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H I G H L I G H T S

• Individuals differ in the degree that they attend to visual and verbal information.

• Word bias is associated with volumetric differences in grey and white matter.

• Word bias is linked to greater myelination of fibers in speech production network.
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A B S T R A C T

Modality specific encoding habits account for a significant portion of individual differences reflected in func-
tional activation during cognitive processing. Yet, little is known about how these habits of thought influence
long-term structural changes in the brain. Traditionally, habits of thought have been assessed using self-report
questionnaires such as the visualizer-verbalizer questionnaire. Here, rather than relying on subjective reports,
we measured habits of thought using a novel behavioral task assessing attentional biases toward picture and
word stimuli. Hypothesizing that verbal habits of thought are reflected in the structural integrity of white matter
tracts and cortical regions of interest, we used diffusion tensor imaging and volumetric analyses to assess this
prediction. Using a whole-brain approach, we show that word bias is associated with increased volume in several
bilateral language regions, in both white and grey matter parcels. Additionally, connectivity within white matter
tracts within an a priori speech production network increased as a function of word bias. These results de-
monstrate long-term structural and morphological differences associated with verbal habits of thought.

1. Introduction

As students sit in a lecture, processing the information conveyed by
their professors, they create an internal representation of that in-
formation—for some it is a list of key words; for others it is a mental
image or diagram. Over time, people develop habits of thought
(HTs)—consistent neurocognitive habits of encoding and retrieving
information. These habits comprise a global cognitive framework di-
recting low-level information processing strategies (Messick et al.,
1976). Such habits vary along a modality-specific continuum, with in-
dividuals consistently using a verbal or visuospatial strategy
(Blazhenkova & Kozhevnikov, 2009). Presumably, visualizers encode

conceptual information pictorially or spatially, while verbalizers en-
code information linguistically or phonologically. Yet, little is known
about the long-term neural consequences of favoring one strategy over
another.

Recently, a number of neuroimaging studies (Alfred et al., 2019;
Kraemer et al., 2009; Miller et al., 2009) used fMRI to identify task-
specific functional markers associated with HTs. Miller and colleagues
(2009, 2012) demonstrated the consistency of individuals’ task-related
BOLD activation across retrieval tasks assessing episodic, working, and
semantic memory. The activation was remarkably similar within, but
not between, individuals when compared across all three memory tasks
and also across time. Additionally, HTs—assessed as cognitive styles
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and task-specific strategies—account for a significant proportion of the
variance associated with individuals’ unique patterns of activation
while performing memory tasks (Hsu et al., 2011; Kirchhoff & Buckner,
2006; Kraemer et al., 2009; Miller et al., 2012). These results suggest
that individuals rely on stable, idiosyncratic neural processing net-
works, subsuming brain regions underlying their customary modality of
information processing, when encoding and retrieving information.

Consistent with the idea that HTs lead to the formation of stable
neural networks, recent work demonstrates task-specific functional
activation in modality congruent regions of cortex (verbal or visual)
when assessing individual differences associated with HTs. For in-
stance, Kraemer, Hamilton, Messing, Desantis, & Thompson-Schill,
2014 used repetitive transcranial magnetic stimulation (rTMS) to dis-
rupt the ability of individuals habitually relying on a verbal information
processing strategy (i.e. verbalizers) to convert visual information into a
verbal modality. The authors targeted a functionally defined region
within the left supramarginal gyrus (SMG), a cortical region previously
shown to be active while verbalizers process nameable pictures
(Kraemer et al., 2009). Consistent with the “Conversion Hypothe-
sis”—i.e., verbalizers translate pictorial information into linguistic re-
presentations, and vice versa—disrupting this region with rTMS pulses
made it more difficult for verbalizers to label nameable objects. Fur-
thermore, the amount of disruption caused by rTMS followed a gradient
associated with self-reported verbal scores on an assessment measuring
HTs—in other words, high verbalizers’ performance was disrupted
more than moderate verbalizers whose performance was disrupted
more than low verbalizers. Recently, Alfred and colleagues (2019)
found convergent results, demonstrating that individuals with an at-
tentional bias toward verbal information relied on left hemisphere
perisylvian regions, including SMG, when retrieving domain general
semantic information. In other words, regardless of whether items were
presented as words or pictures, verbalizers relied on a verbal network
while retrieving them. Taken together, these results suggest that ver-
balizers use their preferred modality of processing regardless of the
format in which a stimulus is presented, and that such HTs are reflected
by activation in predictable brain regions, consistent across studies.
That such studies show convergence across time suggests the presence
of stable networks varying as a function of HTs.

Repeatedly activating modality specific cortical regions when en-
coding and retrieving information results in enhanced connectivity
within those regions. For instance, Sahyoun and colleagues (2010a,b)
show that individuals with an ASD diagnosis who favor visuospatial
processing show enhanced myelination of white matter within regions
of posterior visual cortex. Diffusion tensor imaging (DTI; for a review
see Soares et al., 2013) provides information about network stability
and connectivity. As such, DTI has been used to elucidate unique con-
nectivity profiles for individuals with clinical diagnoses, including
autism spectrum disorder (ASD; Sahyoun and colleagues, 2010a,b),
multiple sclerosis (MS; e.g. Lowe et al., 2008), Parkinson’s disease (PD;
for a review see Tessitore et al., 2016), and schizophrenia (for a review
see Kubicki et al., 2007). Here, we demonstrate that methods previously
used to study clinical populations can be applied to neurotypical po-
pulations, differentiating among individuals as a function of verbal HTs.

In the current study, we hypothesized that verbal HTs would be
reflected by structural and morphological distinctions within the brain,
indicating the degree to which individuals habitually encode and re-
trieve information in a linguistic modality, as measured by an atten-
tional bias task. In a whole-brain analysis, we compared volumetric
data found within grey and white matter parcels, as defined within a
commonly referenced brain atlas, with the results of the AB task.
Constraining our search to an a priori speech production network, we
also used diffusion tensor imaging (DTI) to elucidate patterns of neural
connectivity indicative of persistent HTs within regions associated with
phonological and speech processing.

2. Method

2.1. Participants

Twenty-nine (16 female, MAGE = 20.7 years) undergraduate and
graduate students attending Dartmouth College participated in the ex-
periment. All participants were right-handed, native English speakers
with normal or corrected-to-normal vision. No participants reported
having a history of neurological or psychiatric disorders. In addition, in
accordance with Dartmouth’s Committee for the Protection of Human
Subjects (CPHS), all participants provided informed consent and re-
ceived compensation, either cash or course credit, for their participa-
tion. One participant was omitted from our analyses due to incomplete
data.

2.1.1. Attentional bias task
We used a novel, in-house task to assess HTs. This attentional bias

task assessed the degree to which participants selectively attended to
visual or verbal stimuli when required to report the identity of con-
currently presented, incongruent pairs of line drawings and words.
Importantly, participants were unaware that some trials would include
incongruent stimuli. Participants were briefly (500 ms) presented with
picture/word pairs of suits associated with playing cards (club, heart,
spade), and instructed to report, as quickly as possible, the identity of
the pair by pressing a key corresponding to one of three suits (J = club,
K = heart, L = spade; Fig. 1A). Thus, a participant’s attentional bias
score was reflected by the percentage of target (incongruent) trials in
which they pressed the key corresponding to either the word or picture
(Fig. 1B). For 75% (1 4 4) of trials, the picture and word were con-
gruent; for the remaining target trials (48), the picture and word were
incongruent. Every object was presented during an equal number of
trials. Additionally, the location of the word was counterbalanced such
that it appeared above or below the picture with equal likelihood.

2.1.2. Image acquisition
Each subject was scanned on a 3 T Achieva Intera with a 32 channel

SENSE birdcage head coil. We obtained T1-weighted anatomical
images, capturing 160 continuous 1 mm sagittal slices with a high-re-
solution 3D rapid gradient echo sequence—TE = 4.6 ms; TR = 9.8 ms;
FOV = 240 mm; flip angle = 8 degrees; voxel size = 1 0.94 0.94 mm.
We collected diffusion weighted images using echoplanar imaging,
capturing 70 continuous axial images 2 mm in thickness and 32 or-
thogonal diffusion gradients—TE = 91 ms; TR = 9013 ms; b
value = 1000 s/mm2; FOV = 240 mm; flip angle = 90 degrees; voxel
size = 1.875 1.875 2 mm.

2.1.3. Cognitive style and ability assessments
Participants completed a battery of behavioral assessments prior to

being scanned. We used an automated, computerized version the
Visualizer-Verbalizer Questionnaire (VVQ; Kirby et al., 1988) to assess
cognitive style. The purpose of the scale is to assess the degree to which
individuals preferentially process information verbally or visually.
Participants reported how much they agreed or disagreed with a series
of 20 statements using a 7-point likert scale ranging from 1 = strongly
disagree to 7 = strongly agree—half of the items were reverse scored so
that items assessing the verbal and visual dimensions of the scale were
oriented in the same direction (e.g., high score = high verbal, low
score = low verbal). Dream vividness items were omitted from the
analysis given their tendency to interfere with the visuospatial dimen-
sion of the scale.

Participants completed two assessments designed to measure cog-
nitive ability—the Automated Working Memory Assessment (AWMA;
Alloway, 2007) and the Weschsler Abbreviated Scale of Intelligence
(WASI; Wechsler, 1999). We used the AWMA to obtain verbal and vi-
sual working memory and the WASI to obtain verbal (Verbal Compre-
hension Index – VCI) and visual (Perceptual Reasoning Index – PRI) IQ

J.C. Hayes, et al. Brain Research 1742 (2020) 146890

2



scores.

2.1.4. Preprocessing diffusion weighted images
Voxelwise diffusion modeling was carried out using FMRIB’s

Diffusion Toolbox within FSL 5.0.10 (https://fsl.fmrib.ox.ac.uk/fsl/
fslwiki; Smith et al., 2004). All images were eddy corrected before
being used in further analysis. Diffusion weighted images were linearly
aligned to the b = 0 image with 6 DOF. Fractional anisotropy (FA)
values were determined by fitting tensors to the data, producing an
estimation of the principal diffusion direction at every voxel. This es-
timation of diffusion parameters also models the crossing fibers within
each voxel using a Gamma distribution to model the diffusion coeffi-
cient (see Jbabdi et al., 2012 for details).

2.1.5. Tract based spatial statistics
We used TBSS (Smith et al., 2006) to assess voxelwise integrity of

WM DTI parameters at the whole-brain level. Every participant’s FA
image was non-linearly registered to the FMRIB58_FA image, producing
a 4D file containing all FA files in standard (MNI152) space. Next, for
each participant, the maximum FA value perpendicular to each voxel
along the average center of tracts common to our sample, were ag-
gregated. This produced a 4D, skeletonized image containing the FA
values at the center of every major tract, as well as a skeletonized mean
FA image representing the group average FA value at each location
along the tracts. The mean FA image was thresholded at FA > 0.2 and
the surviving voxels were used to produce a binarized skeleton mask.

The GLM regressed participants’ verbal bias scores—i.e. the percentage
of time participants responded based on the identity of the word when
picture/word pairs were incongruent—onto their FA values. The 4D
skeletonized image, masked by the skeletonized FA mask, was then fed
into FSL’s Randomise (Winkler et al., 2014) algorithm for permutation-
based, threshold-free cluster enhanced (TFCE; Smith & Nichols, 2009)
voxelwise statistical analysis.

TFCE is an approach that is used to improve signal detection by
using cluster-based thresholding instead of voxelwise thresholding
without requiring the arbitrary selection of cluster thresholds.
Specifically, TFCE utilizes the original raw statistical map and leverages
that data to identify signal in spatially contiguous voxels, and then
boosts that signal to the degree that there is similar signal in those
spatially contiguous voxels. Importantly, TFCE has been shown to be a
methodological improvement over traditional voxel and cluster
thresholding techniques through the use of cluster-like voxelwise sta-
tistics and maintains detail from both of those levels (Smith & Nichols,
2009).

2.1.6. Extracting volumetric data
Participants’ high-resolution T1-weighted brain images were used as

input to Freesurfer (Fischl & Dale, 2000) to extract cortical and white-
matter segmentations. We then extracted whole-brain volumetric
(mm3) data for both cortical (GM; 68 total, 34/hemisphere) and white
matter parcels (68 total, 34/hemisphere) based on the Desikan-Killiany
(DK) Atlas (Desikan et al., 2006). Finally, for each participant, every

Fig. 1. Attentional bias task: A) Participants reported the identity of the object shown, pressing the J key if the object was a club, the K key if the object was a heart, or
the L key if the object was a spade. For 75% of trials, the picture and word were congruent. B) For 25% of trials, the picture and word were incongruent. In this case,
participants had to quickly decided whether to report the identity of either the picture or the word. In this figure, they would press the K key to report the picture of
the heart, or the L key to report the word “Spade.” Used with permission—Alfred et al., 2019.
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grey matter and white matter parcel was divided by that participant’s
total brain volume, excluding ventricles, to control for individual dif-
ferences in overall brain size.

2.2. Results

2.2.1. Do individuals differ in the degree to which their attention is biased
toward verbal stimuli?

Habits of thought (visual/verbal) were assessed using an in-house
task designed to detect attentional biases toward verbal stimuli. During
incongruent trials, participants were presented conflicting verbal and
visual information and had to choose whether to report the identity of
the verbal or visual stimulus—a picture or word associated with playing
card suits (club, heart, spade). We created a word bias score for each
participant by computing the percentage of incongruent trials in which
the identity of the word was reported. We chose to scale these scores
such that a participant who responded only with the identities of the
picture stimuli would have a word bias score of −1 and a participant
who responded only with the identities of the word stimuli would have
a word bias score of 1. By scaling in this way, a score of −0.8 and 0.8
would represent the same degree of bias in opposite directions, rather
than scaling from 0 to 1, where participants with scores of 0.2 and 0.8
would be biased to the same degree in opposite directions but harder to
interpret. Thus, each participant was given a single score, ranging from
−1 to 1 (−1 = verbal stimuli never reported, 1 = verbal stimuli al-
ways reported). This score reflects the type of content participants were
most likely to attend to, in addition to the degree to which they favored
one type of information over the other—a high score (e.g., > 0.4) re-
flects a strong tendency to attend to verbal stimuli, a moderate score
(e.g., ~ 0) reflects no bias toward visual or verbal stimuli, and a low
score (e.g., <−0.4) reflects a strong tendency to attend to visual sti-
muli (see Fig. 2). Trials were discarded if participants reported a sti-
mulus that was not on the screen (e.g., a club was reported if a parti-
cipant saw a picture of a heart with the word “spade”). Overall,
participants attended to pictures more than words (word bias(M) = -
0.07) with 18 participants having a word bias of 0 or less (Fig. 2).
However, there was a great deal of variation in the degree to which
participants were biased toward pictures or words (word bias
(SD) = 0.33).

Importantly, our attentional bias measure of habits of thought is
able to measure variance in self-reported strategy selection better than

self-reported measure of HTs, such as the VVQ for cognitive style.
Specifically, one of the critical aspects of HTs is the process by which
individuals convert material into their preferred format (e.g. converting
pictures to words; demonstrated in Kraemer et al., 2009). In this study,
that aspect is best captured by participant reporting of verbal strategies
for visual content, such as the object pictures and abstract pictures. Our
word attentional bias HT measure significantly correlated with reported
use of verbal strategies in the object picture condition and the abstract
picture condition (r(26) = 0.38, p = 0.046; r(26) = 0.43, p = 0.022).
Further, the VVQ, a more traditional measure of HTs through cognitive
styles, did not reliably or significantly correlate with the use of verbal
strategies for visual content (r(26) = -0.33, p = 0.086 for object pic-
tures; r(26) = 0.29, p = 0.134 for abstract pictures). This evidence
supports our use of attentional bias to capture variance in HTs. Atten-
tional bias therefore maintains the benefits of being a behavioral
measure while still demonstrating a strong relationship with participant
self-report measures of behavioral strategy.

2.2.2. Are structural differences associated with word bias reflected in brain
morphology?

First, we tested the hypothesis that verbal HTs would be reflected by
differences in grey matter morphology, by comparing volumetric data
(participant T1-weighted brain images, see Method for further details)
from cortical grey matter parcels with word bias scores using Pearson’s
correlations, including all 68 (34/hemisphere) cortical parcels included
in the DKA. All correlations were adjusted for multiple comparisons
using False Discovery Rate (FDR) correction (Benjamini & Hochberg,
1995). Across the whole brain three grey matter ROIs showed a sig-
nificant relationship with performance on the word bias task (see
Fig. 3), including two parcels in the left hemisphere: entorhinal cortex
(LEC; t(26) = 2.95, p < 0.01, r = 0.50, [95% CI: 0.16 – 0.74]) and
supramarginal cortex (LSMC; t(26) = 2.06, p < 0.05, r = 0.37, [95%
CI: 0.001–0.37]), and one in the right hemisphere–temporal pole (RTP;
t(26) = 2.32, p < 0.05, r = 0.41, [95% CI: 0.05 – 0.68]).

Next, we tested the hypothesis that verbal HTs would be reflected by
differences in white matter morphology. We compared volumetric data
(participant T1-weighted brain images, see Method for further details)
taken from all 68 white matter parcels included in the DK atlas with
word bias scores using Pearson’s correlations, adjusting for multiple
comparisons using FDR correction. Four parcels reached significance
after FDR correction (see Fig. 4), all localized to the left hemisphere

Fig. 2. Intersubject variability in word bias. The markers on the y-axis denote the percentage of target (incongruent) trials in which participants reported the word
when presented with incongruent picture/word pairs. The dark green bars denote participants who reported the word on> 50% of trials. The light green bars denote
participants who report the picture on>50% of trials.

J.C. Hayes, et al. Brain Research 1742 (2020) 146890

4



(named after adjacent cortical structures), including: insular (t
(26) = 2.15, p = 0.04, r = 0.38 [95% CI: 0.01–0.66]), rostral middle-
frontal (t(26) = 2.69, p < 0.05, r = 0.47 [95% CI: 0.11–0.71]),
parahippocampal (t(26) = 2.05, p = 0.05, r = 0.37 [95% CI:
0.0002–0.66]), and entorhinal (t(26) = 3.34, p = 0.003, r = 0.55
[95% CI: 0.22–0.76] volumes.

2.2.3. Are structural differences associated with word bias reflected in white
matter integrity within an a priori defined speech production network?

As an independent analysis intended to obtain convergent evidence
of structural differences associated with word bias scores, we ran a
whole-brain GLM, regressing participants’ word bias scores on frac-
tional anisotropy (FA) values contained within a group-averaged white
matter skeleton in standard space (MNI152_1mm). The model was
thresholded at p < 0.05 after correcting for multiple comparisons
(permutation testing; 1000 permutations) and threshold-free cluster
enhancement (TFCE; Winkler et al., 2014). Cluster peaks were thre-
sholded at t > 2.3 and clusters containing<100 voxels were dis-
carded from subsequent analyses. We then projected the surviving
clusters onto a network from an automated meta-analysis of fMRI stu-
dies associated with the term “speech production” (SP; NeuroSynth;
Yarkoni et al., 2011). The “speech production” meta-analytic map that
was used is derived from nearly 15,000 studies, and the regions in-
cluded are voxels that are selectively associated with the term “speech
production” more than other terms. In other words, the meta-analytic
map includes regions that are associated more with “speech produc-
tion” than any other construct. The meta-analytic map is also FDR
corrected, p < 0.01. Six clusters overlapped with the SP network.
Table 1 summarizes these clusters, including the name of the major
fiber tract, location in MNI coordinates and t-value of the peak value

within each cluster. FA values within the following bilateral tracts are
associated with word bias: arcuate fasciculas (arc), posterior limb of the
internal capsule (pic), and posterior superior longitudinal fasciculus
(pslf) (tract names determined using an interactive atlas linked here:
http://dtiatlas.org/). Fig. 5 shows the location of each cluster projected
onto the group mean FA skeleton (green) in relation to the SP network
(blue).

2.3. Discussion

We hypothesized that individuals with a word bias would show
enhanced structural integrity in brain areas associated with phonolo-
gical and speech processing. Confirming our hypothesis, we found
evidence that habitually attending to exogenous verbal information
(i.e., word bias) is associated with increased white and grey matter
volume in regions of modality congruent (verbal) cortex. Additionally,
word bias was reflected in bilateral increases in connectivity along
several major white matter tracts, including posterior superior long-
itudinal fasciculus, arcuate fasciculus and the posterior limb of the in-
ternal capsule. Remarkably, these regions partially overlap with a
network derived from an a priori automated meta-analysis (NeuroSynth;
Yarkoni et al., 2011) based on the search term “speech production.”
Relatedly, morphology within a large white matter volume adjacent to
left insular cortex and spanning from left posterior frontal to left
anterior and medial temporal regions, also positively covaried with
word bias. Taken together, these results provide convergent evidence of
long-term structural changes in left perisylvian linguistic regions of the
brain associated with word bias. Thus, our results build upon prior
functional neuroimaging research (Alfred et al., 2019; Kraemer et al.,
2014, 2009), demonstrating a relationship between verbal HTs and

Fig. 3. Three grey matter volume parcels (Desikan-Killiany Atlas) positively correlate with word bias scores: A) right hemisphere temporal pole, B) left hemisphere
supramarginal cortex, and C) left hemisphere entorhinal cortex. All data points were converted to z-values and Pearson’s product-moment correlations are significant
at the 0.05 alpha value after correcting for multiple comparisons (FDR).
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persistent neuroanatomical changes observed in speech and phonolo-
gical processing regions in the human brain.

In addition to those seen in left perisylvian regions, morphological
differences in large-scale cortical and white matter structures associated
with word bias were observed elsewhere in the brain. Several regions,
including left entorhinal (ER) and right temporal pole areas (rTP), re-
flected associations with word bias in both grey and white matter (Note:
white matter morphometry within rTP approached significance when
compared with word bias scores [r2 = 0.14; p = 0.06]). Entorhinal
cortex (ERC) is involved in linking episodic memories to symbolic re-
presentations (written/spoken) while processing linguistic content
(Goldinger, 2007; Meyer et al., 2005). Thus, one explanation for our
results is that by preferentially attending to linguistic information,
verbalizers persistently activate ERC in order to bind information from
episodic memory to symbolic representations (i.e., words), resulting in
enhanced structural integrity in this region. Similarly, the rTP also

functions to integrate information from across the brain and has been
described as a convergence zone (Damasio & Damasio, 1994), in-
tegrating distributed neural traces associated with disparate object
properties into a cohesive, amodal representation (Coutanche &
Thompson-Schill, 2015; Lambon et al., 2008; Lambon et al., 2009;
Pobric et al., 2007; Visser et al., 2010). It is, therefore, likely that ERC
and rTP contribute to converting multimodal neural traces into cohe-
sive, linguistic representations.

It is worth mentioning that we are considering attentional bias as
measured here as part of a broader construct, i.e., habits of thought (HTs)
which subsumes cognitive styles and abilities. Cognitive style has tradi-
tionally been assessed using self-report assessments such as the vi-
sualizer-verbalizer questionnaire (VVQ; Kirby et al., 1988), which dis-
tinguishes individuals based on their preference for approaching
content pertaining to either verbal or visuospatial formats. Although
this construct has proven useful in distinguishing individuals in terms of

Fig. 4. Four white matter volume parcels (Desikan-Killiany Atlas) positively correlate with word bias scores: A) rostral middle-frontal, B) insula, C) entorhinal, and D)
parahippocampal volumes. All data points were converted to z-values and Pearson’s product-moment correlations are significant at the 0.05 alpha value after
correcting for multiple comparisons (FDR).

Table 1
White matter tracts associated with word bias scores. Included are the names of the major WM tract, the peak t-value and its location in MNI space, and the number of
voxels within the cluster.

Major Fiber Tract t-Max Voxels (mm3) t-Max X (mm) t-Max Y (mm) t-Max Z (mm)

LH Posterior Limb of Internal Capsule 2.98 141 −24 −14 9
LH Posterior Superior Longitudinal Fasciculus 3.74 141 −41 −28 31
LH Arcuate Fasciculus 3.66 114 −48 −37 −8
RH Posterior Limb of Internal Capsule 3.83 115 19 −13 −1
RH Posterior Superior Longitudinal Fasciculus 3.37 312 45 −17 35
RH Arcuate Fasciculus 3.03 110 49 −40 −5
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subjective reports—we contend that a subjective report of preferences
for visual or verbal content is limited, insofar as individuals’ percep-
tions of their preferences may not match their habits. Thus, we designed
the attentional bias (AB) task to measure an overlapping, albeit unique,
construct pertaining to HTs. The AB task demands that individuals ra-
pidly encode semantic information. By attending to words and thus,
avoiding the need to convert pictorial stimuli into a linguistic re-
presentation (e.g., Kraemer et al., 2009), verbalizers would conserve
metabolic resources during this task. In other words, the task was de-
signed to assess automatic neurocognitive processing habits indicative
of a habitual bias toward either verbal or visual information. Thus, with
the AB task we hoped to capture an objective measure of HTs.

A limitation of the current work is our focus on the verbal end of the
AB task. We chose to do this for several reasons. First, Blazhenkova and
colleagues (2009) showed that the visual cognitive style is comprised of

multiple dimensions—object and spatial imagery. With our limited
sample size, we were concerned with being underpowered and thus,
unable to find neural markers associated with a visual bias, given the
noise introduced by having a sample containing object as well as spatial
visualizers. Second, we hoped to extend the results of recent functional
neuroimaging work (Alfred et al., 2019; Kraemer et al., 2014), focusing
on verbal HTs, by demonstrating structural neural patterns associated
with the construct. Nevertheless, a substantial neuroimaging literature
reveals overlap between brain areas for perceiving and imagining visual
objects (Chao & Martin, 1999; Cui et al., 2007; O’Craven & Kanwisher,
2000), and Kraemer and colleagues (2009) showed that visualizers
translate verbal information into a visual format within the ventral
processing stream. Thus, the current literature’s focus on functional
markers of visual HTs would benefit from future work exploring per-
sistent anatomical features associated with the visual end of the

Fig. 5. White matter macrostructure within
a bilateral a priori speech production net-
work are associated with word bias.
Crosshairs are centered over the peak voxel
(see Table 1 for peak coordinates) within
each cluster significantly correlated with
word bias (shown in hot colors; expanded
for visualization purposes). The speech
production map is shown in blue. Shown in
green is the group-wise mean FA skeleton.
Major bilateral tracts shown include: A)
posterior internal capsules (pic), B) pos-
terior superior longitudinal fasciculi (pslf),
and C) arcuate fasciculi (arc). All clusters
shown are significant at the p < 0.05 level
after permutation correction (1000 permu-
tations) controlling for multiple compar-
isons.
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