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a b s t r a c t 

A central challenge for creativity research —as for all areas of experimental psychology and cognitive neuro- 
science —is to establish a mapping between constructs and measures (i.e., identifying a set of tasks that best 
captures a set of creative abilities). A related challenge is to achieve greater consistency in the measures used 
by different researchers; inconsistent measurement hinders progress toward shared understanding of cognitive 
and neural components of creativity. New resources for aggregating neuroimaging data, and the emergence of 
methods for identifying structure in multivariate data, present the potential for new approaches to address these 
challenges. Identifying meta-analytic structure (i.e., similarity) in neural activity associated with creativity tasks 
might help identify subsets of these tasks that best reflect the similarity structure of creativity-relevant constructs. 
Here, we demonstrated initial proof-of-concept for such an approach. To build a model of similarity between 
creativity-relevant constructs, we first surveyed creativity researchers. Next, we used NeuroSynth meta-analytic 
software to generate maps of neural activity robustly associated with tasks intended to measure the same set 
of creativity-relevant constructs. A representational similarity analysis-based approach identified particular con- 
structs —and particular tasks intended to measure those constructs —that positively or negatively impacted the 
model fit. This approach points the way to identifying optimal sets of tasks to capture elements of creativity (i.e., 
dimensions of similarity space among creativity constructs), and has long-term potential to meaningfully advance 
the ontological development of creativity research with the rapid growth of creativity neuroscience. Because it 
relies on neuroimaging meta-analysis, this approach has more immediate potential to inform longer-established 
fields for which more extensive sets of neuroimaging data are already available. 
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Creativity —like all broad psychological constructs —is difficult to
in down ( Gl ăveanu et al., 2019 ; Gl ăveanu and Kaufman, 2019 ;
iffer, 2012 ; Runco and Jaeger, 2012 ). A prominent effort to character-
ze the mental mechanisms that support creative thought, referred to as
he creative cognition approach, posits that creativity emerges from the
nteraction of lower level cognitive processes ( Abraham, 2013 , 2014 ;

ard, 2007 , 1999 ). Such cognitive processes include memory, reason-
ng, imagination, and cognitive control ( Abraham, 2014 ; Benedek and
ink, 2019 ). This approach has been critical for advancing creativity re-
earch because it enables researchers to understand the complex, multi-
aceted nature of this construct by examining its component cognitive
echanisms, which are easier to measure. Additional core psychologi-

al abilities have also been identified in relation to creativity, including
oth divergent and convergent thinking ( Guilford, 1950 ). However, as
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he number of cognitive constructs that relate to creativity grows, so
oes the complexity of operationalizing, measuring, and relating these
onstructs to each other. 

Pinning down creativity by mapping key sub-constructs onto spe-
ific experimental tasks is critical to advancing current understand-
ng ( Abraham, 2013 ; Beaty et al., 2019 ; Benedek and Fink, 2019 ;
ietrich, 2007 , 2019 ). Rigorous empirical study of creativity, includ-

ng brain-based inquiry, has recently been recognized as a priority
cross multiple sectors ( Council and Committee, 2005 ; Florida, 2014 ;
rey and Osborne, 2017 ; Jennings, 2010 ; Lichtenberg et al., 2008 ;
ewcombe, 2017 ), but lack of clarity concerning measurement in this

elatively young field presents a challenge to further progress. Relat-
dly, there is considerable inconsistency of measurement in the field,
uch that different groups “research past one another ” ( Gl ăveanu et al.,
019 ) by using different tasks to operationalize the same construct
 2020 
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 Barbot et al., 2019 ; Cortes et al., 2019 ). To address this inconsistency,
rogress toward establishing an ontology of creativity measurement is
 priority for advancing creativity research. We use the term, ontology,
n the sense of a taxonomic structure that organizes a set of things based
n the similarities and differences of their meanings. The meanings of
esearch measures inhere in what their outcomes capture – what they
ell us about a person or a group. Thus, an ontology of creativity mea-
urement organizes creativity measures based on the similarities and
ifferences between what each measure captures (i.e., the creativity-
elated constructs they reflect). Ontologies facilitate coherence within
 research field through standardization of constructs and tasks, often
equiring large-scale meta-analyses to agree on a set of terms and defi-
itions ( Bilder et al., 2009 ). In the current study, we sought to demon-
trate an initial proof-of-concept for a meta-analytic data-driven ap-
roach that leverages neuroimaging to support the ontological mapping
f creativity-relevant constructs to tasks that measure those constructs. 

Ontological development in psychology has historically focused on
 priori considerations. While considerations of the a priori nature and
imilarity of constructs and sub-constructs are essential to a meaningful
ntology, they often prove difficult to objectively weigh against each
ther, leading to vague or inconclusive outcomes. New resources for ag-
regating and analyzing neuroimaging data may enable new ways of
ntegrating data-driven approaches with a priori considerations toward
ore objective and more precise ontological development, especially

s it regards the mapping of constructs to measurement tools. Cogni-
ive neuroscience has generated a large and growing set of neural data
ver the course of nearly 30 years, comprising approximately 40,000
tudies ( Eklund et al., 2016 ). Substantial research has investigated neu-
al activity associated with a large number of psychological constructs,
nd an even larger number of specific tasks intended to measure those
onstructs. Thus, the data now exist to at least begin empirically test-
ng the question, Which set of tasks reliably elicits neural activity reflective

f a given set of cognitive constructs? In the context of an ontology of
reativity measurement, similarity and dissimilarity at the neural level
an inform the extent to which different measures reflect similar and/or
istinct cognitive constructs. This question is critical for the field of cre-
tivity neuroscience research, and psychological research more broadly,
nd the answers will directly impact our ability to utilize neural data
o inform cognitive theories. Tools such as NeuroSynth ( Poldrack and
arkoni, 2016 ; Yarkoni et al., 2011 ), a powerful software engine for
enerating meta-analyses based on text-based searches of thousands of
euroimaging studies, and the BrainMap database ( Laird et al., 2005 ),
ave been developed in recent years to aid in compiling, analyzing, and
nterpreting this massive body of data. NeuroSynth allows for compre-
ensive meta analyses based on selected terms, such as those referring
o specific cognitive constructs (e.g. “flexibility ”). The resulting meta-
nalyses indicate areas of the brain that are associated with that par-
icular construct. This outcome is accomplished using brain activation
ata from all the studies in the database that refer to that particular con-
truct, while controlling for the neural responses associated with every
ther study in the database (over 14,000 total studies). Researchers can
hereby generate new insights about the neural instantiation of specific
ognitive constructs, informed by the volume of neural data amassed
cross thousands of studies conducted over the entire timespan of neu-
oimaging experimentation. 

Here we used this extensive meta-analytic resource to examine a set
f constructs that are targets of creativity research. Our main goal was
o develop a method by which we can leverage neural meta-analyses
o identify a set of commonly-used experimental tasks that elicit neural
ctivity reflective of these cognitive constructs. Our second goal was to
xamine the ways in which these constructs relate to each other in terms
f neural activity —to examine the structure among these constructs on
 neural level —in order to inform our understanding of how the brain
nstantiates creativity as a constellation of constructs. A tertiary goal of
ur study was to compare this neural construct space to its correspond-
ng construct space defined by creativity researchers, and to examine
imilarities and differences in these models in order to learn more about
oth models and possibly generate hypotheses for further research. 

To accomplish these goals, we first generated a model of creativity-
elevant cognitive constructs by querying a group of researchers sam-
led from two academic societies focused on creativity. This model,
ased on the behavioral ratings of researchers describing the rela-
ionship between pairs of constructs, formed our basis for comparison
gainst which we evaluated various models derived from neural data. In
rder to generate a corresponding neural model, we used NeuroSynth to
alculate term-based meta-analyses of neural activity indicating which
rain regions are specifically and robustly associated with the same set
f cognitive constructs. Inputting these maps into a meta-analytic rep-
esentational similarity analysis, we then compared the neural data di-
ectly to the expert-informed conceptual model. We also generated a
eparate neural model based on meta-analyses of individual experimen-
al tasks that are commonly used to represent those same constructs.
ext, we calculated several variations in both neural models to find a
etter fit to the expert model. Specifically, we tested whether removing
r adding individual tasks or constructs to the neural model improved
he fit of the neural data to the expert model. Such an approach allows
s to identify the set of tasks best reflecting the similarity structure of
he target set of constructs related to creativity. 

The focus of this work was on establishing a proof-of-concept for
ethods that are likely to have long-term value for the selection of ex-
erimental tasks to capture given cognitive constructs. Practical con-
traints, especially concerning the relative paucity of neural data for
reativity tasks that are currently available in NeuroSynth, limit the
nterpretability of the particular set of data we used for this proof-
f-concept. However, some preliminary conclusions might usefully be
rawn from the results about the constructs and tasks we considered.
s the first steps toward data-driven ontological development of cre-
tivity research, we explored each of several step-wise methodological
pproaches briefly in order to demonstrate a proof-of-concept for its use.
he main point demonstrated by the current study is that the field of
reativity neuroscience is poised to begin a new phase in which a grow-
ng volume of available neural data can usefully inform our ontological
appings of constructs to tasks. Using methods such as those described
ere, we can begin to build an ontology of creativity-relevant cognitive
onstructs that accurately reflect the brain-behavior relationships de-
cribed by roughly three decades of empirical observation. These meth-
ds can also be used to facilitate similar efforts in other fields. 

. Methods 

.1. Participants 

Sixty-five participants took part in this study. All participants
ere recruited from academic societies focused on empirical cre-
tivity research, the Society for the Neuroscience of Creativity
 https://tsfnc.org ) and the American Psychological Association Division
0 (Society for the Psychology of Aesthetics, Creativity, and the Arts;
ttp://www.div10.org ). Participants (49% male, 39% female, 12% un-
nown) had an average age of 39.4 years (SD = 12.21 years) with an
verage experience of studying creativity of 10 years (SD = 9.5 years).
his study was approved by Georgetown University’s Institutional Re-
iew Board. 

.2. Procedure 

Informed consent and all task stimuli were presented via Qualtrics
 www.qualtrics.com ). After providing informed consent, participants
ere presented with pairs of cognitive constructs from which pairwise

atings were derived, which in turn formed the basis of the expert cog-
itive model. Participants were first presented with general task instruc-
ions indicating the rules of the task and how to record a response for

https://tsfnc.org
http://www.div10.org
http://www.qualtrics.com
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ach item, including an example trial. Following these instructions, par-
icipants were presented, one at a time, with each unique pairwise com-
ination of the 10 terms naming cognitive constructs (Cognitive Control,
onvergent Thinking, Creativity, Divergent Thinking, Flexibility, Gen-
ration, Imagery, Insight, Novelty, Reasoning) for a total of 45 trials.
hen each pair of terms was presented, participants were also shown a

eries of seven Venn-diagrams (each containing two overlapping circles
epresentative of the two terms) with varying degrees of overlap, rang-
ng from no overlap to almost complete overlap. The participants were
nstructed to indicate how much overlap the two terms have by selecting
ne of the Venn-diagrams by mouse click. Once the participant decided,
hey were immediately presented with a new pair of terms. Order of term
air presentation was randomized across participants and trials did not
dvance until participants made a response. Following this task, par-
icipants completed other surveys which are not analyzed or discussed
urther here. 

.3. Materials 

.3.1. Expert model of construct space 

A behavioral similarity matrix was computed based on participants
udging the overlap in similarity of two terms, by selecting from a se-
ies of Venn-diagrams (described above), the image that best conveys
he similarity of these two terms ( Aron et al., 1992 ; Necka et al., 2015 ).
articipants were presented with all possible pairs of ten terms (45 pairs
n total) that named cognitive constructs related to creativity. The ten
erms included in this task were: Cognitive Control, Convergent Think-
ng, Creativity, Divergent Thinking, Flexibility, Generation, Imagery,
nsight, Novelty, Reasoning. These terms were part of a large set of pos-
ible terms to be used in this task, selected by a group of expert creativity
esearchers including the authors and the leadership of the Society for
he Neuroscience of Creativity. We limited the list of terms to ten terms
n order to keep the ratings survey to a manageable length. Furthermore,
he ten final terms used in our task were terms that also appeared in the
euroSynth database, which allowed us to examine how behavioral and
eural similarity matrices for the same terms related to each other. 

Pairwise ratings of each pair of terms were used to generate a simi-
arity matrix that represents the conceptual space of these 10 constructs.
onstruction of this type of representational similarity matrix allows for
omparison to other data sources, such as neural data, to determine the
oodness of fit between two multidimensional representational spaces
 Kriegeskorte et al., 2008 ). In the present study, we use this similarity
atrix defined by pairwise expert ratings of creativity-related constructs

s a model that represents the way that experts conceive of these con-
tructs in relation to each other. By comparing this model to neural data,
s described below, we can evaluate the similarities and differences be-
ween the expert conception of these constructs, and the way in which
hese same constructs manifest in the human brain via the data gener-
ted by thousands of neuroimaging experiments. 

.3.2. Term-based meta-analytic maps 

In order to create study lists for the ten creativity related terms used
n the Creativity Ontology survey, the following steps were taken. In
he “initial search ” phase, the ten terms used in the survey were entered
nto NeuroSynth ( www.neurosynth.org ; Yarkoni et al., 2011 ) as a search
uery for titles in the NeuroSynth database that contained each of the
erms. The studies returned by the search were compiled into respec-
ive term lists. Next, in the “relevance check cutdown ” phase, each of
he studies were manually checked to ensure that the studies included in
he set were appropriate studies of constructs related to creativity (e.g. a
tudy in the Novelty category was about novel uses for items, not about
 novel analysis). Term lists with fewer than 20 studies were consid-
red insufficient and removed from further analysis. However, after the
utdown, in an effort to gather a sufficient number of studies for Nov-
lty and Divergent Thinking (which initially had fewer than 20 studies
ach), the terms were queried for titles and abstracts in PubMed in the
adding PubMed papers ” phase. One of the terms, Convergent Think-
ng, was eliminated from the group for having fewer than 20 studies
n total, after exhausting both search methods. After checking all arti-
les (including the PubMed articles) for relevance, the final lists were
lso checked to ensure that no study appeared in more than one list in
he “deleting duplicates ” phase. If a study remained on multiple lists,
he study was eliminated providing the elimination did not reduce the
ist below 20 studies. This process resulted in 14 studies remaining on
ore than one list (but no study remained on more than two lists). Ulti-
ately, the nine remaining terms were: Cognitive Control (63 studies),
reativity (26 studies), Divergent Thinking (20 studies), Flexibility (20
tudies), Generation (22 studies), Imagery (44 studies), Insight (21 stud-
es), Novelty (20 studies), Reasoning (46 studies). See SI Table 1 for the
ull list of PMIDs included for each term, and SI Table 2 for a sample of
apers included for each term. 

All NeuroSynth based analyses were run on a local implemen-
ation of the NeuroSynth core tools ( https://github.com/neurosynth/
eurosynth ) using the database version 0.7, released in July 2018 and
ncludes activation data from 14,371 studies. All neuroimaging data and
mages from NeuroSynth are previously registered to 2 mm MNI space.
ecause the NeuroSynth database includes data from some non-fMRI
euroimaging studies (e.g., PET, or voxel-based morphometry; for de-
ails on data selection see Yarkoni et al., 2011 ), our selection criteria
esulted in a small number of these non-fMRI studies being included
n our analyses. These studies represent a small percentage of the total
umber of included studies (e.g., only 4 studies out of approximately
00 contained PET data), and are noted in SI Table 1 and SI Table 2 .
he numbers of these studies for each non-fMRI source of data were too
mall to reliably determine whether the signal provided by these sources
iffered significantly from the fMRI data. However, in general, inclusion
f multiple converging sources of data should increase the power to de-
ect meaningful signal related to cognition-brain associations. 

For each of the nine terms, a term-based meta-analysis was con-
ucted using the activation data associated with the PubMed IDs for
ach of the studies (see Fig. 1 for examples). Both association and uni-
ormity test z -maps were generated for each term-based meta-analysis,
nd each z -map is FDR corrected at p < .01. Whereas uniformity tests in-
icate which brain-regions show consistency of activation within the set
f included studies, the association test shows which brain regions have
igher levels of activation in the set of included studies compared to the
est of the studies in the full database ( Yarkoni et al., 2011 ). Therefore,
he association FDR-corrected z -map was chosen for further analysis. 

.3.3. Neurally-defined model of construct space 

In order to compare the expert-generated behavioral ratings de-
cribed above to a similar model of construct space defined by neural
ata, we generated a neural similarity matrix ( Fig. 2 ) as follows. For
ach of the 9 term-based meta-analytic maps described in the previ-
us section, the brain maps were converted into vector arrays, where
ach element in the array represented the FDR-corrected z -value for the
eta-analytic map at that voxel. Then we calculated the Spearman cor-

elation between that neural map and every other meta-analytic neural
ap. In this way, we were able to obtain a single value representing

he Spearman correlation between every pair of meta-analytic maps (36
nique correlations in total). These correlation values were then input
nto a representational similarity matrix, in which each cell represents
he correlation between two meta-analytic maps, and the entire matrix
hus comprises every possible pairing of meta-analytic maps ( Fig. 2 ). 

.3.4. Task-based meta-analytic maps 

Meta-analytic task-based maps were created through NeuroSynth,
imilar to the term-Based maps described in the preceding section. For
ach of the creativity-related constructs included in the expert model,
 list of tasks commonly used to measure each construct was generated
y the authors ( Table 1 ). Each author listed tasks that they believe best
easure the construct terms, based on use in previous literature. Tasks

http://www.neurosynth.org
https://github.com/neurosynth/neurosynth
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Table 1 

Candidate tasks commonly used to operationalize each cognitive construct. 

Cognitive Control Creativity Divergent Thinking Flexibility Generation Imagery Insight Novelty Reasoning 

Stroop Analogical 

Reasoning 

Verb Generation Task Switching Fluency Mental Rotation Analogical 

Reasoning 

Verb 

Generation 

Analogical 

Reasoning 

Flanker Verb Generation Fluency Wisconsin Card 

Sorting 

Verb Generation Wisconsin Card 

Sorting 

Fluency Wisconsin Card 

Sorting 

Go/No-Go 

Table 2 

Spearman correlations between expert ratings and neural data for similarity matrices and individual terms. 

Entire Matrix CC Cr DT Fl Gn Im In Nv Rs 

Full Model .21 .67 ∗ .44 . 89 ∗∗ .03 .38 − 0.25 .05 .72 ∗∗ .39 

Leave-one-out models: 

Cognitive Control .09 NA .55 . 86 ∗∗ .12 .48 .17 .02 .60 .13 

Creativity .30 .68 ∗ NA . 92 ∗∗∗ .19 .55 − 0.15 .31 .61 ∗ .59 

Divergent Thinking − 0.12 .71 ∗ .37 NA − 0.12 .19 − 0.18 − 0.01 .62 ∗ .34 

Flexibility . 35 ∗ .68 ∗ .66 ∗ .88 ∗∗ NA .55 − 0.19 .10 .81 ∗∗ .45 

Generation .23 .71 ∗ .46 .93 ∗∗∗ .10 NA − 0.24 .03 .76 ∗ .45 

Imagery . 38 ∗ .86 ∗∗ .53 .85 ∗∗ .00 .38 NA .08 .79 ∗ .54 

Insight .32 .63 ∗ .47 .90 ∗∗ .21 .31 − 0.17 NA .81 ∗∗ .49 

Novelty .06 .64 ∗ .25 .88 ∗∗ .10 .30 − 0.18 .23 NA .37 

Reasoning .23 .53 .45 .86 ∗∗ .07 .43 − 0.19 .06 .79 ∗ NA 

Note : ∗ = p < .05; ∗ ∗ = p < .01; ∗ ∗ ∗ = p < .001. All p- values are generated by permutation correction against a null 
distribution of 10,000 random permutations. For the Full Model, all constructs were included in both the expert and 
neural similarity matrices. Row labels for the leave-one-out models indicate the term left out of that model. Column 
labels indicate the term of interest being correlated between neural and behavioral data sources, each drawn from 

the same model. CC = Cognitive Control; Cr = Creativity; DT = Divergent Thinking; Fl = Flexibility; Gn = Generation; 
Im = Imagery; In = Insight; Nv = Novelty; Rs = Reasoning. 

Fig. 1. Term-based meta-analytic association Z -maps for Creativity, Divergent Thinking, and Novelty. Uncorrected Z maps generated using NeuroSynth are shown 
here to display full results; FDR-corrected Z -maps are displayed in Fig. 2 and were used for all analyses. Each map is thresholded at Z > 2.3 and spatially clustered 
in the volume resulting in a minimum cluster size of 20 voxels per cluster. 
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ere allowed in multiple lists as long as the task is commonly used to
easure all of the constructs it is listed for, but any given study could

nly be present in one task list. We then conducted a PubMed search for
ach task along with the term “fMRI ” to identify neuroimaging studies
sing these tasks in the “Initial PubMed Search ” phase. A list for each
f the tasks was generated using the PubMed IDs for each of the studies
hat met that search query. These studies were initially culled to only
nclude studies that appeared in the NeuroSynth database (limited to
tudies that have been processed to catalog the neuroimaging regions
or results) in the “Cross-reference with Neurosynth ” phase before be-
ng manually reviewed to ensure the study was appropriately related
o creativity and the task was used for the neuroimaging results in the
Relevance Check Cutdown ” phase. Finally, any duplicate studies were
emoved from all instances on the task lists and the two list sets (task
nd term) were compared to identify any duplicate studies between the
ets in the “Deleting Duplicates ” phase. If a study existed across both
ets, the study was eliminated providing the elimination did not reduce
he term list below 20 studies or the task list below 10 studies. This pro-
ess resulted in no duplicate studies between task lists, and 26 duplicate
tudies remaining across sets (i.e., between task lists and construct lists).
ee SI Table 3 for the full list of PMIDs included for each task, and SI
able 4 for a sample of papers included for each task. With those lists of
Ds, association and uniformity test meta-analytic z -maps were gener-
ted for each of the tasks, and were FDR corrected at p < .01. As noted
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Fig. 2. Meta-analytic maps for some terms showed more pattern similarities than others. The NeuroSynth meta-analytic maps for Creativity and Divergent thinking 
show some regions of overlap and have a correlation of r = 0.33. By contrast, Creativity and Reasoning have no overlap in patterns of activity, and do not correlate. 
All meta-analytic surface-based Z- maps were generated in 3-dimensional MNI space using the NeuroSynth association map function and FDR-corrected ( p < .01). 

Table 3 

Spearman correlations for the models using individual neuroimaging tasks to 
represent cognitive control. 

Flanker Go/No-Go Stroop 

Full Model .01 .10 .13 

Individual constructs: 

Cognitive Control .24 .00 .63 ∗ 

Creativity .66 ∗ .66 ∗ .33 

Divergent Thinking .92 ∗∗ .93 ∗∗ .83 ∗∗ 

Flexibility − 0.03 .03 .08 

Generation .42 .38 .28 

Imagery − 0.25 − 0.23 − 0.09 

Insight − 0.18 − 0.02 − 0.02 

Novelty .53 .65 ∗ .65 ∗ 

Reasoning .34 − 0.08 .39 

Note : ∗ = p < .05; ∗ ∗ = p < .01. All p- values are generated by permutation cor- 
rection against a null distribution of 10,000 random permutations. Row labels 
indicate the terms correlated between behavioral and neural data sources. Col- 
umn labels indicate the task used to represent cognitive control in each neural 
model. 
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n the previous section, the FDR corrected association map for each of
he tasks was used for further analysis. 

.4. Statistical analyses 

.4.1. Multidimensional scaling analysis 

For the purpose of illustrating the relationships between terms as
efined by the expert model and the neural model, we conducted a
lassical (metric) multidimensional scaling analysis (using the cmdscale

unction in R from the stats package; https://www.rdocumentation.org/
ackages/stats ). This analysis, used mainly to depict similarities and dif-
erences between the models, generated a projection of each construct
nto 2-dimensional space, based on the similarity matrices described
bove. The data points in this 2-dimensional space were then subjected
o a k- means clustering algorithm (using the kmeans function in R from
he stats package; https://www.rdocumentation.org/packages/stats )
imed at defining up to 3 distinct clusters. 

.4.2. Spearman correlations and permutation corrections 

We used Spearman correlation to test the fit between the similarity
atrix generated by behavioral ratings of experts and the similarity ma-

rix generated by neural meta-analyses. Spearman correlations were also
sed to test the fit between the modified similarity matrices described
elow. All correlations were permutation-corrected to determine signifi-
ance. When each correlation was calculated, we randomized one of the
wo matrices or vectors (depending on the analysis) 100,000 times and
e-ran the correlation to generate a distribution of potential correlations
alues from the distribution of our data. From that distribution, we z -
cored the actual observed correlation value to identify where it fell rel-
tive to the distribution of permuted correlation values, and therefore
ow likely it was that we found the observed correlation by chance,
iven our data. This approach allows us to correct for multiple com-
arisons without making any assumptions about the distribution of our
ata. 

.4.3. Row-wise analysis 

When correlating between full models, we make use of the full rep-
esentational similarity space between behavioral ratings and patterns
f neural activity. However, this analysis provides only one correlation
alue to represent all of the data contained in both of those similarity
atrices, including all 9 constructs. To examine specifically how simi-

ar creativity is, for example, when comparing its place in the behavioral
onstruct space to its place in the neural construct space, we use row-by-
ow correlations (i.e., individual term correlations). In these analyses,
e correlate the vector associated with each term drawn from the be-
avioral similarity matrix with the same vector drawn from the neural
imilarity matrix. This approach allows us to identify the correlation be-
ween the behavioral and neural data sources for each construct and for
ach task. 

https://www.rdocumentation.org/packages/stats
https://www.rdocumentation.org/packages/stats
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Table 4 

Full model and term-wise Spearman correlations for the models using tasks to represent all constructs. 

Cognitive Control Tasks Flanker Go/No-Go Stroop 
Creativity Tasks Analogy Verb Gen Analogy Verb Gen Analogy Verb Gen 

Full Model − 0.15 − 0.25 − 0.37 − 0.52 ∗ − 0.24 − 0.32 

Behavioral Ratings by Constructs: 

Cognitive Control (varies by model) .60 .71 .20 .71 .37 .37 

Creativity (varies by model) .46 − 0.12 .46 − 0.12 .46 − 0.12 

Flexibility (Task Switching) .37 .09 .37 .09 .37 .26 

Generation (Fluency) .43 .54 .20 .54 .20 .31 

Imagery (Mental Rotation) − 0.12 − 0.03 − 0.06 − 0.03 .06 .32 

Reasoning (Wisconsin) .49 .70 .12 .70 .12 .32 

Note : ∗ = p < .05. All p- values are generated by permutation correction against a null distribution of 10,000 random permutations. Table headings refer to the model 
used to generate the NeuroSynth Neural Task similarity data with the construct-specific behavioral ratings of similarity. Cognitive control was represented by each of: 
Flanker, Go/No-Go, and Stroop tasks. Creativity was represented by each of: Analogical Reasoning and Verb Generation tasks. All other constructs were represented 
by an individual task each, indicated in parentheses after the construct name. Under each model heading, each cell contains the Spearman correlation between 
the Neural Task similarity for that model and the behavioral rating similarity. For example, the cell for Reasoning under Stroop/Analogy indicates the correlation 
between the Wisconsin Card Sorting task and Reasoning ratings while Cognitive Control is represented by the Stroop Task and Creativity is represented by Analogical 
Reasoning. Analogy = Analogical Reasoning; Verb Gen = Verb Generation. 

Fig. 3. Multidimensional scaling plots demonstrating the structure of construct space in two principal dimensions. A: Projection of expert model reflecting construct 
space defined by pairwise similarity ratings of creativity researchers; B: Projection of neural model reflecting construct space defined by pairwise similarity of 
NeuroSynth meta-analytic association maps generated by term-based meta-analysis. Colors depict results of k-means clustering. 
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.4.4. Leave-one-out analysis 

To examine the contributions of each of the terms to the overall
odel fit between behavioral and neural data sources, we conducted a

eave-one-out analysis. We conducted this analysis by iterating through
he model and leaving out one term in each iteration and then calcu-
ating a new Spearman correlation between the revised NeuroSynth-
efined similarity matrix (i.e., the neural leave-one-out model) and
he revised behavioral similarity matrix (i.e., the expert leave-one-out
odel). A total of nine additional models were generated thusly. 

. Results 

.1. Relating the meta-analytic neural model to the expert-based construct 

imilarity model 

.1.1. Full model space 

As described above, our primary goal was to develop a means of us-
ng neural data to inform our understanding and measurement of the
ognitive constructs that comprise creativity. We began with a quan-
ification of the similarity ratings of experts regarding the relationships
etween these constructs, thus defining a multidimensional space of cog-
itive constructs ( Fig. 3 ). As our first approach to testing this expert-
efined construct space against neural data, we used NeuroSynth to
enerate term-based meta analyses for every construct in the expert
odel test (see Methods section for details). Each construct was used

s the basis for a separate whole-brain meta-analysis, and the results
ere then combined into a full model indicating the neurally-defined

onstruct space ( Fig. 3 ). We then compared this neural model to the
xpert-defined cognitive model using Spearman correlation ( Fig. 4 ). The
orrelation between these similarity matrices is the most direct test of
hether the data generated by the field of cognitive neuroscience re-
ects the way that experts conceptualize the space of creativity-related
onstructs. Results revealed a non-significant correlation between the
ull expert model and the full neural model, r (34) = 0.21, z = 1.26,
 = .10. 

To gain further insight into the mapping between expert and neural
odels, we conducted a multidimensional scaling analysis to illustrate

he construct spaces defined by each model. As seen in Fig. 3 , some con-
tructs anchor the multidimensional construct space similarly in both
he neural model and the cognitive model. For example, in both mod-
ls, the term creativity clusters with the term divergent thinking . Like-
ise, in both models, the terms reasoning and cognitive control cohere
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Fig. 4. Behavioral and neural results for the full model space and a reduced set of constructs. Top row, left: Similarity matrix defined by experts through pairwise 
ratings of terms. These ratings are scaled to range from 0 to 1 (1 = complete conceptual overlap between terms). Top row, right: Similarity matrix defined by 
NeuroSynth term-based meta-analyses. Each of the FDR-corrected NeuroSynth meta-analytic association z-maps were Spearman-correlated with each other to create 
a measure of how similar the patterns of neural activity associated with those terms are to each other. Bottom row, left: A reduced construct space is defined by 
removing the term imagery from the expert similarity matrix. Bottom row, right: A reduced construct space is defined by removing the term imagery from the neural 
similarity matrix. In this example, correlation between the expert model and neural model improves when the construct imagery is removed. Note: Each similarity 
matrix is scaled separately to better illustrate variations in patterns of similarity. Full similarity matrices are shown here, however values along the diagonal were 
excluded from analyses. 
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nto the same cluster. Also, in both models, insight falls into a separate
luster from either of these two other clusters, falling somewhere in
etween these other terms along one dimension of the 2-dimensional
rojection space. However, many differences are also notable between
he two models ( Fig. 3 ): Critically, we believe that the differences between

he expert model and the neural data are at least as informative as the sim-

larities between them. Next, we examine the correlation between each
ndividual construct as defined by these two separate multidimensional
paces, as well as the effect that each construct has on the overall fit
etween the two models. 

.2. Individual term correlations and leave-one-out models 

To the degree that there was not a perfect correlation between the
eural model and the expert model, there are many potential sources to
xplain this disconnect. As evident in Fig. 3 , several cognitive constructs
ere not well represented by the neural data. The misalignment of even
ne construct substantially reduces the goodness-of-fit for the overall
odel, and this reduction is compounded by the aggregate of several
isaligned constructs. Therefore, in the next step of this analysis, we ex-

mined the correlation between individual terms as defined separately
y the neural model and the cognitive model. To further investigate the
oodness of fit between expert-generated cognitive constructs and their
eural counterparts, we examined how well each individual construct
s defined by the expert model correlated with the same construct as
efined by the neural model. Along these same lines, we also tested
hether the overall model fit between the expert model and the neu-

al model improved when removing each individual construct from the
odel ( Fig. 4 ). This approach has the long-range potential to reveal im-
ortant information to the field; namely, which constructs are not iso-
orphic between the conception of expert researchers and the observed
atterns of neural activity from the aggregated results of the field as a
hole. 

To examine the overall improvement in fit between the models gen-
rated by the expert ratings and by the neural data upon removing each
ndividual construct, we iterated through each construct in succession
emoving it from both models (expert and neural) and then correlat-
ng the resulting expert and neural similarity matrices leaving out only
hat one construct at a time. The results of these Spearman correlations
re reported in the left column of Table 2 . Results demonstrate that for
wo terms, flexibility and imagery , removing either term from both the
xpert similarity matrix and the neural similarity matrix increases the
orrelation strength between these two multidimensional spaces. When
exibility is left out of the model, the expert ratings and neural data cor-
elate at r (28) = 0.35, z = 1.87, p = .03 . Likewise, leaving imagery out of
he model results in a significant correlation between expert and neural
ata r (28) = 0.38, z = 1.95, p = .03 . These results demonstrate that when
hese individual constructs were included in the full models, they each
ontributed to reducing the overall goodness of fit between the two rep-
esentations of the construct space; i.e., both constructs decreased the
orrelation between the model generated by the expert ratings and the
odel generated by the neural data. More generally, these results also

onfirm that this approach can be used to detect changes in an overall
epresentational space that result from removing an individual construct
f interest. 

Next, to examine the relationship of each construct in the expert
odel to each of the constructs in the neural model, we computed cor-

elations between the rows of each similarity matrix using the full expert
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odel and the full neural model (see Table 2 , top row). In this way, each
erm was defined as a point in the construct space defined by each data
ource (expert ratings and neural data), and the similarity between the
ector coordinates of each of these points was calculated using Spear-
an correlation. This analysis revealed the strongest neural-behavioral

orrelations for the terms Cognitive Control, r (8) = 0.67, z = 1.91,
 = .03, Divergent Thinking, r (8) = 0.89, z = 2.53, p = .01, and Novelty,
 (8) = 0.72, z = 2.05, p = .02. Weaker correlations were observed for the
erms Creativity, r (8) = 0.44, z = 1.27, p = .10, Generation, r (8) = 0.38,
 = 1.09, p = .14, and Reasoning, r (8) = 0.39, z = 1.12, p = .13. Cor-
elations in the null to negative range were observed with the terms
lexibility, r (8) = 0.03, z = 0.09, p = .46, Insight, r (8) = 0.05, z = 0.14,
 = .44, and Imagery, r (8) = − 0.25, z = − 0.72, p = .24. This analy-
is demonstrates both convergence and divergence between expert and
eural models on the level of individual terms, which is a useful demon-
tration for future uses of this methodology. However, given the small
umber of terms in the present models —and consequently few degrees
f freedom in the present analyses —the statistical significance of these
orrelations should be viewed with caution. Table 2 also shows the re-
ults for each term from each of the other leave-one-out models, but for
pace considerations (and because these results do not directly relate
o the goals of the current research) these results are not interpreted in
urther detail here. 

.3. How much depends on the selection of a task to represent a cognitive 

onstruct? 

To define our initial neural model, the analysis above relied on
eta-analyses based on terms that named cognitive constructs. It is a

trength of tools such as NeuroSynth that we can now easily gener-
te such term-based meta-analyses on the level of whole constructs.
owever, in any given study, each construct of interest is typically op-
rationalized through a single specific experimental task. Clearly, the
hoice of task used to represent a given construct has a fundamental
ffect on the resulting neural activity, and there can be great variability
etween two tasks that claim to measure the same cognitive mechanism
 Poldrack et al., 2011 ). Therefore, for our second analysis approach, we
hose to go beyond entire constructs and focus on individual tasks by
esting the change in correlation between the expert model and neural
odel when a single task is taken to represent a given construct. This ap-
roach takes the neural model created in the first analysis and replaces
ne of the term-based meta-analysis (e.g., for the construct, cognitive con-

rol ) with a task-based meta-analysis focusing on a single task that is often
sed to represent that construct (e.g., “Stroop color-word ”). In this way,
e can estimate how much the correlation between the expert model
nd the neural model improves or worsens as we replace a construct
ith a specific task, and as we replace each individual task with an-
ther task (e.g., replacing “Stroop ” with “Go-NoGo ” or “Flanker ”), while
olding the rest of the representational space constant. Therefore, the
esults of this analysis demonstrate the effect of choosing a single task
ver another task as a stand-in for an entire construct, with respect to
ther constructs related to creativity. 

As a demonstration of this method, we chose to use three com-
on tasks used to operationalize cognitive control : the Flanker task

 Chen et al., 2015 ; Grajewska et al., 2011 ; Wager et al., 2005 ), Go/No-
o task ( McCormick et al., 2016 ), and Stroop ( Liu et al., 2015 ; Shin and
im, 2015 ). We then correlated the revised neural similarity model (now
ith 8 term-based neural meta-analytic maps and one task-based meta-
nalytic map) with the similarity matrix made from the experts’ be-
avioral similarity ratings. This analysis allows us to consider whether
emoving unnecessary noise from using a variety of different tasks to
easure the same construct results in a better fit with the expert model.
lternatively, the meta-analytic neural maps used in the prior analysis

which include a variety of tasks) could result in a more robust neural
ignal that better fits the expert model. Finally, as in the analysis above,
e compute the row-wise correlation for each of the terms and tasks
 Table 3 ). 

The Spearman correlation analysis of the full model replicated the
revious results, in the sense that none of the correlations were signif-
cant (based on the permutation test, all p ’s > 0.1). In fact, the effect
izes of each of these correlations is nominally lower than the original
odel correlation above. For the row-wise correlation analysis, how-

ver, we found both increased and decreased neural-behavioral correla-
ions across the three models. To answer the question of which task best
epresents the construct of cognitive control, we only find a significant
eural-behavior correlation for cognitive control in the Stroop model,
 (8) = 0.62, z = 1.79, p = .04, and not in the Flanker model, r (8) = 0.24,
 = 0.69, p = .24, or the Go/No-Go model, r (8) = 0.00, z = 0.001, p = .99.
his result suggests that among these three tasks, using the Stroop task
o represent cognitive control represents the best alignment between neu-
al and behavioral models; i.e., this task may elicit a neural response that
ost closely reflects the way in which creativity experts conceive of cog-
itive control. However, we only find significant neural-behavior corre-
ations for the construct creativity in the Flanker, r (8) = 0.66, z = 1.89,
 = .03, and Go/No-Go models, r (8) = 0.66, z = 1.89, p = .03, and not
n the Stroop model, r (8) = 0.33, z = 0.95, p = .17. Thus, the model
hat produces the best fit for cognitive control produces the worst fit for
reativity . 

Another notable result is that for all three models the neural-
ehavior row-wise correlation of divergent thinking were significant
Flanker: r (8) = 0.92, z = 2.63, p = .004; Go/No-Go: r (8) = 0.93, z = 2.65,
 = .004; Stroop: r (8) = 0.83, z = 2.34, p = .009). However, we only
ound significant neural-behavior correlations for novelty for the Go/No-
o, r (8) = 0.65, z = 1.86, p = .03, and the Stroop, r (8) = 0.63, z = 1.86,
 = .03, models. Overall, this analysis demonstrates that whereas all
hree of the selected experimental tasks are commonly used to measure
ognitive control , each of the tasks captures somewhat different neural-
ehavior relationships. 

We further investigated the impact of task selection on fit with the
xpert-defined model by conducting a third analysis in which we re-
laced every construct with a task that is commonly used to represent
hat construct. Whereas the second analysis method (above) used mostly
onstruct-based neural meta-analyses into which we slotted one task-

ased neural meta-analysis to stand in for a corresponding construct,
his third approach uses only task-based meta analyses to define the neu-
al model. In other words, for each construct in the expert model, we
enerated a neural meta-analysis based on a single task to represent the
eural counterpart of the corresponding cognitive construct. There are
wo main motivations for this approach. One motivation is that most
euroimaging studies use only a single task to probe a cognitive con-
truct, so defining the neural model exclusively by the most-often-used
ingle tasks provides a means of demonstrating how well any individ-
al study might approximate the expert construct space. This approach
herefore serves as a useful complement to the analyses above. 

A second —and related —motivation is that perhaps when our expert
articipants generated their ratings for each construct, they were bas-
ng these ratings (at least in part) on a set of commonly-used tasks. If
rue, this interpretation raises the possibility that a neural model de-
ned by using only one task to represent each construct might be a
etter match for the expert model. In fact, even disregarding the various
ays in which experts may have interpreted the task instructions, it is
ossible that using a single task to define each construct reduces the
ariance due to noise that results from incorporating so many different
asks into the meta-analytic model. In short, it may be that the neural
pace of these constructs is better defined by a more constrained set of
asks that powerfully tap the targeted cognitive mechanisms. 

To test this possibility, for our third analysis approach we examined
ow well the tasks that are used to represent the terms capture neural-
ehavior relations. To do so, we identified up to three common tasks
or each of our nine terms ( Table 1 ). This process led to three of the
erms to be rated as having the same tasks ( novelty, divergent thinking ,
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nd insight ). As such, we were unable to use tasks to represent all of
he original nine constructs to create a full task-based 9 × 9 similarity
pace of all the terms. Instead, as a proof of concept to demonstrate
he viability of the approach, we built a task-based similarity matrix for
ix of the terms for which we could find unique task mappings: Stroop
as used for cognitive control , Task Switching for flexibility , Fluency for

eneration , Mental Rotation for imagery , and the Wisconsin Card Sorting
ask for reasoning . 

Further, we aimed to demonstrate that the same methodology used
bove —in which we replace each task in succession and compare the
esulting model correlations —could be applied here as well. Therefore,
e used the same three tasks as above (Flanker, Go/No-Go, and Stroop)

o represent cognitive control . And in order to test which candidate task
between Analogical Reasoning and Verb Generation) was a better fit
o measure creativity (e.g., Beaty et al., 2017 ; Green et al., 2015 , 2009 ),
e used the same approach to substitute in these two tasks in successive
odels. This process resulted in 5 distinct neural models (i.e., similarity
atrices) derived from NeuroSynth task-based meta-analyses. We then

orrelated these models —both full models and row-wise term correla-
ions —between the neural data and the experts’ behavioral ratings for
he included terms. Results are reported in Table 4 . 

As with the previous analysis, results demonstrate that the choice of
ask greatly influences the fit between the experts’ model and the neu-
al data putatively reflecting the same constructs. An extreme example
f this effect is that when Go/No-Go is used to represent cognitive con-

rol and Verb Generation is used for creativity , the full models show the
orst overall fit between neural and behavioral data, correlating nega-

ively r (15) = − 0.52, z = − 2.00, p = .04. Similarly, the two tasks used to
easure creativity led to different results in the Stroop model: while the

erm-wise correlation between Analogical Reasoning (neural data) and
reativity (behavioral data) was r (5) = 0.46, z = 1.05, p = .15, the corre-
ation between Verb Generation (neural data) and creativity (behavioral
ata) was r (5) = − 0.12, z = − 0.26, p = .40. This difference highlights
he critical role the task used to operationalize the cognitive constructs
e.g., creativity ), plays in how well the neural signal reflects the putative
ognitive construct in a way that is consistent with how researchers in
he field conceptualize this construct. 

. Discussion 

In order to progress towards a clearly defined understanding of
he neurocognitive constituents of creative thinking, a well-defined on-
ology of creativity measurement is needed. Such ontological devel-
pment will facilitate convergence among the scientific community
n a set of constructs and operationally validated tasks that measure
hese constructs. The present study demonstrated a proof-of-concept for
ata-analytic methodology that can support the achievement of this
ong-term objective. Specifically, this work demonstrated how a data-
riven meta-analytic approach to aggregate neuroimaging data can
dentify a set of experimental tasks that elicit neural activity optimally
eflecting the similarity/dissimilarity of a targeted set of cognitive con-
tructs. Evidence for the efficacy of this approach has implications for
reativity research as creativity neuroscience expands the available neu-
al data. However, there is nothing about this approach that is unique
o creativity, and nearer-term value might well be gained by applying
hese methods to more canonical areas of psychological inquiry such as
emory, executive function, and emotion, for which far more extensive
euroimaging literatures already exist. 

Our analysis approach aims to quantify the degree to which a choice
f experimental task will affect the fit between an observed neural re-
ponse and an expected cognitive construct. As a demonstration of the
ethodology, we tested different neural meta-analytic models using

hree different tasks to measure cognitive control and two different tasks
o measure creativity . In terms of the tasks that best aligned with concep-
ual models of their corresponding constructs, the Stroop task emerged
o be the best aligned with the construct of cognitive control and tasks
hat used an analogical reasoning paradigm were best aligned with the
onstruct of creativity . While the current results should be considered
xploratory (see limitations, described below), these results illustrate
he type of insight that using meta-analytic representational similarity
nalysis can contribute toward the goal of developing an ontology of
reativity. 

Similarly, at the level of constructs, we found that neural meta-
nalyses of flexibility and imagery were the least-well aligned with the
orresponding constructs within the expert-informed conceptual model.
onsequently, the model fit was improved when these terms were
emoved. In contrast, cognitive control, divergent thinking, and novelty

howed stronger correlations between the expert model and the neural
odel. Therefore, removing these terms worsens the fit between neural
ata and the expert conceptual model. Whereas the task-based analysis
ndicated which tasks elicit cognitive constructs that are well reflected
n neural activity, by examining where the neural data are aligned or
isaligned with the experimenters’ model on the level of constructs , we

an learn about how well aligned the expert conceptual model is to the
eural data of the field as a whole, aggregated over numerous tasks.
uch insights can drive future research in terms of examining both the
eural models and the cognitive models with the overall goal of cali-
rating the two models to improve the fit between them. 

Taken together, our results highlight how removing or adding con-
tructs and tasks in a neural-behavioral model changes its goodness-of-
t, and how this approach can be used to study the accuracy of specific
asks for operationalizing cognitive constructs. Furthermore, building on
revious research ( Poldrack et al., 2011 ; Poldrack and Yarkoni, 2016 ),
his work demonstrated the strength of meta-analytic neural maps in an-
lyzing cognitive constructs. In relation to previous work with related
oals and methods, some notable progress has been made in develop-
ng cognitive ontologies using behavioral data (e.g., ( Poldrack et al.,
011 ), and a few studies have used neuroscience data to partially vali-
ate cognitive ontologies in other research areas ( Eisenberg et al., 2019 ;
enartowicz et al., 2010 ; Sabb et al., 2008 , 2009 ). Sabb et al. (2008 ;
009 ) applied a bibliometric analysis over PubMed to evaluate the re-
ationship between heritability, behavior, and constructs of executive
unctions. Such approaches have revealed important insights regarding
onstructs in the executive function literature, and how these terms re-
ate to cognitive control ( Sabb et al., 2008 ). 

Building on these efforts, Lenartowicz et al. (2010) examined
hether the cognitive ontology uncovered by Sabb et al. (2008) can be
apped onto neural systems. To do so, the authors conducted a meta-

nalysis of brain activation across a range of tasks related to these onto-
ogical terms. This was achieved via the BrainMap database ( Laird et al.,
005 ). These efforts and others have demonstrated the utility of com-
aring patterns of brain activation evoked by different cognitive tasks
n order to map constructs of the mind onto structures of the brain
 Lenartowicz et al., 2010 ; Poldrack and Yarkoni, 2016 ; Varoquaux et al.,
018 ). However, less research has explored the possibility of ontolog-
cal mapping in the other direction: building a bottom-up ontology of
ental constructs by starting with a data-driven, brain-based approach

o explore how different tasks and sub-components of a construct relate
o one another in a neurally-defined representational space. The results
f our current study indicate a path that leads toward filling this gap in
he literature by demonstrating that neural data and expert conceptu-
lizations can be used together to further the ontological development
f creativity measurement. Notably, this approach can also be applied
ore broadly to other domains of cognitive neuroscience. 

Finally, it is important to emphasize again that this study is an initial
roof-of-concept. Our overall goal was primarily to develop and illus-
rate a methodological approach that we believe has long-term potential
or integrating neural data into the ontological development of creativ-
ty measurement. However, we did not seek to collect the requisite data
o draw strong conclusions from the present results, and the reported
nalyses are constrained by several limitations. For instance, while a
elative strength of NeuroSynth is the vast number of studies included
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n the database, the data reported for each study are not as extensive
s they could be. In particular, neural activations for each neuroimag-
ng study are included in a meta-analysis on the level of the publication ,
ather than on the level of the neuroimaging analysis . This organizational
tructure can at times become problematic. Consider, for example, the
ase of a single study that includes two task conditions, one aimed at di-

ergent thinking task and one aimed at convergent thinking. The results of
hese two task conditions would appear in all of the same meta-analyses,
espite the fact that they presumably would show very different pat-
erns of activation and reflect very different constructs. Such noise in the
atabase would be attenuated by an analysis approach that operates on
he level of analyses rather than whole studies , perhaps by allowing ac-
ess to the original data (e.g., NeuroSynth; Poldrack and Yarkoni, 2016 ;
arkoni et al., 2011 ) or by providing more extensive meta-data coding
e.g., BrainMap; Laird et al., 2005 ). 

Another limitation concerns the number of available studies relevant
o our focus on creativity and related tasks and constructs. Despite the
act that the NeuroSynth database contains data referring to over 14,000
tudies, this number of studies still reflects only about 20–30% of the to-
al number of neuroimaging studies conducted. Moreover, there remains
nly a comparatively small —though increasing —number of neuroimag-
ng studies that have specifically focused on creativity. Thus, constructs
uch as creativity , and even related concepts such as divergent thinking

nd convergent thinking have relatively few studies associated with them
ompared to, e.g., cognitive control . Indeed, higher-level cognitive corre-
ates of creativity (such as mental modeling or visuospatial reasoning)
ere not included in the term list as there were not sufficient data avail-
ble for these constructs in the NeuroSynth database. Consequently, our
erms and task list does not capture the entire space of creativity. In time,
his issue will hopefully be resolved by the steady increase in the volume
f creativity neuroscience studies. At present, however, due to these lim-
tations as well as the constraints of our selection approach (described
bove), our analyses were limited to a smaller set of tasks and cogni-
ive constructs than might have been ideal. Consequently, many of our
eural model similarity spaces were more sparsely populated than we
ould have liked, and many of our correlation tests were under-powered

or reaching firm conclusions about the constructs and tasks. Therefore,
uture research should provide a larger replication and extension of our
pproach, examining a much larger number of studies reflecting a more
omprehensive set of terms and tasks (e.g., Eisenberg et al., 2019 ). Fi-
ally, even in the short term, surveying larger numbers of experts in the
eld and more extensive searching of experimental tasks that reflect the
elevant cognitive constructs could certainly produce a more extensive
pace of neural and conceptual models to explore and to examine with
he current methods. 

These limitations notwithstanding, the present work provides a
romising indication that methods such as those described here can con-
ribute to building an ontology of measurement suitable to overcoming
istorical constraints and advancing understanding of human creativity.
n this way, we hope that the methods described here can be useful in
eveloping an ontology that can serve at least two major functions as the
eld develops: 1) converge on a set of constituent cognitive constructs that
ogether —by virtue of their relations to each other —comprise a multi-
imensional representation of the complex construct of creativity; and
) converge on a set of experimental tasks that reliably evoke neural ac-
ivity reflective of these individual cognitive constructs. Therefore, in
ddition to the particular utility of these methods, they may be more
roadly useful in overcoming historical constraints by helping to re-
rame how researchers conceptualize and measure creativity. Instead of
sking, What is creativity? with the expectation that a unitary construct
an be satisfactorily defined, it may be more fruitful to think about cre-
tivity as a multi-dimensional similarity space and begin to optimize
ur tasks to measure different cognitive elements within the space of
reativity . 
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