations and the visual similarity model for each
group are displayed in Fig. 3, and item-level representations in the peak
visual similarity regions are displayed using multidimensional scaling
alongside the mechanical category information peaks and the mechanical
and visual model DMs in Fig. 5. (The mechanical and visual RSA analyses
were additionally computed for the last fMRI run, and the results are
displayed in Supplementary Fig. 3.)
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