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Abstract 

The presence of semantic information in multivariate patterns 
of neural activity has been explored as a method of measuring 
knowledge and learning. Using fMRI, we investigated whether 
novice learners of American Sign Language (ASL) showed 
overlapping representations of semantic categories for words 
presented in a well-known (English) or newly learned (ASL) 
language. We find evidence of neural patterns that were 
partially shared between sign and speech in novice 
participants. This result provides evidence for the influence of 
even brief learning on neural representations in cross-modality 
language processing. 
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Introduction 
A fundamental concern of educational neuroscience is the 
ability to detect and characterize changes in knowledge and 
understanding over the course of learning. While traditional 
methods of quantifying learning include a wide array of 
behavioral measures (multiple-choice tests, essay exams, oral 
exams, etc.), prior work has found that data-driven 
neuroimaging methods such as multivariate representational 
similarity analysis (RSA) (Kriegeskorte et al., 2008) and 
other multivariate pattern analysis techniques can 
complement traditional methods of assessing an individual’s 
knowledge, for example by identifying cortical areas where 
neural response patterns correlate with the semantic structure 
between stimuli. Multivariate patterns of brain activity which 
are associated with understanding or expertise have been 
investigated in a number of conceptual domains, including 
physics and engineering (Cetron et al., 2019; Cetron et al., 
2020; Mason & Just 2015), computer science (Meshulam et 
al., 2020), and foreign language (Qu et al., 2019; Zinszer et 
al., 2016).  

Furthermore, studies of semantic processing suggest that 
neural representations of real-world semantic concepts are to 
some extent “modality-independent”: the same concept 
presented in two different modalities such as pictures and text 
(Shinkareva et al., 2011) or cued with homologous words in 
two different languages (Correia et al., 2014; Honey et al., 
2012) can evoke similar neural patterns associated with the 
underlying semantic meaning. Evans et al. (2019) found 

evidence of partially shared semantic representations across 
languages even when the languages in question were of 
different modalities (spoken British English and British Sign 
Language). This suggests that language cues from two 
different modalities may evoke a shared underlying semantic 
concept. However, these studies focus on fluent bilingual 
participants, who have extensive training in both studied 
languages. Another study (Zinzer et al., 2012) found that 
neural pattern similarity between responses evoked by 
participants’ first and second languages correlated with 
proficiency in the second language (e.g. spoken English and 
spoken Chinese). 

Here, we sought to investigate whether overlapping 
conceptual representations across modality (i.e., expressed in 
spoken compared to signed language) could be observed in 
novice learners after brief exposure to a small set of words in 
an unfamiliar language. If so, this overlap of neural patterns 
in response to familiar and newly-learned languages could 
serve as a useful measure of learning. We recruited two 
groups of participants who were fluent English speakers with 
no prior training in either American Sign Language (ASL) or 
Russian. 

Each group completed three brief trainings in one of the 
two target languages (ASL or Russian), learning a total of 24 
concrete nouns. All participants underwent fMRI scanning 
while watching short video clips in ASL, Russian, and 
English and completing a semantic task. Using multivariate 
analytical methods which leverage meaningful dimensions of 
similarity between the ASL signs, including semantic 
distance and conceptual categories, we decoded neural 
patterns which were partially shared between sign and speech 
for the ASL group. Importantly, similar evidence of cross-
language decoding was not found for the unstudied language, 
Russian. This result provides a proof of concept for research 
concerning the influence of even brief learning on neural 
representations of cross-modality language processing. 

Method 

Participants 
Twenty-two Dartmouth College students participated in this 
study. Data from two participants were excluded due to 
incomplete scans, resulting in a sample of N = 20 (13 female, 



mean age = 20 years, SD = 1.70). All participants were fluent 
English speakers who reported no prior knowledge of 
American Sign Language or Russian. Participants provided 
informed consent prior to participation in each day of data 
collection and were compensated either with curricular extra 
credit points or a gift card. All protocols were approved by 
the Dartmouth Committee for the Protection of Human 
Subjects. 

Stimuli and Design 
Stimuli for the behavioral and scanner tasks (i.e. the language 
lessons and semantic task, detailed in the section 
“Procedure”) were short audiovisual clips each containing 
one vocabulary word in ASL, Russian, or English. The ASL 
videos were provided by ASL-LEX, a database of lexical and 
phonological properties of ASL signs (Caselli et al., 2017). 
The Russian and English videos were created with efforts to 
mimic the style of the ASL-LEX videos by lab volunteers 
who are fluent in the respective languages. Each video clip 
consisted of the presenter seated before a neutral background, 
demonstrating a single vocabulary word. Of the 24 words, 12 
were members of the semantic categories of interest (animals, 
fruits, and vehicles), while another 12 were selected as 
distractor items to obscure the intended categories from 
participants. To ensure that participants would not be able to 
guess the meanings of the words without training, ASL signs 
which were rated greater than average in iconicity (the extent 
to which a sign’s form and meaning are non-arbitrarily 
related) by a sample of 950 hearing nonsigners collected by 
the creators of the ASL-LEX corpus were excluded from the 
stimulus set. Additionally, all ASL and Russian stimuli were 
pilot tested on Amazon Mechanical Turk to confirm that 
native English speakers with no training in ASL or Russian 
were not able to guess the meanings of the words and that 
subjective ratings of visual similarity (for ASL) and auditory 
similarity (for Russian) between the words did not correlate 
with object category. 

Procedure 
Participants completed three short (approx.. 30 min) online 
behavioral sessions on the two days preceding and the day of 
the fMRI scan. Half of the participants (N=10) were assigned 
to learn the set of 24 concrete nouns in ASL, while the other 
half learned the same nouns in Russian. The lessons were 
administered through Qualtrics (Qualtrics, Provo, UT). 
During each of the first two learning sessions, participants 
learned 12 new words in their target language through 
watching and mimicking the expert videos. They then 
completed a set of multiple-choice questions, a free recall 
task, and finally used their computer’s webcams to record 
videos of themselves practicing each word. In the third 
practice session, which occurred on the same day as the fMRI 
scan, participants reviewed all 24 words that they had 
previously learned, created a final set of webcam recordings 
of themselves performing each word, and completed another 
free recall quiz before arriving for the fMRI scan session. 

During the fMRI session, participants watched the same 
audiovisual clips followed by questions which probed either 
the semantic meaning of each noun (such as “Is this object 
colorful?” or “Would it be easy to cause this object to 
move?”) or non-semantic perceptual features of the clip 
(“Has this word been presented already in this block?”). They 
answered this question by pressing a button with their right 
index finger or middle finger. All participants, regardless of 
which language they had studied in the learning period, saw 
clips in ASL, Russian, and English. ASL and Russian were 
presented in counterbalanced blocks of 16 trials each during 
the first two functional runs. The English stimuli were 
presented in similar blocks of 16 trials during the third 
functional run, due to concern that knowledge that the same 
24 nouns were presented in each language might help 
participants “guess” the words in the unstudied language. The 
non-semantic question trials were included to encourage 
participants to pay attention even during blocks when they 
did not know the semantic meanings of the words. Each target 
word was presented twice in each language. 

fMRI Data Acquisition 
Brain images were acquired using a 3 Tesla Siemens 
PRISMA fMRI scanner with a 32-channel head coil. A single 
high-resolution T1-weighted anatomical scan and three 8-
minute functional runs were performed for each participant. 
Each 2D EPI sequence consisted of 192 measurements with 
a 240 mm2 field of view to provide full brain coverage over 
46 slices (Flip angle = 79°; TE = 32 ms; TR = 2500 ms; 3mm3 
voxels). In the scanner, stimuli were presented using 
PsychoPy (Pierce et al., 2019) version 2021.2.3 (using 
Python 3.6).  

Image Preprocessing and Univariate Analyses 
Brain images were preprocessed using the FSL FEAT 
software package (Jenkinson et al., 2012). Each high-
resolution T1-weighted anatomical image was first skull-
stripped using the FSL brain-extraction tool. Skull-stripping, 
motion correction, slice timing correction, and highpass 
temporal filtering were then applied to each functional EPI 
volume. Finally, the functional EPIs were registered to the 
participant’s individual anatomical volume using the FSL 
linear registration tool (Smith 2002). 

A univariate regression model using the GLM was then 
calculated at the trial level, such that beta-value estimates for 
each stimulus were generated separately for each run. For 
each trial, brain activity was sampled from the initial 
presentation of the video stimulus through a short intra-trial 
fixation and a 4 s response period. Trials were separated by a 
jittered fixation interval to allow for an unconfounded 
estimate of BOLD signal. For stimuli which appeared in more 
than one run (ASL and Russian words), beta estimates were 
additionally combined across runs with an item-level 
regression model, yielding a single contrast estimate for each 
word in each language. All beta-value estimates were then 
aligned to the individual’s T1 volume and resampled to 2 
mm3 using the FSL mathematical manipulation tool. 



Finally, cortical surface reconstructions were generated for 
each subject’s T1-weighted anatomical image using 
FreeSurfer’s recon-all toolbox (Fischl & Dale, 2000) and 
transformed to Surface Mapping (SUMA) format (Saad & 
Reynolds, 2012). Formatted cortical surface maps were fitted 
to standard mesh grids based on an icosahedron with 32 linear 
divisions, yielding 20,484 nodes for the whole-brain cortical 
surface. Sulcal alignment of each participant’s cortical 
surface to the FreeSurfer average brain (Fischl et al., 1999) 
allowed for anatomical correspondence between surface 
nodes across participants. 
 

 
Figure 1: Word2vec semantic dissimilarity matrix. Pairwise 
semantic distances between each of the twelve target stimuli 

derived from the word2vec model are shown. The orange 
boxes indicate the three semantic categories (animals, fruits, 

and vehicles). 
 

Multivariate Analyses 
A whole-brain searchlight analysis was conducted within 

each participant using spherical 5mm searchlights, utilizing 
the PyMVPA toolbox (Hanke et al., 2009). This was repeated 
for the twelve item-level betas for the target stimuli set in 
each language (ASL, Russian, and English). In each 
searchlight sphere, the correlation distance between each pair 
of stimuli in the model was calculated to form a dissimilarity 
matrix (DM) for every node and its surrounding 
neighborhood.  

Our goal was to examine whether the participants 
displayed unique neural activity patterns with respect to 
vocabulary in the language they had studied during the 
learning period. To this end, RSA was conducted separately 
for neural data recorded during presentation of stimuli in each 
language. Specifically, we compared the DMs at each 
searchlight location with a model constructed from lexical 
word embeddings calculated with word2vec (Mikolov et al., 
2013), which represent item-level similarities between each 
of the twelve stimuli (shown in Figure 1). Spearman 
correlation between the node-level DM and the word2vec 
model was calculated for every node, passed through a Fisher 
z-transformation and compared to a null distribution 
calculated as the dot product of the word2vec model and a 
randomly permuted model and standardized over 1,000 

iterations. The resulting correlations for each participant were 
subjected to a one-sample t-test at every node within each 
group. The resulting set of nodes where p < 0.05 (after node-
level permutation correction) was further subjected to spatial 
cluster correction using the AFNI SurfClust function (Cox, 
1996). For an FDR-corrected alpha of 0.05, only clusters with 
area greater than 121 mm2 were included in further analyses. 

An average DM for each cluster in the English model was 
then computed by averaging values at each node for all 
subjects within each group, then averaging across each node 
belonging to the cluster. Each cluster-level DM was then 
projected into two dimensions using multidimensional 
scaling (MDS), and a support vector machine (SVM) 
classifier with a radial basis function kernel was employed 
using leave-one-item-per-category-out cross-validation at 
each cluster to determine the degree to which the patterns of 
activity in that cluster reflected the categorical relationships 
between the items (animals vs. fruits vs. vehicles). These 
steps were implemented in Python using the scikit-learn 
package (Pedregosa et al., 2011). 

In addition, for each of these clusters which had been 
identified as sensitive to categorical distinctions in the 
English stimuli with the aforementioned procedure, we also 
constructed an average DM of response patterns to the other 
two languages and repeated the same classification steps. 

Results 

Target Language Quiz Performance 
At the end of the final training session and before the fMRI 
scan, participants completed a free recall quiz in which they 
were shown a video clip containing one of the words they had 
learned and asked to type the English translation into a text 
box. We calculated mean accuracy for the ASL group (MASL 
= 98.75%, SDASL = 2.01%) and the Russian group (MRUS = 
62.92%, SDRUS = 18.89%). Due to the sizable difference in 
performance between the two groups, notably, the near-
ceiling performance of the ASL group compared to the poor 
and highly variable performance of the Russian group, all 
subsequent analyses reported here focus exclusively on the 
ASL group. 

Searchlight Representational Similarity Analysis 
The ASL group’s quiz performance immediately prior to the 
scan session indicated that they had achieved full mastery of 
the target words, so we hypothesized their fMRI data would 
show overlapping patterns of brain activity for a newly 
learned language (ASL) and a well-known language 
(English). Likewise, within-language semantic information 
(i.e., the representation of semantic categories) in ASL would 
also be an indication of newly learned knowledge 
representations.  

Out of 20,484 5 mm surface searchlights probed for 
correlation between responses to the English stimuli and the 
a priori word2vec semantic model, 1,212 nodes were found 
to be significant after comparison with the permuted null 
model within subjects, and a 1-sample-test at the group level 



(α = .05, permutation corrected). After the cluster correction 
step (α = .05, FDR corrected), seven significant clusters were 
identified, shown in Figure 2. Correlation with the word2vec 
semantic model in these areas indicates the presence of  
 

 
 

Figure 2: English RSA Results. Seven clusters (displayed on 
a semi-inflated cortical surface projection) were identified 

where the pattern of responses to the English stimuli 
significantly correlated with item-level dissimilarities in the 

word2vec model. 
 

semantic information about the English stimuli being 
represented in these areas during the trial. 

For the correlation between responses to the ASL stimuli 
and the word2vec semantic model, 1,474 nodes survived the 
group-level thresholding procedures after RSA (α = .05, 
permutation corrected), and 18 significant clusters were 
identified after FDR correction (α = .05, FDR corrected), 
shown in Figure 3. 

Support Vector Machine Classification 
Because all subjects were fluent English speakers with very 
limited training in ASL, we probed the seven clusters 
identified by the English model RSA for information about 

the object categories for all three languages. At each cluster, 
1,000 iterations of SVM classification were run and the mean 
accuracy score was taken. On each iteration, the model was 
trained on nine items from the average cluster DM for five 
participants and tested on the held-out items in the average 
cluster DM of the other five participants. Mean accuracy and 
standard deviation for each cluster are shown in Table 1. 
Because data from the English trials were also used to define 
the clusters using RSA, English classification accuracy 
scores are provided primarily as a reference for the other two 
languages. Notably, cluster 1 was among the highest-
performing clusters for both the English stimuli and ASL 
stimuli, for which the participants were aware of the words’ 
semantic meaning. For the unstudied language, Russian, 
however, the classifier performed at chance levels in all but 
two clusters. The distribution of classification accuracies 
over 1000 iterations for cluster 1 in each language are shown 
in Figure 4. 
 

 
 

Figure 3: ASL RSA Results. Neural activity recorded 
during presentation of the ASL stimuli resulted in eighteen 

clusters (displayed on a semi-inflated cortical surface 
projection) that significantly correlated with item-level 

dissimilarities in the word2vec model. 

 
Table 1. English RSA Cluster SVM Classification Accuracy 

 
Cluster MENG SDENG MASL  SDASL MRUS SDRUS 
1. L Supramarginal Gyrus 58.58*** 12.45 67.03*** 14.47 28.79 9.43 
2. R Ant. Lateral Fissure 60.32*** 13.00 35.86*** 12.59 31.08 10.46 
3. R Calcarine Sulcus 54.65*** 13.96 31.97* 13.00 32.54 8.93 
4. L Marginal Sulcus 53.67*** 13.06 41.36*** 11.97 27.19 13.11 
5. R Post. Lateral Fissure 51.39*** 11.40 45.02*** 12.67 30.39 10.64 
6. L Pericallosal Sulcus 52.26*** 12.37 39.04*** 14.55 36.74*** 12.08 
7. L Planum Temporale 53.43*** 12.55 42.43*** 13.11 34.48* 11.37 

 
Table 1: SVM classification accuracy in each cluster was calculated as the mean of 1,000 iterations with leave-one-item-

per-category-out cross-validation. Classification results from the English trials are shown as a reference for the other two 
languages, where the classified data were independent from cluster selection. The highlighted rows indicate overlap with the 

ASL RSA results. Results from a one-tailed t-test against a distribution of permuted classification scores which exhibited 
chance classification (33%) in each cluster are also reported (* = p < 0.05, ** = p < 0.01, *** = p < 0.001). 



 
 

Figure 4: SVM Classification Results  
 

(A) Violin plots show SVM classification accuracies over 1,000 iterations in Cluster 1 for each of the three languages 
(English, ASL, and Russian). The horizontal lines indicate the maximum, mean, and minimum for each language condition 
and the curves represent frequency of the result in the distribution. Chance accuracy (33%) is indicated by the dashed line.  

 
(B) An example MDS-SVM plot for each cluster. The Cluster 1 average DM for each language was projected into two 
dimensions using MDS, and an SVM model was fitted to classify the items into the three semantic categories. Decision 

boundaries are plotted to demonstrate the separability of the item categories 

 
 

Mean classification accuracy and standard deviation for 
all three languages in the significant clusters identified by 
the RSA of the ASL trials is shown in Table 2. The same 
iterative half-sample and leave-one-item-per-category out 
cross-validation procedure as before was performed in 
each cluster.  

Discussion 
The results of the present study indicate that shared 

semantic representations can be observed across language 
modalities (sign and speech), even for novice learners. 
Thus, decoding across languages and within a newly-
learned language can provide a stable neural indicator of 
learning, even following relatively brief training. This 
finding is consistent with studies which have found 
common category-based coding between items presented 
as pictures and text (Shinkareva et al., 2011), or presented 
to fluent bilinguals in languages of different modality 
(Evans et al., 2019). The cluster with the greatest extent of 

category classification in both English and ASL for the 
ASL group was located in the left supramarginal gyrus 
(SMG), an area which has previously been associated with 
word recognition (Stockel et al., 2009) and phonological 
processing (Sliwinska et al., 2012). In particular, Alfred et 
al. (2020) found that cross-modal decoding (between 
words and pictures) in the left SMG was predicted by 
individual differences in preference for attending to verbal 
labels over pictorial representations.  

Even beyond the category-level information used for 
cross-language decoding, these results provide evidence 
that patterns of brain activity reflecting item-level semantic 
information can be observed in novice learners of a new 
language. Significant clusters within areas with well-
documented roles in language processing including the 
planum temporale (Shapleske et al., 1999) and left angular 
gyrus (Seghier, 2013) were found to represent the semantic 
structure of the word2vec model for the ASL stimuli 
condition, despite a short training period of three 30- 

 



Table 2. ASL RSA Cluster SVM Classification Accuracy 
 

Cluster MENG SDENG MASL  SDASL MRUS SDRUS 
1.  L. Lateral Fusiform Sulcus 53.52*** 14.79 57.64*** 10.24 33.69 11.61 
2.  L. Medial Lingual 37.74*** 10.25 58.02*** 15.16 37.32*** 10.51 
3.  L. Parietal Occipital Sulcus 51.80*** 11.79 51.08*** 15.49 32.17 11.22 
4.  L. Inf. Angular Gyrus 43.55*** 11.40 63.27*** 13.79 44.01*** 13.66 
5.  L. Sup. Precentral Gyrus 43.36*** 12.88 47.85*** 13.09 24.33 9.40 
6.  L. Parahippocampal Gyrus 37.02*** 11.22 55.70*** 11.42 36.95*** 10.48 
7.  R. Circular Insular Sulcus 51.45*** 13.05 34.66*** 11.49 28.46 11.32 
8.  L. Ant. Lateral Fissure 44.44*** 13.66 48.93*** 11.49 32.01 11.31 
9.  L. Precuneus 32.30** 11.28 29.18*** 12.05 31.18 11.65 
10. L. Parietal Occipital Sulcus 36.78*** 10.67 41.47*** 9.83 35.83*** 9.57 
11. L. Frontal Middle Sulcus 32.48 13.47 44.34*** 11.29 47.50*** 13.11 
12. L. Planum Temporale 42.33*** 14.32 48.32*** 13.58 35.94*** 12.65 
13. R. Orbital H-shaped Gyrus 31.70 12.44 43.89*** 16.36 39.49*** 14.29 
14. L. Sup. Lateral Gyrus 40.57*** 12.24 51.76*** 14.78 26.76 10.64 
15. R. Precuneus 33.92* 10.75 31.71 11.66 35.61*** 10.36 
16. L. Circular Insular Sulcus 46.48*** 12.51 62.24*** 10.37 30.53 8.74 
17. L. Supramarginal Gyrus 55.53*** 14.62 61.50*** 13.15 29.88 9.13 
18. R. Paracentral Sulcus 35.62*** 9.03 36.26*** 10.70 30.93 13.08 

 
Table 2: SVM classification accuracy in each cluster from the ASL RSA was calculated as the mean of 1,000 iterations 
with leave-one-item-per-category-out cross-validation. On each iteration, the model was trained on the average of 5 

participants and tested on the average of the held-out five. Classification results from the ASL trials (the same trials which 
were used to define the clusters in RSA) are shown as a reference for the other two languages, where the classified data were 

independent from cluster selection. Results from a one-tailed t-test against a distribution of permuted classification scores 
which exhibited chance classification (33%) in each cluster are also reported. The highlighted rows indicate areas of overlap 

with the English trial RSA results. 
 

 

minute sessions. Importantly, similarly robust evidence of 
semantic representation in relevant areas was not observed 
for the unstudied language, Russian. Furthermore, a 
significant cluster in the left visual motion processing area 
MT was found in the ASL RSA but not the English RSA. 
This is consistent with the findings of Evans et al. (2019), 
who found V5/MT to be selective for sign but not speech. 
Research in fluent signers has suggested that age of sign 
language acquisition modulates recruitment of V5/MT for 
sign processing (Bavelier et al., 2001; Neville et al. 1998). 
Another direction for future study could be to investigate 
whether left MT activity correlates with proficiency in the 
earlier stages of learning as well. 

Another study by Zinszer et al. (2012) concluded that 
similarity between neural activity patterns evoked by 
participants’ first and second languages correlated with 
proficiency in the second language. While the present 
study examined responses to a specific set of target words 
for which the participants had been trained to ceiling, an 
important future direction could apply this approach as an 
individual differences measure to predict language 
proficiency as measured by more traditional learning 
assessments such as quiz scores. 

The present study demonstrated that through 
multivariate pattern analysis methods, it is possible to 

detect overlapping neural representations of semantic 
concepts evoked by homologous words in two different 
languages even in novices with very brief exposure to a 
new language. Although the sample size of 10 participants 
is a limitation of this preliminary study, this finding 
provides a proof of concept for the study of overlapping 
semantic representation in novice language learners. We 
found evidence of shared representations evoked by 
languages of different modalities, such as sign and speech, 
and we found evidence of newly learned semantic 
representations in the second language. Future research 
may also consider using this and similar multivariate 
neuroimaging approaches not only to detect but to quantify 
the extent of learning in individual learners, and to 
correlate neural response patterns with other indicators of 
real-world knowledge. 
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