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Abstract

This thesis focuses on the emergence of universal dynamical scaling in quantum critical spin

systems driven out of equilibrium, with emphasis on quench dynamics which involves isolated stan-

dard critical points, multi-critical points, and non-isolated critical points (that is, critical regions).

One of our main conclusions is that the so-called Kibble-Zurek scaling holds for a large class of

physical observables throughout the whole quench process when isolated standard critical points

are involved, irrespective of the quench path. However, for both isolated multi-critical points and

non-isolated critical points, the knowledge of equilibrium critical exponents is not enough to pre-

dict non-equilibrium dynamical scaling. Instead, our analysis shows that the resulting power-law

scaling depends sensitively on the control path, and that anomalous critical exponents may emerge

depending on the universality class. In particular, we argue that for a multi-critical point the ob-

served anomalous behavior originates in the fact that the dynamical excitation process takes place

asymmetrically with respect to the static multi-critical point, requiring the introduction of genuinely

non-static exponents.

We further explore the robustness of universal dynamical scaling behavior with respect to ini-

tialization in a large class of states with finite energy above the ground state, including thermal

mixtures. We find that the critical exponents of the ground-state quantum phase transition can be

encoded in the dynamical scaling exponents despite the finite energy of the initial state. In partic-

ular, we identify conditions on the initial distribution of quasi-particle excitation which ensure the

Kibble-Zurek scaling to persist.

The emergence of effective thermal equilibrium behavior following a sudden quench towards criti-

cality is also investigated, with focus on the long-time expectation value of the quasi-particle number

operator. We find that effective thermalization fails to occur in quenches towards a multi-critical

point, in contrast to quenches to a standard critical point. We argue that the observed lack of

thermalization originates in this case in the asymmetry of the impulse region that is also responsible

for anomalous multi-critical dynamical scaling.
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Chapter 1

Introduction and Motivation

1.1 Equilibrium Quantum Phase Transitions

Understanding quantum phases of matter is one of the primary goals in condensed-matter physics

and quantum statistical mechanics. Unlike classical phase transitions, which are associated with a

non-analytical behavior of the free energy driven by thermal fluctuation, quantum phase transitions

(QPTs) are driven solely by quantum fluctuations at zero temperature, and are associated with a non-

analyticity of the many-body ground state energy [1, 2]. If the ground-state energy is discontinuous

in its first derivative, the QPT is called a first-order QPT, which involves sudden jumps of certain

physical properties. For instance, in the itinerant ferromagnet ZrZn2, there is a sudden change of

the ferromagnetic moment in a ferromagnetic first-order QPT [3]. The more common and interesting

QPTs in Nature are continuous QPTs, where the ground state energy is discontinuous in its second-

order (or even higher-order) derivatives. Typically, such a non-analyticity of the ground-state energy

is induced when a temperature-independent control parameter λ in the system Hamiltonian H(λ) is

varied across the point at which a transition occurs from one quantum phase to a different one, the

so-called quantum critical point (QCP). QPTs are usually accompanied by a qualitative change in

the nature of the quantum correlations in the ground state. In addition to the ground-state energy,

often we can find some other physical observables, including an order parameter (a quantity which

1



is zero in one phase and nonzero in the other)1, that exhibit singular behavior in the vicinity of a

QCP.

Remarkably, striking similarities exist in the behavior close to a QCP among systems that are

very different in nature. The numerical values of the critical exponent describing the quantitative

nature of the singularities are identical for large groups of apparently diverse physical systems [5].

In a continuous QPT, the energy gap ∆ between the ground state energy and the first-excited state

energy closes in the thermodynamic limit. In most cases, it turns out that when the parameter λ

approaches the critical value λc, the characteristic vanishing energy scale ∆ scales as:

∆ ∼ |λ− λc|zν , (1.1)

where z and ν are critical exponents, whose physical meaning shall become clearer soon. Generally

speaking, continuous QPTs are also accompanied with a divergence of the correlation length ξ, which

is the characteristic length scale above which the (two-body) correlation function is negligibly small.

Suppose that we define the (single-time) correlation function as follows:

C(r) ≡ 〈ΨGS |AiAi+r|ΨGS〉 − 〈ΨGS |Ai|ΨGS〉〈ΨGS |Ai+r|ΨGS〉,

where Ai is some observable, r is the distance between two lattice sites, and |ΨGS〉 is the ground

state, respectively. Then the correlation length can be thought as the characteristic length scale

entering into the exponential decay of C(r) at long distance, that is,

lim
r→∞

|C(r)| ∼ e−r/ξ.

Typically, in a continuous QPT the correlation length ξ diverges as

ξ ∼ |λ− λc|−ν , (1.2)

1According to Landau’s symmetry-breaking theory, different order parameters correspond to different symmetries.
However, two different topological orders may share the same symmetry (for instance, the fractional quantum Hall
system [8]), which is beyond Landau’s paradigm. Notice that addressing systems exhibiting topological order is
beyond the scope of this Thesis.
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where ν is called the correlation length critical exponent [1]. On the other hand, the vanishing

characteristic energy scale also leads to the so-called critical slowing down, that is, the divergence

of the relaxation time τrel ∼ ∆−1, which characterizes the minimum time the system needs to reach

a new thermal equilibrium state after a small perturbation. Based on the scaling assumptions in

Eq. (1.1) and Eq. (1.2), we also obtain the following relations:

∆ ∼ ξ−z, τrel ∼ ξz, (1.3)

where z is called dynamical critical exponent. The fact that two apparently different physical systems

share the same set of critical exponents is known as universality, which is also one of the hallmarks

of classical critical phenomena. Phenomena with the same set of critical exponents are said to form

a universality class. Usually, members of the same universality class have at least two things in

common: the symmetry group of the Hamiltonian and the dimensionality.

Among the critical points, there is a special class of critical points, so-called multi-critical points.

A multi-critical point (MCP) may be defined phenomenologically as a point of sudden change of

behavior on an otherwise smooth, universal line of critical points [17]. There are different types of

MCPs: some are characterized as the meeting of two separate critical lines corresponding to two,

distinct, competing order parameters; some are characterized by the coexistence of at least three

different phases. The most commonly known MCP in classical phase transitions is the triple point of

water (critical temperature around 273K, critical vapor pressure around 0.006atm), at which solid

ice, liquid water, and water vapor coexist. In our model system, we will encounter a number of

quantum MCPs. Remarkably, they are not just special from the point of view of static QPTs, but

they also exhibit highly-nontrivial dynamical scaling behavior.

In real world, absolute zero temperature is unaccessible. However, it is well known that the

influence of a QCP can extend well into the finite temperature regime, the so-called quantum-critical

region [1], which provides the theoretical foundation for the observation of QPTs in laboratory

experiments. For instance, in the pioneer work by Greiner et al. [7], the QPT from a superfluid to a

Mott insulator phase was realized experimentally in a Bose-Einstein condensate at low temperature

with the increase of repulsive interactions.
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1.2 Non-equilibrium Quantum Phase Transitions and the Kibble-

Zurek Scaling

When a system is close to a critical point, besides the static properties discussed in Section 1.1,

singular behavior may also occur in a wide variety of dynamical properties, such as the multi-time

correlation functions, e.g. the time-dependent two-point correlation function defined as:

C(r, t− t′) ≡ 〈Ai(t)Ai+r(t′)〉 − 〈Ai(t)〉〈Ai+r(t′)〉.

These dynamical properties are determined by the equations of motion, rather than by the equi-

librium distribution for static equilibrium properties [11]. Typically, the term “dynamical scaling”

refers to the universal scaling theory of multi-time correlation functions and response functions

close to a QPT perturbed by a time-dependent change of control parameter, which results into a

“non-equilibrium QPT”.

While studies of QPTs have primarily focused on equilibrium scaling properties in the vicinity of

QCPs, the investigation of dynamics in non-equilibrium QPTs presents new challenges of practical

relevance. In particular, understanding and manipulating the dynamics of QPTs in matter has

a broad significance across fields as diverse as quantum statistical mechanics, material science,

quantum information science (QIS), and cosmology. Back to 1976, Kibble proposed a theory to

predict the topological defect formation in the cosmological (finite-temperature) phase transition

of the early Universe [20]: In the hot Big-Bang model of the Universe, initially the temperature is

believed to be well above the critical temperature (Tc) of a symmetry-breaking phase transition, and

the Universe is in the “normal” phase. As it expands and cools, and the temperature drops below

Tc, a domain structure of “cosmic strings” might arise. These cosmic strings are important since if

they exist, they can survive for a long time, and may help to understand what the Universe was like

when it was formed [21]. In the early 80’s, in analogy to the defect formation during a cosmological

phase transition, Zurek proposed that formation of topological defects might also be found in small-

scale condensed-matter phase transitions [22, 23], leading to a prediction for the scaling behavior

of “defect density”, the so-called Kibble-Zurek scaling (KZS). Over the last two decades, the KZS
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was numerically confirmed and experimentally tested in a variety of classical phase transitions, see

[24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34] for representative literature. However, the application of

KZS to QPTs remained largely unexplored until the recent studies in Refs. [57, 58, 59, 60, 61].

Basically, the KZ argument is rooted in the intuition that, irrespective of how slowly a system

is driven across a continuous phase transition, adiabaticity is necessarily lost in the thermodynamic

limit due to the vanishing energy gap at the critical point. Thus, it is assumed that the system will

first go through an adiabatic regime (far away from the critical point), and then an approximately

impulse regime (close to the critical point), and finally back to an adiabatic regime (see the top panel

of Fig. 1.1). Qualitatively, the typical time and length scales, t̂ and ξ̂ respectively, characterize the

adiabatic-to-impulse crossover. The fact that “order” cannot be established on distances larger than

ξ̂, results in the formation of a domain structure and the generation of a finite density of topological

defects in the system. Quantitatively, consider the simplest quench scheme that a time-dependent

Hamiltonian H(t) is driven across its QCP by changing a control parameter λ(t) (e.g., the magnetic

field along the z-axis) in time with constant quench rate τ > 0, that is:

λ(t)− λc =
t− tc
τ

, τ > 0, (1.4)

where tc is the time at which λ(tc) = λc (tc = 0 without loss of generality). The time-scale of

adiabaticity breaking (t̂) can be obtained when the relaxation time scale matches with the quench

time scale, that is:

τrel ≡
∣∣∣ (λ(t)− λc)

λ̇(t)

∣∣∣, (1.5)

associated with the scaling assumption of τrel in Eq. (1.3) and the other two scaling assumptions in

Eq. (1.1)–(1.2), leading to the scaling result:

t̂ ∼ τνz/(νz+1). (1.6)

Thus, the typical gap ∆̂ ∼ t̂−1. Correspondingly, the typical correlation length ξ̂ ∼ ξ(t̂) ∼ ∆̂−z also

5



Figure 1.1: Qualitative sketch of the adiabatic-impulse-adiabatic sequence of regimes relevant to
dynamical scaling arguments. Top: Symmetric impulse region, as assumed by the standard KZS
scenario. Bottom: Asymmetric impulse region, as resulting from the existence of quasicritical path-
dependent energy states, see Ref. [112].

scales with the quench rate τ :

ξ̂ ∼ τν/(νz+1). (1.7)

Since ξ̂ is the universal length scale near criticality, it determines the scaling of the final (t = tf )

density of defects and, more generally, the density of excitations, nex(tf ), created in the system. If

d denotes the spatial dimension, the KZS result then follows:

nex(tf ) ∼ ξ̂−d ∼ τ−dν/(νz+1). (1.8)

Thus, in the current context, “non-equilibrium dynamical scaling” will be taken to refer to the

scaling of the excitation density or other physical observables that quantify adiabaticity loss, which

might be a different notion than dynamical scaling as defined in e.g. Ref. [11] in the context of

dynamical critical phenomena.

Interestingly, in a seemingly totally different line of research, Barouch et al. studied the time-

dependent zero-temperature magnetization of the anisotropic XY spin chain [12], and showed that

equilibrium is not reached in the long-time limit (tf 7→ ∞), back to 1970. The fact that the final
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magnetization sensitively depends on the initial magnetic field is a manifestation of non-ergodic

behavior. The possible emergence of non-equilibrium scaling, however, was not anticipated. While

it is suggestive to realize that defect formation in the KZ paradigm is also a manifestation of

broken ergodicity in Barouch’s sense [12], fascinating experimental progress in systems ranging

from ultracold atomic gases to quantum magnets [7, 9, 10] demand the above KZS to be carefully

scrutinized.

The main goal of my Thesis research has been to explore the universality of KZS within the

framework of exactly solvable quantum spin chains, by focusing in particular on the following prob-

lems:

• The validity of KZS for different universality classes, observables [Chapter 3], and initial conditions

[Chapter 4];

• The modification to dynamical scaling behavior that are needed in complex quench scenarios, for

instance, when non-isolated QPTs (critical regions) are involved and/or when the qualitative picture

of Fig. 1.1 (top) no longer holds (see bottom panel of Fig. 1.1);

• The extent to which KZS can manifest in decoherence dynamics, for instance using the decoher-

ence of a central qubit as a probe to monitor the dynamical QPT of the environment Hamiltonian

[Chapter 5].

1.3 Entanglement and Quantum Phase Transitions

Traditionally, the study of many-body condensed-matter systems has focused on characterizing

various order parameters, the system response to external perturbations, the excitation spectrum,

and so on. Beginning in the early 90’s, QIS has become a fascinating and naturally cross-disciplinary

research area. Since then, there has been a growing body of research at the interface between

condensed-matter theory, quantum statistical mechanics, and QIS. Can QIS concepts and tools

contribute to advance our understanding of many-body quantum systems? Methods developed

in QIS have contribute to unveil new properties of many-body quantum system. In particular,

entanglement theory has emerged as a natural and powerful bridging testbed for tackling this broad

question from an information physics perspective.
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Entanglement, a property which has no classical counterpart, refers to the existence of purely

quantum-mechanical correlations in a composite quantum system. It has been a subject of intense

study in recent years due to the key role it plays across QIS [4]. By its own nature, entanglement is

a property inherent to quantum states and intimately related to many-body quantum correlations.

Therefore, on the one hand, one may expect that entanglement undergoes a significant change across

a QCP. On the other hand, by appropriately quantifying entanglement, one may use entanglement to

identify and characterize a QPT. As a result, the study of entanglement may shed new light on QPTs.

The intriguing issue of the relation between entanglement and QPTs has been intensively investigated

recently, e.g., see a recent review by Amico et al. [35]. Such investigations mostly focused on

exploring standard notions (and measures) of entanglement, that are based on partitioning the

system of interest into subsystems. For instance, in the work of Ref. [15], the so-called concurrence

[18] was used to quantify the entanglement of arbitrary mixed states of a bipartite spin system. It

was shown, in particular, that the derivative of concurrence displays singular behavior as a function

of the control parameter at a QCP. Likewise, in Ref. [16], the block entropy of entanglement SL

was used to quantify the entanglement between a block of spins (of size L) and the rest in a pure

state. It was proved that at a QCP, SL shows logarithmic divergence as a function of the block size,

whereas, away from the QCP, SL either vanishes for all L or grows monotonically as a function of

L until it reaches a saturation value for a certain block size L0. While these two examples focused

on QCPs in spin systems, the works in Ref. [54, 55] showed that block entropy of entanglement can

be used to identify QPTs in fermionic systems as well. In spite of the success of subsystem-based

entanglement measures, however, it became clear that this approach has intrinsic limitations. As we

will discuss in more detail in the next Chapter, this prompted the introduction of an “observable-

based” entanglement concept, so-called Generalized Entanglement [45, 46].

In my work, I have also addressed the problem of characterizing quantum-critical models from a

GE perspective [50, 51], by continuing the earlier exploration with a twofold objective in mind:

• To further test the usefulness of GE-based criticality indicators in characterizing static quantum

phase diagrams with a higher degree of complexity than in Ref. [50] (including multiple competing

phases and various universality classes);

• To start analyzing time-dependent behavior of GE, with the goal of establishing the emergence
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and validity of universal scaling laws (in particular, KZS) for non-equilibrium quantum correlations

in QIS [Chapter 3].

The main results of my Thesis research have been published to date in the following papers:

• S. Deng, L. Viola, and G. Ortiz, “Generalized entanglement in static and dynamic quantum phase

transition”, Recent Progress in Many-Body Theories, Vol. 11 (World Scientific, Singapore, 2008),

p. 387, arXiv:0802.3941 [Appendix B];

• S. Deng, G. Ortiz, and L. Viola, “Dynamical non-ergodic scaling in continuous finite-order quantum

phase transitions”, Europhys. Lett. 84, 67008 (2008) [Appendix C];

• S. Deng, G. Ortiz, and L. Viola, “Anomalous nonergodic scaling in adiabatic multicritical quantum

quenches”, Phys. Rev. B 80, 241109(R) (2009) [Appendix D];

• S. Deng, G. Ortiz, and L. Viola, “Dynamical critical scaling and effective thermalization in quantum

quenches: Role of the initial state”, Phys. Rev. B 83, 094304 (2011) [Appendix E];

An additional paper is currently in preparation on critical decoherence dynamics, jointly with H. T.

Quan from University of Maryland and L. Viola.
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Chapter 2

Equilibrium Critical Properties of

the Alternating XY Chain

2.1 Exact Equilibrium Phase Diagram

One of the most important and pedagogical models to study quantum critical phenomena is the one-

dimensional spin-1/2 anisotropic XY model introduced by Lieb et al. [37]. Its importance mainly

comes from the fact that it is exactly solvable, and thus can provide an excellent ground for a rigorous

study of different properties of quantum magnetic systems, and their quantum-critical behavior.

Moreover, this model is not just interesting to theoretical physicists. From an experimental point

of view, many compounds can be described as (quasi) one-dimensional, for instance, (V O)2P2O7

and CuGeO3 studied in Ref. [38] and Ref. [39] respectively were found to form one-dimensional spin

ladder configurations. Furthermore, it was reported in Ref. [40] that in cobalt niobate, CoNb2O6,

which has a coupling between zigzag chains in the crystal, so that the spins prefer to parallel to

each other when these is no external magnetic field, provides a good testbed for quantum criticality

of the quantum Ising chain—a particular case of the anisotropic XY spin chain. Theoretically,

after the equilibrium properties of the XY spin chain in a transverse field were analyzed, various

modifications were introduced into the model, and the effects of these changes were explored. In
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particular, Derzhko et al. studied the ground-state and thermodynamic properties of the spin-1/2

anisotropic XY chain in a regularly alternating transverse magnetic field [41]. Remarkably, a new

universality class ν = 2, z = 1 was found.

Motivated by the new critical behavior pointed out in Ref. [41], we focused on a class of spin-1/2

one-dimensional models described by the following Hamiltonian:

H = −
N∑

i=1

[
(1 + γ)

2
σixσ

i+1
x +

(1− γ)

2
σiyσ

i+1
y

]
+

N∑

i=1

(
h− (−1)iδ

)
σiz, (2.1)

where periodic boundary conditions (PBCs) are assumed, that is, σiα ≡ σi+Nα , α = x, y, z. Here,

γ ∈ [−∞,∞] is the anisotropy, h ∈ [−∞,∞] is the magnetic field strength, and δ ∈ [−∞,∞] is the

alternation strength. Without loss of generality, we will assume that N is an even number. The

above Hamiltonian includes several relevant cases in special limits:

• δ = 0: Anisotropic XY model in a transverse field;

• δ > 0, γ = 1: Ising model in an alternating transverse field;

• γ = 0: Isotropic XX limit.

For generic values of the parameters, the Hamiltonian Eq. (2.1) has a global discrete Zz2-symmetry

(Zz2 =
∏N
j=1 σ

j
z), which can be spontaneously broken in the thermodynamic limit. For specific values

of the parameters, the Hamiltonian may develop additional symmetries, which will be discussed in

detail later (see Sec. 2.1.1). An exact solution for the energy spectrum of this Hamiltonian may be

obtained by generalizing the basic steps carried out in the standard Ising case to account for the

existence of a two-dimensional periodic cell introduced by the alternation. After using a generalized

Jordan-Wigner transformation [42]:

a†2j−1 =

2j−2∏

l=1

(−σlz)σ†2j−1, b†2j =

2j−1∏

l=1

(−σlz)σ†2j ,

where a†2j−1 (b†2j) are canonical fermionic operators that create a spinless fermion at site 2j−1 (2j),
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the Hamiltonian Eq. (2.1) rewrites as a quadratic form in the fermionic operators:

H = −
M∑

j=1

(a†2j−1b2j + γa†2j−1b
†
2j + h.c.) +

M−1∑

j=1

b†2ja2j+1 + γb†2ja
†
2j+1 + h.c.)

+

M∑

j=1

[(h+ δ)a†2j−1a2j−1 + (h− δ)b†2jb2j − h] + P (b†Na1 + γb†Na
†
1 + h.c.), (2.2)

where M = N/2, the last term originates from the spin periodic boundary conditions and the parity

operator:

P ≡
N∏

j=1

(−σjz) = eiπ/2
∑N
j=1 σ

j
z = eiπ

∑N/2
j=1

(
a†2j−1a2j−1+b†2jb2j

)
, (2.3)

which is equal to +1(−1) depending on whether the eigenvalue of the total fermionic number op-

erator is even (odd), respectively. Physically, P corresponds to a global Zz2-symmetry which, for

finite N , allows the even and odd subspaces to be exactly decoupled, H ≡ H(+) + H(−), and the

diagonalization to be carried out separately in each symmetry sector.

In finite systems, the eigenstates with an even number of fermions belong to the P = +1 sector.

From Eq. (2.2), P = +1 provides a positive sign for the hopping term b†Na1, while the nearest

neighbor hopping term is negative, e.g. −b†NaN+1, leading to anti-periodic boundary condition in

the fermionic language for P = +1, that is, a2j−1+N = −a2j−1, b2j+N = −b2j . By exploiting the

translational invariance of the Hamiltonian, we can apply a Fourier transformation to momentum

modes: 



a†k = 1√
M

∑M
j=1 e

ik(2j−1)a†2j−1,

b†k = 1√
M

∑M
j=1 e

ik(2j)b†2j ,

where M = N/2, k ∈ K ≡ K+ + K− = {± π
N ,± 3π

N , · · · ± (π2 − π
N )} for the anti-periodic boundary

conditions (APBs). Eq. (2.2) can then be expressed as:

H =
∑

k∈K+

Hk =
∑

k∈K+

Â†kĤkÂk,
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where Âk is a vector operator:

Â†k = (a†k, a−k, b
†
k, b−k),

and Ĥk is the following 4× 4 Hermitian matrix:

Ĥk =




2(h+ δ) 0 Jk Γk

0 −2(h+ δ) −Γk Jk

J∗k −Γ∗k 2(h− δ) 0

Γ∗k J∗k 0 −2(h− δ)




Jk = −2 cos(k),

Γk = −2iγ sin(k).
(2.4)

Therefore, the problem reduces to the diagonalization of the matrices Ĥk for each k ∈ K+. Let the

eigenvalues of Ĥk be denoted by εk,1, εk,2, εk,3, εk,4, with εk,1 ≤ εk,2 ≤ 0 ≤ εk,3 ≤ εk,4. Then Hk can

be expressed as

Hk =
∑

n=1,...4

εk,nγ
†
k,nγk,n, (2.5)

where γ†k,n is the quasi-particle creation operator with respect to mode k at energy level n. So at

T = 0 (zero temperature), only the εk,1 and εk,2 bands are occupied, whereas εk,3 and εk,4 are empty.

Hence, the many-body ground state energy is Eg =
∑
k∈K+

(εk,1 + εk,2). Accordingly, an excitation

gap in the P = +1 sector for each momentum k can be defined as ∆k = εk,3 − εk,2, yielding

∆k(γ, h, δ) = 4
[
h2 + δ2 + cos2 k + γ2 sin2 k − 2

√
h2 cos2 k + δ2(h2 + γ2 sin2 k)

]1/2
. (2.6)

In finite systems, eigenstates with an odd number of fermions belong to the P = −1 sector, which

implies PBCs on the fermions for the same reason as P = 1 corresponds to APBs for fermions, that is,

a2j−1+N = a2j−1, b2j+N = b2j , and a different set K̄ of allowed momentum modes, K̄ ≡ K̄++K̄−+ 0,

where K̄± =
{
± 2π

N ,± 4π
N , . . . ,±

(
π
2 − 2π

N

)
,±π2

}
. The reduced matrices Ĥk for all the modes are the

same as the ones with anti-periodic boundary condition, except for k = 0. One may show that for
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this mode:

Ĥk=0 = 2




(h+ δ) 0 −1 0

0 −(h+ δ) 0 −1

−1 0 (h− δ) 0

0 −1 0 −(h− δ)



,

such that the creation operators a†0, b
†
0 and the annihilation operators a0, b0 are decoupled. This

implies that the number operator N0 = a†0a0 + b†0b0 is conserved. The two branches from N0 = 1

have energy spectrums ε0 = h ±
√
δ2 + 1, whereas the two branches from N0 = 0 have energy

spectrums ε0 = −h±
√
δ2 + 1. Notice that the solution should obey the boundary condition. Thus

in fermionic language, we need to require an odd number of total fermion particles for the APBs.

It can be verified through numerical calculation that the ground state in P = −1 sector has the

following property: the k = 0 mode contributes an odd number of particles, whereas all other modes

contribute an even number of particles, such that the boundary condition would be satisfied. Thus,

the occupied two bands for k = 0 are one from the lower energy branch of N0 = 1 (say ε0,1) and one

from the lower energy branch of N0 = 0 (say ε0,2). Suppose that εk,1 and εk,2 are the two negative

bands for mode k (except that k = 0, as we explained, should be treated separately). Then the

ground state energy in the P = −1 sector is Eg =
∑
k∈K̄+,0

(εk,1 + εk,2).

It can be shown numerically that the ground state of the Hamiltonian Eq. (2.1) in a finite system

(with N even) is in the even sector, P = 1. An alternative way to diagonalize Hk is to expand it in

the basis given by the following fermionic operators:

Bk = {|vac〉, a†ka
†
−k|vac〉, b

†
kb
†
−k|vac〉, a

†
kb
†
−k|vac〉, a

†
−kb
†
k|vac〉, a

†
ka
†
−kb
†
kb
†
−k|vac〉},

by exploiting the symmetry of the Hamiltonian (here, |vac〉 stands for the fermionic vacuum, that
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is, no fermion particles). Accordingly, Hk can be expressed as:

Hk =




−4h 0 0 Γ∗k Γk 0

0 4δ 0 J∗k −Jk 0

0 0 −4δ J∗k −Jk 0

Γk Jk Jk 0 0 Γk

Γ∗k −J∗k −J∗k 0 0 Γ∗k

0 0 0 Γ∗k Γk 4h




(2.7)

Once we get the lowest eigenvalue, we can find the corresponding ground state with respect to mode

k:

|Ψk〉 =
(
u

(1)
k + u

(2)
k a†ka

†
−k + u

(3)
k b†kb

†
−k + u

(4)
k a†kb

†
−k + u

(5)
k a†−kb

†
k + u

(6)
k a†ka

†
−kb
†
kb
†
−k

)
|vac〉, (2.8)

for complex coefficients determined by diagonalizing Hk, with
∑6
a=1 |u

(a)
k |2 = 1. Thus, the many-

body ground state may be expressed in the form |ΨGS〉 =
∏
k∈K+ |Ψk〉. In fact, by exploiting the

fact that γk,3|Ψk〉 = 0, γk,4|Ψk〉 = 0, we can relate the coefficients u
(a)
k and the expression of γk,3,

γk,4 in the basis of Âk. Let

γk,3 =vk,1ak+vk,2a
†
−k+vk,3bk+vk,4b

†
−k, γk,4 =wk,1ak+wk,2a

†
−k+wk,3bk+wk,4b

†
−k. (2.9)

Then, 



u
(1)
k = vk,3wk,1 − vk,1wk,3, u

(2)
k = vk,2wk,3 − vk,3wk,2,

u
(3)
k = vk,1wk,4 − vk,4wk,1, u

(4)
k = vk,4wk,3 − vk,3wk,4,

u
(5)
k = vk,2wk,1 − vk,1wk,2, u

(6)
k = vk,4wk,2 − vk,2wk,4.

Similarly, the many-body ground state in the P = −1 sector can be expressed in the form |Ψ̃GS〉 =

|Ψ̃0〉
∏
k∈K̃+ |Ψ̃k〉, where |Ψ̃k〉 has the same form as |Ψk〉 in Eq. (2.8):

|Ψ̃k〉 =
(
ũ

(1)
k + ũ

(2)
k a†ka

†
−k + ũ

(3)
k b†kb

†
−k + ũ

(4)
k a†kb

†
−k + ũ

(5)
k a†−kb

†
k + ũ

(6)
k a†ka

†
−kb
†
kb
†
−k

)
|vac〉, (2.10)

and |Ψ̃0〉 = ũ
(1)
0 a†0|vac〉+ ũ

(2)
0 b†0|vac〉 such that the total number of fermions is odd.
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2.1.1 Quantum Phase Transitions in the Alternating XY Chain

As we discussed in Chapter 1, QPTs are caused by non-analytical behavior of the ground state

energy in the thermodynamic limit. However, thanks to the free-fermion picture the Hamiltonian

Eq. (2.1) exhibits, the non-analytical behavior of the many-body ground state coincides with the

zeroes of ε2(k) in the thermodynamic limit. Thus, the QCPs are determined by the zeroes (hc, δc, γc)

of ε2(k). Analytically, the boundary lines of the phase diagram are determined by the following two

equations: 



h2 = δ2 + 1,

δ2 = h2 + γ2.
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Figure 2.1: 3D phase diagram of the spin-1/2 XY alternating Hamiltonian given in Eq. (2.1).

The resulting phase diagram is depicted in Fig. 2.1. The different quantum phases can be

understood by taking different limits of Hamiltonian Eq. (2.1). Let us first consider the anisotropic
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cases, where γ 6= 0. Notice that the Hamiltonian Eq. (2.1) is invariant under the transformation that

maps (σix;σiy;σiz) 7→ (−σix;−σiy;σiz) (Zz2 symmetry), implying that 〈σix〉 = 0 (similarly, 〈σiy〉 = 0)

for all h and δ. However, since in the thermodynamic limit the ground state becomes two-fold

degenerate in the center of the phase diagram, it is possible to build up a ground state where the

discrete Z
z
2 symmetry is broken, i.e., 〈σix〉 6= 0 (and, similarly, 〈σiy〉 6= 0). We can understand this

statement by considering the Ising limit γ = 1(−1): when δ → ∞, h = 0, the spins tend to align

in the opposite direction of the alternating magnetic field, with ground state |g〉 = | ↓, ↑, · · ·, ↓, ↑〉,

which we call Dimer Phase (DM); conversely, when h → ∞, δ = 0, the ground state corresponds

to all spins pointing down in the z direction which gives a Paramagnetic Phase (PM). The ground

state in both the DM and PM phases has no net magnetization in the x(y) direction. On the other

hand, for h = 0, δ = 0, γ = 1, the states |ψeg〉 = 1√
2
(| →, ....,→〉 + | ←, ....,←〉) (ground state of

the P = 1 sector) and |ψog〉 = 1√
2
(| →, ....,→〉 − | ←, ....,←〉) (ground state of the P = −1 sector),

with | →〉 the positive eigenvalue for σx operator, and | ←〉 the negative eigenvalue for the σx

operator, become degenerate in the thermodynamic limit. Thus, a ground state with 〈σix〉 6= 0 can

be constructed from any superposition of the two. A similar conclusion for 〈σiy〉 6= 0 can be reached

for the limit h = 0, δ = 0, γ = −1. Therefore, long-range order in the xy plane exist in the center

of the phase diagram, leading to a Ferromagnetic Phase (FM) [43, 12]. More specifically, when

h = 0, δ = 0, γ > 0, spin-spin correlations in the x direction are established, leading to what we call

the FMx phase, while spin-spin correlations in the y direction are the dominant contribution to the

Hamiltonian for h = 0, δ = 0, γ < 0, leading to the FMy phase.

In the isotropic limit (γ = 0), the Hamiltonian of Eq. (2.1) has a continuous U(1)-symmetry;

that is, it is invariant under any ẑ rotation of the form eiθ
∑
j σ

j
z (not just θ = ±π/2). Since the

model is one-dimensional, according to the Mermin–Wagner theorem, this symmetry cannot be

spontaneously broken, regardless of the magnitude of the coupling constants [48]. Nevertheless, a

simple calculation of the ground state energy indicates a divergence in its second (or higher order)

derivative at the critical points on this plane, thus, continuous non-broken symmetry QPTs. In

terms of the fermionic operators (a†i (b
†
i ), ai(bi)), an insulator-to-metal- (or superfluid-) like second-

order QPT occurs at (hc, δc) for the isotropic case, with no symmetry order parameter (SF stands

for superfluid phase). Thus, according to the definition of multi-criticality [17], the critical lines on
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the γ = 0 plane, which describe the coexistence of at least three different phases (FMx, FMy, SF,

PM/DM), consist entirely of MCPs.

Let us now have a clearer picture of the phase diagram for the Hamiltonian Eq. (2.1) by consid-

ering separately different physical limits.

2.1.1.1 The Anisotropic Limit

Without loss of generality, we can restrict to γ > 0 cases since there is a mirror symmetry in the 3D

phase diagram with respect to the plane γ = 0. Furthermore, we can let γ = 0.5 without affecting

the critical behavior. The corresponding quantum phase diagram is shown in Fig. 2.2.
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Figure 2.2: Phase diagram of the spin-1/2 XY alternating Hamiltonian given in Eq. (2.1) with
γ = 0.5. The solid (blue) and dashed (red) lines are the phase boundaries. The dashed-dotted lines
are the sample paths to approach the QCPs in a tangent way. Since γ > 0, the FM phase in the
center correspond to ferromagnetic order in x direction.

In the generic case, the boundaries between FM and PM, as well as FM and DM are characterized

by second order broken-symmetry QPTs. However, it is interesting to realize that the ground state
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develops weaker singularities at the special points:





(hc, δc, γc) = (h = 0, δ = ±γ),

(hc, δc, γc) = (h± 1, δ = 0),

where fourth-order broken-symmetry QPTs occur along the paths approaching the QCPs (Fig. 2.2,

dashed-dotted lines) [41].

In order to obtain the critical exponents ν and z of the QPTs in our system, let us first recall

the scaling assumptions for general QPTs introduced in Chapter 1. Eq. (1.1) characterizes the

scaling behavior of the gap with respect to the control parameter close to the QCP, and Eq. (1.3)

characterizes the scaling behavior of the gap with respect to the correlation length at the QCP.

The ground state in a finite system is the ground state of the P = 1 sector, and the first-excited

state in a finite system is the ground state of the P = −1 sector. Thus, the many-body gap ∆ in

Eq. (1.1) and Eq. (1.3) is the gap between these two states. However, the error in the computation

of the many-body gap (and also other observables) arising from identifying the two sets of modes

K and K̄ scales like 1/N , which leads to the scaling behavior of the gap between the ground state

and the first-excited state in the P = 1 to be the same as ∆ in Eq. (1.1) and Eq. (1.3) for large N .

Thus, we can obtain the critical exponents by analyzing the gap between the ground state and the

first-excited state in the P = 1 sector, which corresponds to the smallest gap ∆k(γ, h, δ) (Eq. (2.6))

among all the modes k ∈ K+ for fixed control parameters γ, h, δ.

We define a mode to be the critical mode (kc) if the corresponding gap ∆k(γc, hc, δc) closes in the

thermodynamic limit. Thus, at (γc, hc, δc) = (0.5, 1, 0), kc = 0, whereas at (γc, hc, δc) = (0.5, 0, 0.5),

kc = π/2. Let us analyze the critical exponents at QCP (γc, hc, δc) = (0.5, 1, 0), for instance.

Typically, we can have two paths approaching this QCP, one being the horizontal path at fixed δ,

the other being the vertical path at fixed h. Along the horizontal path, for kc = 0,

∆0(0.5, h, 0) ∼ (h− 1)1,

indicating that νz = 1. On the other hand, by using a Taylor-expansion of ∆k(0.5, 1, 0) for k around
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kc one obtains:

∆k(0.5, 1, 0) ∼ (k − kc)1 ∼ ξ−1,

indicating that z = 1. Thus, we infer that ν = 1, z = 1 along the horizontal path approaching

(γc, hc, δc) = (0.5, 1, 0), which then belongs to d = 2 Ising universality class. Similarly, for the

vertical path, for kc = 0,

∆0(0.5, 1, δ) ∼ (δ − 0)2,

indicating that νz = 2. Then, a Taylor-expansion of ∆k(0.5, 1, 0) for k around kc yields:

∆k(0.5, 1, 0) ∼ (k − kc)1 ∼ ξ−1,

indicating that z = 1. Thus, we know that ν = 2, z = 1 along the vertical path approaching

(γc, hc, δc) = (0.5, 1, 0), which we call the alternating universality class. Actually, the analysis shown

here makes it clear that following different paths approaching the same QCP might results in (two)

different critical exponents ν, but the same z. Since z is determined by Taylor-expanding the gap

with respect to k at the fixed control parameters at QCP, following different paths approaching the

same QCP will not result in different z. In summary, there are two distinct universality classes

for nonzero γ, one is the Ising universality class, with ν = 1, z = 1; the other is the alternating

universality class, with ν = 2, z = 1 at the fourth-order broken-symmetry QCPs.

2.1.1.2 The Isotropic Limit

The phase diagram in the isotropic limit (γ = 0) is depicted in Fig. 2.4. Generic QCPs on the

boundary lines belong to the so-called Lifshitz universality class, with critical exponents ν = 1/2, z =

2. As explained in the previous subsection, different critical behavior still occurs at (h = ±1, δ → 0)

(see e.g. the dash-dotted line in Fig. 2.4), where now ν = 1, z = 2. Furthermore, Ising critical

exponents are recovered while approaching the point (h = 0, δ = 0) ≡ O along every path other than

(δ = 0, h→ 0) (when there is no QCP).
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Figure 2.3: Phase diagram of the alternating spin chain, Eq. (2.1). Solid (blue) and dashed (ma-
genta) lines define the phase boundaries for γ = 0. Point O at (h = 0, δ = 0) is marked.

2.1.1.3 The Variable-Isotropy Limit

The phase diagram in the region perpendicular to the γ = 0 plane is depicted in Fig. 2.4. Without

loss of generality, we choose the phase diagram at h = 1 (top of Fig. 2.4) and δ = 0 (bottom

of Fig. 2.4) for further scrutiny. Regular QCPs in Fig. 2.4 belong to Ising universality class. As

explained earlier, the critical lines on the plane γ = 0 consist of MCPs. Generally speaking, MCPs

are associated with different universality classes. So we choose to study the critical behavior across

MCP A and MCP B as marked on Fig. 2.4 by different approaching paths. The results may be

summarized in the following table. Thus, there are two universality classes: the first one is the

Path ν z Parameterization of the paths

1 1 2 change both γ and δ across MCP A (γ = δ); h = 1

2 1 2 change γ across MCP B; h = 1, δ = 1

3 1/2 2 change both γ and δ across MCP B (γ = δ − 1); h = 1

4 1/2 2 change both γ and h across MCP A (γ = h− 1); δ = 0
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Figure 2.4: Phase diagram of the Hamiltonian in Eq. (2.1) when h = 1 (top) and δ = 0 (bottom).
The dashed (blue) line separates the FM and PM phases, the dashed-dotted (red) lines separate DM
and FM, whereas the solid (green) line is the SF phase. The arrows indicate the control paths we
choose to approach the MCPs A and B. The standard (non-multicritical) QCP C (hc = 1, γc = 1) is
marked as well for later reference.

Lifshitz universality class for paths 3 and 4; the second one is a new universality class for paths 1

and 2, which, to the best of our knowledge, has not been reported before.
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2.2 Generalized Entanglement in the Alternating XY Chain

The term “Entanglement”, introduced by Schrödinger in 1935, essentially captures the failure of

classical intuition in describing the relationship between the “parts” and the “whole” of a composite

system in the quantum world [44]: a (pure) state is entangled if knowledge of the whole state

does not imply the ’maximal’ knowledge of its parts. This definition implies that entanglement

is a genuine quantum correlation between certain degrees of freedom of the parties of the whole

system, and implies that (i) a preferred subsystem division is available for the whole system; and

that (ii) the subsystems involved in the whole system are distinguishable. If we consider states

of identical fermions or bosons, however, they possess intrinsic correlations due to the associated

quantum statistics; still, the latter need not be useful from the viewpoint of QIS. Therefore, this

standard view of entanglement, which is built upon the distinguishability of subsystems, has its own

limitation. This limitation calls for a new definition of entanglement, that is, so-called generalized

entanglement (GE) [45], which will be discussed in detail in this section.

2.2.1 Subsystem-Dependent Entanglement Measure

Before we describe the concept of GE, let us start by recalling some basic concepts from the standard

framework of conventional (subsystem-based) entanglement. Let us first focus on bipartite systems,

defined on Hilbert space H = HA ⊗ HB . A pure state of a bipartite quantum system is called

entangled if it is unfactorizable, that is,

|ψAB〉 = |ΨA〉 ⊗ |φB〉. (2.11)

A mixed state ρAB is separable if and only it can be represented as a mixture of factorizable pure

states, that is,

ρAB =
∑

s

ps|Ψs〉A〈Ψs| ⊗ |φs〉B〈φs|, (2.12)
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where ps is the corresponding probability, satisfying
∑
s ps = 1. In general, note that it is not

easy to check whether it is possible to write a quantum state in a form like Eq. (2.12). Since we

are only interested in entanglement at zero temperature, we will focus on pure states only. The

Schmidt decomposition for a bipartite pure state is a valuable tool to analyze its separability [19].

Any bipartite pure state |ψAB〉 can be expressed as

|ψAB〉 =

R∑

s=1

cs|ΦsA〉 ⊗ |ΦsB〉, (2.13)

where R is the Schemdt rank, equal to the number of nonzero coefficient cs, ΦsA and ΦsB are or-

thonormal states of subsystem A and B respectively, with
∑R
s=1 |cs|2 = 1. When R > 1 in the

decomposition, |ψAB〉 is entangled; otherwise, it is separable. Or equivalently, if |ψAB〉 is an entan-

gled state, then the reduced density matrix of subsystem A(B) is a mixed state, since

ρA = TrB(ρAB) =

R∑

s=1

|cs|2|ΦsA〉〈ΦsA|,

R > 1 leads to |cs|2 < 1. Notice that exactly the same spectrum would be obtained for ρB , leading

to the same information about the separability of |ψAB〉. Quantitatively, the von Neumann entropy

of ρA (ρB) provides an effective way to measure the entanglement between subsystem A and B:

E ≡ SρA = −Tr(ρA log2(ρA)) = −
R∑

s=1

|cs|2 log2 |cs|2, (2.14)

where E = 1 correspond to maximally entangled states, and E = 0 to separable states, respectively.

The most commonly used two-qubit maximally entangled states are the well-known Bell states:

|ψ±〉 =
1√
2

(|00〉 ± |11〉), |φ±〉 =
1√
2

(|01〉 ± |10〉). (2.15)

It is easy to verify that the von Neumann entropy of all the Bell states is 1. On the other hand, if

|ψ〉AB = |i〉A ⊗ |j〉B , the von Neumann entropy is zero.

While the Schmidt decomposition provides a successful characterization for the entanglement of

bipartite pure states, problems arise for systems with more than two parties. Even in the simplest
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extension of a bipartite systems of two qubits, that is, a three-qubit system, the characterization of

entangled states is not an easy task [49]. The qualitative definition of separability and entanglement

is much richer in multipartite systems than in the bipartite case. Besides the so-called full separa-

bility, which is the direct generalization of bipartite separability, there are many types of “partial

separability” (see e.g. the recent review in Ref. [36]). The difficulty in characterizing multipartite

entanglement mainly comes both from the fact that the tensor product decomposition is no longer

unique, and the fact that different (inequivalent) types of entanglement can be found.

These difficulties become even more severe when states of indistinguishable particles are con-

sidered, as necessary in condensed-matter physics. The “decomposition” issue, in particular, also

exists if we consider “mode entanglement”, instead of particle entanglement in certain systems. For

example, let us consider a single particle which can be either in site i or j. In second quantization,

this state can be expressed as:

|ψs〉 =
1√
2

(c†i + c†j)|vac〉 =
1√
2

(|1, 0〉+ |0, 1〉), (2.16)

where c†i is the creation operator at site i, |vac〉 is the particle vacuum, and |1〉, |0〉 denote the

presence or absence of the particle in a site, respectively. Thus, this single-particle state is one of the

Bell states in the mode picture, hence maximally entangled. A paradox arises since there is clearly no

way to decompose one particle into two subsystems, thus it is impossible to talk about entanglement

from this point of view. Even in the mode entanglement realm, different mode pictures may give

completely different conclusions about entanglement. Let us think about the exact solution of the

XY model with alternating magnetic field discussed in Section 2.1. The reason why we can have

a simple analytical solution is because in the fermionic language, there is no interaction between

fermions with different momentum modes. However, in the position-mode picture, the fermions are

not independent from each other, and thus they can be entangled. Furthermore, before using the

generalized Jordan-Wigner transformation, in the spin language, entanglement would be completely

different than in the fermionic language. Then how would one judge which language would be

physically more appropriate to describe entanglement?

This serves to illustrate how the subsystem-dependent entanglement notion has intrinsic limi-
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tations. The nontrivial quantum statistics, or other physical restrictions, can make the choice of

preferred subsystem problematic. The generalized approach introduced in Ref. [45] can overcome

such difficulties, by removing the need for a subsystem decomposition from the start, and by redefin-

ing entanglement in such a way that it depends only upon the choice of a preferred set of observables,

irrespective of the choice of a particular operator language (e.g. spin, fermion,...) used to describe

the system. This is the main motivation for the concept of GE.

2.2.2 Generalized Entanglement as an Observer-Dependent Concept

Physically, GE [45] is based on the idea that entanglement is an observer-dependent concept, whose

properties are determined by the expectation values of a distinguished subspace of observables Ω,

without reference to a preferred decomposition of the Hilbert space into subsystems. Notice that

in the standard entanglement definition, entangled pure states of a composite quantum system

look mixed relative to an observer whose knowledge is restricted only to local expectation values.

Thus the GE definition generalizes the observable subspace, that is, it no longer restricts it to

local observables. Let us consider the simplest case – two distinguishable spin-1/2 subsystems in

a singlet state defined on a tensor-product state space H = HA ⊗HB , that is |φ−〉 in Eq. (2.15).

The statement that |ψ−〉 is entangled is equivalent to the property that (either) reduced subsystem

state, e.g., ρA = TrB |ψ−〉〈ψ−| is mixed, that is Trρ2
A = 1/2(1 +

∑
α=x,y,z〈σAα 〉2) < 1, in terms of

expectations of the local Pauli spin-1/2 matrices σAα for subsystem A. To the purposes of defining

GE, the key step is to realize that to construct a meaningful reduced state for any pure state |ψ〉 ∈ H,

one may not need to invoking a partial trace. We can, for instance, specify a reduced “Ω-state” as

a list of expectations of operators in the preferred set Ω, determined by the observer. The fact that

the space of all Ω-states is convex then motivates the following definition [45, 46]:

Pure-state GE: A pure state |ψ〉 ∈ H is generalized unentangled relative to Ω if its reduced

Ω-state is pure, generalized entangled otherwise.

One can realize that there are at least two major advantages of GE comparing to the standard

entanglement definition for the purpose of application to many-body physics: first, GE is directly

applicable to both distinguishable and indistinguishable degrees of freedom, thus quantum-statistical
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constraints can be incorporated naturally; second, the property of a many-body state |ψ〉 to be

entangled or not is independent on both the choice of modes and the operator language used to

describe the system, but depends only on the observables Ω, which is more meaningful physically.

For a large class of physical systems, the set of distinguished observables Ω may be identified

with a Lie algebra (i.e., an algebra closed under commutation) consisting of Hermitian operators,

Ω ' h, which is the generator of a corresponding unitary Lie group, that is, h 7→ G = eih. While the

assumption of a Lie-algebraic structure is not necessary for the GE concept to be applicable [45, 46],

it has the advantage of quantifying GE in a simple way. In particular, a geometric measure of GE

can be constructed by taking the square length of the projection of |ψ〉〈ψ| onto h, that is:

Relative purity: Let h = {O1, . . . , OM} be a M -dimensional Hermitian Lie-algebra. The

reduced h-state of a pure |ψ〉 state is defined to be a linear functional on the operators in h:

〈ψ|O`|ψ〉(` = 1, . . . ,M). Thus the purity of |ψ〉 relative to h is given by the square length of the

h-state:

Ph(|ψ〉) = K
M∑

`=1

〈ψ|O`|ψ〉2 , (2.17)

where K is a global normalization factor chosen so that 0 ≤ Ph ≤ 1, with Ph = 0 the generalized

maximumally-entangled state, Ph = 1 the generalized unentangled state.

Notice that Ph is invariant under group transformations, that is, Ph(|ψ〉) = Ph(G|ψ〉), for all

G ∈ G, which is a desirable property physically. If, additionally, h is a semi-simple Lie algebra

irreducibly represented on H, generalized unentangled states coincide [45] with generalized coherent

states (GCSs) of G, that is, they may be seen as “generalized displacements” of an appropriate

reference state (or vacuum):

|GCS({η`})〉 = exp(i
∑

`

η`O`)|ref〉. (2.18)

Physically, GCSs can be shown to correspond to unique ground states of Hamiltonians in h: States

of matter such as BCS superconductors (e.g. states of the form
∏
k(uk + ivkc

†
kc
†
−k)|vac〉) or normal

Fermi liquids (
∏
k c
†
k|vac〉) are typically described by GCSs. Here, we illustrate the GE notion by

two examples that are relevant to the application of GE measure to our model Hamiltonian.

• Example 1: Standard entanglement revisited.
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Suppose we have N local (distinguishable) parties separated in real space, with Hilbert space

H = H1⊗ . . .⊗HN . The natural set of preferred observables can be the ones restricted to arbitrary

local transformations, that is, hloc = su(dim(H1))⊕ . . .⊕ su(dim(HN )), as the distinguished algebra

in the GE approach. If, for example, each local Hilbert space is two-dimensional, then hloc =

span{σ`α ;α = x, y, z, ` = 1, . . . , N}, and Eq. (2.17) yields

Phloc(|ψ〉) =
1

N

∑

`,α

〈ψ|σ`α|ψ〉2 =
2

N

(∑

`

Trρ2
`

)
− 1, (2.19)

which is nothing but the average (normalized) subsystem purity. Thus, Phloc quantifies multipartite

subsystem entanglement in terms of the average bipartite entanglement between each spin and the

rest. Maximum local purity, Ph = 1, is attained if and only if the underlying state is a pure product

state, that is, a GCS of the local unitary group Gloc = SU(2)1 ⊗ . . . ⊗ SU(2)N . On the contrary,

maximum GE is realized, i.e. Ph = 0, when each subsystem is maximally entangled (Trρ2
` = 1/2)

in the standard sense.

• Example 2: Fermionic GE.

Consider a system of indistinguishable (spinless) fermions able to occupy N modes, which could

for instance correspond to distinct lattice sites or momentum modes, and are described by canonical

fermionic operators cj , c
†
j on the 2N -dimensional Fock space HFock. The standard subsystem-based

definition of entanglement associated with a given choice of modes may be applied if the indistin-

guishability condition can be relaxed. However, in the presence of many-body interactions, choosing

a specific mode description may not be physically justified [52]. These difficulties are avoided in the

GE approach by associating “generalized local” resources with number-preserving bilinear fermionic

operators, which identifies the unitary Lie algebra u(N) = span{c†jcj ; 1 ≤ i, j ≤ N} as the dis-

tinguished observable algebra for fermionic GE. By re-expressing u(N) in terms of an orthogonal

Hermitian basis of generators, Eq. (2.17) yields

Pu(N)(|ψ〉) =
2

N

N∑

j<k=1

[
〈c†jck + c†kcj〉2 − 〈c

†
jck − c†kcj〉2

]
+

4

N

N∑

j=1

〈c†jcj − 1/2〉2 . (2.20)

One may show that a many-fermion pure state is generalized unentangled relative to u(N) (Pu(N) =
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1) if and only if it is a single Slater determinant (with any number of fermions), whereas Pu(N) < 1

for any state containing fermionic GE [50]. For instance, for a product state (Slater determinant) of

the form |ψ〉 =
∏
l c
†
l |vac〉, 〈ψ|c

†
jck|ψ〉(j 6= k) vanishes, thus the only contributing term is 〈ψ(|c†kck−

1/2)|ψ〉 = ±1/2, which leads to Pu(N)(|ψ〉) = 4
N

∑N
j=1

1
4 = 1. Note that a pure single-particle Bell

state |ψs〉 as defined in Eq. (2.16), which is maximally mode-entangled in the standard definition, is

u(N)-unentangled, which is consistent with the fact that it is a one-particle state, thus the fermion

number is conserved.

2.2.3 Generalized Entanglement as an Indicator of Quantum Criticality

By construction, if h denotes all the linearly independent observables of the quantum system, the

h-state fully determines the state of the system. In such a case, any pure state is generalized

unentangled, thus this algebra carries no useful information about a QPT. If the correct sub-algebra is

chosen, however, the relative purity can contain information about the relevant quantum correlations

that uniquely identify and characterize the QCPs of the system. It has been demonstrated that GE

can faithfully detect QCPs in the one-dimensional anisotropic XY model in a transverse magnetic

field [50], when purity with respect to an appropriate sub-algebra is chosen. In particular, purity

relative to the u(N) algebra, generated by the set of bilinear fermionic operators {c†jcj ; 1 ≤ j, j′ ≤ N},

has been used to identify QPTs belonging to d = 2 Ising universality class (z = 1, ν = 1), whereas

the first-order derivative of the purity relative to local algebra, h =
⊕N

i=1 su(2)i, has been used to

identify QPTs belonging to the Lifshitz universality class (z = 2, ν = 1/2).

The key step toward applying GE as a QPT indicator is to identify a (Lie) algebra of observables

whose expectations reflect the changes in the ground state as a function of the control parameters.

The Hamiltonian in Eq. (2.1), once written in the fermionic language, is an element of the Lie

algebra so(2N), which includes arbitrary bilinear fermionic operators. As a result, the ground state

is always a GCS of so(2N), and GE relative to so(2N) carries no information about QCPs. However,

the ground state becomes a GCS of the number-conserving sub-algebra u(N) in both the fully PM

and DM limit. This still motivates the choice of the fermionic u(N)-algebra discussed as a natural

candidate for this class of systems with general control parameters (γ 6= 0). In momentum space,
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the Hermitian, orthonormal operator basis of the u(N) algebra reads:

√
2(a†kak − 1/2),

√
2(b†kbk − 1/2),

(a†kak′ + a†k′ak), i(a†kak′ − a
†
k′ak), k 6= k′,

(b†kbk′ + b†k′bk), i(b†kbk′ − b
†
k′bk), k 6= k′,

(a†kbk′ + b†k′ak), i(a†kbk′ − b
†
k′ak), k 6= k′, (2.21)

where k, k′ ∈ K. Taking advantage of the symmetries of the Hamiltonian Eq. (2.1), Pu(N) for the

ground state can be expressed as:

Pu(N) =
2

N

∑

k∈K+

2
(
〈a†kak − 1/2〉2 + 〈a†−ka−k − 1/2〉2 + 〈b†kbk − 1/2〉2

)

+2
(
〈b†−kb−k − 1/2〉2

)
+ 4|〈a†kbk〉|2 + 4|〈a†−kb−k〉|2. (2.22)

Analytical results of Pu(N) are only available for δ = 0, when GE can sharply detects PM-FM QPTs

[50]. Remarkably, however, ground-state fermionic GE can still faithfully portrait the underlying

quantum phases in the presence of alternation. We find that derivatives of GE develop singular

behavior only at QCPs, as shown in Fig. 2.5. For weak singularities developed at (γc, hc, δc) =

(0.5, 0, 0.5), the second derivative of Pu(N) is needed to identify the QPT. Moreover, the scaling

properties of GE provide additional evidence that GE is a faithful QPT indicator. When δ = 0, by

taking a Taylor expansion of Pu(N) in its analytical expression, one can find that the spin correlation

length enters into the expression of Pu(N) near the QCP, that is,

Pu(N)(h)− Pu(N)(hc) ∼
1

ξ
∼ (h− hc)ν . (2.23)

where ξ is the spin correlation length. Therefore, we can extract the relevant critical exponent ν in a

log-log plot of Pu(N) [50]. Similarly here, with general control parameters, numerical results indicate

that a Taylor-expansion of Pu(N) can still be used to extract the critical exponent ν for both the

Ising and the alternating universality class (see Fig. 2.6).

Interestingly, in Ref. [50], it was analytically proved that in the limit δ = 0, the ground-state
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u(N)-purity can be directly related to the fluctuations of the total fermion operator N̂ =
∑
i c
†
i ci:

Pu(N) = 1− 2

N

(
〈N̂2〉 − 〈N̂〉2

)
. (2.24)

While the relative purity can always be related to a sum of variances of observables [45], it is

remarkable that the u(N)-purity can be expressed in terms of the variance of a single observable.

Physically, this explains why this purity measure carries information about QPTs, given the fact that

QPTs are precisely driven by the quantum fluctuations of observables. Since Pu(N) can successfully

identify the QCPs and the critical exponents of all the QPTs in the anisotropic limit irrespective

of the value of δ, we would expect Pu(N) to be able to be expressed in terms of fluctuations of the

total fermion operator as well. In fact, Eq. (2.24) still holds for the ground state of the Hamiltonian

Eq. (2.1) with alternating magnetic field:

Pu(N) = 1− 2

N

[
〈
( ∑

k∈K
a†kak + b†kbk

)2〉 − 〈
∑

k∈K
a†kak + b†kbk〉2

]
. (2.25)

The proof of this statement is shown in Appendix A, and relies on particle-hole symmetry.

2.3 Duality Transformation

It is interesting to observe that the alternating universality class (ν = 2, z = 1) arises in a related

class of model Hamiltonians, where alternation occurs in the spin coupling strengths, rather than in

the strength of the applied magnetic field. That is, let

H ′ = −
N∑

i=1

(
g − (−1)iδ

) [ (1 + γ)

2
σixσ

i+1
x +

(1− γ)

2
σiyσ

i+1
y

]
+

N∑

i=1

σiz, (2.26)

with g, δ, γ ∈ (−∞,∞). The phase diagram of this Hamiltonian may be obtained through a proce-

dure similar to the one described in the Section 2.1, and is depicted in Fig. 2.7. The boundary line

equations are now : 



g2 = (γδ)2 + 1,

δ2 = (γg)2 + 1,
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where the alternating universality class (4th order QPT) also exists when approaching QCPs at

(g = ±1, δ = 0) by changing δ and (g = 0, δ = ±1) by changing g (keeping γ 6= 0). Interestingly,

in the Ising limit γ = 1, the two alternating models of Eqs. (2.1) and (2.26) may be mapped into

each other through a Kramers-Wannier duality transformation as considered in [47]. Let us define

the following transformation:

Γnz = σn−1
x σnx , ΓnxΓn+1

x = σnz ,

which associates a new “dual” chain to our original spatial chain, such that sites of the original chain

will be associated with links of the “dual” chain where operators Γnα are placed (and vice-versa). In

this way, Γnz “senses” whether spins on the original adjacent sites are aligned or not, and vice-versa.

Then the original (Ising-like) Hamiltonian

H = −
∑

i

σixσ
i+1
x +

∑

i

(h− (−1)iδ)σiz
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is mapped into the new Hamiltonian

H ′ = −
∑

i

Γi+1
z +

∑

i

(h− (−1)iδ)ΓixΓi+1
x .

By invoking PBCs, we obtain

H ′ = −
∑

i

Γiz +
∑

i

(h− (−1)iδ)ΓixΓi+1
x ,

which is exactly the Hamiltonian in Eq. (2.26) at γ = 1. Since the Hamiltonian in Eq. (2.1) and the

Hamiltonian in Eq. (2.26) can be mapped into each other by duality transformation at γ = 1, all

the analysis done for the Hamiltonian Eq. (2.1) is applicable for the Hamiltonian in Eq. (2.26) in

the limit γ = 1.
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Chapter 3

Dynamics in the Alternating XY

Chain with Initial Ground State

In this Chapter, we explore the extent to which universal scaling laws persist out of equilibrium

and encode information about the equilibrium phase diagram, by focusing on the case where the

system is initially in its many-body ground state. In particular, we shall primarily discuss adiabatic

power-law quantum quenches, where a single control parameter is changed in time according to:

λ(t)− λc = | t− tc
τ
|αsign(t− tc), t ∈ [t0, tf ], (3.1)

so that a QCP is crossed at t = tc ≡ 0. Here, α > 0 is the power-law exponent, with α = 1

corresponding to a linear quench, and α = 2 corresponding to a quadratic quench, respectively.

3.1 Dynamical Response Indicators

Before we go on to explore dynamical scaling, it is important to identify what quantity may be

used to capture the adiabaticity loss that happens when the system enters the impulse region, and

cannot adiabatically follow the instantaneous ground state, according to the KZ argument. A natural
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candidate is:

∆O(t) ≡ 〈Φ(t)|O(t) |Φ(t)〉 − 〈Φ̃(t)|O(t) |Φ̃(t)〉, (3.2)

where we consider the “excess expectation value” of an (extensive) observable O, which, in general,

can be explicitly time-dependent, with respect to the time-evolved state Φ(t) relative to the instan-

taneous ground state Φ̃(t). In particular, we will consider the following observables for our system

Hamiltonian Eq. (2.1) in this Chapter:

• Quasi-particle excitation density, which is especially attractive from a theory standpoint in

view of its simplicity. The final excitation density nex(tf ) may be computed from the expectation

value of the instantaneous quasi-particle number operator over |Φ(t)〉:

nex(tf ) =
2

N
〈Φ(tf )|

∑

k∈K+

[
γ†k,3(tf )γk,3(tf ) + γ†k,4(tf )γk,4(tf )

]
|Φ(tf )〉. (3.3)

• Excitation energy, O(t) = H(t)/N , which has the potential advantage of being more directly

accessible in experiments:

∆H(tf ) =
2

N
〈Φ(tf )|

∑

k∈K+

[
εk,3(tf )γ†k,3(tf )γk,3(tf ) + εk,4(tf )γ†k,4(tf )γk,4(tf )

]
|Φ(tf )〉. (3.4)

• Nearest-neighbor spin correlator per site along the x-direction, that is,

O ≡ XX =
1

N

N∑

i=1

σixσ
i+1
x , (3.5)

which corresponds to the density of domain walls where the x-polarization of spins changes its

orientation in the center of FM phase in the Ising limit, that is, at δf = 0, γf = 1, hf = 0.

• Magnetization per site, that is,

O ≡Mz =
1

N

N∑

i=1

σiz, (3.6)

which corresponds to the density of flips in the z−polarization of spins in certain limit of PM phase,
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that is, when δf = 0, γf = 1, hf 7→ ∞ [58].

• Generalized u(N) purity, that is, O ≡ Pu(N)
1, with,

∆Pu(N)(tf ) ≡ Pu(N)(|Φ(tf )〉)− Pu(N)(|Φ̃(tf )〉GS). (3.7)

In principle, the sums in Eqs. (3.3)–Eqs. (3.7) after written in momentum space should include

all the modes in K+, as indicated. However, to the purpose of analytically investigating dynamical

scaling behavior, it is useful to note that not all the allowed modes will necessarily change their

state along the adiabatic quench path, effectively making no contribution to the relative expectation

∆O(t). In what follows, we shall refer to the subset of modes KR ⊆ K+ whose state changes in an

adiabatic quench as the relevant modes. We may relate the number of relevant modes, NR ≡ |KR|,

to the system size and the quench rate via NR(N, τ) ∝ N |kmax(τ) − kc|, where kmax is the largest

momentum in the relevant mode set. In a power-law adiabatic quench process, since adiabaticity

breaks at a time scale t̂ ∼ τανz/(ανz+1), and the typical gap, ∆̂ ∼ t̂−1, an accessible excited state

contributes to the excitation if and only if its minimum gap along the path, ∆̃k, matches with this

typical gap, ∆̃k ∼ ∆̂. In general [112], ∆̃k scales as ∆̃k ∼ (k − kc)
z2 , where z2 is a genuinely

non-static exponent, whose meaning will become more clear in later discussion. Accordingly, the

scaling of kmax can be determined by ∆̂ ∼ (kmax − kc)z2 , leading to

kmax − kc ∼ τ−ανz/[z2(ανz+1)]. (3.8)

3.2 Dynamics in the Anisotropic Limit: Standard Critical

Point

Let us start with the simplest situation: Adiabatic linear quenches across an isolated standard (non-

multicritical) QCP. As we discussed in Section 2.1.1.1, there are two universality classes in the plane

with positive γ (similarly for negative γ): d = 2 Ising universality class with critical exponents

1Strictly speaking, Pu(N) is not a single observable. However, for some special states (as discussed in Section 2.2),
it can be expressed in terms of the fluctuation of the fermion number operator.
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ν = 1, z = 1, and alternating universality class with critical exponents ν = 2, z = 1.

3.2.1 Exact Numerical Scaling Results: Kibble-Zurek Scaling

In our model, the time-evolved many-body state at time t, |Φ(t)〉 =
∏
k∈K+ |Φk(t)〉, may still be

expressed in the form of Eq. (2.8) for time-dependent coefficients u
(a)
k (t), a = 1, . . . , 6, computed

from the solution of the Schrödinger equation. Alternatively, we can also obtain the solution of

u
(a)
k (t), a = 1, . . . , 6, from the time-evolved expression of quasi-particle annihilation operators γ̃k,3

and γ̃k,4, where (recall Eq. (2.9))





γ̃k,3(t) = ṽk,1(t)ak + ṽk,2(t)a†−k + ṽk,3(t)bk + ṽk,4(t)b†−k,

γ̃k,4(t) = w̃k,1(t)ak + w̃k,2(t)a†−k + w̃k,3(t)bk + w̃k,4(t)b†−k.

The coefficients ṽk,n(t)(w̃k,n(t)), n = 1, . . . , 4, can be obtained from solving the Schrödinger equation:

i
d

dt




ṽk,1(t)

ṽk,2(t)

ṽk,3(t)

ṽk,4(t)




=




2(h(t) + δ(t)) 0 Jk Γk(t)

0 −2(h(t) + δ(t)) −Γk(t) Jk

J∗k −Γ∗k(t) 2(h(t)− δ(t)) 0

Γ∗k(t) J∗k 0 −2(h(t)− δ(t))







ṽk,1(t)

ṽk,2(t)

ṽk,3(t)

ṽk,4(t)



,

where Jk = −2 cos(k), Γk(t) = −2iγ(t) sin(k). The coefficients w̃k,n(t) satisfy the same Schrödinger

equation as ṽk,n(t), but with different initial conditions:

ṽk,n(t0) = vk,n, w̃k,n(t0) = wk,n,

where vk,n and wk,n are coefficients in Eq. (2.9) obtained from diagonalizing the initial Hamiltonian

Ĥk(t0). We use 4th-order Runge-Kutta method to obtain ṽk,n(t) and w̃k,n(t), subject to the initial

condition that the system lies in its ground state at t = t0. Similar to the relation of the ground

state coefficients in the static case, that is, γk,3|Ψk〉 = 0, γk,4|Ψk〉 = 0, we now have γ̃k,3(t)|Ψk(t)〉 =
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0, γ̃k,4(t)|Ψk(t)〉 = 0, which leads to:





u
(1)
k (t) = ṽk,3(t)w̃k,1(t)− ṽk,1(t)w̃k,3(t), u

(2)
k (t) = ṽk,2(t)w̃k,3(t)− ṽk,3(t)w̃k,2(t),

u
(3)
k (t) = ṽk,1(t)w̃k,4(t)− ṽk,4(t)w̃k,1(t), u

(4)
k (t) = ṽk,4(t)w̃k,3(t)− ṽk,3(t)w̃k,4(t),

u
(5)
k (t) = ṽk,2(t)w̃k,1(t)− ṽk,1(t)w̃k,2(t), u

(6)
k (t) = ṽk,4(t)w̃k,2(t)− ṽk,2(t)w̃k,4(t).

Recall that a main assumption in the KZ argument is the existence of adiabatic and impulse region.

Thus, in order to observe KZS, it is essential to guarantee that the system will go through both

adiabatic and impulse regions, which in turn depends on the range of τ we choose. Suppose that

τ ∈ [τmin, τmax] is the appropriate range of τ to exhibit KZS. Then τmin is associated with the

existence of an adiabatic region away from criticality, while τmax is associated with the existence

of impulse region close to QCP for a finite system. Thus, from standard adiabaticity requirements

away from criticality [64], τmin ∼ 1/[mint∈[t0,tf ]Gap(H(t))]2. On the other hand, if τ is arbitrarily

large, a finite system never enters the impulsive regime, if the size-dependent contribution to the

gap dominates over the control-dependent one. From the scaling assumption in Eq. (1.3), we infer

that the gap closes polynomially as N−z. Thus, N−z ∼ (t̂/τ)νz, which leads to the following upper

bound of τ : τmax ∼ N (νz+1)/ν . Two remarks are in order: First, in the thermodynamic limit, the

adiabaticity condition is broken close to QCP irrespective of the quench rate. Consequently, there is

no upper limit of τ range in the thermodynamic limit. Second, in a generic power-law quench, the

upper limit τmax would change accordingly with the change of t̂α, that is, τmax ∼ N (ανz+1)/ν .

Provided that τ ∈ [τmin, τmax] in a finite system, KZS is found to hold irrespective of the details

of the QCP and the initial (final) quantum phase, in particular for both 2nd and higher-order QPTs,

and independent of the path direction:

nIsing
ex (tf ) ∼ τ−1/2 , nAlternating

ex (tf ) ∼ τ−2/3,

as illustrated in Fig. 3.1.

While the excitation density exhibits KZS, one might wonder: Is this the only quantity that shows

KZS? How would KZS be generalized to other physical observables? Remarkably, our numerical

results indicate that scaling behavior holds throughout the quench process (not only at t = tf ) for a
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Figure 3.1: Dynamical scaling of the excitation density of quenching the magnetic field strength h
by fixing δ = γ = 0.5. Top panel: log-log plot for Ising universality class. Bottom panel: alternating
universality class, with log-log scaling plot in the inset.

large class of physical observables in the form of Eq. (3.2) [56]. That is,

∆O(t) = τ−(ν+β)/(νz+1)FO

( t− tc
t̂

)
, (3.9)
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where β is a scaling exponent determined by the physical dimension of O and F is an observable-

dependent scaling function. For instance, under a quench of the magnetic field strength, h, Mz de-

fined in Eq. (3.6) obeys a dynamical scaling law of the form ∆Mz(t) = τ (−ν−νz+1)/(νz+1)G((t− tc)/t̂),

whereas XX defined in Eq. (3.5) obeys a dynamical scaling law ∆XX(t) = τ−ν/(νz+1)W ((t− tc)/t̂),

for appropriate scaling functions G and W , respectively. The exact numerical scaling results of

∆XX(t) is shown in the main figure of Fig. 3.2.
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Figure 3.2: Dynamical scaling under a magnetic field quench. Main panel: excess nearest-neighbor
spin correlation per particle, ∆XX, vs rescaled time for the alternating universality class from
numerical integration of the Schrödinger equation. Inset: excess energy per particle, ∆H, vs rescaled
time for the Ising universality class from first-order AR.

3.2.2 Scaling Prediction from First-Order Adiabatic Renormalization

The fact that the system becomes gapless at a single instant tc suggests to seek an explanation of

the above scaling results based on the fact that λ̇(t) = 1/τ is a small parameter, motivating us to

look for a perturbative approach. While a similar strategy has been implemented in [62], we aim to
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provide a firm theoretical foundation and further highlighting important assumptions. By a suitable

parametrization (tc = 0), our time-dependent Hamiltonian may be written as:

H(t) = Hc + [λ(t)− λc]H1 = Hc + t/τH1,

with Hc quantum-critical in the thermodynamic limit. Let {Em(t)} and {|ψm(t)〉} denote the

snapshot eigenvalues and (orthonormal) eigenvectors of H(t), where |ψ0(t)〉 ≡ |ψGS(t)〉 and let us

assume that: (i) no level crossing occurs during the evolution; (ii) the derivatives of all the spectral

projectors {|ψm(t)〉〈ψm(t)|} are sufficiently smooth. The (normalized) time-evolved state reads

|ψ(t)〉 = c0(t)|ψ0(t)〉+
∑

m 6=0

cm(t)|ψm(t)〉,

for coefficients to be determined. Since for a truly adiabatic evolution no excitation is induced in

spite of the fact that the eigenstates of H(t) evolve in time, appropriately subtracting (following

Berry, “renormalizing”) the adiabatic contribution, which is termed “adiabatic renormalization”

(AR), is essential for quantifying the leading non-adiabatic correction. This is achieved in two

steps [64]: (i) Effect a canonical transformation to a “comoving frame”, where in the zeroth-order

adiabatic limit τ → ∞ the comoving state vector |ψ̃(t)〉 = Ũ(t; t0)|ψ(t0)〉 is frozen up to a phase

factor, that is, |ψ̃(t)〉 = e−iΓ0(t)|ψ0(t0)〉, where Γ0(t) includes in general both the Berry phase and

the dynamical phase; (ii) Evaluate the first-order correction to the comoving-frame propagator via

Dyson series expansion. Transforming back to the physical frame, cm(t) = 〈ψm(t0)|Ũ(t; t0)|ψ0(t0)〉,

to the first-order in λ̇ we finally obtain (in units ~ = 1), c
(1)
0 (t) = e−iΓ0(t) +O(λ̇2), and





c
(1)
m (t) = e−iΓm(t)

∫ t
t0
dt′λ̇(t′) 〈ψm(t′)|H1|ψ0(t′)〉

Em(t′)−E0(t′) e
i
∫ t′
t0
ds∆m(s)

,

∆m(t) = Em(t)− E0(t).
(3.10)

Knowledge of the time-dependent state enables arbitrary physical quantities of interest to be

computed, in particular the total time-dependent excitation probability Pex(t) =
∑
m6=0 |cm(t)|2.

Given Eq. (3.10), the latter formally recovers the expression written in [62], which captures the

contribution to the density of excitations from states directly connected to |ψ0(t)〉 via H1. Notice
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that, generally speaking, the total time-dependent excitation (computed below as Nex(t)) and the

total excitation probability Pex(t) are not the same: Suppose that the time-evolved state is expressed

in the snapshot eigenstate basis as Φ(t) =
∑
m cm(t)|ψm(t)〉, then,

Nex(t) = 〈Φ(t)|
∑

k∈K

(
γ†k,3γk,3 + γ†k,4γk,4

)
|Φ(t)〉

=
∑

m

|cn(t)|2〈ψm(t)|
∑

k∈K

(
γ†k,3γk,3 + γ†k,4γk,4

)
|ψm(t)〉

=
∑

m 6=0

|cm(t)|2〈ψm(t)|
∑

k∈K

(
γ†k,3γk,3 + γ†k,4γk,4

)
|ψm(t)〉, (3.11)

where the relation that |ψm(t)〉 is also the eigenstate of the quasi-particle operator was used in the

second line of Eq. (3.11), and the fact that ground state has no quasi-particle excitation was used in

the third line. Thus, Pex(t) = Nex(t) if and only if 〈ψm(t)|∑k∈K
(
γ†k,3γk,3 + γ†k,4γk,4

)
|ψm(t)〉 = 1,

which is not true in general. However, in first-order AR, since one-body perturbations H1 are

considered in the present analysis, the first-order excitation probability, P
(1)
ex (t) =

∑
m 6=0 |c

(1)
m (t)|2,

coincides with the single-mode quasiparticle contribution to the total time-dependent excitation (the

case where both γ†k,3γk,3 and γ†k,4γk,4 are occupied can be ignored in our adiabatic quench process).

Dynamical scaling emerges once the above result is supplemented by scaling assumptions on three

fundamental dynamical variables: the time-dependent excitation energy above the ground state; the

time-dependent matrix elements of the perturbation; and the density of excited states, ρ(E), at the

energy scale t̂−1 that characterizes adiabaticity-breaking, which allows to change discrete sums over

excited states to integrals. That is, close to the QCP we assume that:





Em(t)− E0(t) = δλ(t)νzfm(∆m(tc)/δλ(t)νz),

〈ψm(t)|H1|ψ0(t)〉 = δλ(t)νz−1gm(∆m(tc)/δλ(t)νz),

ρ(E) ∼ Ed/z−1,

(3.12)

where the scaling functions fm, gm satisfy the following condiitons: i) fm (gm) is constant when x→

0; ii) fm (gm) ∝ x when x→∞. Having the scaling assumptions at hand, integration over excited

states is performed by moving to dimensionless variables ζ = (t− tc)/t̂ = (t− tc)τ−νz/(νz+1) and η =

∆m(tc)t̂ = ∆m(tc)τ
νz/(νz+1). Since at the QCP the integrand in Eq. (3.10) develops a simple pole,
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while the phase e
i
∫ t′
t0
ds∆m(s)

becomes stationary, contributions away from the QCP may be neglected,

allowing the desired scaling factor to be isolated, up to a regular function depending only on ζ.

Thus, the scaling of the diagonal observables with respect to the eigenstate basis such as excitation

density and the residual energy are directly determined as nex(ζ) = τ−dν/(νz+1)Ξ(ζ), ∆H(ζ) =

τ−(d+z)ν/(νz+1)Υ(ζ), see the inset of Fig. 3.2 for numerical results. For a generic observable, if the

additional scaling condition

〈ψ0(t)|O |ψm(t)〉 = δλ(t)βqm(∆m(tc)/δλ(t)νz), (3.13)

holds for all the excitations m involved in the process for an appropriate scaling function qm, then

∆O ∼ τ−(νd+β)/(νz+1) – consistent with Eq. (3.9).

Two remarks are in order: First, notice that the derivation naturally extends to a generic non-

linear power-law quench. Provided that the typical time scale for adiabaticity breaking is redefined

as t̂α ∼ τανz/(1+ανz), the same scaling assumptions in Eqs. (3.12)-(3.13) lead to dynamical scaling

behavior of the form nex ∼ τ−αdν/(ανz+1), and ∆O ∼ τ−α(dν+β)/(ανz+1), throughout the whole time

evolution. Second, the perturbative derivation as presented strictly applies to quenches across an

isolated QCP which is not multi-critical. The application of the perturbative approach to a MCP

will be discussed in Section 3.4.3.

3.2.3 Dynamics of Generalized Entanglement

As we discussed in Section 2.2.3, Fermionic GE has been proved useful in detecting QPTs and

identifying the critical exponents for static cases in both the d = 2 Ising universality class and

the alternating universality class. It is interesting to ask whether fermionic GE shows any scaling

behavior for quenches across QCPs which belongs to these two universality classes. Notice that

from the definition in Eq. (2.22), Pu(N) is essentially a sum of square expectation values of the

fermion number operators, thus an extensive quantity which satisfies the necessary condition for an

observable to obey dynamical scaling. Therefore, besides the observables discussed in Section 3.2.1,

we investigated the scaling behavior of the u(N) purity relative to the instantaneous ground state
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defined in Eq. (3.7). We find that:

∆Pu(N)(t) = τ
−ν/(νz+1)
Q G

( t− tc
t̂

)
,

for an appropriate scaling function G. Interestingly, ∆Pu(N)(t) has the same dynamical scaling

exponent as nex in both universality classes we investigated. Physically, this is related to the fact

that Pu(N)(t) is the fluctuation of the fermion number operator, thus its dimension β = 0 in Eq. (3.9).

Exact numerical results are shown in Fig. 3.3, where ∆Pu(N)(t) shows KZS throughout the whole

time evolution for QPT belonging to the Ising universality class, while ∆Pu(N)(t) obeys KZS close

to the QPT belonging to the alternating universality class. This difference is related to the fact that

along the path we choose to approach the QCP of the alternating universality class, other QCPs

belonging to the Ising universality class are nearby, thus cross-over to a different scaling behavior

of ∆Pu(N)(t) is expected. Therefore, dynamical scaling of ∆Pu(N)(t) only persists sufficiently close

to the QCP of alternating universality class. Instead, along the path we approach the QCP of Ising

universality class, no QCPs from other universality class is encountered, allowing for a more robust

behavior.

3.3 Dynamics in the Isotropic Limit

So far, we showed how KZS successfully predicts the dynamical scaling for quenches across an

isolated (non-multicritical) QCP separating two gapped phases in our model Hamiltonian (see also

the discussion in other different models and/or quench schemes in Ref. [58, 62, 63, 65, 68, 66, 67,

69, 70]). However, non-KZS has been reported in certain low-dimensional clean systems, whereby

non-zero excitation persists (unlike KZS) for τ → ∞ in the thermodynamic limit [63], and in the

case of disordered quantum systems, where marked deviations from power-law behavior may be

witnessed [71, 72]. Likewise, critical dynamics in the presence of non-isolated QCPs reveals a rich

landscape. In particular, the need to modify the KZS by replacing the spatial dimension d with the

“co-dimension” m of the relevant critical (gapless) surface has emerged through a study of the 2D

Kitaev model [75]. Different non-KZS involving gapless phase has also been reported for quenches
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Figure 3.3: Dynamical scaling of Pu(N) for the alternating (main panel) and the Ising (inset panel)
universality class.

which originate within an extended quantum critical region [74], and for quenches along a gapless

critical line [76].

As we discussed in Chapter 2, in the isotropic limit (the γ = 0 plane), our phase diagram

contains a gapless superfluid phase, for which the standard KZS argument need not be applicable

according to the discussion in Refs. [75, 74, 76]. Thus, a main purpose of this Section is to develop

an understanding of dynamical scaling for generic (power-law) quenches involving critical regions.

To achieve this goal two new notions will be introduced, which are both path-dependent: one is

the concept of a dominant critical point to establish scaling along a critical path, and the other

a mechanism of cancellation of excitations. Our analysis indicates that details on how different

modes of excitation are accessed during the quench process are crucial. We shall mainly consider

two different scenarios below. For added clarity, we reproduce the phase diagram for γ = 0 again

with marked points in Fig. 3.4.
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3.3.1 Quenching along Paths with a Finite Number of Critical Modes

A first situation which is beyond the standard KZS discussed thus far arises in quenches that force

the system along a critical line, yet, as we shall explain, are “dominated” by a finite number of

participating excitations. Formally, this makes it possible to obtain the non-equilibrium exponent

for nex through application of the KZS, provided that care is taken in defining the static exponents

through a limiting path-dependent process where, along the quench of interest, a simultaneous

expansion with respect to both the control parameter and the relevant critical mode(s) is taken.

Consider a quenching scheme where both h and δ are changed according to t/τ while γ = 0 (path

F → O → G in Fig. 3.4). While Eq. (2.6) shows that the critical mode kc = π/2 throughout the

process (∆π/2(t) = 0, for all t ∈ [t0, tf ] as N →∞), numerical data indicate that excitation sets in

only when the point O is passed, see Fig. 3.5. For point O, a simultaneous expansion of ∆π/2(0, h, h)

around both the control parameter h(≡ δ) and k = π/2 shows that:

∆k(0, h, h) = 4(k − π/2) +O[k − π/2]3 − 4h+O[h]2,
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implying that the static critical exponents at O are z = 1, ν = 1. Similarly, a simultaneous expansion

of ∆π/2(0, h, h) around all other critical points along this line, e.g. around (h, δ) = (1, 1), shows:

∆k(0, h, h) = 2(k − π/2)2 +O[k − π/2]3 − 2((k − π/2)2 +O[k − π/2]3)(h− 1) +O[h− 1]2,

which yields z = 2, ν = 1/2, different from what obtained at point O. Indeed, the non-equilibrium

exponent is solely determined by the static exponents of QCP O along the chosen path, nex ∼

τ−ν/(νz+1) = τ−1/2. We term a QCP which belongs to a different universality class than all other

critical points along a critical line and sets the non-equilibrium scaling a dominant critical point for

that line 1.

Physically, although the gap ∆π/2 closes along the critical line in the thermodynamic limit, a level

crossing which brings all bands together only occurs at O – still allowing the time-evolved state to

adiabatically follow the snapshot ground state until then. The following independent confirmations

may be invoked in support of the above argument. First, consider the anisotropic quench process

analyzed in [76], whereby γ(t) is changed linearly along the critical line h2 = δ2 + 1. By Taylor-

expanding ∆k in Eq. (2.6) around k = 0, γ = 0 reveals that ν = 1, z = 2 at the dominant QCP

(γ = 0, h, δ), whereas ν = 1, z = 1 for γ 6= 0 along the line. Accordingly, nex ∼ τ−1/3. Plots of

the rescaled excitation density (nexτ
1/3) vs the rescaled time (t/τ2/3) collapses onto one another

for different τ within the appropriate range, in complete analogy with Fig. 3.5. While our scaling

results coincides with the result obtained in [76], the underlying physical explanation is different: In

Ref. [76], the τ−1/3 scaling is obtained from the critical exponent z of the non-dominant one, that

is z = 1 in Eq. (17) of Ref. [76]. However, our simulation clearly shows that the excitation sets in

only when the dominant QCP is passed, which implies that the critical exponents of the dominant

QCP should determine the scaling results. Second, loss of adiabaticity at a single point can also

explain the scaling behavior observed for a AFM-to-FM quench (or a gapless phase-to-FM quench)

in the XXZ model [74], whereby the control path involves the gapless critical region −1 ≤ ∆ ≤ 1

and the dominant critical point ∆ = 1 belongs to a different universality class. Lastly, the concept

of a dominant QCP remains useful for a power-law quench, which leads to the scaling behavior

1Note that the point O is multi-critical. However, quenches across a MCP need not satisfy KZS, see further
discussion in Section 3.4 and Ref. [81].
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nex ∼ τ−αdν/(ανz+1), with ν and z being the critical exponents of the above dominant QCP.
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Figure 3.5: Main panel: dynamical scaling of the excitation density for a simultaneous linear quench
of h and δ along the gapless critical line F → O → G. Inset: log-log plot of the final excitation
density vs τ along the path A′ → D → O.

3.3.2 Quenching along Paths with an Infinite Number of Critical Modes

More complex scenarios emerge when uncountably many modes of excitations can be important and

compete during the quench. We contrast two representative situations where the Lifshitz QPT is

involved: (I) Magnetic quenches along the horizontal path D → O → E (PM → SF → PM); (II)

Alternating quenches along the vertical path A→ B → C (DM→ SF→ DM), as marked in Fig. 3.4.

In the isotropic limit, since, as we discussed, the Hamiltonian of Eq. (2.1) has a continuous U(1)-

symmetry, the total z-magnetization is conserved, [Mz, H] = 0. Thus, in both cases, the allowed

excitation must comply with a non-trivial dynamical constraint. Along the path D → O → E,

suppose we rewrite the Hamiltonian H(t) as H(t) = H0 + h(t)Mz, where [H0,Mz] = 0 is satisfied.

Then, the initial ground state Φ(t0) is an eigenstate of both H0 and Mz, which is always true

during the entire time-evolution since both H0 and Mz are time-independent. Thus, Φ(t0) is always
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an eigenstate of H(t) along the path D → O → E, which forces the final state to be the same

as the initial ground state up to a global phase factor, leading to nex(tf ) ∼ τ0. Although for a

magnetic quench this may be viewed as a consequence of the fact that the dynamics simply acts

as a “relabeling” of the snapshot eigenstates, the same scaling holds for any quench which begins

or ends in the gapless phase – for instance, a δ-quench along the path A → B. Because these

quenches take the system through a critical line in momentum space, d − m = 1 (as opposed to

d −m = 0 for an isolated QCP), and the observed scaling is consistent with the recent prediction

nex(tf ) ∼ τ−mν/(νz+1) [75].

One may naively expect the same scaling to hold for path (II), which also connects two gapped

(DM) phases, albeit different than in (I). Unlike in the standard KZS, however, details about the

initial and final phases as well as the time-dependent excitation pattern become important. Specif-

ically, along path (II), we find nex(tf ) ∼ τ−1/2. An explanation may be obtained by exploiting the

fact that due to the U(1)-symmetry, the fermion number is conserved. This allows the reduced 4×4

matrix Ĥk in Eq. (2.4) to be decoupled into two 2 × 2 matrices by interchanging the order of the

basis vectors a−k and b†k. Thus, H ′±k = W †±kĤ
′
±kW±k, where W †k = (a†k, b

†
k), W †−k = (a−k, b−k), and

Ĥ ′±k = ±2hI2 +




±2δ ∓2 cos k

∓2 cos k ∓2δ


 . (3.14)

For such a two-level system, the asymptotic excitation probability may be computed from the exact

Landau-Zener (LZ) transition formula [82], P = e−2πω2/|d∆(t)/dt, with ω and ∆(t) being the off-

diagonal and diagonal element of the driven two-level system respectively, yielding pk = e−2πτ cos2 k.

Upon integrating over all modes, we find

nex(tf ) =
1

π

∫ π/2

−π/2
dk pk ∼ τ−1/2. (3.15)

Note that because pk is independent on h, the result in Eq. (3.15) may be interpreted as implying

that traversing the gapless phase produces the same excitation density as crossing the single QCP

O by translating path (II) at h = 0, which determines the non-equilibrium exponent.

Physical insight into what may be responsible for the different behavior observed in the above two
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quenches can be gained by examining the excitation spectrum along the two paths. Notice that, once

the energy eigenvalues are specified at the initial time, (εk,1(tin) ≤ εk,2(tin) ≤ εk,3(tin) ≤ εk,4(tin) in

our case), the same relative ordering need not hold at the final time if a level crossing is encountered

during the quench – see Fig. 3.6(a),(b). In the critical region, a pair of modes (k, n) and (k, n′)

undergoes a level crossing if h2 − δ2 = cos2 k. If the number of such level crossings for fixed n, n′ is

even, the net contribution to the final excitation from momentum k is zero, since the final occupied

bands are the same as the initial ones – see Fig. 3.6(c). No cancellation is in place if either an odd
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number of level crossings from the same pair or if different pairs (n, n′) are involved. The latter

situation is realized for all k along path (I) (h-quench, Fig. 3.6(a)) and also for the path A → B

(δ-quench). For a δ-quench along path (II), the net excitation from the gapless phase turns out

to be completely canceled (as seen in Fig. 3.6(d), where the quench starts and ends symmetrically

within the gapless phase). This only leaves the two boundary critical lines h = ±δ as contributing

to the excitation, thus a finite set of critical modes (a single one in fact, kc = π/2, see Fig. 3.6(b)).

Interestingly, a similar cancellation mechanism was verified for repeated quenches across an isolated

QCP [67]. While additional analysis is beyond our scope, we suggest that an even participation from

the same (pair of) snapshot excitations may be at the root of this cancellation in both scenarios.

Here, we further test this conjecture by examining the path A′ → D → O, for which an effective

two-level LZ mapping is no longer possible. Unlike A → B → C, two intermediate phases are now

crossed, and the initial and final phase differ from one another, yet analysis of εk,n(t) reveals that

the two paths are equivalent in terms of participation of critical modes. Numerical results confirm

that nex(tf ) ∼ τ−1/2, see inset panel of Fig. 3.5.

3.4 Multi-critical Quantum Quenches

Besides the non-KZS discussed in Section 3.3 for quenches involving critical regions, non-KZS may

also occur for the apparently simple situation of a quench across a single quantum multicritical

point (MCP) in disorder-free spin chains [79, 80, 81]. Here, we show how multicritical quantum

quenches dramatically exemplify the dependence of non-equilibrium scaling upon the control path

anticipated in Section 3.3, and demonstrate that anomalous non-ergodic scaling may emerge in the

thermodynamic limit. While a non-KZS nex(tf ) ∼ τ−1/6 was previously reported [79], and an

explanation given in terms of an “effective dynamical critical exponent” z2 = 3, the meaning of such

exponent relied on the applicability of a LZ-treatment, preventing general insight to be gained. We

argue that the failure of KZS is physically rooted in the shift of the center of the impulse region

relative to the static picture (see bottom panel in Fig. 1.1), and that z2 is determined by the scaling

of a path-dependent minimum gap which need not coincide with the critical gap. Furthermore, we

argue that such a dynamical shift may also cause the contribution from intermediate non-critical
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energy states to dominate the scaling of the excitation density, via an “effective dimensionality

exponent” d2 6= 0. We will show that the latter leads to the emergence of new scaling behavior

nex(tf ) ∼ τ−3/4. A unified understanding is obtained by extending the perturbative AR-approach

introduced in Section 3.2.2.

3.4.1 Exact Numerical Scaling Results: Anomalous Scaling Behavior

We mainly choose four representative paths to study the dynamical scaling of quenches across MCPs

A and B, which are marked by path 1, 2, 3, 4 in Fig. 2.4. As showed in the table on page 21, there

are two universality classes involved, one is the Lifshitz universality class (ν = 1/2, z = 2) for paths

3 and 4, the other one is a new universality class (ν = 1, z = 2) for paths 1 and 2. So the first

question we would like to understand is, will a MCP always introduce anomalous dynamical scaling?

In order to quantify the amount of excitation at a generic instant t, again, we monitor both: the

excitation density, nex, and the residual energy, ∆H. For a linear quench along either path 1 or 2

(Fig. 3.7 for path 2), we find that nex(t) ∼ τ−ν/(νz+1) = τ−1/3 and ∆H(t) ∼ τ−ν(1+z)/(νz+1) = τ−1,

which is consistent with KZS [57]. For paths 3 and 4, however (Fig. 3.8 for path 3), we find that

nex(t) ∼ τ−1/6 and ∆H(t) ∼ τ−2/3, which is non-KZS (in Ref. [79], the τ−1/6 scaling was pointed

out for an equivalent quench scheme across MCP A). Similar anomalous exponents are found for non-

linear quenches along paths 3 or 4, e.g., nex(t) ∼ τ−2/9 for α = 2 (bottom inset panel in Fig. 3.8).

The above results clearly show that, for quenches across a MCP, whether KZS is obeyed depends

sensitively on which control path is chosen. A closer inspection reveals the following important

differences: (i) Paths 1, 2 start and end in essentially the same (FM) phase, correspondingly the

excitation spectrum is invariant under a transformation λ 7→ −λ of the control parameters. Paths

3, 4 do not exhibit this symmetry; (ii) Along paths 3, 4, the MCPs A and B belong to the Lifshitz

universality class (ν = 1/2), although all paths share z = 2. It is then natural to ask which of these

differences may play a role in determining the anomalous dynamical scaling behavior. To answer

this question, we introduce another “V-shaped” path across MCP A (path 5), which starts and ends

in the PM phase but, in each of the two segments, crosses the MCP A with Lifshitz exponents (shown

in the inset panel of Fig. 3.9). Surprisingly, the observed scaling is nex(t) ∼ τ−3/4 (main panel of
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Figure 3.7: Exact scaling of the excitation density (main panel) and excitation energy (inset panel)
throughout a linear quench along path 2.

Fig. 3.9), which is neither KZS nor −1/6. An identical −3/4 scaling holds for a V-shaped path

across MCP B, that starts and ends in the DM phase. As finite-size analysis reveals, all the observed

anomalous scalings are practically independent upon the system size over a wide range of quench

rates (see Fig. 3.10), establishing them as truly thermodynamic in nature 1.

3.4.2 Landau Zener Analysis for Anomalous Scaling Behavior

In order to gain physical understanding of the above anomalous scaling results, we study the limiting

cases where an exact solution for nex(tf ) may be obtained based on the LZ picture. This is possible

provided that the quench is linear and the Hamiltonian can be decoupled into effective two-level

systems. Among the above-mentioned paths, only paths 4 and 5 (for which δ = 0) can be exactly

mapped to a LZ problem, thanks to the possibility of rewriting the Hamiltonian in Eq. (2.1) as

1Notice that since νz < z along path 5, to leading order the scaling of ∆k is dominated by the control parameter
rather than by the system size.
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Figure 3.8: Main panel: Exact scaling of the excitation density throughout a linear quench along
path 3. Left top inset: Exact scaling of the excitation energy throughout a linear quench along path
3. Right bottom inset: Exact scaling of the excitation density throughout a quadratic quench along
path 3. N = 400.

H =
∑
k B
†
kH̃kBk, where B†k = (c−k, c

†
k) and

H̃k =



H̃k,11 H̃k,12

H̃∗k,12 −H̃k,11


= 2



−h+ cos k γ sin k

γ sin k h− cos k


 . (3.16)

A rotation Rk(qk), qk ∈ [−π/2, π/2), renders the off-diagonal terms in Eq. (3.16) independent

upon γ (hence time), allowing a direct use of the LZ formula. Consider path 4 first. By choosing

tan 2qk = − sin k, the transformed Hamiltonian matrix elements become:

H̃ ′k,11 = −2(1− cos k) cos 2qk − 2t/τ(cos 2qk − sin k sin 2qk), H̃ ′k,12 = 2(1− cos k) sin 2qk.
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Notice that the critical mode kc = 0 for the MCP A. We may then let tan 2qk ≈ sin 2qk, and the

appropriate qk ≈ −k/2. From the LZ formula, the asymptotic (tf → ∞) excitation probability

reads:

pk = e−2πτ(1−cos k)2 sin2 2qk/(cos 2qk−sin k sin 2qk)≈e−πτk6/2,

where the approximation follows from a Taylor expansion around kc. Integrating over all modes

yields nex(tf ) ∼ τ−1/6, which is consistent with our exact numerical result. Therefore, mathemati-

cally, the τ−1/6 scaling follows from the fact that the exponent in pk scales as k6 = k2z2 , with z2 = 3.

In turn, this originates from the scaling of the off-diagonal terms H ′k,12 ∼ kz2 . Physically, as we

shall later see by invoking AR, H ′k,12 may in fact be interpreted as the minimum gap for mode k

along path 4.
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To unveil the τ−3/4 scaling, it is necessary to invoke the exact finite-time LZ solution. For

simplicity, we restrict to half of path 5, by quenching the system from the PM phase up to the MCP

A. This has the benefit of avoiding the non-analytic time-dependence of the control parameters

that path 5 exhibits at A, while leaving the τ−3/4 scaling unchanged thanks to the symmetry of

the excitation spectrum. Starting from Vitanov’s expression (Eq. (7) in Ref. [83]), the excitation

probability pk(tf ) can be computed via the parabolic cylinder function Dv(z),

pk(tf ) =e−πω
2/4
∣∣∣Diω2/2(Tf

√
2ei3π/4) cos θ(Tf )− ω√

2
e−iπ/4Diω2/2−1(Tf

√
2ei3π/4) sin θ(Tf ))

∣∣∣
2

,

where ω = (1 − cos k) sin 2qk
√
τ/
√

cos 2qk + sin 2qk sin k ∼ k3
√
τ is the rescaled coupling strength,

Tf = −ω/ sin k ∼ −k2
√
τ is the rescaled time, tan 2qk = sin k, and θ(Tf ) = 1/2 arctan (ω/Tf ) +π/2.

Since for our quench process |Tf | � 1 around kc, we may estimate pk(tf ) by Taylor-expanding Dv(z)

around Tf = 0 up to the second order:
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pk(tf ) = (1− e−πω2/2)/2 + cos2 θ(Tf )e−πω
2/2−sin 2θ(Tf )/2 sinχk

√
1− e−πω2

− cos 2θ(Tf ) cosχk
√

1− e−πω2Tfω +O[Tf ]2, (3.17)

where χk ≈ π/4 around kc. Note that this approximation breaks when Tf ∼ 1, setting the scaling

of the largest momentum-mode in the relevant modes set as kmax ∼ τ−1/4. Since ω/Tf � 1 for

modes around kc, arctan (ω/Tf ) ∼ ω/Tf , which leads to cos θ(Tf ) ∼ ω/Tf , and sin θ(Tf ) ∼ ω/Tf .

Thus, we can analyze the contribution to pk(tf ) by the scaling behavior of each term in Eq. (3.17)

for modes within kmax:

(1− e−πω2/2)/2 ∼ ω2, cos2 θ(Tf )e−πω
2/2 ∼ cos2 θ(Tf ) ∼ (ω/Tf )2,

sin 2θ(Tf )/2 sinχk
√

1− e−πω2 ∼ ω2/Tf , cos 2θ(Tf ) cosχk
√

1− e−πω2Tfω ∼ ω2Tf .

Because ω/Tf � 1 and ω � 1, the dominant term is cos2 θ(Tf )e−πω
2/2, which indicates pk(tf ) ∼

(ω/Tf )2 ∼ k2. Thus finally,

nex(tf ) =

∫ kmax

0

pk(tf )dk ∼ k3
max ∼ τ−3/4,

in agreement with our numerical results. Remarkably, the fact that pk(tf ) ∼ (k − kc)d2 , d2 = 2,

indicates that kc is not excited despite a static QCP being crossed, and also that the excitation is

dominated by intermediate (excited) energy states. In fact, at the MCP A, the modes around kc are

still far from entering the impulse region, since |Tf | � ω, which sets the LZ transition time scale

[83]. This is in stark contrast with the main assumption underlying KZS, where the center of the

impulse region is the static QCP, and excitations are dominated by modes near kc, as reflected in

the typical scaling pk ∼ (k − kc)0 = O(1). Therefore, the shift of the actual (dynamical) impulse

region relative to the static one is ultimately responsible for the observed anomalous τ−3/4 scaling.

3.4.3 Scaling Prediction from First-Order Adiabatic Renormalization

Since the system becomes gapless at a single MCP along all the paths under study, first-order AR

is still a viable approach. Let, as before, |ψm(t)〉 be a basis of snapshot eigenstates of H(t), with

snapshot eigenvalues Em(t), m = 0 labelling the ground state. The time-evolved state may be

58



−3 −2 −1 0 1 2 3 4
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

t/τ
1/2

n
e
x
*τ

1
/6

−5 0 5

0

0.5

1

1.5

2

t/τ
1/2

∆
H

*τ
2
/3

h=1

γ=t/τ,δ=1+γ

N=1000

Figure 3.11: Scaling of the excitation density (main) and excitation energy (inset) from first-order
AR for a linear quench along path 3.

expanded as |ψ(t)〉 = c
(1)
0 (t)|ψ0(t)〉+∑m 6=0 c

(1)
m (t)|ψm(t)〉, where the coefficients c

(1)
m (t) are given by

Eq. (3.10). First-order AR calculations of nex(t) demonstrate that for linear quenches along paths

1 and 2, nex ∼ τ−1/3 and ∆H ∼ τ−1, whereas nex ∼ τ−1/6, ∆H ∼ τ−2/3 along paths 3 and 4

(Fig. 3.11). Since the non-analyticity at A in path 5 might cause problems in AR, again we choose

to study half of path 5 (see main panel of Fig. 3.12), where we start at MCP A, and then quench

towards the PM phase. All the AR results agree with the exact simulation results, confirming that

AR is able to reproduce the correct dynamical scaling across a generic isolated QCP.

Predicting the scaling exponent based on AR requires scaling assumptions for the contributions

entering c
(1)
m (t) [i.e., ∆m(t) = Em(t)−E0(t) and 〈ψm(t)|H1|ψ0(t)〉] and the ability to change discrete

sums of all the contributing excited states into integrals, for which the density of excited states ρ(E)

is required. Since typically the AR prediction is consistent with KZS, anomalous behavior must

stem from anomalous scaling assumptions of (one or more of) these ingredients. We first examine

the excitation spectrum along different paths. Notice that since H1 is a one-body perturbation,
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only single-mode excitations are relevant, thus the index m labeling many-body excitations may be

identified with a momentum mode. Along paths 1 and 2, it turns out that the minimum gap among

all modes is always located at kc, whereas along paths 3 and 4, the minimum gap is located at kc

only at the MCP. This suggests that knowing the critical exponents of the MCP alone need not

suffice to determine the dynamical scaling due to the existence of “quasi-critical” modes along paths

3 and 4. In fact, along path 4 (for instance), there is a value of γ̃ for each k such that the gap for

this mode k reach its minimum value. This location can be obtained by requiring:

∂∆k(γ, 1 + γ, 0)

∂γ
= (1 + γ − cos k + γ sin2 k)/

√
(1 + γ − cos k)2 + (γ sin k)2) = 0,

thus γ̃ = (cos k − 1)/(1 + sin k2) ≈ (cos k − 1)(1 − sin k2) around kc = 0, which is largely shifted

into the FM phase (see inset in Fig. 3.12). By inserting this relation back into ∆k, the composite

function ∆k(γ̃) has the following scaling behavior

∆k(γ̃) ≡ ∆̃k ≈
√

(1 + (cos k − 1)(1− sin k2)− cos k)2 + ((cos k − 1)(1− sin k2) sin k)2 ∼ kz2 ,

where z2 = 3. Following the same procedure also yields ∆̃k ∼ (k − kc)3 along path 3, while ∆̃k has

the same scaling as ∆k at the MCP along paths 1 and 2. This motivates modifying the AR scaling

in Eq. (3.12) as follows:

Em(t)− E0(t) = δλ(t)νzfm

(∆m(tmin)

δλ(t)νz

)
,

where ∆m(tmin) is the minimum gap of mode m attained at tmin along the path, and fm is a scaling

function. Confirmation of this scaling assumption is shown in panel (a), (b) of Fig. 3.13 for path 3.

The above modification requires the scaling of ρ(E) to be modified by letting ρ(E) ∼ Ed/z2−1,

where z2 comes from the dispersion relation of ∆m(tmin). If the minimum gap of any mode is below

a certain energy along the path, that mode should be counted into the contributing excited states.

Accordingly, we have z2 = z = 2 along paths 1, 2, half-5, and z2 = 3 along paths 3, 4. Back to the

LZ analysis, note that the off-diagonal term H ′12(k) is the minimum gap of mode k along the path

if there exists a time at which the diagonal term H ′11(k) = 0, as it happens for path 4. For path

5, however, the off-diagonal term never becomes the minimum gap since the system never leaves
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half-5 starting at MCP A (main). Inset: Low-lying single-mode excitation spectrum along path 4
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the PM phase. Therefore, the off-diagonal term in the LZ picture need not suffice to determine the

dynamical scaling, and the shift of the location of the minimum gap for each mode from the static

QCP is at the root of the anomalous behavior we observe. Lastly, we consider the matrix elements of

H1. Numerical simulations suggest that 〈ψm(t)|H1|ψ0(t)〉 = δλ(t)νz−1gm(∆m(tmin)/δλ(t)νz), where

gm is a scaling function, and ∆m(tmin) is the minimum gap of mode m along a path that extends

the actual path to tf →∞ when the quench is stopped at the MCP, and coincides with the actual

path otherwise. Then along paths 1 and 2, ∆m(tmin) ∼ k2, whereas along paths 3, 4, and half-5,

∆m(tmin) ∼ k3. The confirmation of the scaling assumption for 〈ψm(t)|H1|ψ0(t)〉 is shown in panels

(c) and (d) of Fig. 3.13 for path 3. Together with the other scaling assumptions, and taking the

linear case α = 1 as an example, AR yields |c(1)
m | ∼ k0, nex ∼ τ−(z/z2)(ν/(νz+1)) along paths 1 to 4,

and |c(1)
m | ∼ k1, nex ∼ τ−3ν/(νz+1) along half-5 path, which completely agrees with the numerical

results.
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Figure 3.13: Scaling behavior of Em(t) − E0(t) [panel (a),(b)] and 〈ψm(t)|H1|ψ0(t)〉 [panel (c),(d)]
along path 3.

Building on the above analysis, we argue on physical grounds that the scaling of the excitation

density for quenches across an arbitrary (standard or multicritical) isolated QCP is determined by

the following three conditions:

(i) From the condition of adiabaticity breaking, the typical gap, ∆̂, must scale as

∆̂ ∼ τ−ανz/(ανz+1);

(ii) An accessible excited state contributes to the excitation if and only if its minimum gap along
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the path matches with this typical gap, ∆̃k ∼ ∆̂, with

∆̃k ∼ (k − kc)z2 ;

(iii) The excitation probability, pk, scales as pk ∼ (k − kc)d2 , where d2 can differ from 0 if the

center of the impulse region is greatly shifted relative to the static limit. Then, upon integrating up

to energy ∆̂, and using pE ∼ pk(E) ∼ Ed2/z2 , we obtain

nex =

∫ ∆̂

0

pEdE ∼ ∆̂(d+d2)/z2 ∼ τ−(d+d2)ανz/[z2(ανz+1)], (3.18)

which is consistent with all the results found thus far.

While KZS corresponds to z2 = z, d2 = 0, situations where z2 6= z and/or d2 6= 0 are gen-

uinely dynamical: knowledge about the path-dependent excitation process becomes crucial and

non-equilibrium exponents can no longer be fully predicted from equilibrium ones. Interestingly, in

the model under examination the Lifshitz universality class appears to be the only universality class

for which anomalous scaling occurs, among all possible paths involving MCPs. Whether Lifshitz

behavior may constitute a sufficient condition for anomalous behavior requires further investigation

in other many-body systems.

63



Chapter 4

Dynamics in the XY Chain with

Initial Finite-Energy States

With a few exceptions where quenches at finite temperature and the associated thermal corrections

have also been examined [101, 102, 88, 100, 85], the large majority of the existing investigations have

focused on quench dynamics originating from the ground state of the initial Hamiltonian H(t0). Our

goal in this Chapter is to present a dedicated analysis of finite-energy quantum quenches, with a

twofold motivation in mind. First, elucidating to what extent and how universal scaling properties

depend upon the details of the system’s initialization is needed to gain a more complete picture of

non-equilibrium QPTs. While one might, for instance, naively expect that a sizable overlap with

the initial ground state would be essential in determining the applicability of ground-state scaling

results, one of our main results is that the support of the initial state on those excitations relevant to

the path-dependent excitation process is key in a dynamical scenario, in a sense to be made precise

later. Second, from a practical standpoint, perfect initialization of a many-body Hamiltonian in its

exact ground state is both NP-hard in general [103, 104, 105], and experimentally unfeasible due

to limited control. In this sense, our investigation extends previous studies on finite-temperature

signatures of static QPTs [123], and may be directly relevant to experiments using ultracold atoms

[7, 10, 9, 106] as well as nuclear magnetic resonance (NMR) quantum simulators [107, 108, 109].
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Here, we address non-equilibrium dynamics originating from a large class of (bulk) initial states

of a quantum XY spin chain for a variety of different quench schemes involving either a regular QCP

or a MCP. Both pure and mixed initial states carrying a finite excitation energy above the ground

state are examined, under the main assumption that, subsequent to initialization, the system can

be treated as (nearly) isolated, hence still evolving unitarily under a time-dependent Hamiltonian.

In particular, dynamical scaling in adiabatic and sudden quenches [84, 85, 86, 87, 88] starting from

an excited energy eigenstate are analyzed in Sec. 4.2.1 and Sec. 4.2.2 respectively, with emphasis on

making contact with previously introduced AR approaches [62, 77] and on clarifying connections

between scaling behavior in sudden and adiabatic dynamics. The case of a generic excited pure state

prepared by a sudden parameter quench is also considered in Sec. 4.2.3, and criteria are identified for

KZS to be obeyed. Sec. 4.3 is devoted to quench dynamics resulting from an initial thermal mixture,

with the main goals of characterizing the robustness of dynamical scaling behavior in realistic finite-

temperature conditions, and of further exploring the conditions leading to effective thermalization of

certain physical observables following a sudden quench toward criticality. In the process, we extend

the analysis undertaken in Sec. 4.3.1, by presenting finite-temperature generalizations of the scaling

predictions obtained for adiabatic (both linear and non-linear) multicritical quantum quenches, as

well as evidence of how the peculiar nature of a MCP may also result in anomalous thermalization.

4.1 Model Hamiltonian

4.1.1 Energy Spectrum

To simplify our discussion, let us consider the homogeneous limit (δ = 0) of the alternating XY spin

chain we discussed in the Chapters 2 and 3, that is:

H = −
N∑

j=1

(1 + γ

2
σjxσ

j+1
x +

1− γ
2

σjyσ
j+1
y −hσjz

)
, (4.1)

where, as before, periodic boundary conditions are assumed, that is, σjα ≡ σj+Nα , and N is taken

to be even. The diagonalization of the Hamiltonian (4.1) is well-known [37, 12, 50], and proceeds

along steps similar to those we followed in Chapter 2, but without introducing two sets of fermionic
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operators. Here, we recall the basic steps and provide a more detailed discussion on the eigenstate

properties, as needed to discuss the quench dynamics from initial excited states. Upon introduc-

ing canonical fermionic operators {cj , c†j} via the Jordan-Wigner mapping c†j ≡
∏j
`=1(−σ`z)σj+, H

rewrites as a quadratic form

H = −
N−1∑

j=1

(c†jcj+1 + γc†jc
†
j+1 + h.c.) + 2h

N∑

j=1

c†jcj−hN + P (c†Nc1 + γc†Nc
†
1 + h.c.)

≡ H(+) +H(−), (4.2)

where P, the parity of the total fermionic number, was defined in Eq. (2.3), but without the need of

differentiating two sets of fermionic operators, and H(+) (H(−)) corresponds to +1 (−1) eigenvalue

of P, respectively.

As discussed in Chapter 2, in finite systems the ground state and excited energy eigenstates with

an even number of fermions belong to the P = +1 sector. By using a Fourier transformation to

momentum space, c†k = 1√
N

∑N
j=1 e

−ikjc†j , followed by a Bogoliubov rotation to fermionic quasipar-

ticles {γk, γ†k}, with γk = ukck − ivkc†−k, uk = u−k, vk = −v−k, and u2
k + v2

k = 1, the Hamiltonian

in Eq. (4.2) rewrites as a sum of non-interacting terms:

H(+) ≡
∑

k∈K+

Hk =
∑

k∈K+

εk(h, γ)(γ†kγk + γ†−kγ−k − 1). (4.3)

Here, the set K ≡ K+ + K− of allowed momentum modes is determined by the anti-periodic

boundary conditions on the fermions in the even sector, cj+N ≡ −cj , which yields K± =
{
±

π
N ,± 3π

N , . . . ,±
(
π − π

N

)}
, and

εk(h, γ) = 2
√

(h− cos k)2 + γ2 sin k2 (4.4)

is the quasi-particle energy of mode k. For each k, let Hk ≡ span{|0k〉, |1k〉}, where {|0k〉, |1k〉 =

γ†k|0k〉} are orthonormal states corresponding, respectively, to zero and one Bogoliubov quasiparticle

with momentum k, that is, 〈0k|γ†kγk|0k〉 = 0, 〈1k|γ†kγk|1k〉 = 1, and similarly for −k. Thus, the four
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eigenstates of Hk provide a basis for Hk ⊗H−k,

Bk={|0k, 0−k〉, |1k, 1−k〉, |0k, 1−k〉, |1k, 0−k〉} ≡ B
(+)
k ⊕B

(−)
k , (4.5)

where the corresponding eigenenergies are given by −εk, εk, 0, 0, and a further separation into even

(odd) sector for each k is possible due to the fact that [Pk, Hk] = 0, with

Pk ≡ eiπ(γ†kγk+γ†−kγ−k) = eiπ(c†kck+c†−kc−k).

The ground state of H(+) corresponds to the BCS state with no Bogoliubov quasiparticles, that is,

|Ψ(+)
0 〉 =

⊗

k∈K+

|0k0−k〉 =
⊗

k∈K+

(uk + ivkc
†
kc
†
−k)|vac〉. (4.6)

Many-body excited states in the even sector can be obtained by applying pairs of Bogoliubov quasi-

particle operators to |Ψ(+)
0 〉. In particular, excited eigenstates with support only on the even sector

B
(+)
k for each mode are obtained by exciting only pairs of quasiparticles with opposite momentum

and have the form

|Ψ(+)
E 〉 =

( ⊗

k∈Ke
+

|1k1−k〉
)( ⊗

k∈K+−Ke
+

|0k0−k〉
)
, (4.7)

where Ke
+ labels the subset of excited modes.

For finite N , the ground state and excited energy eigenstates with an odd number of fermions

belong to the sector P = −1, which implies periodic boundary conditions on the fermions, cj+N ≡ cj ,

and a different set K̄ of allowed momentum modes, K̄ ≡ K̄+ + K̄− + {0,−π}, where K̄± =
{
± 2π

N ,± 4π
N , . . . ,±

(
π− 2π

N

)}
. Since one may show that εk=0 = h− 2 and εk=−π = h+ 2, occupying

mode 0 has always lower energy than occupying mode −π, thus the ground state of H(−) is now

|Ψ(−)
0 〉 = |100−π〉

⊗

k∈K̄+

|0k0−k〉,

and excitations may be generated by applying Bogoliubov quasiparticle operators in such a way that
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the constraint on the total fermionic number parity is obeyed. Similar to modes in the even sector,

k ∈ K+, the subspace of each mode k ∈ K̄+ yields four eigenstates of Hk and, in principle, a basis

formally identical to the one in Eq. (4.5) for the odd Hilbert-space sector. Although for finite N

P is always a good quantum number under dynamics induced by H, the error in the computation

of observables arising from identifying the two sets of modes K and K̄ is vanishingly small as N

increases, as discussed in Section 2.1.1. Thus, for sufficiently large N , a simplified description in

terms of a unique set of momentum modes is possible by using the basis

B ≡
⊗

k∈K+

Bk, (4.8)

to characterize arbitrary states in the full Hilbert space H =
⊗

k∈K+
(Hk ⊗H−k). This becomes

accurate in the thermodynamic limit N →∞, where the many-body ground state becomes twofold

degenerate and the Z2-symmetry spontaneously breaks, causing different P-sectors to mix.

The equilibrium phase diagram of the Hamiltonian in Eq. (4.1) is shown in the bottom panel of

Fig. 2.4. Throughout this Chapter, we will mainly investigate scaling behavior in quenches involving

either the regular QCP C (hc = 1, γc = 1), which has equilibrium critical exponents ν = z = 1 and

belongs to the d = 2 Ising universality class, or the MCP A (hc = 1, γc = 0), which has ν = 1/2, z = 2

and belongs instead to the Lifshitz universality class, as marked in Fig. 2.4. For both the QCPs A

and C of interest, we have critical mode kc = 0 in the large-N limit.

4.1.2 Dynamical Response Indicators

In Chapter 3, the excess expectation value relative to the instantaneous ground state, defined in

Eq. (3.2), was shown to successfully characterize dynamical scaling behavior for a large class of

observables in adiabatic quenches originating from the ground state. For a generic quench process,

where in principle both the time-dependence in H(t) and the initial state ρ(t0) can be arbitrary, it is

desirable to characterize the response of the system in such a way that no excitation is generated by

purely adiabatic dynamics and zero-energy quenches are included as a special case. This motivates
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extending the definition given in Eq. (3.2) to

∆O(t) ≡ Tr[O(t)ρ(t)]− Tr[O(t)ρ̃(t)] , (4.9)

where now ρ(t) and ρ̃(t) are the actual time-evolved density operator and the density operator re-

sulting from adiabatic evolution of ρ(t0) respectively. Let H(t)|Ψi(t)〉 = Ei(t)|Ψi(t)〉 define snapshot

eigenstates and eigenvalues of H(t) along a given control path. Then the adiabatically steered state

is ρ̃(t) =
∑
i,j ρi,j(t0)|Ψi(t)〉〈Ψj(t)|, with ρi,j(t0) being the matrix elements of the initial state ρ(t0)

in the eigenstate basis |Ψi(t0)〉〈Ψj(t0)| of the initial Hamiltonian H(t0).

With respect to the basis given in Eq. (4.8), a generic (uncorrelated) state in momentum space

may be expressed in the form ρ(t) =
⊗

k∈K+
ρk(t), where ρk(t) is the four-dimensional density

operator for mode k. Relative to a snapshot eigenbasis

Bk(t) ≡ {|ψjk(t)〉}, j = 0, . . . , 3,

similar to the one given in Eq. (4.5), but constructed from time-dependent quasiparticle operators

such that γk(t)|0k(t)〉 = 0, γ†k(t)|0k(t)〉 = |1k(t)〉, ρk(t) may be expressed as:

ρk(t) =
∑

i,j=0,3

ρij,k(t)|ψik(t)〉〈ψjk(t)|.

Suppose that the time-evolution operator for mode k is Uk(t), that is, ρk(t) = Uk(t)ρk(t0)U†k(t).

Direct calculation shows that |0k(t), 1−k(t)〉 = c†−k|vac〉, and |1k(t), 0−k(t)〉 = c†k|vac〉 for all t,

which indicates that the snapshot eigenstates belonging to the Pk = −1 eigenvalues are frozen

in time, |0k(t), 1−k(t)〉 = |0k(t0), 1−k(t0)〉, |1k(t), 0−k(t)〉 = |1k(t0), 0−k(t0)〉. As long as Pk is

conserved under Hk(t), the even and odd sectors for each k are thus decoupled. As a consequence,

upon letting

U†k(t)|1k(t), 1−k(t)〉 ≡ a0,k(t)|0k(t0), 0−k(t0)〉+ a1,k(t)|1k(t0), 1−k(t0)〉,
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we can evaluate the time-dependent excitation probability for mode k as follows:

Pk(t) ≡ Tr[ρk(t)γ†k(t)γk(t)] (4.10)

= Tr[ρk(t)(|1k(t), 1−k(t)〉〈1k(t), 1−k(t)|]+Tr[ρk(t)|1k(t), 0−k(t)〉〈1k(t), 0−k(t)|]

= (ρ00,k(t0)−ρ11,k(t0))|a0,k(t)|2+ρ11,k(t0)+2Re[ρ01,k(t0)a∗0,k(t)a1,k(t)]+ρ33,k(t0),

where the relationships |a0,k(t)|2 + |a1,k(t)|2 = 1 and ρ10,k = ρ∗01,k have been exploited. Notice that

from the above definition of a0,k(t), it follows that |a0,k(t)|2 determines the time-dependent probabil-

ity that mode k is excited when it is in its ground state at t = t0. Similarly, we may express the adia-

batically evolved density operator ρ̃(t) =
⊗

k∈K+
ρ̃k(t), with ρ̃k(t) =

∑
i,j=0,3 ρij,k(t0)|ψik(t)〉〈ψjk(t)|.

Thus, the time-dependent excitation probability of mode k relative to the adiabatic path is simply

P̃k(t) = Tr[ρ̃k(t)γ†k(t)γk(t)] = ρ11,k(t0) + ρ33,k(t0) ≡ Pk(t0). (4.11)

Upon combining Eqs. (4.11)-(4.11), the relative excitation probability of mode k is given by

∆Pk(t)≡Pk(t)− Pk(t0)=(ρ00,k(t0)− ρ11,k(t0))|a0,k(t)|2+2Re[ρ01,k(t0)a∗0,k(t)a1,k(t)]. (4.12)

Physically, a non-zero contribution Pk(t0) may account for initial excitations due to either a

coherent preparation into an excited state or to a finite temperature T . Two relevant limiting cases

of Eq. (4.12) will play a special role in what follows. First, if mode k is initially in a generic pure

state of the form

|ψk(t0)〉 ≡
∑

j=0,3

cj,k|ψjk(t0)〉,

then ρ00,k(t0) = |c0,k|2, ρ01,k(t0) = c0,kc
∗
1,k, ρ11,k(t0) = |c1,k|2, hence

∆Pk(t) = (|c0,k|2 − |c1,k|2)|a0,k(t)|2 + 2Re[c0,kc
∗
1,ka

∗
0,k(t)a1,k(t)]. (4.13)
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Second, if the initial state ρ(t0) is a statistical mixture, then ρ10,k(t0) = ρ01,k(t0) = 0, and we have

∆Pk(t) = (ρ00,k(t0)− ρ11,k(t0))|a0,k(t)|2. (4.14)

The time-dependent excess expectation value ∆O(t) in Eq. (4.9) may be expressed directly in

terms of the relative excitation probability provided that the observables obeys [O(t), H(t)] = 0 at

all times. In this Chapter, we shall focus on the following three choices:

• O(t) = 1
N

∑
k∈K+ [γ†k(t)γk(t)+γ†−k(t)γ−k(t)], leading to the relative total density of excitations:

∆nex(t) =
2

N

∑

k∈K+

Tr[(ρk(t)− ρ̃k(t))γ†k(t)γk(t)] =
2

N

∑

k∈K+

∆Pk(t). (4.15)

• O(t) = H(t)/N , leading to the relative excitation energy density:

∆H(t) =
2

N

∑

k∈K+

Tr[(ρk(t)− ρ̃k(t))Hk(t)] =
2

N

∑

k∈K+

εk(h(t), γ(t))∆Pk(t). (4.16)

As a representative example of an observable not commuting with the system’s Hamiltonian, we

shall additionally include results on the scaling behavior of:

• O ≡ XX = 1
N

∑N
i=1 σ

i
xσ

i+1
x , corresponding to the nearest-neighbor spin correlator per site

along the x-direction [77]. We have:

∆XX(t)=
2

N

∑

k∈K+

∆
[
−2 cos k c†kck+iγ(t) sin k (c†kc

†
−k − h.c.)

]
(4.17)

Notice that Eqs. (4.15), (4.16) and (4.17) coincide with Eqs. (3.3), (3.4) and (3.5), respectively,

in the uniform magnetic field limit when the initial state is the ground state, as expected.

4.2 Quantum Quenches from a Pure Excited State

4.2.1 Adiabatic Quench Dynamics from an Excited Energy Eigenstate

As we discussed in Chapter 3, adiabatic quenches from the ground state of the initial Hamiltonian

H(t0) have been extensively studied and are well understood in this model. In order to explore
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the role of initialization, a first natural step is to investigate dynamical scaling behavior when the

initial state is an excited eigenstate of H(t0). In this subsection, we will show that both exact and

perturbative methods would give consistent results with respect to the condition to exhibit KZS

with an initial excited energy eigenstate.

4.2.1.1 Exact Numerical Scaling Results

Since, as remarked, the time-evolution of excited components along |0k, 1−k〉 and |1k, 0−k〉 is trivial,

we focus on excited energy eigenstates with support only on the even sector of each mode k, that is,

on states of the form given in Eq. (4.7). Noting that there are only two possibilities for each mode,

either c0,k = 1 or c0,k = 0, Eq. (4.13) yields

∆Pk(t) = (|c0,k|2 − |c1,k|2)|a0,k(t)|2 = ±|a0,k(t)|2, (4.18)

and, correspondingly,

∆nex(tf ) =
2

N

∑

k∈KR

[
± |a0,k(tf )|2

]
. (4.19)

Thus, the relative excitation density is the same, up to a sign, in two limiting cases: (i) the many-

body ground state, corresponding to c0,k = 1 for all k and to an overall positive sign in Eq. (4.19);

and (ii) the state where all allowed pairs of quasiparticles are excited, corresponding to c0,k = 0 for

all k and to an overall negative sign in Eq. (4.19). Since KZS is known to hold for a linear quench

process with initial condition (i), and a global sign difference would not change the scaling behavior,

KZS is expected to persist for the maximally excited initial eigenstate (ii) as well. This is to some

extent surprising both in view of the fact that such an initial state has zero overlap with the BCS

state |Ψ(+)
0 〉, and because one would not a priori expect highly energetic eigenstates to be sensitive

to the ground-state QPT.

Interestingly, critical properties of excited eigenstates in the XY chain have recently attracted

attention in the context of static QPTs [110]. Suppose that each excited eigenstate is associated

with an ordered binary strings of length |K| = N , where 0 (1) represents a mode in its ground
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(excited) state, respectively. Then a compact description of the eigenstate may be given in terms

of the “discontinuities” of the characteristic function of the corresponding occupied mode set: thus,

no discontinuity is present when all modes are 0 or 1, and a discontinuity is counted every time the

occupation of a given mode changes along the string. Alba et al. [110] have analytically proved, in

particular, that the block entanglement entropy, SL, of an excited eigenstate of the critical XY chain

may still obey conformal scaling as in the ground state provided that the number of discontinuities

remains finite in the thermodynamic limit, that is, SL ∼ logL, where L � 1 is the block size.

Conversely, SL exhibits non-critical scaling, SL ∼ L, when the number of discontinuities becomes

itself an extensive quantity as N → ∞. Thus, certain highly excited states (including the fully

excited state considered above) can still display critical behavior, the number of discontinuities in

the full set of momentum modes being the essential factor in determining the static scaling behavior.

While, intuitively, non-analyticities in the characteristic mode occupation function need not play a

direct role for simple observables such as the excitation density, these results prompt the following

question: to what extent does a distinction between “critical” (leading to KZS) and “non-critical”

excited eigenstates exist for dynamical QPTs?

A key difference with respect to the static situation is that only the relevant modes matter in

a dynamical QPT, k ∈ KR ≡ [kc, kmax], with kmax given in Eq. (3.8). In Fig. 4.1, we present

exact numerical results, obtained by direct numerical integration of the time-dependent Schrödinger

equation, for the relative excitation density in a linear adiabatic quench of the magnetic field h

around the QCP C of the critical Ising chain (γ = 1). Different initial eigenstates are compared over

a common range of τ , which is chosen to be well within the appropriate τ -range (recall Section 3.2)

for ground-state quenches (see also next paragraph and Fig. 4.2 for further discussion of this point).

In panel (a), the system is initialized in the first excited state, where only the critical mode is initially

excited (thus only one discontinuity is present), whereas in panel (b), the five lowest-energy modes

are initially excited (leading to one discontinuity as well). In case (a), while no scaling is visible for a

system with size N = 400, progressively better scaling behavior emerges as N is increased, with the

value at N = 3200 approaching the asymptotic KZS value (and better agreement being achievable

by optimizing the τ -range, see below). In constrast, for the data in panel (b), a system size as

large as N = 12800 is required for a scaling of comparable quality to be established. Since the only
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Figure 4.1: Scaling behavior of the final relative excitation density in a linear quench of the magnetic
field h around the QCP —tt C in the Ising chain, starting with different excited eigenstates of H(hc).
Panel (a): only kc = π/N is excited initially. The linear fit for N = 3200 yields −0.535 ± 0.002.
Panel (b): the five lowest-energy modes are initially excited. A linear fitting slope of −0.549± 0.003
is now reached at N = 12800. Panel (c): five modes (k = kc, 5π/N , 9π/N , 13π/N , and 17π/N)
are initially excited. The linear fit for N = 12800 yields −0.546± 0.002. Panel (d): the five lowest-
energy modes are initially excited for N = 12800 as in (b), but as the system size is increased
linearly, the number of excited modes is increased accordingly. In all cases, the relevant τ -range
τmin < 20 ≤ τ ≤ 250 < τmax (see text and Fig. 4.2).

difference between cases (a) and (b) is a different (fixed) number of initially excited modes in NR,

the fact that upon increasing N (thereby increasing NR accordingly) a better KZS is comparatively

obtained in (a) suggests that the ratio between the number of initially excited (or non-excited) modes

and NR is crucial for dynamical scaling behavior – not (as intuitively expected) the discontinuity

properties which characterize the initial mode occupation per se. More explicitly, let NE denote the

number of modes in KR that are excited at time t0, with NR − NE correspondingly denoting the

74



number of non-excited modes in KR, and let

MR ≡ min{NE , NR −NE}.

Motivated by the above observations and also recalling the symmetric role played by initially non-

excited vs. excited modes in determining the time-dependent relative probability of excitation

[Eq. (4.18)], we conjecture that KZS emerges in the thermodynamic limit provided that the initial

excited eigenstate satisfies

MR

NR
= ε� 1. (4.20)

Clearly, the case of ground-state initialization corresponds to NE = MR = 0, and the fully excited

state coincides with NE = NR,MR = 0. For a generic initial excited eigenstate, Eq. (4.20) allows

in principle MR to be an extensive quantity in the thermodynamic limit. Two additional results are

included in Fig. 4.1 to illustrate the above possibility. In panel (c), we still have five excited modes

in NR as in (b), but five discontinuities as opposed to just one. For the same system size (thus also

the same ε), the scaling is not worse than in panel (b), further supporting the conclusion that the

number of discontinuities does not play a role towards the emergence of dynamical scaling. In panel

(d), a fixed value of ε, equal to the one in (b) at N = 12800, is explored for different values of N ,

by also proportionally increasing NE . As the data show, the resulting ∆nex is the same, indicating

that MR may indeed be allowed to be an extensive quantity as long as Eq. (4.20) is obeyed.

It is important to address how the choice of a range of τ -values affects the above scaling conclu-

sions. Let τmin ≤ τ ≤ τmax and τ̃min ≤ τ ≤ τ̃max denote the valid range for ground-state, and for

excited-state initialization, respectively. As discussed in Section 3.2, since τmin is determined from

the requirement that an adiabatic regime exists away from criticality, whereas τmax follows from

ensuring that adiabaticity can be broken in a finite-size system, both τmin and τmax are related to

the scaling of the many-body gap between the ground state and first (available) excited state. Thus,

τ̃min (τ̃max) could in a priori be substantially different from τmin (τmax), respectively. In our case,

however, the Hamiltonian in Eq. (4.1) can be exactly decoupled into two-level systems for each mode

k. Therefore, the relevant gap is always ∆kc ≡ εkc(h, γ), irrespective of the initial condition. For this
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reason, the relation τmin ≤ τ̃min and τ̃max ≤ τmax must hold, as any finite-energy initial state might

imply more restrictive constraints as compared to the zero-energy case. In particular, according to

Eq. (4.20), not all the excited eigenstates can lead to KZS, and the better Eq. (4.20) is satisfied, the

closer KZS will be approached. This explains why, for instance, the fitting slope −0.549 from panel

(b) of Fig. 4.1 is not as close to the KZ value as the one obtained for a ground-state quench with

the same range of τ . In the setting of Fig. 4.1(b), the majority of the relevant modes stay in their

ground state. In order to reduce the contribution to ∆nex from the five lowest-energy modes, we can

decrease τ such that NR will be increased in Eq. (4.20). Numerical support for this strategy is shown

in Fig. 4.2, where an optimal range of τ is identified for the same initial states as in Fig. 4.1(d), and

very good agreement with KZS is recovered. Thus, we conjecture that if the majority of modes that

enter MR are low-energy modes, we can reduce their contribution to ∆nex by decreasing the upper

bound to τ . That is, we choose τmin ≤ τ ≤ τ̃max, where τ̃max < τmax. Conversely, if the majority of

modes that enter MR are high-energy modes, then we reduce the contribution from these modes by

increasing the lower bound to τ . That is, we let τ̃min ≤ τ ≤ τmax, with τ̃min > τmin.

4.2.1.2 Results from First-Order Adiabatic Renormalization

Additional theoretical understanding of the criterion given in Eq. (4.20) may be sought by invoking

the perturbative AR [64], which, as discussed in Section 3.2.2, was successfully applied to explain the

scaling results for adiabatic quenches starting from the ground state. Can first-order AR still capture

dynamical scaling for initial excited eigenstates? Let us focus on linear quenches (α = 1), and let

the time-dependent Hamiltonian be parametrized as H(t) = Hc + [λ(t) − λc]H1 = Hc + (t/τ)H1,

with Hc quantum-critical in the thermodynamic limit, so that the relevant QCP is crossed at tc ≡ 0.

If the system is prepared in the `-th eigestate of H(t0), with t0 → tc as in the examples previously

considered, the time-evolved state from first-order AR may be expressed in the form

|Ψ(1)(t)〉 = e−iΓ`(t)|Ψ`(t)〉 −
∑

m 6=`
c(1)
m (t)|Ψm(t)〉,

where Γ`(t) includes both the Berry phase and the dynamical phase, and c
(1)
m (t) gives the time-

dependent amplitude along the m-th snapshot eigenstate. Following a derivation similar to the one
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Figure 4.2: Scaling behavior of the final relative excitation density in a linear magnetic-field quench
around the QCP C in the Ising chain, starting with an eigenstate of H(tc) where the five, ten, and
twenty lowest-energy modes are initially excited for N = 12800, N = 25600, N = 51200, respectively
[same as in Fig. 4.1(d)]. The relevant τ -range is now τ̃min ∼ τmin = 5 ≤ τ ≤ τ̃max = 20 � τmax. A
linear fitting slope of −0.5019± 0.002 is now reached for all these cases, in agreement with the KZS
prediction.

described in Section 3.2.2, and letting ∆m(t) ≡ Em(t)− E`(t), we find:

c(1)
m (t) =

e−iΓm(t)

τ

∫ t

t0

dt′
〈Ψm(t′)|H1|Ψ`(t

′)〉
Em(t′)− E`(t′)

e
i
∫ t′
t0
ds∆m(s)

.

Thus, to the first order in the quench rate 1/τ the adiabaticity loss can be quantified by ∆O(t) =

〈Ψ(1)(t)|O(t)|Ψ(1)(t)〉 − 〈Ψ`(t)|O(t)|Ψ`(t)〉. In particular, this yields

∆nex(t)=
2

N

∑

m 6=`
|c(1)
m (t)|2

(
〈Ψm(t)|

∑

k∈K+

γ†k(t)γk(t)|Ψm(t)〉−〈Ψ`(t)|
∑

k∈K+

γ†k(t)γk(t)|Ψ`(t)〉
)
.

SinceH1 is a one-body operator in our case, the only non-vanishing matrix elements 〈Ψm(t)|H1|Ψ`(t)〉

include many-body eigenstates |Ψm(t)〉 which differ from |Ψ`(t)〉 in the occupation of precisely one

77



mode. Thus,

〈Ψm(t)|
∑

k

γ†k(t)γk(t)|Ψm(t)〉 − 〈Ψ`(t)|
∑

k

γ†k(t)γk(t)|Ψ`(t)〉 = ±1,

which implies

∆nex(tf ) =
1

N

∑

m 6=`

[
± |c(1)

m (tf )|2
]
. (4.21)

Except for a possible sign difference for each m, the above expression is formally identical to the

one holding for ground-state initialization (` = 0), in analogy with the exact Eq. (4.19). Numerical

calculations of the relative excitation density according to Eq. (4.21) [for instance with the same

initial condition as in Fig. 4.1(a)] confirm that the condition for initial excited eigenstates to support

KZS is the same in first-order AR as the one conjectured based on exact numerical results.

4.2.2 Sudden Quench Dynamics from an Excited Energy Eigenstate

Scaling results for sudden quenches of the control parameter λ around its critical value λc have been

recently obtained by De Grandi et al. [88] under the assumptions that the system is in the ground

state of the initial Hamiltonian and the quench has a small amplitude, leading to a final excitation

density

nex(tf ) ∼ |λ− λc|dν ≡ δλdν , (4.22)

with δλ� 1 in suitable units. Before addressing, in analogy to the case of adiabatic dynamics, the

extent to which the expected scaling behavior may be robust against initialization in a finite-energy

eigenstate, it is useful to explore more quantitatively the connection between ground-state adiabatic

vs. sudden quenches implied by Eq. (4.22).

Suppose, specifically, that the amplitude of a sudden magnetic-field quench near the QCP C of

the Ising chain is directly related to the rate τ of a corresponding linear adiabatic sweep across

the same QCP via hf = hc ± ĥ, where ĥ ∝ t̂/τ and t̂ is the KZ freeze-out time scale, that is,

t̂ ∼ τνz/(νz+1). Eq. (4.22) then yields

nex(tf ) ∼ |hf − hc|dν ∼ τ−dν/(νz+1). (4.23)
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Figure 4.3: Scaling behavior of the final excitation density in combined magnetic-field ground-state
quenches across QCP C in the Ising chain. Top: Sudden quench hc 7→ hf (see text) followed by
a linear quench back to hc, with the system finally kept at hc. Bottom: Linear quench from hc
followed by a sudden quench hf 7→ hc, with the system finally kept at hc. In both cases, N = 400.

In other words, the scaling behavior resulting from Eq. (4.22) is essentially equivalent to KZS.

While this could be quantitatively demonstrated by direct calculation of nex(t) in a sudden quench,

it can also be nicely illustrated by examining combined sudden-adiabatic quenches, which have not

been explicitly addressed to our knowledge 1, and will also be relevant in Sec. 4.2.3. Two possible

“control loops” starting from h(t0) = hc are depicted in Fig. 4.3: we can either (i) suddenly change

1In a recent work [121], the behavior of the decoherence factor has been advocated as a dynamical indicator of the
QPT in an Ising environment. Formally, the required procedure of first turning on the system-environment coupling
at the initial time, followed by adiabatic evolution of the Ising chain across the QCP A, can be interpreted in terms of
a combined sudden-adiabatic quench scheme on the joint system-plus-environment Hamiltonian. Interestingly, KZS
is found to occur in the exponent of the decoherence factor as well. See Chapter 5 for additional discussion.
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Figure 4.4: Scaling behavior of the final relative excitation density in a sudden magnetic-field quench
across QCP C in the Ising chain, starting with the first excited state of H(hc). The linear fitting
slope for N = 3200 is −0.5244 ± 0.0004 for 20 ≤ τ ≤ 250. Closer agreement with the KZS may be
reached by optimizing over τ as in Fig. 4.2.

the magnetic field amplitude hc 7→ hf , and then adiabatically change it back to hc (top panel); or

we can (ii) slowly ramp up hc to hf , and then suddenly quench hf 7→ hc (bottom panel). As it

is clear from the numerical data, the total excitation density created from the combined sudden-

adiabatic quench shows KZS throughout the entire process in both cases, provided that τ is within

the appropriate scaling range τmin ≤ τ ≤ τmax. Notice that the quench process depicted in Fig. 4.3 is

similar to the repeated linear quench across QCP C studied in Ref. [67], in the sense that the initial

and final value of the control parameter coincide. While KZS was found to hold in such a repeated

linear quench, the difference is now that half of the linear adiabatic sweep is replaced by a sudden

quench. Since, however, the interval [hc − ĥ, hc + ĥ] corresponds to the impulse region in the KZ

scenario for a pure linear quench, the scaling results of the combined quenches under consideration

may be understood as a consequence of the fact that the sudden quench component can only further

enforce the impulse mechanism by which excitation is generated in the KZS argument. Interestingly,
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as long as the scaling exists, we can also observe that (i) and (ii) lead to almost the same final

excitation density, even if the intermediate values of the excitation density after the sole sudden [in

(i)] or linear [in (ii)] quench are different. In summary, the existence of KZS in ground-state sudden

and combined sudden-adiabatic quenches with small amplitude is essentially a reflection of the fact

that the system goes through an impulse region around the QCP no matter how slow or fast the

quench is effected.

While sudden quenches of arbitrary amplitude will be further considered in the next Subsection,

we now return to the question of whether dynamical scaling also holds in small-amplitude sudden

quenches when the system is initially prepared in an excited eigenstate of H(t0) = Hc. Exact

numerical results are presented in Fig. 4.4, where in order to ease the comparison with a linear

quench, we have again explicitly related the sudden-quench amplitude to τ as hf −hc ∝ τ−1/2. The

data for N = 3200 indicate that the scaling exponent is slightly closer to the KZS prediction than the

one obtained in a pure linear quench with the same initial condition and τ -range [cf. Fig. 3(a)]. Since

a sudden quench effectively strengthens the impulse mechanism in the KZS argument, the number of

relevant modes NR is larger than the one involved in an adiabatic linear quench. Thus, for the same

initial condition (the same MR), the ratio ε in Eq. (4.20) is smaller in a sudden quench than in a

linear quench, comparatively leading to a scaling exponent closer to KZS. Therefore, our conclusions

for excited-state sudden quenches are consistent with the ones reached for excited-state adiabatic

quenches, and reaffirm how small-amplitude sudden quench dynamics and adiabatic dynamics near

a QCP are essentially equivalent over a wide range of initializations.

4.2.3 Adiabatic Dynamics Following a Sudden Quench from the Ground

State

In addition to eigenstates of the initial Hamiltonian, another physically relevant class of initial

preparations is provided by pure states that are reachable from the many-body ground state via

a sudden parameter quench of arbitrary amplitude. For concreteness, let us focus on adiabatic

dynamics following a sudden quench of the magnetic field h to its critical value hc in the Ising

chain. Thus, the initial state for the adiabatic quench is a superposition of different eigenstates of

the Hamiltonian H(hc) after the (instantaneous) sudden quench. Since for each mode k the parity
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Figure 4.5: Scaling of the final relative excitation density in an adiabatic magnetic-field quench
across QCP C in the Ising chain, starting from an excited state prepared by suddenly quenching
h0 7→ hc for different initial values of h0. The combined control path is illustrated in the inset. The
linear fitting slope for h0 = −1, 0.2, 0.75, 0.85, 0.95 is −0.50283± 5.0× 10−5, −0.50697± 6.0× 10−5,
−0.5237 ± 1.0 × 10−4, −0.52800 ± 5.0 × 10−5, and −0.5037 ± 8.0 × 10−4 respectively. In all cases,
the system size N = 400.

quantum number Pk is conserved, and the ground state of Hk lies in the even sector Pk = 1, the

expansion coefficients c2,k = c3,k = 0, whereas c0,k and c1,k are obtained from expanding the ground

state before the sudden quench in the eigenstate basis {|ψjk(t+0 )〉} of the quenched Hamiltonian

H(hc).

We can picture the resulting dynamics in terms of a combined sudden-adiabatic quench process

(see Fig. 4.5, inset), except that unlike in Sec. 4.2.2 we only focus on the scaling behavior of the

relative excitation density ∆nex(t) created after the sudden quench. Exact numerical results are

plotted in the main panel of Fig. 4.5, showing that for a large range of sudden-quench initializations,

the final excitation density still obeys the same KZS,

∆nex(tf ) ∼ τ−dν/(νz+1) ∼ τ−1/2,

as in adiabatic dynamics starting from the ground state. The above scaling result can be derived
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analytically in two limiting cases, starting from Eq. (4.13). Upon integrating over all the relevant

modes, we find

∆nex(t)=
1

π

∫ kmax

0

∆Pk(t)dk =

∫ kmax

0

[
(2|c0,k|2 − 1)|a0,k(t)|2+2Re[c0,kc

∗
1,ka

∗
0,k(t)a1,k(t)]

]dk
π
. (4.24)

There are two contributions in ∆Pk(t). If the initial state of mode k is close to either a non-excited

or to a fully excited state (|c0,k|2 ≈ 1 or |c0,k|2 ≈ 0 for all k ∈ KR, respectively), the first term is

the dominant one. In this case, KZS clearly holds. In the opposite limit where each mode k ∈ KR

is initially half-excited (|c0,k|2 ≈ 1/2), the second term is the dominant one. Since, for a sudden

quench to hc, the latter is the center of the impulse region (recall Fig. 1, top) and at most half of the

impulse region can be crossed, all the relevant modes can at most be close to half-excitation, making

this second limiting case directly relevant to the sudden-quench state preparation for suitable h0.

Assuming that |c0,k|2 ≈ 1/2 and ignoring relative phases thus yields

∆Pk(t) ∼ |a0,k(t)a1,k(t)| ∼ |a0,k(t)|
√

1− |a0,k(t)|2.

By invoking the LZ formula [79], the asymptotic (tf →∞) excitation probability for modes near kc

scales like e−2πk2τ when t0 → −∞. Starting from QCP C (the center of the impulse region) will not,

however, affect the exponential behavior [114]. Therefore, |a0,k(t)|2 ∼ e−2πk2τ as long as tf is deep

in the adiabatic region, and 1− |a0,k(t)|2 ∼ k2τ . Integrating over the relevant modes then gives the

anticipated KZS result:

∫ kmax

0

dk |a0,k(t)|
√

(1− |a0,k(t)|2) ∼
∫ τ−1/2

0

dk k τ1/2 ∼ τ−1/2,

where we used the fact that kmax ∼ τ−1/2 [Eq. (3.8)] in the upper integration limit.

While the above argument suffices to explain the emergence of KZS starting from special sudden-

quench initializations, for generic quenches the dominant term in Eq. (4.24) need not be the same

for different modes. In order to gain further insight, it is necessary to inspect the distribution

of the excitation probability for each relevant mode after a sudden quench from a generic value

h0 7→ hc. Numerical results for the low-lying modes are presented in Fig. 4.6 for a wide range of
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initial magnetic-field strength h0. For each mode k, we can identify two boundary values, hmin
0,k

and hmax
0,k , such that when hmin

0,k ≤ h0 ≤ hmax
0,k , mode k is close to its ground state after the sudden

quench (|c0,k|2 ≈ 1), whereas if h0 � hmin
0,k or h0 � hmax

0,k , mode k is close to half-excitation

(|c0,k|2 ≈ 1/2). Since hmin
0,k and hmax

0,k are approximately symmetric with respect to the critical value

hc = 1, let us for simplicity take hm
0,k ≡ hmax

0,k , with hmin
0,k ≈ 2hc − hm

0,k. Qualitatively, hm
0,k can

be determined by the condition ∆(h0, k) ≈ ∆(hc, k), which yields approximately |c0,k|2 ≈ 1. If,

conversely, ∆(h0, k)� ∆(hc, k) (|h0 − hc| � |hm
0,k − hc|), we can consider |c0,k|2 ≈ 1/2. Altogether,

the results in Figs. 4.5-4.6 indicate that the limiting analytical condition of requiring the same

dominant term in Eq. (4.24) for all the relevant modes is too strong for ∆nex(t) to show KZS. For

instance, when h0 = 0.95, not all the relevant modes are staying in their ground state (kc is not),

yet KZS holds. In general, however, the variation of |c0,k|2 with k does affect the scaling result. For

instance, when h0 is around 0.75, agreement with the KZS prediction for the same system size is

relatively poor, motivating one to roughly identify the range 0.6 . h0 . 0.9 with a cross-over region.

Based on these observations, we conjecture that a necessary (and sufficient) condition for the relative

excitation density ∆nex(t) to approach KZS in the thermodynamic limit is that the dominant term

in Eq. (4.24) is the same for the majority of the relevant modes.

An alternative physical interpretation of the above conjecture may be obtained by observing that

for a generic value of h0, there exist modes ke, kg ∈ K+ such that if kc ≤ k ≤ ke, ∆(h0, k)� ∆(hc, k),

whilst if kg ≤ k ≤ π, ∆(h0, k) ≈ ∆(hc, k), and we also assume ke < kg for concreteness. Since, in an

adiabatic sweep with speed τ , the set of relevant modes KR = [kc, kmax] is determined according to

Eq. (3.8), we can distinguish three different regimes depending on how kmax is positioned relative

to the interval [ke, kg]:

(i) kmax ≤ ke: in this case, all the relevant modes are half-excited, recovering one of the limiting

situations (analytically) leading to KZS, as already discussed (e.g., h0 = −1 in Fig. 4.5);

(ii) ke < kmax < kg: in this case, by a reasoning similar to the one leading to Eq. (4.20), KZS is

predicted to emerge provided that (kmax − ke) = εkmax, ε � 1, in such a way that the majority of

the relevant modes are half-excited (e.g., h0 = 0.2 in Fig. 4.5);

(iii) kg ≤ kmax: in this case, KZS is predicted provided that kg = εkmax, ε � 1, in such a way

that the majority of the relevant modes stay in their ground state (e.g., h0 = 0.95 in Fig. 4.5).
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Figure 4.6: Dependence of the excitation coefficient 2|c0,k|2 − 1 upon the initial magnetic-field
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c0,k are obtained by expanding the ground state of H(h0) in terms of the eigenbasis of H(hc = 1)
at QCP C. The five lowest-energy modes are considered, for system size N = 400.

Thus, for both h0 = 0.75 and h0 = 0.85, the initial state prepared by the sudden quench may be

interpreted to lie in the cross-over region between cases (ii) and (iii), explaining why the resulting

scaling deviates appreciably from the KZ prediction.

Similarly to the excited-eigenstate initialization, sudden-quench initialization will also add more

constraints on the appropriate τ range for KZS to hold. If the initial state is prepared via a sudden

quench that guarantees one of the above conditions (i)–(iii) to be fulfilled for any τ ∈ [τmin, τmax],

then the latter range is also appropriate for KZS to emerge under excited-eigenstate initialization.

If not, the situation is more involved, and the range of τ may need to be adjusted such that either

(ii) or (iii) is enforced. If condition (ii) is more likely to be obeyed (e.g., if h0 ≈ 0.6), we can choose

τ̃min > τmin in such a way that the number of modes between ke and kg is decreased, and the majority

of relevant modes is thus half-excited. If instead condition (iii) is more likely to be obeyed (e.g.,

if h0 ≈ 0.9), we can choose τ̃max < τmax in such a way that the number of relevant modes staying
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in their ground state is increased. While the strategy for adjusting the τ -range in a sudden-quench

initialization is similar to the one advocated in excited-eigenstate initialization, conditions (i)–(iii)

are in fact easier to fulfill than Eq. (4.20). For instance, for N = 400, the worst scaling in Fig. 4.5

is still relatively close to KZS, whereas the latter is completely lost when initially only kc is excited

in Fig. 4.1(a). This difference is due to the fact that the initial occupation of modes in the relevant

set changes less abruptly in a sudden-quench initialization than in excited-eigenstate initialization.

We conclude our discussion of quench processes originating from a (pure) excited state by com-

menting on the fact that the analysis developed for ∆nex(t) can be extended to different observables

without requiring major conceptual modifications. While an explicit example involving the spin

correlator defined in Eq. (4.17) will be included in the next Section, the basic idea is to proceed in

analogy with ground-state quenches, by taking into consideration the appropriate scaling exponent

as determined by the physical dimension of the observable O. Consider, for instance, the relative

excitation energy ∆H(t) defined in Eq. (4.16) which, as remarked, can be experimentally more

accessible than the relative excitation density. In all the situations where KZS holds for the latter,

∆nex(tf ) ∼ τ−dν/(νz+1) ∼ τ−1/2 (in particular, in the case of excited-state initialization via a sudden

quench just discussed), we also find for our model that

∆H(tf ) ∼ τ−(d+z)ν/(νz+1) ∼ τ−1,

consistent with the corresponding ground-state scaling behavior.

4.3 Quantum Quenches from a Thermal State

4.3.1 Adiabatic Quench Dynamics

While we have only focused thus far on initialization mechanisms resulting in a pure excited state,

another large class of initial states with a finite excitation energy may be obtained through dissipative

means, in particular because the system may find itself (or be placed) in contact with a thermal

bath. After a time sufficient for equilibration to occur, the system would then relax to a canonical

ensemble at temperature T . In equilibrium, it is well known that the influence of a ground-state
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QCP can cross over to a finite range of temperatures, the so-called “quantum critical regime,” which

is often broader than naively expected [116, 117, 1, 118]. In a dynamical scenario, how robust is

dynamical scaling (in particular, KZS) to initialization at a finite-temperature? If scaling persists,

how do the relevant non-equibrium exponents depend upon the initial temperature? Motivated by

these questions, scaling behavior in a system initially prepared in a thermal equilibrium state at

criticality and then adiabatically quenched away from the QCP has been analyzed in Ref. [88]. In

particular, it is shown that for fermionic quasi-particles, the excess excitation due to a quench across

a standard QCP obeys

∆nex(tf ) ∼ 1

T
τ−(d+z)ν/(νz+1), (4.25)

provided that the initial temperature is high enough (T � εk(t0), for all k ∈ KR). Our goal here

is to both present quantitative evidence for the above scaling law and, most importantly, to extend

the analysis to multicritical QCPs.

Let T denote the initial thermal equilibrium temperature, so that the initial density operator

has the form ρ(t0) =
⊗

k∈K+
ρk(t0), with ρk(t0) given by:

ρ00,k(t0) =
1

Z
e+εk(h,γ)/T , ρ11,k(t0) =

1

Z
e−εk(h,γ)/T , ρ22,k(t0) = ρ33,k(t0) =

1

Z
, (4.26)

in units where ~ = kB = 1 and with

Z ≡ 2 + e+εk(h,γ)/T + e−εk(h,γ)/T .

For clarity, we focus on linear adiabatic dynamics first. We shall study both the standard Ising

QCP C under a magnetic-field quench of the form h(t) = 1− t/τ [h = hc = 1, γ = 1 in Eq. (4.26)],

and the MCP A under a simultaneous quench of the magnetic field and the anisotropic parameter,

h(t) = 1 − γ(t) = 1 − t/τ [h = hc = 1, γ = γc = 1 in Eq. (4.26)]. At T = 0, the scaling of

the excitation density can be in both cases described by nex(tf ) ∼ τ−dνz/[z2(νz+1)], where z2 is

determined from the scaling of the minimal gap along the path with respect to k [cf. Eq. 3.18, with

α = 1 and d2 = 0]. Thus, z2 = z in the quench across QCP C, leading to KZS, whereas z2 = 3 6= z in
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the quench across MCP A, leading to anomalous scaling nex(tf ) ∼ τ−1/6. Given the above thermal

initial condition, starting from Eq. (4.14) for the relative excitation probability, we find:

∆Pk(t) = tanh
(εk(hc, γc)

2T

)
|a0,k(t)|2, (4.27)

where for both paths we simply write εk(hc, γc) to mean that critical parameter values are assumed

at t = t0. When T ≤ εk(hc, γc), tanh
( εk(hc,γc)

2T

)
≈ 1 and ∆Pk(t) is the same as starting from the

ground state of mode k. Thus, in order for the same ground-state scaling (either KZS or τ−1/6) to

emerge in the low-temperature limit, the condition T ≤ εk(hc, γc) needs to be satisfied for all the

relevant modes. Since εkc(hc, γc) = 0, this means that in the thermodynamic limit, the only allowed

initial temperature is T = 0 if a thermal state of H(hc, γc) is considered. In the opposite limit of

high temperature, where T � εk(hc, γc), tanh
( εk(hc,γc)

2T

)
≈ εk(hc, γc)/(2T ) ∼ (k− kc)z/T for modes

k near kc. Upon integrating over the relevant modes and recalling Eq. (3.8), the relative excitation

density is then:

∆nex(tf ) =
1

π

∫ kmax

0

∆Pk(tf )ddk ∼ 1

T

∫ τ−νz/[z2(νz+1)]

0

kzddk =
1

T
τ−(d+z)νz/[z2(νz+1)]. (4.28)

For the standard QCP C, this yields ∆nex(tf ) ∼ τ−1/T , recovering the result of Eq. (4.25), whilst

∆nex(tf ) ∼ τ−1/2/T in the multicritical quench across QCP A. As argued in Section 3.4 that the

time-dependent excitation process in ground-state quenches need not be dominated by the critical

mode kc for certain paths across MCPs and Pk = ∆Pk ∼ kd2 , with d2 playing the role of an “effective

dimensionality exponent”. For a thermal quench, it is interesting to note that, formally, one may

interpret d2 = z 6= 0 in the above equation, also implying that the dominant contribution does not

originate from modes around kc. In the high temperature limit, ρk(t0) is, indeed, almost fully mixed

for modes near kc, causing the contribution of ρ00,k and ρ11,k to Eq. (4.14) to be nearly cancelled,

and consistently leading to ∆Pk(t) ≈ 0 for those modes.

The scaling prediction in Eq. (4.28) can be further generalized to a non-linear thermal quench,

whereby for instance h(t) = 1−γ(t) = 1−(t/τ)α in the case of a quench away from the MCP A. When

T = 0, Eq. 3.18 yields nex(tf ) ∼ τ−dανz/[z2(ανz+1)] 1. Correspondingly, in the high-temperature

1We note that our prediction differs from the one recently established in [111], where a linearization procedure
around the QCP is invoked in order to use the LZ formula.
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Figure 4.7: Exact scaling behavior of ∆nex(tf ) in a quadratic adiabatic quench h(t) = 1 − γ(t) =
1− (t/τ)2, starting from a thermal state at MCP B (t0 = tc = 0) toward the FM phase. The initial
temperature T = 1000, yielding a linear fitting slope −0.663 ± 0.002, in good agreement with the
value 2/3 predicted by Eq. (4.29). For comparison, the case of a ground-state quench is reproduced
in the inset, with a linear fitting slope of −0.2190 ± 0.0006, which is also in good agreement with
the predicted 2/9 exponent [112]. The data for different sizes (N = 800 and N = 1600) coincide up
to 10−13.

limit,

∆nex(tf ) ∼ 1

T
τ−(d+z)ανz/[z2(ανz+1)]. (4.29)

Exact numerical results for a quadratic quench (α = 2) are reported in Fig. 4.7, the inset corre-

sponding to the ground-state T = 0 case. Within numerical accuracy, the observed behavior is in

excellent agreement with the predicted scaling, τ−2/9 for T = 0 and τ−2/3 for high-T , respectively.

We further examine how dynamical scaling is detected by other observables and how it is influ-

enced by temperature away from the limiting regimes discussed above by considering the behavior

of the spin correlator, ∆XX(t), defined in Eq. (4.17). Since XX does not commute with the Hamil-

tonian in Eq. (4.1), no analytical treatment is possible. Exact numerical results are presented in

Fig. 4.8 for both the regular and the multicritical QCPs C and A (inset vs. main panel, respectively),
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Figure 4.8: Main panel: Scaling exponent ∆XX(tf ) as a function of temperature T in a linear
quench h(t) = 1− γ(t) = 1− t/τ away from the MCP A, starting with a thermal equilibrium state
of H(hc, γc). Inset: Scaling exponent of ∆XX(tf ) as a function of temperature in a linear quench
h(t) = 1+t/τ away from the regular QCP C, starting with a thermal equilibrium state of H(hc = 1).
In both cases, N = 800.

starting from the same thermal initial condition at criticality as considered above. As the data show,

similar features emerge in both cases: the scaling exponent of ∆XX(t), which is expected to be the

same as for ∆nex, deviates from its zero-temperature value (−1/2 or −1/6, respectively) as soon as

the temperature is nonzero, and as the latter is gradually increased, it continuously changes until

for sufficiently high temperature (T � εk(hc, γc), for all k ∈ KR), it stabilizes at the value predicted

by Eq. (4.29) (−1 or −1/2, respectively). All these observations are consistent with the predictions

in the previous paragraph.

In summary, we see that ground-state dynamical scaling (and KZS in particular) is fragile with

respect to temperature fluctuations if the initial state is a thermal equilibrium state at criticality. In

this case, the two situations where scaling exists are the zero-temperature and the high-temperature

limit, with Eq. (4.29) holding in the latter regime. This requires all the relevant modes to either

stay in their ground state or be highly mixed at the initial time, which is a stronger condition in
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comparison to the ones identified in the previous sections for coherently-prepared (pure) excited

states. From a practical standpoint, the high-temperature regime could potentially be relevant to

liquid-state NMR simulators [108, 109]. In order for tests of dynamical scaling/KZS in the low-

temperature regime to be experimentally viable, however, the initial thermal state needs to be (or

be prepared) sufficiently far away from criticality (e.g., |h0 − hc| � 1 for QCP C), in such a way

that the condition T ≤ ∆(k, h0) for all k ∈ KR can still be fulfilled with a non-zero temperature.

4.3.2 Effective Thermalization

Before discussing the concept of effective thermalization, let us recall the standard meaning of

thermalization, that is, the relaxation towards thermal equilibrium of a system in contact with

reservoir (or bath). More precisely, let ρB be the thermal state of the bath, and ρth the state

of the system at thermal equilibrium. A thermalization process may be defined by the following

two requirements: (I) The state ρth ⊗ ρB is stationary; (II) If the system is prepared in a state

(ρini) different from ρth, at the end of the relaxation process we have a total state ρSB such that

TrB(ρSB) = ρth and TrS(ρSB) = ρB, where TrB(S) is the partial trace over the bath (system) [119].

While the above approach focuses on a system in contact with a bath that has already reach

thermal equilibrium, a related question is whether it is possible for an isolated system to reach a

stationary state with thermal characteristics in the long-time limit. In this context, sudden quenches

have recently attracted considerable interest as a setting for probing the long-time dynamics of

isolated quantum many-body systems and the approach to equilibrium [85, 94, 95, 96, 97, 98]. Since

the quadratic Hamiltonian in Eq. (4.1) describes a simple (non-interacting) integrable model, it

is well known that no thermalization can occur in a proper sense, that is, the behavior of generic

observables is not governed by a conventional statistical equilibrium ensemble [102, 90, 91, 92, 93].

The above investigations have nevertheless shown that information about the asymptotic behavior

of an appropriate subset of observables may still be encoded in a finite effective temperature Teff,

independent on the fine details of the initial state and the dynamics but only determined by the total

energy of the process. Let ρ(t0) ≡ ρ0 and Hf denote, respectively, the density operator describing

the initial state of the system, and the final Hamiltonian after the (instantaneous) quench. Following

Rossini et al. [94], the effective temperature is defined by the requirement that the average energy
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of the initial state relative to the quenched Hamiltonian equals the one corresponding to a fictitious

thermal state at temperature Teff in the canonical ensemble, that is,

Tr[ρ0Hf ] = Tr[ρTeff
Hf ]. (4.30)

Under the assumption that T = 0 initially [that is, ground-state initialization in Eq. (4.30)], the

emergence of effective thermal behavior has been related to the locality properties of different physical

observables relative to the quasi-particle language that diagonalizes the model [95, 96]. For a generic

quench in a Ising chain, only non-local observables (such as the two-point correlation functions of

the order parameter) have been found to thermalize, with both their asymptotic average value and

the finite-time transient being determined by equilibrium statistical mechanics at Teff. Remarkably,

however, thermal behavior has also been established for certain local observables (the transverse

magnetization per site, 1/N
∑
j σ

j
z, and the kink density, N) in quenches towards criticality, the

long-time value being still univocally determined by Teff.

Physically, it is clear that the concept of an effective temperature has a restricted validity and,

for the model under investigation, it does not imply that an actual thermal ensemble emerges as a

result of a sudden quench followed by free evolution under the quenched Hamiltonian. With that

in mind, we further explore next the emergence of effective thermal behavior in critical quenches,

by focusing on a different local observable and by extending the analysis in two directions: first,

initialization in a thermal state at finite T > 0 and, second, sudden quenches to a multicritical QCP.

4.3.2.1 Sudden Quenches to a Standard Critical Point

Let us first consider a sudden quench of the magnetic field h0 7→ hf in the Ising chain (γ = 1),

starting from an initial state of the form given in Eq. (4.26), and focus on the long-time behavior

of the number of quasiparticle excitations with momentum k. Since the corresponding observable

commutes with the time-dependent Hamiltonian, the long-time expectation value 〈γ†kγk〉 coincides

with the one right after the quench. In order for the latter to be consistent with the equilibrium
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Figure 4.9: Comparison between the long-time average quasiparticle excitation following a sudden
quench h0 7→ hf starting from a thermal initial state at temperature T (dashed red) and the
equilibrium value predicted by a fictitious thermal canonical ensemble at Teff (solid blue). Panels (a),
(c), (e): sudden quenches to hf = hc = 1, hf = 1.01, hf = 1.5, respectively, with initial temperature
T = 1.0. The behavior for a ground-state quench (T = 0, data not shown) is qualitatively similar,
with deviations from the thermal prediction being further pronounced. Panels (b), (d), (f): sudden
quenches to hf = hc = 1, hf = 1.01, hf = 1.5, respectively, with initial temperature T = 10.0. In
all cases, N = 800, and the value of Teff obtained from is Eq. (4.30) is also given.

value at Teff, the following identity must hold:

(ρ00,k(t0)− ρ11,k(t0))|a0,k|2 + ρ11,k(t0) + ρ33,k(t0) = (1 + e+εk(hf ,γ=1)/Teff)−1, (4.31)

where |a0,k|2 is the excitation probability of mode k due to the quench and Eq. (4.11) has been used in

the left hand-side. The right hand-side is the fermionic thermal equilibrium prediction Tr[ρkTeff
γ†kγk].

Exact numerical results are presented in Fig. 4.9. Altogether, these data indicate that similar to the

behavior of other local observables in a ground-state quench [95, 96], no effective thermalization is

observed outside criticality [panels (c)–(f)], as expected. Even for a quench toward QCP C, however,
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Figure 4.10: Difference between the long-time quasiparticle excitation of the critical mode kc from
its thermal equilibrium prediction as a function of system size for a sudden magnetic-field quench to
hc in the Ising chain. An initial thermal state with temperature T = 1.0 is considered. The linear
fitting slope is −0.99992± 3× 10−5.

the initial temperature T must be sufficiently high in order for our chosen observable to thermalize

[panel (a) vs. (b)].

In order to gain physical insight into what distinguishes a critical vs. non-critical quench in

our case, and understand why effective thermal behavior fails to emerge outside criticality even for

high initial temperature, it is useful to take a closer look at Fig. 4.9(d): clearly, the main difference

between the equilibrium and the actual quasiparticle distribution arises from momentum modes

close to kc. On the one hand, since ∆(kc, hf ) is the smallest gap at hf , the maximum quasiparticle

excitation is expected to occur at kc from the equilibrium prediction [right hand side of Eq. (4.31)].

On the other hand, the peak of the observed distribution is located at modes close to kc, but not

exactly at kc. Because the system is far from hc, note that the difference of ρ00,k, ρ11,k, and ρ33,k

for modes close to kc is negligible. Thus, the main difference is due to |a0,k|2, which, as remarked,

is the excitation probability of mode k at T = 0 after a sudden quench to hc. Upon re-interpreting

|a0,k|2 ↔ 1 − |c0,k|2, it is possible to make contact with the results shown in Fig. 4.6: clearly, the

excitation probability of mode kc changes dramatically for h0 close to hc, which suggests that kc does
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not contribute appreciably unless hf = hc. Instead, other modes close to kc can be excited for values

hf ≈ hc at which kc is not yet excited. Since the excitation contribution from such “quasi-critical

modes” would then be larger than the one from kc, Eq. (4.31) would not hold. Accordingly, the only

way to enforce the validity of Eq. (4.31) is through a sudden quench towards hc, as observed.

Having clarified why criticality is essential, we need to assess whether the requirement of a

sufficiently high initial T may be related to the finite system size or will persist in the thermodynamic

limit. We focus on a sudden quench h0 = 3.0 7→ hc at T = 1.0, and analyze how the long-time average

of the total quasiparticle density 1/N
∑
k γ
†
kγk deviates from the thermal equilibrium prediction at

Teff as N is increased. While we found that the observed deviations are practically constant over

the range of N explored (data not included), the difference between 〈γ†kcγkc〉 and its corresponding

thermal prediction at Teff does decrease with increasing N : as seen in Fig. 4.10, such a difference

∆γ†kcγkc ∼ N−0.99992 at T = 1.0, implying a vanishing difference and effective thermal behavior also

at low temperature for the critical mode as N → ∞. This property, however, stems from the fact

that the gap of kc closes in the thermodynamic limit, which is not true for the gap of other modes.

For either the number of quasiparticles in a generic mode or for the total quasiparticle density, we

thus conjecture that even in the thermodynamic limit, thermal behavior will be observed following

sudden quenches to the QCP A only if T � ∆k(hc, γ = 1) for all the relevant modes.

4.3.2.2 Sudden Quenches to a Multi-critical Point

In view of the peculiar features that distinguish a multicritical QCP, as reflected in particular in

anomalous scaling behavior, it is not obvious whether the above condition would still suffice for the

same observables to thermalize in a sudden quench towards MCP A. Exact results for two sudden

multicritical quenches of the form (h0 = 1 + γ0 7→ hf = 1 + γf , γ0 7→ γf ) are given in Fig. 4.11,

starting from a thermal state at high temperature: specifically, MCP A is both reached via a sudden

quench from the PM phase (left panel) and via a sudden quench from the FM phase (right panel).

Contrary to the high-temperature scenario for the regular QCP C [Fig. 4.9(b)], no thermal behavior

emerges, the observed expectation value 〈γ†kγk〉 for modes close to kc being significantly smaller or

larger than the thermal equilibrium prediction, respectively.

This anomalous long-time behavior can be traced back to the asymmetry of the impulse region
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Figure 4.11: Comparison between the long-time quasiparticle excitation following a sudden quench
h0 7→ hf = hc = 1, γ0 7→ γf = γc = 0 towards the MCP B (blue) and the equilibrium value
predicted by a fictitious thermal ensemble at Teff (red). The system is initially in a thermal state
with temperature T = 10. Left: Initial state is the thermal state at h0 = 2.0, γ0 = 1.0 (inside the
PM phase). Right: Initial state is the thermal state at h0 = 0.0, γ0 = −1.0 (inside the FM phase).
Notice that due to the fact that the excitation probability of low-energy modes exceeds 1/2, Teff is
much higher than in any other situation with the same initial T , cf. Fig. 4.9(b, d, f) and Fig. 4.11(a).

along the control path, as sketched in Fig. 1.1(bottom). Recalling the discussion in Section 3.4, the

location of the minimum gap for each mode k along the path h = 1 + γ is determined by requiring

∂∆k(γ, 1 + γ)/∂γ = 0, that is,

γ̃(k) = (cos k − 1)/(1 + sin k2) < 0,

which indicates that the center of the impulse region is largely shifted into the FM phase for each

k. As a result, after a sudden quench to the MCP A from the FM phase, the excitation probability

of low-energy modes tends to be greater than 1/2, whereas for a sudden quench to MCP A from

the PM phase, the excitation probability of low-energy modes tends to be smaller than 1/2. Since

the thermal equilibrium value is close to 1/2 in the high-temperature limit for low-energy modes,

thermal behavior is not realized in either quench process.

Based on the above results, we conjecture that quenching toward the center of the impulse region

is a necessary requirement for γ†kγk or 1/N
∑
k γ
†
kγk to thermalize following a sudden quench. While
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typically this is the case in a quench to a regular QCP (for instance, a sudden quench of h to QCP C

at fixed γ = 1), for a sudden quench to MCP A along the path h = 1+γ, the location of the minimum

gap (hence the center of the impulse region) is different for each mode k, preventing thermalization

to be possible along this path irrespective of the final values hf , γf . More generally, we expect the

above requirement to be necessary for local observables other than those examined here. In this

context, it would be interesting to explore, for instance, whether the transverse magnetization or

the density of kinks would still effectively thermalize in a multicritical quench to QCP A from the

ground state.

We also remark that in a recent work [97], general conclusions have been reached for the equi-

librium distribution after a sudden quench, predicting, in particular, effective thermal behavior for

generic observables when the quench is performed around a non-critical point, and poor equilibration

otherwise. While at first these results seem to contradict both our present conclusions for critical

quenches towards QCP C in the appropriate temperature regime as well as earlier results for zero

temperature [95, 96], a crucial assumption in Ref. [97] is a small quench amplitude, causing only

a small number of excited states to effectively contribute around a QCP. The opposite condition is

implied throughout our discussion, the sudden quench amplitude being in fact large enough for the

number of excited states involved in a critical quench to outweigh those involved in a non-critical

one (cf. Fig. 4.6). In the light of that, we also conjecture that having a sufficiently large number of

states involved in the excitation process is a general necessary condition for effective thermalization

after a sudden quench.
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Chapter 5

Quantum-Critical Decoherence

Dynamics in the XY Chain

The superposition principle in quantum mechanics allows arbitrary linear combinations of any states

as a possible quantum state. However, in reality, no system is completely isolated from its surounding

environment. Thus, the environment can destroy coherence between the states of a quantum system,

and irreversibly degrade pure states into statistical mixtures. This is decoherence [126]. From the

point of view of QIS, decoherence tends to destroy the entanglement of a quantum state, and it is thus

crucial that decoherence can be controlled. On the other hand, from the point of view of condensed-

matter physics, just similar to using entanglement as a bridge between QIS and condensed-matter

physics, a natural question is, Can we borrow concepts from the theory of open quantum systems,

in particular exploit decoherence properties, to detect and further study QPTs?

It has been shown in Ref. [122] that, when a spin qubit is transversely coupled to a Ising chain with

transverse magnetic field, that is, the coupling Hamiltonian is proportional to σzS
∑N
i=1 σ

z
i , the decay

of the qubit coherence (quantified by a factor D(t)) is enhanced when the Ising-chain environment

undergoes a QPT. Thus, the decoherence of the qubit can be used as a probe of the static quantum-

criticality of the environment. In a dynamical secnario, would the decoherence factor still be a useful

indicator of the dynamical QPT of the environment, in the sense of exhibiting (generalized) KZS?
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In a recent work [121], it is found that the exponent of the decoherence factor of the test qubit

exhibits KZS when the Ising environment is driven through the QPT with a constant quench speed.

How universal the scaling of the decoherence factor would be, given that it is an dynamical indicator

based on a reduced (as opposed to full) dynamics? Would the way in which various critical properties

reflect into decoherence behavior be different than for other criticality indicators studied in previous

Chapters? Since the excitation density shows anomalous scaling behavior for certain quench paths

across a MCP, how would the scaling behavior of D(t) change when a MCP is involved, in particular,

will D(t) still exhibit KZS or will the scaling change accordingly, just like the excitation density?

In Chapter 4, the robustness of KZS was studied with respect to different finite-energy initial

states. In particular, when a thermal equilibrium initial state is considered, the relative excitation

density has been found to exhibit a different scaling behavior in the high-temperature limit, com-

pared with the low-temperature limit. Since the decoherence factor is, in principle, measurable in

experiments [124, 125], and since in realistic experiments zero-temperature is unaccessible, a relevant

question would also be, To what extent can scaling behavior be usefully detected and extracted for

initial thermal states? Would a similar crossover scaling behavior from low-temperature to high-

temperature exist for the decoherence factor as well? Or would it exhibits a behavior similar to the

static case, where the signature of critical behavior of the environment would only exist in a finite

(small) temperature window [123]?

With these questions in mind, in this last Chapter we present preliminary results on the deco-

herence of a central qubit,

|ψ〉 = c+| ↑〉+ c−| ↓〉,

coupled to a quantum spinXY chain transversely. The Hamiltonian for the whole system-environment

reads:

H=HE+HSE =−
N∑

i=1

(
1 + γ

2
σxi σ

x
i+1 +

1− γ
2

σyi σ
y
i+1−hσzi

)
−δσzS

N∑

i=1

σzi , (5.1)

where the first term is the Hamiltonian of the environment, the second term describes the coupling

between the environment and the central qubit 1, and δ is the coupling strength between the two. In

1In principle, the total Hamiltonian H should also include the system Hamiltonian HS . Here, to simplify our
calculation, HS is taken to be zero.
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Section 5.1, we will consider the scaling behavior of the decoherence factor D(t) when the environ-

ment undergoes a standard QCP by a linear quench of the magnetic field strength, h 7→ h(t) = 1−t/τ

(without loss of generality, γ = 1 is fixed), e.g. QCP C in the phase diagram Fig. 2.4, for both zero-

temperature and finite-temperature cases. In Section 5.2, we will instead discuss the scaling behavior

of D(t) when the environment crosses a MCP along the paths where the excitation density shows

anomalous KZS, e.g. from FM (PM) to MCP A in the phase diagram of Fig. 2.4.

5.1 Scaling of the Decoherence Factor in Adiabatic Quenches:

Standard Critical Point

5.1.1 Zero-Temperature Results

Let us first revisit the results obtained in Ref. [121]. Initially, the state of the whole system is:

|ψ(t0) = |ϕGS(t0)〉 ⊗ (c+| ↑〉+ c−| ↓〉), (5.2)

where |ϕGS(t0)〉 is the ground state of the environment with Hamiltonian HE(h(t0)). Thus, we

can express |ϕGS(t0)〉 =
∏
k∈K+

|0k0−k(t0)〉, defined in Eq. (4.6). From Eq. (5.1), we can tell

that when the central spin is in the | ↑〉 state, the environment will evolve with the Hamiltonian

HE(h(t) + δ), whereas when the central spin is in the | ↓〉 state, the environment will evolve with

the Hamiltonian HE(h(t)− δ). Thus, let U↑(t) be the time propagator of the environment with an

effective Hamiltonian HE(h(t) + δ), that is:

U↑(t) = T̂ e
−i

∫ t
t0
dtHE(h(t)+δ)

,

where T̂ is the time-ordering operator. Similarly,

U↓(t) = T̂ e
−i

∫ t
t0
dtHE(h(t)−δ)
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is the time propagator of the environment with an effective Hamiltonian HE(h(t) − δ). Thus, the

total propagator for the whole system becomes:

U(t) = U↑(t)⊗ | ↑〉S〈↑ |+ U↓(t)⊗ | ↓〉S〈↓ |. (5.3)

Therefore, the time-evolved state of the whole system at time t is:

|ψ(t)〉 = U(t)|ϕGS(t0)〉 ⊗ (c+| ↑〉+ c−| ↓〉)

= c+| ↑〉 ⊗ U↑(t)|ϕGS(t0)〉+ c−| ↓〉 ⊗ U↓(t)|ϕGS(t0)〉

= c+| ↑〉 ⊗ |ϕ+(t)〉+ c−| ↑〉 ⊗ |ϕ−(t)〉. (5.4)

Then the time-dependent reduced density matrix of the central qubit in the σz basis is:

ρS(t) =



|c+|2 c∗+c−〈ϕ+(t)|ϕ−(t)〉

c∗−c+〈ϕ−(t)|ϕ+(t)〉 |c−|2


 ,

The decoherence factor is defined as D(t) ≡ |〈ϕ+(t)|ϕ−(t)〉|2 in Ref. [121], which means that in

the limit D(t) = 0, any coherent relation between | ↑〉 and | ↓〉 is completely lost, while in the

limit D(t) = 1, the coherent relation is maintained. Effectively speaking, turning on the system-

environment coupling at the initial time is like a sudden quench of the environment Hamiltonian from

HE(h(t0)) to HE(h(t0)±δ) for the |ϕ±(t)〉 branch, respectively. Then the environment Hamiltonian

is followed by an adiabatic linear quench. Thus, the procedure for obtaining |ϕ+(t)〉 (|ϕ−(t)〉) is

similar to our calculation for combined (sudden-plus-adiabatic) quenches described in Section 4.2.3.

Because of the non-interacting picture of different momentum modes, each momentum mode evolves

independently, thus: U↑(t) =
∏
k∈K+

Uk,↑(t), and U↓(t) =
∏
k∈K+

Uk,↓(t), leading to |ϕ+(t)〉 =

∏
k∈K+

|ϕk,+(t)〉, |ϕ−(t)〉 =
∏
k∈K+

|ϕk,−(t)〉.

In Ref. [121], it was assumed that |ϕk,±(t)〉 = ũ±k (t)|vac〉 − ṽ±k c
†
kc
†
−k|vac〉, then the evolution of
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ũ±k and ṽ±k satisfies the following Schrödinger equation:

i
d

dt




ũ±k (t)k(t)

ṽ±k (t)k(t)


 =




2(h(t)± δ − cosk) 2 sin k

2 sin k −2(h(t)± δ − cosk)







ũ±k (t)k(t)

ṽ±k (t)k(t)


 . (5.5)

From the Landau-Zener analysis of the time-evolution of each mode k, we have

ũ±k (t)k(t) = e−πτ
′/16eiπ/4

[
(1 + n)D−n−2(iz± + iz±D−n−1(iz±)

]

ṽ±k (t)k(t) =

√
τ ′

2
e−πτ

′/16D−n−1(iz±),

whereDν(z) is the Weber function, τ ′ is the rescaled quench rate (see Eqs. (11) and (12) in Ref. [121]).

If we express

D(t) =
∏

k∈K+

|〈ϕk,+(t)|ϕk,−(t)〉|2 ≡
∏

k∈K+

Fk,

in the large N limit, one may approximate

D(t) ≈ e− N
2π

∫ π
0

lnF−1
k . (5.6)

Then, it is predicted that for quenches across QCP C the following scaling behavior holds:

D(t) ∼ e−τ−Nν/(νz+1)

, (5.7)

in which an expansion of the Weber functions was used to obtain the approximate behavior of u′k(t)

and v′k(t). The physical understanding of the scaling result in Eq. (5.7) is that the time-evolution of

the whole mode set can be separated into two parts: relevant modes vs. non-relevant modes. The

number of relevant modes scales with τ−1/2, which enters into the integral of Fk, while the integral

for the non-relevant modes does not depend on τ .

Since there is an oscillating behavior of D(t) when the final magnetic field h(tf ) is not at QCP

C, as it was shown in Ref. [121], it would not be easy to observe dynamical scaling behavior. Thus,

in our numerical simulation, we choose to quench from large negative h(t0) (say h(t0) = −10) to
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h(tf ) = hc = 1, and we find that, instead of Eq. (5.7), the following scaling holds:

D(hc = 1, γc = 1) ∼ e−τ1/2

, (5.8)

which is presented in Fig. 5.1. It was clearly stated in Ref. [121] that the Weber function expansion

that was used is only valid when the final h(tf ) is not at the QCP. However, it would be interesting

to know what physical difference corresponds to this change of scaling behavior of the decoherence

factor for quenches to a critical vs. non-critical point. This is different from the scaling results of

other dynamical indicators we studied before, for which the same scaling behavior exist throughout

the entire time-evolution 1.
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Figure 5.1: Scaling behavior of the decoherence factor in a linear quench of the magnetic field
strength h(t) towards the QCP C, with initial ground state of the Ising environment Hamiltonian.

1Notice that this is, in some sense, in analogy to our observation in Section 4.3.2, where a sudden quench to
standard QCP vs. non-QCP shows different effective thermalization behavior.
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5.1.2 Finite-Temperature Results

Next, let us assume that the environment is initially in a thermal equilibrium state at temperature

T . The initial density matrix for the whole system would then be:

ρSE(t0) = ρE(t0)⊗ ρS(t0) =
(⊗

k∈K+

ρk(t0)
)
⊗ ρS(t0), (5.9)

where the expression of ρk(t0) is given in Eq. (4.26), that is:

ρk(t0) =
1

Z
e+εk(h(t0),1)/T |0k, 0−k〉〈0k, 0−k|+

1

Z
e+εk(h(t0),1)/T |1k, 1−k〉〈1k, 1−k|

+
1

Z
|0k, 1−k〉〈0k, 1−k|+

1

Z
|1k, 0−k〉〈1k, 0−k|. (5.10)

Accordingly, the time-evolved density matrix for the whole system is ρSE(t) = U(t)ρSE(t0)U†(t),

whereby

ρS(t) = TrEρSE(t) =



|c+|2 c∗+c−d(t)

c∗−c+d(t)∗ |c−|2


 , (5.11)

with

d(t) = TrE

[
U↑(t)ρE(t = 0)U†↓(t)

]

=
∏

k∈K+

( 1

Z
e+εk(h(t0),1)/T 〈0k, 0−k(t0)|Uk,↑(t)U†k,↓(t)|0k, 0−k(t0)〉

+
1

Z
e−εk(h(t0),1)/T 〈1k, 1−k(t0)|Uk,↑(t)U†k,↓(t)|1k, 1−k(t0)〉+

2

Z

)
.

In order to investigate the role of the temperature on the scaling behavior of the decoherence factor

D(t) = |d(t)|2, we choose the same quench path as in Section 5.1, but now with a different initial

temperature. Exact numerical results are shown in Fig. 5.2, where KZS still exists for T = 1.5,

however, for T = 1.9, D(hc) exhibits oscillation behavior. Interestingly, the latter is also seen for

a quench towards a non-critical point at zero temperature. Thus, the oscillating behavior for finite

temperature might be an indication of the fact that the thermal fluctuations wash out the critical
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behavior of the environment, which is also true for the static behavior of the decoherence factor [123].

Since one of the motivation to study the scaling behavior of decoherence factor is to detect QPT in a

realistic setting, one might wonder whether T = 1.5 is realizable in an accessible experiment. Notice

that in Eq. (5.10), we set ~ = kB = 1. Thus, temperature is roughly of the same order of energy

units, that is, the coupling strength J between nearest spins in the xy plane. Suppose that the spin

coupling strength is a few meV 1, then T = 1 corresponds to about 10K. The initial magnetic field

strength h(t0) = 10 implies that eB~
mc is on the order of 10meV, thus the magnetic field strength

B ∼ 100T , which is too high to access. However, the initial magnetic field does not need to be so

high since as along as the starting point is deep in the PM or FM phase, that is, when B ∼ 10T ,

the scaling behavior should still be observed. Thus, it might be possible to test the scaling of D(t)

in an experiment.

5.2 Scaling of the Decoherence Factor in Adiabatic Quenches:

Multi-Critical Point

In order to understand whether the scaling of the exponent of the decoherence factor is related to

KZS, we further explore the behavior of D(t) for quenches equivalent to path 4 and path 5 across the

MCP A studied in Section 3.4, where anomalous scaling behavior of the excitation density was found.

To simplify our discussion, initial zero temperature of the environment is considered. Thus, the only

difference between the discussion in this Section and Section 5.1 is the quench paths. Because of

the oscillating behavior of D(t) for quenches towards a non-critical point, we choose two paths

parameterized as follows: (I) h(t) = 1 + γ(t) = 1 + t/τ , say from h(t0) = 0(γ(t0) = −1) to MCP A;

(II) h(t) = 1 + γ(t) = 1 − t/τ , say from h(t0) = 10(γ(t0) = 9) to MCP A, in which the excitation

density scales as τ−1/6, τ−3/4 respectively. Surprisingly, our numerical results (shown in Fig. 5.3)

indicate that for path (I):

D(I)(hc = 1, γc = 0) ∼ e−τ0.835 ≈ e−τ5/6

, (5.12)

1In a recent experiment [127], the magnetic Co2+ ions in CoNb2O6 are arranged into near-isolated ferromagnetic
Ising chain, where the sufficiently low exchange energy J of a few meV can be matched by experimentally attainable
magnetic fields (10T ∼ 1meV ) to access the QCP.

105



4 4.5 5 5.5
−1.4

−1.3

−1.2

−1.1

−1

−0.9

−0.8

−0.7

−0.6

−0.5

log(τ)

lo
g
(−

lo
g
(D

))

 

 

  N=1000, PM → QCP C, T=1.5

   0.51 ± 0.01

4 4.5 5 5.5
−1.05

−1

−0.95

−0.9

−0.85

−0.8

−0.75

−0.7

−0.65

−0.6

−0.55

log(τ)

lo
g
(−

lo
g
(D

))

 

 

N=1000, PM → QCP C, T=1.9

Figure 5.2: Scaling behavior of the decoherence factor in a linear quench of the magnetic field
strength h(t) towards the QCP C for different initial temperature of the environment. T = 1.5
(T = 1.9) for the top (bottom) panel.

while for path (II):

D(II)(hc = 1, γc = 0) ∼ e−τ0.277 ≈ e−τ1/4

. (5.13)
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Figure 5.3: Scaling behavior of the decoherence factor for the quench path (I) (top panel) and (II)
(bottom panel) at zero temperature.

Interestingly, the results obtained in this Section, together with the results in Section 5.1 imply

that the scaling behavior of D(t) at a QCP may be described as follows:

D ∼ e−τ1+η

, (5.14)
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where η is the scaling behavior of the excitation density along the same path. η = −1/2,−1/6,

−3/4, respectively, for quenches towards QCP C, and MCP A along paths 4, 5. However, what is

the physical understanding of the above (1 + η) scaling needs further investigation. I think that a

possible explanation might be the role of the quench time. In fact, in decoherence dynamics, one

important difference between the decoherence factor and other dynamical indicators we studied is

that decoherence is closely related to the total time of evolution: The longer the time evolution of

the central qubit is, the larger the amount of decoherence becomes. In all our discussion, when we

choose the initial and final point on the phase diagram, the evolution time scales with τ1. Perhaps

this is the origin of τ1 in Eq. (5.14).
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Chapter 6

Conclusion and Outlook

In summary, in my Thesis research, I have addressed the non-equilibrium dynamics of a class of

one-dimensional exactly solvable XY models perturbed by both adiabatic and sudden quenches.

The main findings emerging from this study may be itemized as follows:

• Kibble-Zurek Scaling.

(i) Initial ground state: In an appropriate range of quench rate, KZS is found to exist for a large

variety of extensive observables throughout the whole time evolution for adiabatic quench across an

isolated (non-multicritical) QCP provided that the excess amount relative to the adiabatic process is

considered. In order to have KZS, it is essential that the system evolves through both adiabatic and

impulse regions, and that the impulse region only exists symmetrically around one (finite-number

of) QCP(s), as illustrated in the top panel of Fig. 1.1. Thus, in some sense, KZS reflects the scaling

behavior of the static properties of the phase diagram, since only the equilibrium critical exponents

are encoded in KZS.

(ii) Initial pure excited states: Besides the conditions stated in (i) above, adiabatic quench

dynamics can still encode the ground-state equilibrium critical exponents for a large class of initial

energy eigenstates as well as for pure excited states prepared by a sudden parameter quench. A

crucial role is played by how the initial excitation is distributed over the set of relevant quasi-

particle modes that effectively evolve in an adiabatic quench. In particular, a unifying criterion that

ensures the emergence of KZS in both the above scenarios in the thermodynamic limit is obtained
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by requiring that the majority of the relevant modes share a common initial excitation pattern, as

expressed by Eq. (4.20).

(iii) Initial mixed states: In general, more restrictive conditions on the distribution of the initial

excitation over relevant modes must be obeyed for universal dynamical scaling to emerge in adiabatic

quench dynamics that originates from a statistical (incoherent) mixture as compared to a (coherently

prepared) pure state. In particular, all the relevant modes, as opposed to majority of the relevant

modes, must share a common excitation pattern (not thermally excited) for the initial thermal state.

This implies that KZS is fragile against thermal fluctuations if the initial thermal state is prepared

at criticality, that is, the scaling exponent deviating from the KZ prediction as soon as T 6= 0.

However, from a practical standpoint, it is important to note that a finite range of temperatures can

still support KZS if the system is initially at thermal equilibrium sufficiently far from criticality.

•Anomalous Dynamical Scaling.

(i) Initial ground state: There are two situations in our model that the dynamical scaling expo-

nent can not be solely determined by equilibrium critical exponents. First, when a critical region is

involved in the adiabatic quench process, non-equilibrium scaling exponents remain expressible by

combinations of equilibrium (path-dependent) ones, however a detailed characterization of both the

static phase diagram and the accessible low-lying excitations is necessary for quantitative predic-

tions. Second, for certain paths across MCP, the center of the impulse region may not be located

at the MCP (see bottom panel of Fig. 1.1), leading to a genuinely non-static exponent in the non-

equilibrium scaling. It is interesting to notice that in the latter scenario, although there is only one

isolated MCP involved in the quench process, there is potentially a quasi-critical region around the

MCP, which, in some sense, is similar to the first scenario.

(ii) Initial mixed states: When the system is driven away from an isolated (non-multicritical)

QCP with a fully mixed thermal state at criticality initially (high-temperature limit), the KZS no

longer holds. The scaling property of the initial excitation probability plays a role in the dynamical

scaling exponent.

• First-Order Adiabatic Renormalization.

First-order AR is found to be useful in predicting the non-equilibrium scaling exponent when

an isolated (standard or multi-critical) QCP is involved in the quench process originating from the
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many-body ground state. We also generalized AR to adiabatic quench processes from an excited

eigenstate, and found that the perturbative scaling result is consistent with exact numerical results

as well.

• Effective thermalization.

Effective thermal behavior may emerge in the relaxation dynamics of the quasiparticle density

following a sudden quench from a thermal state under appropriate conditions. Specifically, the

long-time expectation value of this observable is determined by a fictitious thermal equilibrium

ensemble at temperature Teff provided that i) the system is quenched toward the center of the

impulse region, and ii) the initial temperature is sufficiently high with respect to all the relevant

gaps. For a standard QCP, the first requirement is met by a sudden quench toward criticality,

which has been found sufficient for local observables such as the transverse magnetization per site

and the kink density to thermalize starting from the ground state [94, 96, 95]. Our results indicate

that, in general, condition i) alone need not suffice for arbitrary local observables. It remains an

interesting open question to precisely characterize what subclass of local observables may exhibit

effective thermal behavior under the sole condition i). Our results additionally show that for the

quasiparticle density, effective thermalization may fail to occur altogether (or possibly require yet

more stringent requirements) for sudden quenches to a multicritical QCP. Physically, we have traced

this behavior back to the existence of a quasi-critical region and the corresponding shift of the

impulse region.

• Generalized Entanglement.

Fermionic GE, in particular the u(N)-purity, was found to be able to identify the QCPs and

the associated critical exponents of all the equilibrium QPTs in the anisotropic limit of the alter-

nating XY spin chain. The u(N)-purity can also exhibit non-equilibrium dynamical scaling (KZS)

throughout the whole time-evolution for quenches across an isolated standard QCP, provided that

the excess amount relative to the ground state is considered.

While the above analysis provides a more complete picture of non-equilibrium dynamics in a

paradigmatic class of spin chains than available thus far, there are still many open questions that

require further investigation. Some important questions are as follows:

• Robustness of KZS under decoherence. Since our analysis is restricted to the dynamics

111



of an isolated quantum system, a natural question that arises is, How robust is the KZS when the

quantum system is coupled to an environment? This problem is studied in Ref. [101, 102] with Ising

model coupled to an Ohmic bath with temperature T , and found that there is a cross-over between

KZS to a scaling mainly caused by thermal incoherent excitation. The universality of this result

with respect to the properties of the bath and the system needs to be further elucidated.

• The role of initialization for non-integrable models. It is interesting to ask how crucially

our results related to initial excited states rely on the XY chain being an exactly solvable non-

interacting model. In particular, it would be worthwhile to explore whether dynamical critical scaling

may still exist for finite-energy initial states in non-integrable models, or even in more complex but

still integrable systems such as a Bethe-Ansatz solvable one-dimensional Heisenberg XXZ chain [110]

or an infinitely coordinated Lipkin-Meshkov-Glick model [73].

• Thermalization for initial surface states. The effective thermalization we discussed thus

far is restricted to initial bulk thermal states. How would the thermalization behavior change for an

initial edge state (that is, an eigenstate of XY spin chain with open boundary condition within FM

phase [37]). These edge states might exhibit different thermalization behavior in the sense that they

are gapless in an otherwise gapped phase, thus there is a finite gap separating these edge states with

the bulk states. It may be interesting to compare the relaxation time scale of initial edge vs. bulk

states.

• Generalized entanglement around MCPs. While the u(N) purity is faithful in detecting

the QPTs of our system Hamiltonian in the anisotropic limit, the behavior of the u(N) purity around

MCPs was not discussed. Would the u(N) purity still be able to identify the critical exponent of

MCPs? How will the u(N) purity scale for those paths where anomalous dynamical scalings were

observed with respect to the quasi-particle excitation density?

• Physical understanding of the critical decoherence scaling. In Chapter 5, we showed

our numerical results for the scaling behavior of decoherence factor for a central spin when the

environment Hamiltonian is linearly quenched towards a QCP. This suggests that the scaling be-

havior of the decoherence factor for quenches towards QCP and non-QCP is completely different

(see Ref. [121] for analytical analysis for quenches towards non-QCP). The physical understanding

of the observed anomalous scaling behavior requires further study.
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Appendix A

Ground-state u(N)-purity in the

presence of alternation

The equality we would like to prove is the following:

Pu(N) = 1− 2

N

[
〈ΨGS |N̂2|ΨGS〉 − 〈ΨGS |N̂ |ΨGS〉2

]
, (A.1)

where N̂ =
∑
k∈K+

(
a†kak+b†kbk+a†−ka−k+b†−kb−k

)
. Recall the ground state wavefunction expression

from Eq. (2.8):

|ΨGS〉=
∏

k∈K+

|Ψk〉=
(
u

(1)
k +u

(2)
k a†ka

†
−k+u

(3)
k b†kb

†
−k+u

(4)
k a†kb

†
−k+u

(5)
k a†−kb

†
k+u

(6)
k a†ka

†
−kb
†
kb
†
−k

)
|vac〉.

Thus, we need to evaluate the following quantity (by leaving ΨGS〉 understood):

〈N̂2〉−〈N̂〉2 =
∑

k,k′∈K+

〈(a†kak + b†kbk + a†−ka−k + b†−kb−k)(a†k′ak′ + b†k′bk′ + a†−k′a−k′ + b†−k′b−k′)〉

−
∑

k,k′∈K+

〈a†kak + b†kbk + a†−ka−k + b†−kb−k〉〈a
†
k′ak′ + b†k′bk′ + a†−k′a−k′ + b†−k′b−k′〉

=
∑

k

〈(a†kak + b†kbk + a†−ka−k + b†−kb−k)2〉−〈a†kak + b†kbk + a†−ka−k + b†−kb−k〉2, (A.2)
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where the fact that k 6= k′ terms do not survive in 〈N̂2〉 − 〈N̂〉2 is exploited in the derivation of the

last line in Eq. (A.2) because of the factorized expression of |ΨGS〉 for different modes. Since

〈a†kak〉 = |u(2)
k |2 + |u(4)

k |2 + |u(6)
k |2, 〈a†−ka−k〉 = |u(2)

k |2 + |u(5)
k |2 + |u(6)

k |2,

〈b†kbk〉 = |u(3)
k |2 + |u(5)

k |2 + |u(6)
k |2, 〈b†−kb−k〉 = |u(3)

k |2 + |u(4)
k |2 + |u(6)

k |2,

〈a†kaka
†
−ka−k〉 = |u(2)

k |2 + |u(6)
k |2, 〈a

†
kakb

†
kbk〉 = |u(6)

k |2, 〈a
†
kakb

†
−kb−k〉 = |u(4)

k |2 + |u(6)
k |2,

〈a†−ka−kb
†
kbk〉 = |u(5)

k |2 + |u(6)
k |2, 〈a

†
−ka−kb

†
−kb−k〉 = |u(6)

k |2, 〈b
†
kbkb

†
−kb−k〉 = |u(3)

k |2 + |u(6)
k |2,

we also have:

〈(a†kak + b†kbk + a†−ka−k + b†−kb−k)2〉 = 〈a†kak + b†kbk + a†−ka−k + b†−kb−k〉

+ 2〈a†kaka
†
−ka−k + a†kakb

†
kbk + a†kakb

†
−kb−k + a†−ka−kb

†
kbk + a†−ka−kb

†
−kb−k + b†kbkb

†
−kb−k〉

= 4(|u(2)
k |2 + |u(3)

k |2 + |u(4)
k |2 + |u(5)

k |2) + 16|u(6)
k |2,

〈a†kak + b†kbk + a†−ka−k + b†−kb−k〉2 = 4(|u(2)
k |2 + |u(3)

k |2 + |u(4)
k |2 + |u(5)

k |2 + 2|u(6)
k |2).

On the other hand, from the expression of Pu(N) in Eq. (2.22), we obtain:

Pu(N) = 1− 4

N

∑

k∈K+

(2|u(2)
k |2 + 2|u(4)

k |2 + 2|u(3)
k |2 + 2|u(4)

k |2 + 4|u(6)
k |2)−(|u(2)

k |2 + |u(4)
k |2 + |u(6)

k |2)2

− (|u(2)
k |2 + |u(5)

k |2 + |u(6)
k |2)2 − (|u(3)

k |2 + |u(5)
k |2 + |u(6)

k |2)2 − (|u(3)
k |2 + |u(4)

k |2 + |u(6)
k |)2

− 2(|u(3)
k u

(4)
k

∗
− u(5)

k u
(2)
k

∗
|2 + |u(4)

k u
(2)
k

∗
− u(3)

k u
(5)
k

∗
|2),

where the following relationships were used in the derivation

〈a†kbk〉 = u
(3)
k u

(4)
k

∗
− u(5)

k u
(2)
k

∗
, 〈a†−kb−k〉 = u

(4)
k u

(2)
k

∗
− u(3)

k u
(5)
k

∗
.

Thus, in order to prove Eq. (A.1), we need to show that:

∑

k∈K+

[
|u(2)
k |2|u

(3)
k |2 + |u(4)

k |2|u
(5)
k |2 + 2Re(u

(2)
k u

(4)
k

∗
u

(3)
k u

(5)
k

∗
)− |u(1)

k |2|u
(6)
k |2

]
= 0. (A.3)
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First, |Ψk〉 = |Ψ−k〉 (thanks to the symmetry between k and −k); second, from the matrix expression

of Hk in Eq. (2.7), when k is changed to −k, Hk is changed to H∗k , thus, we have u
(n)
k

∗
= u

(n)
−k .

Then, considering these two relations together, we obtain:

u
(1)
k = u

(1)
−k = u

(1)
k

∗
, u

(2)
k = −u(2)

−k = −u(2)
k

∗
, u

(3)
k = −u(3)

−k = −u(3)
k

∗
,

u
(4)
k = u

(5)
−k = u

(5)
k

∗
, u

(5)
k = −u(4)

−k = u
(4)
k

∗
, u

(6)
k = −u(6)

−k = −u(6)
k

∗
,

which implies that u
(1)
k and u

(6)
k are real numbers, u

(2)
k and u

(3)
k are pure imaginary numbers, and

u
(4)
k = u

(5)
k

∗
. Consider, in addition, that the 4-th column in Hk is equal to minus the 5-th column

in Hk, implying that the real part of u
(4)
k , u

(5)
k is irrelevant in diagonalizing Hk. Thus, we also

know that u
(4)
k and u

(5)
k can be taken to be pure imaginary numbers. With all these information

at hand, we can rewrite Re(u
(2)
k u

(4)
k

∗
u

(3)
k u

(5)
k

∗
) = ±|u(2)

k u
(3)
k ||u

(4)
k u

(5)
k |, where the + sign corresponds

to u
(2)
k u

(3)
k = |u(2)

k u
(3)
k |, while the − sign corresponds to u

(2)
k u

(3)
k = −|u(2)

k u
(3)
k |. Now, for the first

situation that u
(2)
k u

(3)
k = |u(2)

k u
(3)
k |, to prove Eq. (A.3) is equivalent to prove:

∑

k∈K+

(|u(2)
k u

(3)
k |+ |u

(4)
k u

(5)
k |+ |u

(1)
k u

(6)
k )(|u(2)

k u
(3)
k |+ |u

(4)
k u

(5)
k | − |u

(1)
k u

(6)
k ) = 0, (A.4)

while for the second situation where u
(2)
k u

(3)
k = −|u(2)

k u
(3)
k |, to prove Eq. (A.3) is equivalent to prove:

∑

k∈K+

(|u(2)
k u

(3)
k | − |u

(4)
k u

(5)
k |+ |u

(1)
k u

(6)
k )(|u(2)

k u
(3)
k | − |u

(4)
k u

(5)
k | − |u

(1)
k u

(6)
k ) = 0. (A.5)

Since the Hamiltonian Eq. (2.1) exhibits particle-hole symmetry, applying a particle-hole transforma-

tion Ûph to |Ψk〉, which interchanges particle and hole, yields another eigenstate of Hk. Specifically,

for each mode k, we can have the equations:

Ûph|vac〉 = a†ka
†
−kb
†
kb
†
−k|vac〉, Ûph|(a†ka

†
−kb
†
kb
†
−k|vac〉) = |vac〉,

Ûph|(a†ka
†
−k|vac〉) = b†kb

†
−k|vac〉, Ûph|(b†kb

†
−k|vac〉) = a†ka

†
−k|vac〉,

Ûph|(a†kb
†
−k|vac〉) = a†−kb

†
k|vac〉, Ûph|(a†−kb

†
k|vac〉) = a†kb

†
−k|vac〉,
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Thus,

〈Ψk|Ûph|Ψk〉=〈Ψk|u(6)
k +u

(3)
k a†ka

†
−k+u

(2)
k b†kb

†
−k+u

(5)
k a†kb

†
−k+u

(4)
k a†−kb

†
k+u

(1)
k a†ka

†
−kb
†
kb
†
−k|vac〉=0,

leading to the following equation:

u
(1)
k u

(6)
k

∗
+u

(6)
k u

(1)
k

∗
+u

(2)
k u

(3)
k

∗
+u

(3)
k u

(2)
k

∗
+u

(4)
k u

(5)
k

∗
+u

(5)
k u

(4)
k

∗
=2(u

(1)
k u

(6)
k −u

(2)
k u

(3)
k −|u

(4)
k u

(5)
k |)=0,

which guarantees Eq. (A.4) (Eq. (A.5)) to be true provided that either u
(2)
k u

(3)
k = |u(2)

k u
(3)
k | or

u
(2)
k u

(3)
k = −|u(2)

k u
(3)
k |.
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Appendix B

Generalized entanglement in static

and dynamic quantum phase

transitions

This Appendix includes the following paper:

S. Deng, L. Viola and G. Ortiz, “Generalized entanglement in static and dynamic quantum phase

transitions”, Recent Progress in Many-Body Theories, Vol. 11 (World Scientific, Singapore, 2008),

p. 387, arXiv:0802.3941.
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We investigate a class of one-dimensional, exactly solvable anisotropic XY spin-1/2 mod-
els in an alternating transverse magnetic field from an entanglement perspective. We find
that a physically motivated Lie-algebraic generalized entanglement measure faithfully
portraits the static phase diagram – including second- and fourth-order quantum phase
transitions belonging to distinct universality classes. In the simplest time-dependent sce-
nario of a slow quench across a quantum critical point, we identify parameter regimes
where entanglement exhibits universal dynamical scaling relative to the static limit.
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1. Introduction

Developing methodologies for probing, understanding, and controlling quantum

phases of matter under a broad range of equilibrium and non-equilibrium conditions

is a central goal of condensed-matter physics and quantum statistical mechanics.

Since novel forms of matter tend to emerge in the deep quantum regime where ther-

mal effects are frozen out, a key prerequisite is to obtain an accurate theoretical

understanding of zero-temperature quantum phase transitions (QPTs).1 Aside from

its broad conceptual significance, such a need is heightened by the growing body

of experimental work which is being performed at the interface between material

science, quantum device technology, and experimental implementations of quantum

information processing (QIP). Following the experimental realization of the Bose-

Hubbard model in a confined 87Rb Bose-Einstein condensate and the spectacular

observation of the superfluid-to-Mott-insulator QPT,2 ultracold atoms are enabling

investigations into strongly interacting many-body systems with an unprecedented

degree of control and flexibility – culminating in the observation of topological

defects in a rapidly quenched spinor Bose-Einstein condensate.3 Remarkably, the
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occurrence of a QPT influences physical properties well into the finite-temperature

regime where real-world systems live, as vividly demonstrated by the measured

low-temperature resistivity behavior in heavy-fermion compounds.4

From a theoretical standpoint, achieving as a complete and rigorous quantum-

mechanical formulation as desired is hindered by the complexity of quantum corre-

lations in many-body states and dynamical evolutions. Motivated by the fact that

QIP science provides, first and foremost, an organizing framework for addressing

and quantifying different aspects of “complexity” in quantum systems, it is natural

to ask: Can QIP concepts and tools contribute to advance our understanding of

many-body quantum systems? In recent years, entanglement theory has emerged as

a powerful bridging testbed for tackling this broad question from an information-

physics perspective. On one hand, entanglement is intimately tied to the inherent

complexity of QIP, by constituting, in particular, a necessary resource for computa-

tional speed-up in pure-state quantum algorithms.5 On the other hand, critically re-

assessing traditional many-body settings in the light of entanglement theory has al-

ready resulted in a number of conceptual, computational, and information-theoretic

developments. Notable advances include efficient representations of quantum states

based on so-called projected entangled pair states,6 improved renormalization-group

methods for both static 2D and time-dependent 1D lattice systems,7 as well as rig-

orous results on the computational complexity of such methods and the solvability

properties of a class of generalized mean-field Hamiltonians.8

In this work, we focus on the problem of characterizing quantum critical models

from a Generalized Entanglement (GE) perspective,9,10 by continuing our earlier

exploration with a twofold objective in mind: first, to further test the usefulness

of GE-based criticality indicators in characterizing static quantum phase diagrams

with a higher degree of complexity than considered so far (in particular, multi-

ple competing phases); second, to start analyzing time-dependent, non-equilibrium

QPTs, for which a number of outstanding physics questions remain. In this context,

special emphasis will be devoted to establish the emergence and validity of universal

scaling laws for non-equilibrium observables.

2. Generalized Entanglement in a Nutshell

2.1. The need for GE

Because a QPT is driven by a purely quantum change in the many-body ground-

state correlations, the notion of entanglement appears naturally suited to probe

quantum criticality from an information-theoretic standpoint: What is the struc-

ture and role of entanglement near and across criticality? Can appropriate entan-

glement measures detect and classify quantum critical points (QCPs) according to

their universality properties? Extensive investigations have resulted in a number of

suggestive results, see e.g. Ref. 11 for a recent review. In particular, pairwise entan-

glement, quantified by so-called concurrence, has been found to develop distinctive

singular behavior at criticality in the thermodynamic limit, universal scaling laws
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being obeyed in both 1D and 2D systems. Additionally, it has been established that

the crossing of a QCP point is typically signaled by a logarithmic divergence of the

entanglement entropy of a block of nearby particles, in agreement with predictions

from conformal field theory. While this growing body of results well illustrates the

usefulness of an entanglement-based view of quantum criticality, a general theoret-

ical understanding is far from being reached. With a few exceptions, the existing

entanglement studies have focused on analyzing how (i) bipartite quantum corre-

lations (among two particles or two contiguous blocks) behave near and across a

QCP under the assumption that the underlying microscopic degrees of freedom

correspond to (ii) distinguishable subsystems (iii) at equilibrium.

GE provides an entanglement framework which is uniquely positioned to over-

come the above limitations, while still ensuring consistency with the standard

“subsystem-based” entanglement theory in well-characterized limits.9,10,12 Physi-

cally, GE rests on the idea that entanglement is an observer-dependent concept,

whose properties are determined by the expectations values of a distinguished sub-

space of observables Ω, without reference to a preferred decomposition of the overall

system into subsystems. The starting point is to generalize the observation that stan-

dard entangled pure states of a composite quantum system look mixed relative to

an “observer” whose knowledge is restricted to local expectation values. Consider, in

the simplest case, two distinguishable spin-1/2 subsystems in a singlet (Bell) state,

|Bell〉 = | ↑〉A ⊗ | ↓〉B − | ↓〉A ⊗ | ↑〉B√
2

, (1)

defined on a tensor-product state space H = HA ⊗ HB. First, the statement

that |Bell〉 is entangled – |Bell〉 cannot be expressed as |ψ〉A ⊗ |ϕ〉B for arbitrary

|ψ〉A ∈ HA, |ϕ〉B ∈ HB – is unambiguously defined only after a preferred tensor-

product decomposition of H is fixed: Should the latter change, so would entangle-

ment in general.12 Second, the statement that |Bell〉 is entangled is equivalent to

the property that (either) reduced subsystem state – as given by the partial trace op-

eration, ρA = TrB{|Bell〉〈Bell|} – is mixed, Tr{ρ2A} = 1/2(1 +
∑

α=x,y,z〈σA
α 〉2) < 1,

in terms of expectations of the Pauli spin-1/2 matrices σA
α acting on A.

To the purposes of defining GE, the key step is to realize that a meaningful notion

of a reduced state may be constructed for any pure state |ψ〉 ∈ H without invoking

a partial trace, by specifying such a reduced “Ω-state” as a list of expectations of

operators in the preferred set Ω. The fact that the space of all Ω-states is convex

then motivates the following:9

Definition (Pure-state GE). A pure state |ψ〉 ∈ H is generalized unentangled

relative to Ω if its reduced Ω-state is pure, generalized entangled otherwise.

For applications to quantum many-body theories, two major advantages emerge

with respect to the standard entanglement definition: first, GE is directly appli-

cable to both distinguishable and indistinguishable degrees of freedom, allowing

to naturally incorporate quantum-statistical constraints; second, the property of

a many-body state |ψ〉 to be entangled or not is independent on both the choice
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of “modes” (e.g. position, momentum, etc) and the operator language used to de-

scribe the system (spins, fermions, bosons, etc) – depending only on the observables

Ω which play a distinguished physical and/or operational role.

2.2. GE by example

For a large class of physical systems, the set of distinguished observables Ω may

be identified with a Lie algebra consisting of Hermitian operators, Ω ≃ h, which

generate a corresponding distinguished unitary Lie group via exponentiation, h 7→
G = eih. While the assumption of a Lie-algebraic structure is not necessary for the

GE framework to be applicable,9,12 it has the advantage of both suggesting simple

GE measures and allowing a complete characterization of generalized unentangled

states. In particular, a geometric measure of GE is given by the square length

(according to the trace norm) of the projection of |ψ〉〈ψ| onto h:

Definition (Relative purity). Let {Oℓ}, ℓ = 1, . . . ,M, be a Hermitian, or-

thogonal basis for h, dim(h) =M . The purity of |ψ〉 relative to h is given by

Ph(|ψ〉) = K
M∑

ℓ=1

〈ψ|Oℓ|ψ〉2 , (2)

where K is a global normalization factor chosen so that 0 ≤ Ph ≤ 1.

Notice that Ph is, by construction, invariant under group transformations, that

is, Ph(|ψ〉) = Ph(G|ψ〉), for all G ∈ G, as desirable on physical grounds. If, addi-

tionally, h is a semi-simple Lie algebra irreducibly represented on H, generalized

unentangled states coincide9 with generalized coherent states (GCSs) of G, that is,
they may be seen as “generalized displacements” of an appropriate reference state,

|GCS({ηℓ})〉 = exp(i
∑

ℓ ηℓOℓ)|ref〉. Physically, GCSs correspond to unique ground

states of Hamiltonians in h: States of matter such as BCS superconductors or nor-

mal Fermi liquids are typically described by GCSs. While we refer the reader to

previous work9,10,12 for additional background, we illustrate here the GE notion by

example, focusing on two limiting situations of relevance to the present discussion.

2.2.1. Example 1: Standard entanglement revisited

The standard entanglement definition builds on the assumption of distinguishable

quantum degrees of freedom, the prototypical QIP setting corresponding to N lo-

cal parties separated in real space, and H = H1 ⊗ . . . ⊗ HN . Available means for

manipulating and observing the system are then naturally restricted to arbitrary

local transformations, which translates into identifying the Lie algebra of arbitrary

local (traceless) observables, hloc = su(dim(H1))⊕ . . .⊕su(dim(HN )), as the distin-

guished algebra in the GE approach. If, for example, each of the factors Hℓ supports

a spin-1/2, hloc = span{σℓ
α ;α = x, y, z, ℓ = 1, . . . , N}, and Eq. (2) yields

Phloc(|ψ〉) = 1

N

∑

ℓ,α

〈ψ|σℓ
α|ψ〉2 =

1

N

(∑

ℓ

Trρ2ℓ − 1

2

)
, (3)
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which is nothing but the average (normalized) subsystem purity. Thus, Phloc quan-

tifies multipartite subsystem entanglement in terms of the average bipartite entan-

glement between each spin and the rest. Maximum local purity, Ph = 1, is attained

if and only if the underlying state is a pure product state, that is, a GCS of the

local unitary group Gloc = SU(2)1 ⊗ . . .⊗ SU(2)N .

2.2.2. Example 2: Fermionic GE

Consider a system of indistinguishable spinless fermions able to occupy N modes,

which could for instance correspond to distinct lattice sites or momentum modes,

and are described by canonical fermionic operators cj , c
†
j on the 2N -dimensional Fock

space HFock. Although the standard definition of entanglement can be adapted to

the distinguishable-subsystem structure associated with a given choice of modes (re-

sulting in so-called “mode entanglement”), privileging a specific mode description

need not be physically justified, especially in the presence of many-body interac-

tions.13 These difficulties are avoided in the GE approach by associating “gener-

alized local” resources with number-preserving bilinear fermionic operators, which

identifies the unitary Lie algebra u(N) = span{c†jcj ; 1 ≤ i, j ≤ N} as the distin-

guished observable algebra for fermionic GE. Upon re-expressing u(N) in terms of

an orthogonal Hermitian basis of generators, Eq. (2) yields

Pu(N)(|ψ〉) = 2

N

N∑

j<k=1

[
〈c†jck + c†kcj〉2 − 〈c†jck − c†kcj〉2

]
+

4

N

N∑

j=1

〈c†jcj − 1/2〉2 . (4)

One may show10 that a many-fermion pure state is generalized unentangled relative

to u(N) if and only if it is a single Slater determinant (with any number of fermions),

whereas Pu(N) < 1 for any state containing fermionic GE. Note that a Bell pure

state as in Eq. (1) rewrites, via a Jordan-Wigner isomorphic mapping, in the form

|Bell〉 = | ↑〉A ⊗ | ↓〉B − | ↓〉A ⊗ | ↑〉B√
2

=
c†1|vac〉 − c†2|vac〉√

2
, (5)

in terms of the fermionic vacuum |vac〉 = |↓〉A ⊗ |↓〉B ≡ |↓, ↓〉. Thus, while |Bell〉
is maximally mode-entangled relative to the local spin algebra su(2) ⊕ su(2), it is

u(N)-unentangled – consistent with the fact that it is a one-particle state.

3. Generalized Entanglement and Quantum Critical Phenomena

3.1. Static QPTs

Let us focus in what follows on a class of exactly solvable spin-1/2 one-dimensional

models described by the following Hamiltonian:

H = −
N∑

i=1

[
(1 + γ)

2
σi
xσ

i+1
x +

(1 − γ)

2
σi
yσ

i+1
y

]
+

N∑

i=1

(
h− (−1)iδ

)
σi
z , (6)
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where periodic boundary conditions are assumed, that is, σi
α ≡ σi+N

α . Here,

γ ∈ [0, 1], h ∈ [−∞,∞], and δ ∈ [−∞,∞] are the anisotropy in the XY plane,

the uniform magnetic field strength, and the alternating magnetic field strength,

respectively. For δ = 0, the above Hamiltonian recovers the anisotropic XY model

in a transverse field studied in Ref. 10, whereas δ > 0, γ = 1 corresponds to the

Ising model in a alternating transverse field recently analyzed in Ref. 15.

While full detail will be presented elsewhere,17 an exact solution for the energy

spectrum of the above Hamiltonian may be obtained by generalizing the basic steps

used in the standard Ising case,14 in order to account for the existence of a two-

site primitive cell introduced by the alternation. By first separately applying the

Jordan-Wigner mapping to even and odd lattice sites,16 and then using a Fourier

transformation to momentum space, Hamiltonian (6) may be rewritten as:

H =
∑

k∈K+

Hk =
∑

k∈K+

Â†
kĤkÂk , K+ =

{ π

N
,
3π

N
, . . . ,

(π
2

− π

N

)}
,

where Ĥk is a four-dimensional Hermitian matrix, and Â†
k = (a†k, a−k, b

†
k, b−k) is a

vector operator, a†k (b†k) denoting canonical fermionic operators that create a spinless

fermion with momentum k for even (odd) sites, respectively. Thus, the problem

reduces to diagonalizing each of matrices Ĥk, for k ∈ K+. If ǫk,1, ǫk,2, ǫk,3, ǫk,4, with

ǫk,1 ≤ ǫk,2 ≤ 0 ≤ ǫk,3 ≤ ǫk,4 denote the energy eigenvalues of Ĥk, then

Hk =
∑

n=1,...,4

ǫk,nγ
†
k,nγk,n ,

where γ†k,n, γk,n are quasi-particle excitation operators for mode k in the nth band.

At T = 0, the ǫk,1 and ǫk,2 bands are occupied, whereas ǫk,3 and ǫk,4 are empty,

thus the ground-state energy EGS =
∑

k∈K+
(ǫk,1 + ǫk,2), with ǫk,1 < 0, ǫk,2 ≤ 0.

By denoting with |vac〉 the fermionic vacuum, and by exploiting the symmetry

properties of the Hamiltonian, the many-body ground state may be expressed in

the form |Ψ〉GS =
∏

k∈K+ |Ψk〉, with

|Ψk〉 =
(
u
(1)
k +u

(2)
k a†ka

†
−k+u

(3)
k b†kb

†
−k+u

(4)
k a†kb

†
−k+u

(5)
k a†−kb

†
k+u

(6)
k a†ka

†
−kb

†
kb

†
−k

)
|vac〉,

(7)

for complex coefficients determined by diagonalizing Hk, with
∑6

a=1 |u(a)k |2 = 1.

Since QPTs are caused by non-analytical behavior of EGS , QCPs correspond to

zeros of ǫk,2. The quantum phase boundaries are determined by the following pair

of equations: h2 = δ2 + 1; δ2 = h2 + γ2. The resulting anisotropic (γ > 0) quantum

phase diagram is showed in Fig. 1 where, without loss of generality, we set γ =

0.5. Quantum phases corresponding to disordered (paramagnetic, PM) behavior,

dimer order (DM), and ferromagnetic long-range order (FM) emerge as depicted.

In the general case, the boundaries between FM and PM phases, as well as between

FM and DM phases, are characterized by second-order broken-symmetry QPTs.

Interestingly, however, EGS develops weak singularities at

(hc, δc) = (0, δ = ±γ) , (hc, δc) = (±1, δ = 0) , (8)
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Fig. 1. Phase diagram of the spin-1/2 XY alternating Hamiltonian given in Eq. (6) with γ = 0.5.

where fourth-order broken-symmetry QPTs occur along the paths approaching the

QCPs (Fig. 1, dashed-dotted lines). In the isotropic limit (γ = 0), an insulator-metal

Lifshitz QPT occurs from a gapped to a gapless phase, with no broken-symmetry

order parameter. For simplicity, we shall primarily focus on gapped quantum phases

in what follows, thus γ > 0. Standard finite-size scaling analysis reveals that new

quantum critical behavior emerges in connection with the alternating fourth-order

QCPs in Eq. (8).15 Thus, in addition to the usual Ising universality class, charac-

terized by critical exponents ν = 1, z = 1, an alternating universality class occurs,

with critical exponents ν = 2, z = 1.

The key step toward applying GE as a QPT indicator is to identify a (Lie)

algebra of observables whose expectations reflect the changes in the GS as a function

of the control parameters. It is immediate to realize that Hamiltonian Eq. (6),

once written in fermionic language, is an element of the Lie algebra so(2N), which

includes arbitrary bilinear fermionic operators. As a result, the GS is always a GCS

of so(2N), and GE relative to so(2N) carries no information about QCPs. However,

the GS becomes a GCS of the number-conserving sub-algebra u(N) in both the fully

PM and DM limit. This motivates the choice of the fermionic u(N)-algebra discussed

in Example 2 as a natural candidate for this class of systems. Taking advantage of

the symmetries of this Hamiltonian, the fermionic purity given in Eq. (4) becomes:

Pu(N) =
8

N

∑

k∈K+

{[
|〈a†kbk〉|2 + |〈a†−kb−k〉|2

]
(9)

+
4

N

[
〈a†kak − 1/2〉2 + 〈a†−ka−k − 1/2〉2 + 〈b†kbk − 1/2〉2 + 〈b†−kb−k − 1/2〉2

]}

Analytical results for Pu(N) are only available for δ = 0, where GE sharply detects

the PM-FM QPT in the XY model.10 Remarkably, ground-state fermionic GE still

faithfully portraits the full quantum phase diagram with alternation. First, deriva-

tives of Pu(N) develop singular behavior only at QCPs, see Fig. 2 (left). Furthermore,
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GE exhibits the correct scaling properties near QCPs.10 By taking a Taylor expan-

sion, Pu(N)(h)−Pu(N)(hc) ∼ ξ−1 ∼ (h−hc)
ν , where ξ is the correlation length, the

static critical exponent ν may be extracted from a log-log plot of Pu(N) for both

the Ising and the alternating universality class, as demonstrated in Fig. 2 (right).
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Right panel: Determination of ν for both the alternating and Ising (inset) universality class.

3.2. Dynamic QPTs

While the above studies provide a satisfactory understanding of static quantum crit-

ical properties, dynamical aspects of QPTs present a wealth of additional challenges.

To what extent can non-equilibrium properties be predicted by using equilibrium

critical exponents? The simplest dynamical scenario one may envision arises when a

single control parameter is slowly changed in time with constant speed τq > 0, that

is, g(t) − gc = (t− tc)/τq, so that a QCP is crossed at t = tc (tc = 0 without loss

of generality). The typical time scale characterizing the response of the system is

the relaxation time τ = ~/∆ ∼ |g(t) − gc|−zν , ∆ being the gap between the ground

state and first accessible excited state and z the dynamic critical exponent.1 Since

the gap closes at QCPs in the thermodynamic limit, τ diverges even for an arbi-

trarily slow quench, resulting in a critical slowing-down. According to the so-called

Kibble-Zurek mechanism (KZM),18 a crossover between an (approximately) adia-

batic regime to an (approximately) impulse regime occurs at a freeze-out time −t̂,
whereby the system’s instantaneous relaxation time matches the transition rate,

τ(t̂) = |(g(t̂) − gc)/g
′(t̂)| , t̂ ∼ τνz/(νz+1)

q ,

resulting in a predicted scaling of the final density of excitations as

n(tF ) ∼ τ−ν/(νz+1)
q . (10)
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While agreement with the above prediction has been verified for different quantum

systems,19 several key points remain to be addressed: What are the required phys-

ical ingredients for the KZM to hold? What features of the initial (final) quantum

phase are relevant? How does dynamical scaling reflect into entanglement and other

observable properties?

In our model, the time-evolved many-body state at instant time t, |Φ(t)〉 =∏
k∈K+ |Φk(t)〉, may still be expressed in the form of Eq. (7) for time-dependent

coefficients u
(a)
k (t), a = 1, . . . , 6, computed from the solution of the Schrödinger

equation, subject to the initial condition that |Φ(t → −∞)〉 = |ΨGS(−∞)〉. The fi-

nal excitation density is then obtained from the expectation value of the appropriate

quasi-particle number operator over the final state,

n(tF ) =
1

N
〈Φ(tF )|

∑

k∈K+

(γ†k,3γk,3 + γ†k,4γk,4) |Φ(tF )〉 .

As shown in Fig. 3 (left), the resulting value agrees with Eq. (10) over an appropriate

τq-range irrespective of the details of the QCP and the initial (final) quantum phase:

n(tF )
Ising ∼ τ−1/2

q , n(tF )
Alternating ∼ τ−2/3

q .
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Fig. 3. Dynamical scaling of the excitation density. Left panel: log-log plot for Ising universality
class (FM to PM). Right panel: alternating universality class (FM to FM), with log-log scaling
plot in the inset.

Remarkably, however, our results indicate that scaling behavior holds throughout

the entire time evolution (see Fig. 3, right), implying the possibility to express the

time-dependent excitation density as:

n(t) = τ−ν/(νz+1)
q F

( t− tc

t̂

)
,

where F is a universal scaling function. Numerical results support the conjecture

that similar universal dynamical scaling holds for arbitrary observables.17 In par-

ticular, fermionic GE obeys scaling behavior across the entire dynamics provided
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Fig. 4. Dynamical scaling of Pu(N) for the alternating and the Ising (inset) universality class.

that the amount relative to the instantaneous ground state |Ψ(t)〉GS is considered:

∆Pu(N)(t) ≡ Pu(N)(|Φ(t)〉) − Pu(N)(|Ψ(t)〉GS) = τ−ν/(νz+1)
q G

( t− tc

t̂

)
,

for an appropriate scaling function G, see Fig. 4.

It is important to stress that the above discussion applies to control paths which

originate and end in gapped phases. In the isotropic limit γ = 0, we observe no

scaling of the form Eq. (10) if the system is driven to/from the superfluid gapless

phase.

4. Conclusion

In addition to further demonstrating the usefulness of the GE notion toward char-

acterizing static quantum critical phenomena, we have tackled the study of time-

dependent QPTs in a simple yet illustrative scenario. Our analysis points to the

emergence of suggestive physical behavior and a number of questions which deserve

to be further explored. In particular, while for gapped systems as considered here,

the origin of the observed universal dynamical scaling is likely to be rooted in the

existence of a well-defined adiabatic (though non-analytic) limit – as independently

investigated in Ref. 20, a rigorous understanding remains to be developed. We ex-

pect that a GE-based perspective will continue to prove valuable to gain additional

insight in quantum-critical physics.
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(2002).
3. L. E. Sadler, J. M. Higbie, S. R. Leslie, M. Vengalattore, and D. M. Stamper-Kurn,

Nature 443, p. 312 (2006).
4. P. Gegenwart et al., Phys. Rev. Lett., 89, p. 056402 (2002).
5. R. Jozsa and N. Linded, Proc. Roy. Soc. London A 459, p. 2001 (2003); G. Vidal,

Phys. Rev. Lett. 91, p. 147902 (2003).
6. F. Verstraete and J. I. Cirac, arXiv: cond-mat/0407066 (2004); Phys. Rev. A 70, p.

060302(R) (2004).
7. D. Porras, F. Verstraete, and J. I. Cirac, Phys. Rev. B 73, p. 014410 (2006); G. Vidal,

Phys. Rev. Lett. 93, p. 040502 (2004).
8. J. Eisert, Phys. Rev. Lett. 97, p. 260501 (2006); R. Somma, H. Barnum, G. Ortiz, and

E. Knill, Phys. Rev. Lett. 97, p. 190501 (2006).
9. H. Barnum, E. Knill, G. Ortiz, and L. Viola, Phys. Rev. A, 68, p. 032308 (2003); H.

Barnum, E. Knill, G. Ortiz, R. Somma, and L. Viola, Phys. Rev. Lett., 92, p. 107902
(2004).

10. R. Somma, G. Ortiz, H. Barnum, E. Knill, L. Viola, Phys. Rev. A 70, p. 042311
(2004); R. Somma, H. Barnum, E. Knill, G. Ortiz, and L. Viola, Int. J. Mod. Phys.
B 20, 2760 (2006).

11. L. Amico, R. Fazio, A. Osterloh, and V. Vedral, arXiv: quant-ph/0703044 (2007).
12. L. Viola and H. Barnum, arXiv:quant-ph/0701124 (2007), and references therein.
13. M. Kindermann, Phys. Rev. Lett. 96, p. 240403 (2006).
14. P. Pfeuty, Ann. Phys. 57, p. 79 (1970); E. Barouch, B. M. McCoy, and M. Dresden,

Phys. Rev. A 2, p. 1075 (1970).
15. O. Derzhko and T. Krokhmalskii, Czech. J. Phys. 55, p. 605 (2005); O. Derzhko, J.

Richter, and T. Krokhmalskii, Phys. Rev. E 69, p. 066112 (2004).
16. K. Okamoto and K. Yasumura, J. Phys. Soc. Japan 59, p. 993 (1990).
17. S. Deng, G. Ortiz, and L. Viola, in preparation.
18. W. H. Zurek, U. Dorner, and P. Zoller, Phys. Rev. Lett. 95, p. 105701 (2005).
19. J. Dziarmaga, Phys. Rev. Lett. 95, p. 245701 (2005); F. M. Cucchietti, B. Damski, J.

Dziarmaga, and W. H. Zurek, Phys. Rev. A 75, p. 023603 (2007).
20. A. Polkovnikov, Phys. Rev. B, 72, p. 161201 (2005); A. Polkovnikov and V. Gritsev,

cond-mat/0706.0212 (2007).



Appendix C

Dynamical non-ergodic scaling in

continuous finite-order quantum

phase transitions

This Appendix includes the following paper:

S. Deng, G. Ortiz, and L. Viola, “Dynamical non-ergodic scaling in continuous finite-order quantum

phase transitions”, Europhys. Lett. 84, 67008 (2008).

129



December 2008

EPL, 84 (2008) 67008 www.epljournal.org

doi: 10.1209/0295-5075/84/67008

Dynamical non-ergodic scaling in continuous finite-order
quantum phase transitions

S. Deng
1
, G. Ortiz

2 and L. Viola1(a)

1Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory - Hanover, NH 03755, USA
2Department of Physics, Indiana University - Bloomington, IN 47405, USA

received 23 July 2008; accepted in final form 13 November 2008
published online 12 January 2009

PACS 73.43.Nq – Quantum phase transitions
PACS 05.70.Jk – Critical point phenomena
PACS 75.10.Jm – Quantized spin models

Abstract – We investigate the emergence of universal dynamical scaling in quantum critical
spin systems adiabatically driven out of equilibrium, with emphasis on quench dynamics which
involves non-isolated critical points (i.e., critical regions) and cannot be a priori described through
standard scaling arguments nor time-dependent perturbative approaches. Comparing to the case
of an isolated quantum critical point, we find that non-equilibrium scaling behavior of a large
class of physical observables may still be explained in terms of equilibrium critical exponents.
However, the latter are in general non-trivially path-dependent, and detailed knowledge about the
time-dependent excitation process becomes essential. In particular, we show how multiple level
crossings within a gapless phase may completely suppress excitation depending on the control
path. Our results typify non-ergodic scaling in continuous finite-order quantum phase transitions.

Copyright c© EPLA, 2008

The response of a physical system to external probes
is an invaluable technique for unveiling the system’s
properties. If the probe is dynamic, so that the Hamil-
tonian becomes explicitly time-dependent, the system is
forced out of equilibrium – a subject of prime practical
importance which can soon prove full of challenges and
surprises. In particular, understanding and manipulating
the dynamics of zero-temperature quantum phase transi-
tions (QPTs) [1] in matter has a broad significance across
fields as diverse as quantum-statistical mechanics, mater-
ial science, quantum information processing, and cosmol-
ogy. The extent to which universal quantum scaling laws
persist out of equilibrium and encode information about
the equilibrium phase diagram is the topic of this work.
As early as 1970, Barouch and coworkers [2] studied

the time-dependent T = 0 magnetization of the anisotropic
XY chain, and showed that equilibrium is not reached
at the final evolution time. This non-ergodic behavior
was later confirmed for other physical observables [3],
and the analysis extended to the case where the system
is driven across its quantum critical point (QCP) by
changing a control parameter λ(t) (e.g., the magnetic field
along the z -axis) in time with constant quench rate τ > 0.

(a)E-mail: Lorenza.Viola@Dartmouth.EDU

The emergence of non-equilibrium scaling, however, was
not discussed. An important step was taken in ref. [4],
starting from the observation that irrespective of how
slowly the quench occurs, adiabaticity is lost in the
thermodynamic limit at a “freeze-out” time (tc− t̂) before
the QCP is crossed. This yields a power-law prediction
for the final density of excitations, nex(tfin)∼ ξ−1(t̂)∼ τ−�,
where the non-equilibrium critical exponent �= dν/(νz+
1) is solely determined by the equilibrium correlation
length (ξ) the dynamic critical exponents of the QCP
(ν and z, respectively), and the spatial dimension, d.
While it is suggestive to realize that defect formation is a
manifestation of broken ergodicity in Barouch’s sense [3],
continuous experimental advances in systems ranging from
ultracold atomic gases to quantum magnets [5] demand
the applicability of the above Kibble-Zurek scaling (KZS)
to be carefully scrutinized, and the potential for more
general non-ergodic scaling to be explored. How much
information on the equilibrium physics is needed for
reliable scaling predictions to be possible?
The KZS for linear quenches across an isolated QCP

separating two gapped phases has been confirmed by now
for a variety of control schemes in one-dimensional (1D)
models [6–8], including QCPs of topological nature [9] and
noisy driving fields [10] – generalizations to repeated [11]
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and non-linear quenches [12,13] having also been estab-
lished. Leaving aside the case of disordered quantum
systems, where marked deviations from power law behav-
ior may be witnessed [14], the possibility of genuinely
non-adiabatic scaling in low-dimensional clean systems,
whereby non-zero excitation persists (unlike KZS) for
τ →∞ in the thermodynamic limit, has been pointed
out in [8]. Likewise, critical dynamics in the presence of
non-isolated QCPs reveals a rich landscape. The need to
modify the KZS by replacing d with the “co-dimension”
m of the relevant critical (gapless) surface has emerged
through a study of the 2D Kitaev model [15]. Evidence
of non-KZS has also been reported for quenches which
originate within an extended quantum critical region [16],
cross a multi-critical point [13,17], or steer the system
along a gapless critical line [18].
A main purpose of this work is to develop a theory

and understanding of non-ergodic scaling for generic
(power law) quenches along critical regions. To achieve
this goal two new notions are introduced, which are both
path-dependent : one is the concept of a dominant critical
point to establish scaling along a critical path, and the
other a mechanism of cancellation of excitations. Besides
elucidating several results recently reported in the liter-
ature, our analysis indicates that details on how different
modes of excitation are accessed throughout the quench
process are crucial. We consider several different scenarios
within a unifying illustrative testbed, the 1D anisotropic
XY model in a transverse alternating magnetic field [19].
In particular, we push beyond the KZS domain – notably,
by investigating quenches that involve a continuous
Lifshitz QPT to a gapless phase. We also revisit the
standard KZS and clarify how, for arbitrary continuous
QPTs, it can be accounted for by the iterative adiabatic
renormalization approach of Berry [20], as long as two
gapped quantum phases are involved. Most importantly,
we find that universal dynamical scaling is obeyed by a
large class of extensive physical observables throughout
the quench dynamics, a result with practical implications
in the experimental detection of non-ergodic scaling.

Model Hamiltonian. – The spin-1/2 anisotropic XY
model in a transverse alternating field is defined by [19]

H =−
N∑
i=1

{1+ γ
2

σixσ
i+1
x +

1− γ
2

σiyσ
i+1
y − [h− (−)iδ]σiz

}
,

(1)
where periodic boundary conditions are assumed, that
is, σiα ≡ σi+Nα . Here, γ ∈ [0, 1], h, δ ∈ [−∞,∞], are
the anisotropy in the XY plane, and the uniform
and alternating magnetic field strength, respectively.
This model can be exactly solved by following
the steps outlined in [19,21]. The Hamiltonian (1)

rewrites as H =
∑
k∈K+ Ĥk =

∑
k∈K+ A

†
kHkAk, where

K+ = {π/N, 3π/N, . . . , π/2−π/N} specifies allowed

momentum values, and A†k = (a
†
k, a−k, b

†
k, b−k) is a vector

operator, with a†k (b
†
k) denoting canonical fermionic
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Fig. 1: (Colour on-line) Phase diagram of the alternating
spin chain, eq. (1). Dashed (blue) and dashed-dotted (red)
lines define the phase boundaries for γ = 0.5, the enclosed
area corresponding to the FM phase. Dashed (blue) and solid
(green) lines correspond to γ = 0, the enclosed area being the
SF gapless phase.

operators that create a spinless fermion with momentum
k for even (odd) sites. Diagonalization of the reduced
4× 4 Hamiltonian matrix Hk further yields a collection
of non-interacting quasi-particles,

H =

n=1,...,4∑
k∈K+

εk,nNk,n,

in terms of an appropriate number operator Nk,n for mode
(k, n). Assuming that n labels bands in increasing energy
order, only εk,1, εk,2 � 0 bands are occupied at T = 0, with
an excitation gap ∆k = εk,3− εk,2 being given by

∆k(γ, h, δ)= 4
[
h2+ δ2+cos2 k+ γ2 sin2 k

−2
√
h2 cos2 k+ δ2(h2+ γ2 sin2 k)

]1/2
. (2)

Quantum phase boundaries are determined by the
equations h2 = δ2+1; δ2 = h2+ γ2. The phase diagram
with both γ = 0.5 and γ = 0 is shown in fig. 1. Quantum
phases corresponding to disordered paramagnetic (PM)
and dimer (DM) behavior emerge as depicted for arbitrary
γ. For γ > 0, ferromagnetic order (FM phase) develops in
the center of the phase diagram, whereas for the isotropic
chain a superfluid (SF) phase with a gapless spectrum and
non-broken U(1)-symmetry emerges. Finite-size analysis
reveals that this model supports four distinct universality
classes: i) When γ > 0, generic QCPs belong to the d= 2
Ising universality class with critical exponents ν = 1, z = 1.
Different critical behavior occurs at (h→ 0, δ=±γ)
and (h=±1, δ→ 0), where weak singularities in the
ground-state energy develop (4th-order QCPs [19]), and
ν = 2, z = 1, corresponding to the alternating universality
class. ii) When γ = 0, generic QCPs on the boundary
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lines belong to the Lifshitz universality class, with critical
exponents ν = 1/2, z = 2. Different critical behavior
still occurs at (h=±1, δ→ 0), where now ν = 1, z = 2.
Furthermore, Ising critical exponents are recovered while
approaching the point (h= 0, δ = 0)≡O along every path
other than (δ = 0, h→ 0) (when there is no QCP). In
what follows, we focus on quenching schemes where h and
δ are individually or simultaneously varied with time. We
address separately different representative scenarios.

Quenching across an isolated critical point. –
Suppose first that the system is linearly quenched across
an isolated (non-multicritical) QCP that separates two
gapped phases upon changing a single control parameter
as δλ(t) = λ(t)−λc = (t− tc)/τ , where t∈ [tin, tfin]. With-
out loss of generality we may assume that the system
becomes critical at tc = 0. For finite N, the exact time-
evolved many-body state |ψ(t)〉 may be determined from
numerical integration of the Schrödinger equation with
Hamiltonian H(t), subject to |ψ(tin)〉= |ψGS(tin)〉, the
latter being the ground state ofH(tin). The final excitation
density nex(tfin) may then be computed from the expec-
tation value of the instantaneous quasi-particle number
operator over |ψ(t)〉. Provided that the quench rate τ
belongs to the appropriate range1, KZS is found to hold
irrespective of the details of the QCP and the initial (final)
quantum phase, in particular for both 2nd- and higher-
order QPTs, and independent of the path direction:

nIsingex (tfin)∼ τ−1/2 , nAlternatingex (tfin)∼ τ−2/3 .

While the excitation density is an accurate measure of
the loss of adiabaticity in exactly solvable models, identi-
fying manifestations of the KZS in quantities that can be
more directly accessible in experiments and/or meaningful
in more general systems is essential. Remarkably, numeri-
cal results indicate that scaling behavior holds throughout
the quench process for a large class of physical observables,
provided that the excess expectation value relative to the
instantaneous ground state is considered [19]. That is

∆O(t) ≡ 〈ψ(t)| O |ψ(t)〉− 〈ψGS(t)| O |ψGS(t)〉
= τ−(ν+β)/(νz+1)FO

( t− tc
t̂

)
, (3)

where β is a scaling exponent determined by the phys-
ical dimension of O and F is an observable-dependent
scaling function. For instance, under a quench of the
magnetic field strength, h, the magnetization per site,
Mz = (

∑N
i=1 σ

i
z)/N , obeys dynamical scaling of the form

∆Mz(t) = τ
(−ν−νz+1)/(νz+1)G((t− tc)/t̂), whereas the

1That τ � τmin follows from standard adiabaticity requirements
away from criticality, τmin ∼ 1/[mint∈[tin,tfin]Gap(H(t))]2. The exis-
tence of a finite upper bound τmax follows from the fact that if
τ is arbitrarily large, a finite system never enters the impulsive
regime, if the size-dependent contribution to the gap dominates
over the control-dependent one. From scaling analysis under the
assumption that the gap closes polynomially as N−z , we estimate
τmax ∼N(νz+1)/ν .
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Fig. 2: (Colour on-line) Dynamical scaling under a magnetic
field quench. Main panel: excess nearest-neighbor spin correla-
tion per particle, ∆XX, vs. rescaled time for the alternating
universality class from numerical integration of the Schrödinger
equation. Inset: excess energy per particle, ∆H, vs. rescaled
time for the Ising universality class from first-order adiabatic
renormalization.

nearest-neighbor spin correlator along the x -direction,
XX = (

∑N
i=1 σ

i
xσ
i+1
x )/N , obeys dynamical scaling of the

form ∆XX(t) = τ−ν/(νz+1)W ((t− tc)/t̂), for appropriate
scaling functions G and W, respectively – see fig. 2.
The fact that the system becomes gapless at a single

instant tc suggests to seek an explanation of the above
results based on the fact that λ̇(t) = 1/τ is a small
parameter. While a similar strategy has been imple-
mented in [8], our emphasis is on providing a firm
theoretical foundation and further highlighting impor-
tant assumptions. By a suitable parametrization, the
relevant time-dependent Hamiltonian may be written
as H(t) =Hc+ [λ(t)−λc]H1 =Hc+(t− tc)/τH1, with
Hc quantum-critical in the thermodynamic limit. Let
{Em(t)} and {|ψm(t)〉} denote the snapshot eigen-
values and (orthonormal) eigenvectors of H(t), where
|ψ0(t)〉 ≡ |ψGS(t)〉 and assume that: i) no level crossing
occurs throughout the evolution; ii) the derivatives of all
the spectral projectors {|ψm(t)〉〈ψm(t)|} are sufficiently
smooth. The (normalized) time-evolved state reads

|ψ(t)〉= c0(t)|ψ0(t)〉+
∑
m �=0

cm(t)|ψm(t)〉,

for coefficients to be determined. Since for a truly adia-
batic evolution no excitation is induced in spite of the fact
that the eigenstates of H(t) evolve in time, appropriately
subtracting (following Berry, “renormalizing”) the adia-
batic contribution is essential for quantifying the leading
non-adiabatic correction. This is achieved in two steps [22]:
i) effect a canonical transformation to a “comoving frame,”
where in the zeroth-order adiabatic limit τ →∞ the
comoving state vector |ψ̃(t)〉= Ũ(t; tin)|ψ(tin)〉 is frozen up
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to a phase factor, that is, |ψ̃(t)〉= e−iΓ0(t)|ψ0(tin)〉, where
Γ0(t) includes in general both the Berry phase and the
dynamical phase; ii) evaluate the first-order correction to
the comoving-frame propagator via Dyson series expan-
sion. Transforming back to the physical frame, cm(t) =
〈ψm(tin)|Ũ(t; tin)|ψ0(tin)〉, to first order in λ̇ we finally

obtain (in units �= 1), c
(1)
0 (t) = e

−iΓ0(t)+O(λ̇2), and

c(1)m (t)= e
−iΓm(t)

∫ t
tin

dt′λ̇(t′)
〈ψm(t′)|H1|ψ0(t′)〉
Em(t′)−E0(t′) e

i
∫
t′
tin
ds∆m(s),

∆m(t)= Em(t)−E0(t) . (4)

Knowledge of the time-dependent state enables arbi-
trary physical quantities of interest to be computed, in
particular the total time-dependent excitation probability
Pex(t) =

∑
m �=0 |cm(t)|2. Given eq. (4), the latter formally

recovers the expression given in [8], which captures the
contribution to the density of excitations from states
directly connected to |ψ0(t)〉 via H1 (see footnote

2).
Dynamical scaling emerges once the above result is
supplemented by scaling assumptions on three fundamen-
tal dynamical variables: the time-dependent excitation
energy above the ground state; the time-dependent
matrix elements of the perturbation; and the density of
excited states, ρ(E), at the energy scale t̂−1 characterizing
adiabaticity-breaking, which allows to change discrete
sums over excited states to integrals. That is, close to the
QCP we assume that

Em(t)−E0(t) = δλ(t)νzfm(∆m(tc)/δλ(t)
νz),

〈ψm(t)|H1|ψ0(t)〉 = δλ(t)νz−1gm(∆m(tc)/δλ(t)νz),
ρ(E) ∼ Ed/z−1, (5)

where the scaling functions fm, gm satisfy i) fm (gm) is
constant when x→ 0; ii) fm (gm) ∝ x when x→∞ (see
footnote 3). Having the scaling assumptions at hand,
integration over excited states is performed by moving to
dimensionless variables ζ = (t− tc)/t̂= (t− tc)τ−νz/(νz+1)
and η=∆m(tc)t̂=∆m(tc)τ

νz/(νz+1). Since at the QCP
the integrand in eq. (4) develops a simple pole, while

the phase e
i
∫
t′
tin
ds∆m(s) becomes stationary, contributions

away from the QCP may be neglected, allowing the
desired scaling factor to be isolated, up to a regu-
lar function depending only on ζ. Thus, the scaling
of the excitation density and diagonal observables
such as the residual energy is directly determined as
nex(ζ) = τ

−dν/(νz+1)Ξ(ζ), ∆H(ζ) = τ−(d+z)ν/(νz+1)Υ(ζ),
see also fig. 2. For a generic observable, if the additional
scaling condition

〈ψ0(t)| O |ψm(t)〉= δλ(t)βqm(∆m(tc)/δλ(t)νz), (6)

2In particular, since one-body perturbations H1 are considered
in the present analysis, the first-order excitation probability,

P
(1)
ex (t) =

∑
m�=0 |c(1)m (t)|2, coincides with the single-mode quasi-

particle contribution, 〈Nk,n〉= 1, to the total time-dependent
excitation density.
3Note that ρ∼ ξ−d/E, with ξd ∼ ξmξd−m ∼E−m/zLd−m for a

(d−m)-dimensional critical surface.

holds for all the excitations m involved in the
process for an appropriate scaling function qm, then
∆O∼ τ−(νd+β)/(νz+1) – consistent with eq. (3).
Two remarks are in order. First, the above argument

directly explains the dynamical scaling reported in [19] for
generalized entanglement relative to the fermionic alge-
bra u(N) [23], whose ground-state equilibrium behav-
ior directly reflects the fluctuations of the total number
operator. Second, the derivation naturally extends to a
generic non-linear power law quench, that is, δλ(t) =
λ(t)−λc = |(t− tc)/τ |αsign(t− tc), α> 0. Provided that
the typical time scale for adiabaticity breaking is rede-
fined as t̂α ∼ τανz/(1+ανz), the same scaling assumptions
in eqs. (5), (6) lead to dynamical scaling behavior of the
form nex ∼ τ−αdν/(ανz+1), and ∆O∼ τ−α(dν+β)/(ανz+1),
throughout the whole time evolution4.

Quenching along paths involving a finite number
of critical modes. – A first situation which is beyond the
standard KZS discussed thus far arises in quenches that
force the system along a critical line, yet are dominated
by a finite number of participating excitations. Formally,
this makes it possible to obtain the non-equilibrium expo-
nent for nex through application of the KZS, provided care
is taken in defining the static exponents through a limit-
ing path-dependent process where, along the quench of
interest, a simultaneous expansion with respect to both
the control parameter and the relevant critical mode(s)
is taken. Consider a quenching scheme where both h
and δ are changed according to t/τ while γ = 0 (path
F →O→G in fig. 1). While eq. (2) shows that the mode
k= π/2 is critical throughout the process (∆π/2(t) = 0, for
all t∈ [tin, tfin] as N →∞), numerical data indicate that
excitation sets in only when the point O is passed, see
fig. 3. As remarked, the static critical exponents at O
are z = 1, ν = 1, which differ from the critical exponents
(z = 2, ν = 1/2) of all other critical points along this line.
Indeed, the non-equilibrium exponent is solely determined
by the static exponents of this QCP along the chosen path,
nex ∼ τ−ν/(νz+1) = τ−1/2. We term a QCP which belongs
to a different universality class than all other critical points
along a critical line and sets the non-ergodic scaling a
dominant critical point for that line5. Physically, although
∆π/2 closes along the critical line in the thermodynamic
limit, a level crossing which brings all bands together
only occurs at O – still allowing the time-evolved state
to adiabatically follow the snapshot ground state until
then. The following independent confirmations may be
invoked in support of the above argument. First, consider
the anisotropic quench process analyzed in [18], whereby
γ(t) is changed linearly along the critical line h2 = δ2+1.
By Taylor-expanding ∆k in eq. (2) around k= 0, γ = 0

4The perturbative derivation as presented strictly applies to
quenches across an isolated QCP which is not multi-critical. We
defer application of the perturbative derivation to a multi-critical
point to a forthcoming analysis.
5The point O is multi-critical. However, quenches across a multi-

critical point need not satisfy KZS, see [13].
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Fig. 3: (Colour on-line) Main panel: dynamical scaling of the
excitation density for a simultaneous linear quench of h and
δ along the gapless critical line h= δ (F →O→G). Inset:
log-log plot of the final excitation density vs. τ along the path
A′→D→O.

reveals that ν = 1, z = 2 at the dominant QCP (γ = 0, h, δ),
whereas ν = 1, z = 1 for γ 	= 0 along the line. Accordingly,
nex ∼ τ−1/3. While this coincides with the result obtained
in [18], the underlying physical explanation is different.
Plots of the rescaled excitation density (nexτ

1/3) vs. the
rescaled time (t/τ2/3) would collapse onto one another for
different τ within the appropriate range, in complete anal-
ogy with fig. 3. Second, loss of adiabaticity at a single
point can also explain the scaling behavior observed for
an AFM-to-FM quench (or a critical-to-FM quench) in
the XXZ model [16], whereby the control path involves the
gapless critical region −1�∆� 1 and the dominant crit-
ical point ∆= 1 belongs to a different universality class.
Lastly, the concept of a dominant QCP remains useful for
a power law quench, which leads to the scaling behavior
nex ∼ τ−αdν/(ανz+1), with ν and z being the critical expo-
nents of the dominant QCP along the critical line.

Quenching along paths involving an infinite
number of critical modes. – More complex scenarios
emerge when uncountably many modes of excitations can
compete during the quench. Focusing on the isotropic limit
γ = 0, we contrast two representative situations where
the Lifshitz QPT is involved: I) magnetic quenches along
the path D→O→E (PM→ SF→PM); II) alternating
quenches along the path A→B→C (DM→ SF→DM).
Since [Mz,H] = 0, in both cases the allowed excitation
must comply with a non-trivial dynamical constraint.
Along the path D→O→E, this forces the final state
to be the same as the initial ground state up to a global
phase factor, leading to nex(tfin)∼ τ0. Although for a
magnetic quench this may be viewed as a consequence of
the fact that the dynamics simply acts as a relabeling of
the snapshot eigenstates, the same scaling holds for any
quench which begins or ends in the gapless phase – for
instance, a δ-quench along the path A→B. Because

these quenches take the system through a critical line in
momentum space, d−m= 1 (as opposed to d−m= 0 for
an isolated QCP), the observed scaling is consistent with
the recent prediction nex(tfin)∼ τ−mν/(νz+1) [15].
One may naively expect the same scaling to hold for

path II), which also connects two gapped phases, albeit
different than in I). Unlike in the standard KZS, however,
details about the initial and final phases as well as
the time-dependent excitation pattern become important.
Specifically, along path II) we find nex(tfin)∼ τ−1/2. An
explanation may be obtained by exploiting the fact that,
due to U(1)-symmetry, the fermion number is conserved.
This allows the reduced 4× 4 matrix Hk to be decoupled
into two 2× 2 matrices by interchanging the order of the
basis vectors a−k and b†k. Thus, Ĥ±k =W

†
±kH

′±kW±k,
where W †

k = (a
†
k, b
†
k), W

†
−k = (a−k, b−k), and

H ′±k =±2hI2+
( ±2δ ∓2 cos k
∓2 cos k ∓2δ

)
. (7)

For such a two-level system, the asymptotic excitation
probability may be computed from the Landau-Zener
transition formula [24], yielding pk = e

−2πcos2kτ . Upon
integrating over all modes, we find

nex(tfin) =
1

π

∫ π/2
−π/2

dk pk ∼ τ−1/2. (8)

Note that because pk is independent of h, the result in
eq. (8) may be interpreted as implying that traversing
the gapless phase produces the same excitation density
as crossing the single QCP O by translating path II) at
h= 0, which determines the non-equilibrium exponent.
Physical insight into what may be responsible for the

different behavior observed in the two quenches is gained
by looking at the excitation spectrum along the two paths.
Notice that, once the energy eigenvalues are specified at
the initial time, (εk,1(tin)� εk,2(tin)� εk,3(tin)� εk,4(tin)
in our case), the same relative ordering need not hold at
the final time if a level crossing is encountered during
the quench – see fig. 4(a), (b). In the critical region, a
pair of modes (k, n) and (k, n′) undergoes a level crossing
if h2− δ2 = cos2k. If the number of such level crossings
for fixed n, n′ is even, the net contribution to the final
excitation from momentum k is zero, since the final
occupied bands are the same as the initial ones – see
fig. 4(c). No cancellation is in place if either an odd number
of level crossings from the same pair or if different pairs
(n, n′) are involved. The latter situation is realized for
all k along path I) (h-quench, fig. 4(a)) and also for the
path A→B (δ-quench). For a δ-quench along path II),
the net excitation from the gapless phase turns out to be
completely canceled (as seen in fig. 4(d), where the quench
starts and ends symmetrically within the gapless phase).
This only leaves the two boundary critical lines h=±δ as
contributing to the excitation, thus a finite set of critical
modes (a single one in fact, k= π/2, see fig. 4(b)).
Interestingly, a similar cancellation mechanism was

verified for repeated quenches across an isolated QCP [11].
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While a thorough analysis is beyond our current scope, we
suggest that even participation from the same (pair of)
snapshot excitations may be at the root of this cancellation
in both scenarios. Here, we further test this conjecture by
examining the path A′→D→O, for which an effective
two-level LZ mapping is no longer possible. Unlike A→
B→C, two intermediate phases are now crossed, and the
initial and final phase differ from one another, yet analysis
of εk,n(t) reveals that the two paths are equivalent in
terms of participation of critical modes. Numerical results
confirm that nex(tfin)∼ τ−1/2, fig. 3.
Conclusions. – Non-ergodic dynamical scaling is

fully captured by first-order adiabatic renormalization
for sufficiently slow quenches involving a simple isolated
QCP. Beyond this regime, we find that non-equilibrium
exponents remain expressible by combinations of equi-
librium (path-dependent) ones in all the scenarios under
examination, however a detailed characterization of both
the static phase diagram and the accessible low-lying
excitations is necessary for quantitative predictions.
Ultimately, scaling behavior appears to be the same
for control paths which share an equivalent excitation
structure. While yet different non-ergodic scaling may
arise in more complex systems (e.g., infinite-order
Berezinskii-Kosterlitz-Thouless QPTs [16] as well as
models with infinite coordination [25]), a deeper analysis
of how competing many-body excitations contribute
and interfere during a quench may shed further light on
non-equilibrium quantum critical physics.
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We investigate nonequilibrium dynamical scaling in adiabatic quench processes across quantum multicritical
points. Our analysis shows that the resulting power-law scaling depends sensitively on the control path and that
anomalous critical exponents may emerge depending on the universality class. We argue that the observed
anomalous behavior originates in the fact that the dynamical excitation process takes place asymmetrically
with respect to the static multicritical point and that noncritical energy modes may play a dominant role. As a
consequence, dynamical scaling requires introducing genuinely nonstatic exponents.
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I. INTRODUCTION

Establishing dynamical scaling relations in many-body
systems adiabatically driven out-of-equilibrium across a
quantum phase transition has important implications for both
condensed-matter physics1 and adiabatic quantum
computation.2 A paradigmatic scenario is the Kibble-Zurek
scaling �KZS�,3,4 whereby a homogeneous d-dimensional
system is linearly driven with a constant speed 1 /� across an
isolated quantum critical point �QCP� described by equilib-
rium critical exponents � and z. Assuming that in the ther-
modynamic limit, the system loses adiabaticity throughout
an “impulse region” �tc− t̂ , tc+ t̂� centered around the QCP
and with a characteristic width 2t̂, excitations are generated
in the final state with a density nex�tf���−d�/��z+1�. While the
KZS and its nonlinear generalizations have been verified in
several exactly solvable models,5 departures from the KZ
prediction may occur for more complex quench processes,
involving isolated QCPs in disordered6 and infinitely coordi-
nated systems7 or nonisolated QCPs �that is, quantum critical
regions�.8–10 Evidence of non-KZS, however, has also been
reported in the apparently simpler situation of a quench
across a single quantum multicritical point �MCP� in clean
spin chains.11,12

In this work, we show how multicritical quantum
quenches dramatically exemplify the dependence of non-
equilibrium scaling upon the control path anticipated in Ref.
9 and demonstrate that anomalous “nonergodic” scaling may
emerge in the thermodynamic limit. While a non-KZS
nex�tf���−1/6 was previously reported11 and an explanation
given in terms of an “effective dynamical critical exponent”
z2=3, the meaning of such exponent relied on the applicabil-
ity of a Landau-Zener �LZ� treatment, preventing general
insight to be gained. We argue that the failure of KZS is
physically rooted in the shift of the center of the impulse
region relative to the static picture and that z2 is determined
by the scaling of a path-dependent minimum gap, which need
not coincide with the critical gap. Furthermore, such a dy-
namical shift may also cause the contribution from interme-
diate noncritical energy states to dominate the scaling of the
excitation density, via an “effective dimensionality expo-
nent” d2�0. We show that the latter leads to the emergence
of a new scaling behavior nex�tf���−3/4. A unified under-

standing is obtained by extending the adiabatic renormaliza-
tion �AR� approach of Ref. 9.

II. MODEL HAMILTONIAN

We focus on the alternating spin-1/2 XY chain described
by the Hamiltonian9,13

H = − �
i=1

N

��+�x
i �x

i+1 + �−�y
i �y

i+1 − hi�z
i� , �1�

where ��= �1��� /2, hi=h− �−�i�, and periodic boundary
conditions are assumed. Here, h ,��R are the uniform and
alternating magnetic field strength, respectively, whereas
��R is the anisotropy �lifting the restriction �� �0,1� is
essential for the present analysis�. An exact solution for the
energy spectrum of H may be obtained through the steps
outlined in Ref. 13. The problem maps into a collection of
noninteracting quasiparticle labeled by momentum modes
k�K+= �� /N ,3� /N , . . . ,� /2−� /N�, whose excitation gap
is given by 	k�� ,h ,��=4�h2+�2+cos2 k+�2 sin2 k
−2	h2 cos2 k+�2�h2+�2 sin2 k��1/2. The quantum phase
boundaries are determined by the equations9,13 h2=�2+1,
�2=h2+�2. Thus, the critical lines on the �=0 plane consist
entirely of MCPs.

III. QUENCH DYNAMICS: EXACT RESULTS

We assume that the system is initially in the ground state
and that �in the simplest case� a slow quench across a MCP is
implemented upon changing a single control parameter ac-
cording to �
�t�=
�t�−
c= 
�t− tc� /�
�sign�t− tc� over a time
interval t� �t0 , tf�, where �=1 corresponds to a linear driv-
ing, and 
c is the critical value. Thus, the time-dependent
Hamiltonian H�t� may be written as H�t�=Hc+�
�t�H1,
where Hc is quantum multicritical at time tc in the thermo-
dynamic limit, and H1 is the contribution that couples to the
external control �a similar parametrization is possible for
quenches involving multiple parameters�. Without loss of
generality, we may let tc=0. In what follows, we shall focus
on two representative MCPs, A and B as marked in Fig. 1,
each approached through two different paths �path 5 will be

PHYSICAL REVIEW B 80, 241109�R� �2009�

RAPID COMMUNICATIONS

1098-0121/2009/80�24�/241109�4� ©2009 The American Physical Society241109-1



introduced later�, whose properties are summarized in Table
I.

In order to quantify the amount of excitation at a generic
instant t, we numerically integrate the time-dependent
Schrödinger equation for H�t� and monitor two standard
“nonadiabaticity” indicators:7,9,13 the excitation density nex
and the residual energy 	H. For a linear quench along either
path 1 or 2 �left panel of Fig. 2�, we find that nex�t�
��−�/��z+1�=�−1/3 and 	H�t���−��1+z�/��z+1�=�−1, which is
consistent with KZS3 and our conclusion in Ref. 9. For paths
3 and 4, however �right panel of Fig. 2�, we find that nex�t�
��−1/6 and 	H�t���−2/3, which is non-KZS �in Ref. 11, the
�−1/6 scaling was pointed out for an equivalent quench
scheme across MCP A�. Similar anomalous exponents are
found for nonlinear quenches along path 3 or 4, e.g., nex�t�
��−2/9 for �=2.

The above results show that for quenches across a MCP,
whether KZS is obeyed depends sensitively on which control
path is chosen. A closer inspection reveals the following im-
portant differences: �i� paths 1,2 start and end in essentially
the same phase, correspondingly, the excitation spectrum is
invariant under a transformation 
�−
 of the control pa-
rameters. Paths 3,4 do not exhibit this symmetry; �ii� along
paths 3,4, the MCPs A and B belong to the Lifshitz univer-
sality class ��=1 /2�, although all paths share z=2. It is then
natural to ask which of these differences may play a role in
determining the anomalous dynamical scaling behavior. To
answer this question, we introduce another “V-shaped” path
across MCP A �path 5�, h�t�=1+ 
��t�
=1+ 
t /�
, which starts
and ends in the PM phase but, in each of the two segments,
crosses the MCP A with Lifshitz exponents. Surprisingly, the
observed scaling is nex�t���−3/4 �left panel of Fig. 3�, which

is neither KZS nor −1 /6. An identical −3 /4 scaling holds for
a similar V-path across MCP B that starts and ends in the DM
phase. As finite-size analysis reveals, all the observed
anomalous scalings are practically independent upon system
size over a wide range of quench rates �see, e.g., right panel
of Fig. 3�, establishing them as truly thermodynamic in
nature.14

IV. LANDAU-ZENER ANALYSIS

We begin to seek an understanding from limiting cases,
where an exact solution for nex�tf� may be obtained based on
the LZ picture.15 This is possible provided that �=1 and the
Hamiltonian can be decoupled into effective two-level sys-
tems. Among the above-mentioned paths, only paths 4 and 5
�for which �=0� can be exactly mapped to a LZ problem,
thanks to the possibility of rewriting H in Eq. �1� as

H=�kĤk=�kBk
†HkBk, where Bk

†= �c−k ,ck
†� and

Hk = �Hk,11 Hk,12

Hk,12
� − Hk,11

� = 2�− h + cos k � sin k

� sin k h − cos k
� . �2�

A rotation Rk�qk�, qk� �−� /2,� /2�, renders the off-diagonal
terms in Eq. �2� independent upon � �hence time�, allowing
use of the LZ formula. Consider path 4 first. By choosing
tan 2qk=−sin k, the transformed Hamiltonian matrix ele-
ments become Hk,11� =−2�1−cos k�cos 2qk−2t /��cos 2qk
−sin k sin 2qk�, and Hk,12� =2�1−cos k�sin 2qk. If the critical
mode kc is defined by requiring 	kc

=0 in the thermodynamic

TABLE I. Critical exponents and parametrization of the relevant
control paths for MCPs A and B.

Path � z Quenching scheme

1 1 2 ��t�=��t�= 
t /�
�sign�t�; h=1

2 1 2 ��t�= 
t /�
�sign�t�; h=1,�=1

3 1/2 2 ��t�=��t�−1= 
t /�
�sign�t�; h=1

4 1/2 2 ��t�=h�t�−1= 
t /�
�sign�t�; �=0

−2 −1 0 1 2
−2

−1

0

1

2

h

γ

−2 −1 0 1 2
−2

−1

0

1

2

δ

γ

FM
x

FM
y

PM PM

4
A

FM
y

FM
x

A B
1

2 3 FM
x

FM
y

DMDM

5

. . .

FIG. 1. �Color online� Phase diagram of H in Eq. �1� when
h=1 �left� and �=0 �right�. The dashed-dotted �green� line separates
the ferromagnetic �FM� and paramagnetic �PM� phases, the solid
�red� lines separate dimer �DM� and FM, whereas the dotted �blue�
line is the superfluid phase �SF�. The arrows indicate the relevant
control paths for A and B.
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limit, we have kc=0 for the MCP A. We may then let
tan 2qk
sin 2qk, and the appropriate qk
−k /2. From the
LZ formula, the asymptotic �tf →�� excitation probability
reads as

pk = e−2���1 − cos k�2sin2 2qk/�cos 2qk−sin k sin 2qk� 
 e−��k6/2,

where the approximation follows from a Taylor expansion
around kc. Integrating over all modes yields nex�tf���−1/6,
which is consistent with our exact numerical result. There-
fore, mathematically, the �−1/6 scaling follows from the fact
that the exponent in pk scales as k6=k2z2, with z2=3. In turn,
this originates from the scaling of the off-diagonal terms
Hk,12� �kz2. Physically, as we shall later see by invoking AR,
Hk,12� may be interpreted as the minimum gap for mode k
along path 4.

To unveil the �−3/4 scaling, it is necessary to use the exact
finite-time LZ solution. For simplicity, we restrict to half of
path 5, by quenching the system from the PM phase up to the
MCP A. This has the benefit of avoiding the nonanalytic time
dependence of the control parameters that path 5 exhibits at
A, while leaving the �−3/4 scaling unchanged thanks to the
symmetry of the excitation spectrum. Starting from Vitanov’s
expression �Eq. �7� in Ref. 16�, the excitation probability
pk�tf� can be computed via the parabolic cylinder function
Dv�z�,

pk�tf� = e−��2/4�Di�2/2�Tf
	2ei3�/4�cos ��Tf�

−
�

	2
e−i�/4Di�2/2−1�Tf

	2ei3�/4�sin ��Tf��2

,

where �= �1−cos k�sin 2qk
	� /	cos 2qk+sin 2qk sin k

�k3	� is the rescaled coupling strength, Tf =−� /sin k�
−k2	� is the rescaled time, tan 2qk=sin k, and ��Tf�
=1 /2 arctan�� /Tf�+� /2. Since for our quench process
�� 
Tf
�1 around kc, we may estimate pk�tf� by Taylor ex-
panding Dv�z� around Tf =0,

pk�tf� 
 �1 − e−��2/2�/2 + cos2 ��Tf�e−��2/2

− sin 2��Tf�/2 sin �k
	1 − e−��2

, �3�

where �k
� /4 around kc. This approximation breaks when
Tf �1, setting the scaling of the highest-momentum contrib-
uting mode kmax��−1/4. In Eq. �3�, the dominant term
cos2 ��Tf�e−��2/2�cos2 ��Tf��
� /Tf
2�k2 since e−��2/2


1 within kmax, which means pk�tf��k2. Thus, nex�tf�
=�0

kmaxpk�tf��kmax
3 ��−3/4, in agreement with our numerical

results. Remarkably, the fact that pk�tf���k−kc�d2, d2=2, in-
dicates that kc is not excited despite a static QCP being
crossed, and also that the excitation is dominated by inter-
mediate energy states. In fact, at the MCP A, the modes
around kc are still far from the impulse region, since

Tf
��, which sets the LZ transition time scale.16 This is in
stark contrast with the main assumption underlying KZS,
where the center of the impulse region is the static QCP, and
excitations are dominated by modes near kc, as reflected in
the typical scaling pk��k−kc�0.

Notice how the asymmetry of the dynamical impulse re-

gion �due to the asymmetry of the excitation spectrum� un-
derlies the emergence of the observed anomalous scalings, in
different ways: along path 4, such an asymmetry shifts the
center of the impulse region into the FM phase �see also Fig.
2, right�, and whether the LZ solution with tf →� or
tf →0− is used leads to the same �−1/6 result. Along half of
path 5, instead, stopping the quench at MCP A is a prerequi-
site for “blocking” low-energy modes, and different scaling
�−1 /6� would be obtained by extending the quench beyond
tf =0 into the FM phase and using the LZ asymptotic result.

V. PERTURBATIVE SCALING APPROACH

Since the system becomes gapless at a single MCP along
all the paths under study, first-order AR is a viable
approach.4,9 Let 
�m�t�� be a basis of snapshot eigenstates of
H�t�, with snapshot eigenvalues Em�t�, m=0 labeling the
ground state. The time-evolved state may be expanded as

��t��=c0

�1��t�
�0�t��+�m�0cm
�1��t�
�m�t��, where the coeffi-

cients cm
�1��t� determine the excitation amplitudes and are

given by Eq. �4� in Ref. 9. First-order AR calculations of
nex�t� demonstrate that for linear quenches along paths 1 and
2, nex��−1/3, whereas nex��−1/6 along paths 3 and 4 �left
panel of Fig. 4�. Since the nonanalyticity at A in path 5 might
cause problems in AR, again we choose to study half of path
5 �right panel of Fig. 4�. All the AR results agree with the
exact simulation results, confirming that AR reproduces the
correct dynamical scaling across a generic isolated QCP.

Predicting the scaling exponent based on AR requires
scaling assumptions for the contributions entering cm

�1��t� �i.e.,
	m�t�=Em�t�−E0�t� and ��m�t�
H1
�0�t���, and the ability to
change discrete sums of all the contributing excited states
into integrals, for which the density of excited states ��E� is
required. Since typically the AR prediction is consistent with
KZS, anomalous behavior must stem from anomalous scal-
ing assumptions of �one or more of� these ingredients. We
first examine the excitation spectrum along different paths.
Since H1 is a one-body perturbation, only single-mode exci-
tations are relevant; thus, the index m labeling many-body
excitations may be identified with a momentum mode. Along
paths 1 and 2, it turns out that the minimum gap among all
modes is always located at kc, whereas along paths 3 and 4,
the minimum gap is located at kc only at the MCP. This
suggests that knowing the static exponents of the MCP alone
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FIG. 4. �Color online� Scaling of the excitation density from
first-order AR for a linear quench along path 3 �left� and half-5
starting at MCP A �right�. Right inset: low-lying single-mode exci-
tation spectrum along path 4 for N=100.
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need not suffice to determine the dynamical scaling due to
the existence of “quasicritical” modes along paths 3 and 4.
Mathematically, along path 4, �	k�� ,1+� ,0� /��=0 gives
the location of the minimum gap for each mode k at �̃
= �cos k−1� / �1+sin k2�, which is largely shifted into the FM
phase �see inset in Fig. 4�. By inserting this relation back into
	k, the function 	k��̃�� 	̃k��k−kc�3. Following the same
procedure also yields 	̃k��k−kc�3 along path 3, whereas 	̃k
has the same scaling as 	k at the MCP along paths 1 and 2.
This motivates modifying the AR scaling assumptions of
Ref. 9 as follows: Em�t�−E0�t�=�
�t��zfm�	m�tmin� /�
�t��z�,
where 	m�tmin� is the minimum gap of mode m attained at
tmin along the path, and fm is a scaling function.

The above modification requires the scaling of ��E� to be
modified by letting ��E��Ed/z2−1, where z2 comes from the
dispersion relation of 	m�tmin�. If the minimum gap of any
mode is below a certain energy along the path, that mode
should be counted into the contributing excited states. Ac-
cordingly, we have z2=z=2 along paths 1, 2, half-5, and
z2=3 along paths 3, 4. Back to the LZ analysis, note that the
off-diagonal term H12� �k� is the minimum gap of mode k
along the path if there exists a time at which the diagonal
term H11� �k�=0, as it happens for path 4. For path 5, however,
the off-diagonal term never becomes the minimum gap since
the system never leaves the PM phase. Therefore, the off-
diagonal term in the LZ picture need not suffice to determine
the dynamical scaling, and the shift of the location of the
minimum gap for each mode from the static QCP is at the
root of the anomalous behavior we observe. Lastly, we con-
sider the matrix elements of H1. Numerical simulations sug-
gest that ��m�t�
H1
�0�t��=�
�t��z−1gm�	m�tmin� /�
�t��z�,
where gm is a scaling function, and 	m�tmin� is the minimum
gap of mode m along a path that extends the actual path to
tf →� when the quench is stopped at the MCP and coincides
with the actual path otherwise. Then along paths 1 and 2,
	m�tmin��k2, whereas along paths 3, 4, and half-5,
	m�tmin��k3. Together with the other scaling assumptions

and taking the linear case �=1 as an example, AR yields

cm

�1�
�k0, nex��−�z/z2���/��z+1�� along paths 1–4, and 
cm
�1�


�k1, nex��−3�/��z+1� along half-5 path, which completely
agrees with the numerical results.

Building on the above analysis, we argue on physical
grounds that the scaling of the excitation density for
quenches across an arbitrary �standard or multicritical� iso-
lated QCP is determined by three conditions: �i� from the

condition of adiabaticity breaking, the typical gap 	̂ scales as

	̂��−��z/���z+1�; �ii� an accessible excited state contributes to
the excitation if and only if its minimum gap along the path

matches with this typical gap 	̃k� 	̂, with 	̃k��k−kc�z2; �iii�
the excitation probability pk scales as pk��k−kc�d2, where d2
can differ from 0 if the center of the impulse region is greatly
shifted relative to the static limit. Then upon integrating up

to energy 	̂, and using pE� pk�E��Ed2/z2, yields

nex � 	̂�d+d2�/z2 � �−�d+d2���z/�z2���z+1��, �4�

which is consistent with all the results found thus far. While
KZS corresponds to z2=z, d2=0, situations where z2�z
and/or d2�0 are genuinely dynamical. The knowledge about
the path-dependent excitation process becomes crucial and
nonequilibrium exponents cannot be fully predicted from
equilibrium ones. Interestingly, in the model under examina-
tion the Lifshitz universality class appears to be the only
universality class for which anomalous scaling occurs,
among all possible paths involving MCPs. Whether Lifshitz
behavior may constitute a sufficient condition for anomalous
behavior requires further investigation in other many-body
systems.
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Dynamical critical scaling and effective thermalization in quantum quenches: Role of the initial state
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We explore the robustness of universal dynamical scaling behavior in a quantum system near criticality with
respect to initialization in a large class of states with finite energy. By focusing on a homogeneous XY quantum
spin chain in a transverse field, we characterize the nonequilibrium response under adiabatic and sudden quench
processes originating from a pure as well as a mixed excited initial state, and involving either a regular quantum
critical or a multicritical point. We find that the critical exponents of the ground-state quantum phase transition
can be encoded in the dynamical scaling exponents despite the finite energy of the initial state. In particular,
we identify conditions on the initial distribution of quasiparticle excitation that ensure that Kibble-Zurek scaling
persists. The emergence of effective thermal equilibrium behavior following a sudden quench toward criticality
is also investigated, with focus on the long-time expectation value of the quasiparticle number operator. Despite
the integrability of the XY model, this observable is found to behave thermally in quenches to a regular quantum
critical point, provided that the system is initially prepared at sufficiently high temperature. However, a similar
thermalization behavior fails to occur in quenches toward a multicritical point. We argue that the observed lack
of thermalization originates in this case in the asymmetry of the impulse region that is also responsible for
anomalous multicritical dynamical scaling.

DOI: 10.1103/PhysRevB.83.094304 PACS number(s): 73.43.Nq, 75.10.Jm, 05.30.−d, 64.60.Kw

I. INTRODUCTION

Characterizing the nonequilibrium dynamics of quan-
tum many-body systems is of central significance to both
condensed-matter physics and quantum statistical mechanics.
A quantitative understanding of nonequilibrium quantum
phase transitions (QPTs) is, in particular, a fundamental
prerequisite for uncovering and controlling quantum phases of
matter,1,2 as well as for assessing the complexity of quantum
annealing or adiabatic algorithms.3,4 Unlike standard phase
transitions, which are driven by a change in temperature, QPTs
are driven entirely by quantum fluctuations at zero tempera-
ture. They nevertheless share with their classical counterpart
the generic feature of universality: In equilibrium, the critical
properties of a system sufficiently close to a quantum critical
point (QCP) depend only on a few relevant characteristics
such as its symmetry and dimensionality, thus defining the
universality class to which the corresponding (continuous)
QPT belongs. The universality class is distinguished by a small
set of critical exponents, for instance, ν and z, describing the
power-law divergence of the characteristic length scale and
the vanishing of the characteristic energy scale, respectively.1

In a nonequilibrium scenario, the system can be driven across
a QCP dynamically, that is, through an explicit time depen-
dence of one or more control parameters in the underlying
many-body Hamiltonian. This naturally prompts a number of
questions: To what extent can universal quantum scaling laws
persist out of equilibrium and be solely specified in terms of the
equilibrium phase diagram? Conversely, how does quantum
criticality influence the ability of a system to relax back to
equilibrium?

Historically, the first theoretical studies in these direc-
tions date back to the pioneering work by Barouch and
co-workers5–7 which led, in particular, to the discovery of
“nonergodic” behavior in the zero-temperature long-time
magnetization of a driven XY spin chain.6 In recent years,

the demand for quantitatively addressing the above broad
questions has heightened under the impetus of experimental
advances in manipulating ultracold atomic gases, which are
enabling the unitary dynamics of many-body quantum systems
to be explored with an unprecedented level of coherent control
and isolation from the environment.8,9 As a result, nonequi-
librium quantum critical physics is being actively investigated
both from theoretical and experimental standpoints.

In this framework, an important step forward is provided by
the prediction of universal behavior in adiabatic dynamics near
a QCP based on the Kibble-Zurek scaling (KZS) argument10

(see also Ref. 11 for related independent work and Ref. 12
for a recent review). Originally introduced in the context of
classical (finite-temperature) phase transitions in cosmology,13

the KZ argument rests on the basic intuition that, irrespective
of how slowly a system is driven across a continuous phase
transition, adiabaticity is necessarily lost in the thermodynamic
limit due to the vanishing energy gap at the critical point.
Qualitatively, this determines typical time and length scales,
t̂ and ξ̂ , respectively, which characterize the adiabatic-to-
diabatic crossover and, since “order” cannot be established
on distances larger than ξ̂ , results in the formation of a
domain structure and the generation of a finite density of
“topological defects” in the system. Quantitatively, let the time
dependence in the quantum-mechanical Hamiltonian H (t) be
introduced through a control parameter λ(t), with λc ≡ λ(tc)
corresponding to the crossing of an isolated QCP at time tc,
which can be taken to be tc ≡ 0 without loss of generality. If
the system is initially (t = t0) in the ground state, its ability to
adiabatically adjust to H (t) is determined by the condition that
the typical time scale τ (t) ≡ |(λ(t) − λc)/λ̇(t)| associated with
the applied control be sufficiently long relative to the slowest
response time τr ∼ �−1, which is set by the smallest energy
gap �. Since, as the QCP is approached, the latter vanishes
as � ∼ |λ(t) − λc|νz, adiabaticity is broken throughout an
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FIG. 1. (Color online) Qualitative sketch of the adiabatic-
impulse-adiabatic sequence of regimes relevant to dynamical scaling
arguments. Top: Symmetric impulse region, as assumed by the
standard KZS scenario. Bottom: Asymmetric impulse region, as
resulting from the existence of quasicritical path-dependent energy
states; see Ref. 23.

“impulse region” [tc − t̂ ,tc + t̂] symmetrically located around
the QCP, where the “freeze-out” time t̂ is determined by
the condition τ (t̂) = τr (t̂). In the simplest case of a linear
sweep across the QCP (Fig. 1, top), λ(t) − λc ≡ t/τ for a
fixed rate τ−1 > 0, this yields t̂ ∼ τ νz/(νz+1) and a typical gap
�̂ ∼ t̂−1. Correspondingly, the typical correlation length ξ̂ ∼
ξ (t̂) ∼ �̂−z also scales with the quench time τ . Since ξ̂ is the
universal length scale near criticality, it determines the scaling
of the final (t = tf ) density of defects and, more generally, the
total density of excitations, nex(tf ), created in the system. If d

denotes the spatial dimension, the KZS result then follows:

nex(tf ) ∼ τ−dν/(νz+1). (1)

The validity as well as the limitations of the above KZS
have been carefully scrutinized in a number of settings. By
now, the original KZS has been confirmed for a variety of
models involving a regular isolated QCP,14–18 and extensions
have been introduced for more general adiabatic dynamics,
including repeated,19 nonlinear,20 and optimal21 quench pro-
cesses. In parallel, departures from the KZS predictions have
emerged for more complex adiabatic scenarios, involving,
for instance, quenches across either an isolated multicritical
point (MCP),20,22–25 or nonisolated QCPs (that is, critical
regions),26–29 as well as QPTs in infinitely coordinated,30

disordered,31 and/or spatially inhomogeneous systems.12,32

A main message that has emerged from the above studies
is that, unlike in the standard KZS of Eq. (1) where the
nonequilibrium critical exponent is completely specified in
terms of static exponents, additional details about the time-
dependent excitation may play an essential role in general. As
a result, genuinely nonstatic, path-dependent exponents may
be required for dynamical scaling predictions. This feature
is vividly exemplified, for instance, in multicritical quantum
quenches, whereby the asymmetry of the KZ impulse region
relative to the static QCP (Fig. 1, bottom) causes a path-
dependent minimum gap other than the critical gap to be rele-
vant and an effective dynamical exponent z2 �= z to emerge.23

In addition to characterizing the response to an adia-
batic probe, the opposite limit of a sudden change of the
tuning parameter λ(t) near a QCP has also attracted a
growing attention recently, in connection with the study of
both dynamical quantum-critical properties,33–35 as well as
thermalization dynamics in closed quantum systems and its

interplay with quantum integrability.36–43 In particular, for
sudden quenches with a sufficiently small amplitude, the
existence of universal scaling behavior has been established
for various physical observables and qualitatively related to
the above KZ argument:35,44 by associating to a quench with
amplitude δλ the characteristic length scale ξ ∼ |δλ|−ν , and
by interpreting ξ as the correlation length in the final state, one
immediately infers that nex(tf ) ∼ ξ−d ∼ |δλ|dν .

With a few exceptions where quenches at finite tem-
perature and the associated thermal corrections have also
been examined,35,36,44,45 the large majority of the existing
investigations have focused on quench dynamics originating
from the ground state of the initial Hamiltonian H (t0). Our
goal in this work is to present a dedicated analysis of
finite-energy quantum quenches, with a twofold motivation
in mind. Conceptually, elucidating to what extent and how
universal scaling properties may depend upon the details of
the system’s initialization is needed to gain a more complete
picture of nonequilibrium quantum-critical physics. While one
might, for instance, naively expect that a sizable overlap with
the initial ground state would be essential in determining the
applicability of ground-state scaling results, a main highlight
of our analysis is that the support of the initial state on those
excitations relevant to the path-dependent excitation process is
key in a dynamical scenario, in a sense to be made precise later.
Furthermore, from a practical standpoint, perfect initialization
of a many-body Hamiltonian in its exact ground state is
both non-deterministic polynomial (NP)-hard in general46,47

and experimentally unfeasible due to limited control. In this
sense, our investigation both extends previous studies on finite-
temperature signatures of static QPTs,48 and may be directly
relevant to experiments using ultracold atoms8 as well as
nuclear magnetic resonance (NMR) quantum simulators.49,50

While our analysis focuses on the simplest yet paradigmatic
case of an exactly solvable XY quantum spin chain (Sec. II),
we address nonequilibrium dynamics originating from a
large class of (bulk) initial states for a variety of different
quench schemes involving either a regular QCP or a MCP.
Both pure and mixed initial states carrying finite excitation
energy above the ground state are examined, under the main
assumption that, subsequent to initialization, the system can
be treated as (nearly) isolated, hence evolving under a time-
dependent Hamiltonian. In particular, dynamical scaling in
adiabatic and sudden quenches starting from an excited energy
eigenstate are analyzed in Secs. III A and III B, respectively,
with emphasis on making contact with previously introduced
adiabatic renormalization approaches15,28 and on clarifying
formal connections between scaling behavior in sudden and
adiabatic dynamics. The case of a generic excited pure state
prepared by a sudden parameter quench is also considered in
Sec. III C, and criteria are identified for KZS to be obeyed.
Section IV is devoted to quench dynamics resulting from an
initial thermal mixture, with the main goals of characterizing
the robustness of dynamical scaling behavior in realistic
finite-temperature conditions, and of further exploring the con-
ditions leading to effective thermalization of certain physical
observables following a sudden quench toward criticality. In
the process, we continue and extend the analysis undertaken in
Deng et al.23 by presenting finite-temperature generalizations
of the scaling predictions obtained for adiabatic (both linear
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and nonlinear) multicritical quantum quenches, as well as
evidence of how the peculiar nature of a MCP may also result
in anomalous thermalization behavior. Section V concludes
with a discussion of the main findings and their implications,
along with further open problems.

II. MODEL HAMILTONIAN

A. Energy spectrum and equilibrium phase diagram

We consider the homogeneous one-dimensional spin-1/2
XY model described by the Hamiltonian

H = −
N∑

j=1

(
1 + γ

2
σ j

x σ j+1
x + 1 − γ

2
σ j

y σ j+1
y − hσ j

z

)
, (2)

where periodic boundary conditions are assumed, that is,
σ

j
α ≡ σ

j+N
α , and N is taken to be even. Here, γ,h ∈ [−∞,∞],

parametrize the degree of anisotropy in the XY plane, and the
uniform magnetic-field strength, respectively, in suitable units.
The diagonalization of Hamiltonian (2) is well known,5,6,51,52

and we only recall the basic steps here. Upon introducing
canonical fermionic operators {cj ,c

†
j } via the Jordan-Wigner

mapping c
†
j ≡ ∏j

�=1(−σ �
z )σ j

+, H rewrites as a quadratic form

H = −
N−1∑
j=1

(c†
j cj+1 + γ c

†
j c

†
j+1 + H.c.) + 2h

N∑
j=1

c
†
j cj

−hN + P (c†
Nc1 + γ c

†
Nc

†
1 + H.c.), (3)

where the last term originates from the spin periodic bound-
ary conditions and the parity operator P ≡ ∏N

j=1(−σ
j
z ) =

eiπ
∑N

j=1 c
†
j cj = +1(−1) depending on whether the eigenvalue

of the total fermionic number operator is even (odd), respec-
tively. Physically, P corresponds to a global Z2 symmetry,
which, for finite N , allows the even and odd subspaces to be
exactly decoupled, H ≡ H (+) + H (−), and the diagonalization
to be carried out separately in each sector.

In finite systems, the ground state as well as excited
energy eigenstates with an even number of fermions belong
to the P = +1 sector. By using a Fourier transformation
to momentum space, c

†
k = 1√

N

∑N
j=1 e−ikj c

†
j , followed by a

Bogoliubov rotation to fermionic quasiparticles {γk,γ
†
k }, with

γk = ukck − ivkc
†
−k , uk = u−k , vk = −v−k , and u2

k + v2
k = 1,

the Hamiltonian in Eq. (3) rewrites as a sum of noninteracting
terms:

H (+) ≡
∑
k∈K+

Hk =
∑
k∈K+

εk(h,γ )(γ †
k γk + γ

†
−kγ−k − 1). (4)

Here, the set K ≡ K+ + K− of allowed momentum modes
is determined by the antiperiodic boundary conditions on the
fermions in the even sector, cj+N ≡ −cj , which yields K± =
{± π

N
, ± 3π

N
, . . . , ± (π − π

N
)}, and

εk(h,γ ) = 2
√

(h − cos k)2 + γ 2 sin k2 (5)

is the quasiparticle energy of mode k. For each k, let Hk ≡
span{|0k〉,|1k〉}, where {|0k〉,|1k〉 = γ

†
k |0k〉} are orthonormal

states corresponding, respectively, to zero and one Bogoliubov
quasiparticle with momentum k, that is, 〈0k|γ †

k γk|0k〉 = 0,

〈1k|γ †
k γk|1k〉 = 1, and similarly for −k. Thus the four eigen-

states of Hk provide a basis for Hk ⊗ H−k ,

Bk = {|0k,0−k〉,|1k,1−k〉,|0k,1−k〉,|1k,0−k〉}
≡ B(+)

k ⊕ B(−)
k , (6)

where the corresponding eigenenergies are given by −εk , εk ,
0, 0, and a further separation into an even (odd) sector for
each k is possible due to the fact that [Pk,Hk] = 0, with Pk ≡
eiπ(γ †

k γk+γ
†
−kγ−k) = eiπ(c†

kck+c
†
−kc−k).

The ground state of H (+) corresponds to the BCS state with
no Bogoliubov quasiparticles,

|�(+)
0 〉 =

⊗
k∈K+

|0k0−k〉 =
⊗
k∈K+

(uk + ivkc
†
kc

†
−k)|vac〉,

where |vac〉 is the fermionic vacuum. Many-body excited
states in the even sector can be obtained by applying pairs
of Bogoliubov quasiparticle operators to |�(+)

0 〉. In particular,
excited eigenstates with support only on the even sector
B(+)

k for each mode are obtained by exciting only pairs of
quasiparticles with opposite momentum and have the form

|�(+)
E 〉 =

( ⊗
k∈Ke+

|1k1−k〉
)( ⊗

k∈K+−Ke+

|0k0−k〉
)

, (7)

where Ke
+ labels the subset of excited modes.

For finite N , the ground state and excited energy eigenstates
with an odd number of fermions belong to the sector P =
−1, which implies periodic boundary conditions on the
fermions, cj+N ≡ cj , and a different set K̄ of allowed momen-
tum modes, K̄ ≡ K̄+ + K̄− + {0, − π}, where K̄± = {± 2π

N
,

± 4π
N

, . . . , ± (π − 2π
N

)}. Since one may show that εk=0 =
h − 2 and εk=−π = h + 2, occupying mode 0 has always lower
energy than occupying mode −π , thus the ground state of H (−)

is now

|�(−)
0 〉 = |100−π 〉

⊗
k∈K̄+

|0k0−k〉,

and excitations may be generated by applying Bogoliubov
quasiparticle operators in such a way that the constraint on the
total fermionic number is obeyed. Similar to modes in the even
sector, k ∈ K+, the subspace of each mode k ∈ K̄+ yields four
eigenstates of Hk and, in principle, a basis formally identical
to the one in Eq. (6) for the odd Hilbert-space sector. Although
for finite N (thus necessarily in numerical simulations) P is
always a good quantum number under dynamics induced by
H , the error in the computation of observables arising from
identifying the two sets of modes K and K̄ scales like 1/N .
Thus for sufficiently large N , a simplified description in terms
of a unique set of momentum modes is possible by using the
basis

B ≡
⊗
k∈K+

Bk (8)

to characterize arbitrary states in the full Hilbert space
H = ⊗

k∈K+(Hk ⊗ H−k). This becomes accurate in the ther-
modynamic limit N → ∞, where the many-body ground
state becomes twofold degenerate and the Z2 symmetry
spontaneously breaks, causing different P sectors to mix.
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FIG. 2. (Color online) The phase diagram of the XY Hamiltonian
in Eq. (2). The regular QCP A (hc = 1,γc = 1) and the MCP B
(hc = 1,γc = 0) are marked. The dashed-dotted (green) line separates
the ferromagnetic (FM) and paramagnetic (PM) phases, whereas the
dotted (blue) line represents the superfluid phase (SF).

The equilibrium phase diagram of the model Hamiltonian
in Eq. (2) is determined by the behavior of the excitation gap of
each mode, �k(h,γ ) ≡ εk(h,γ ), with εk(h,γ ) given in Eq. (5),
and is depicted in Fig. 2. Throughout this work, we will mainly
investigate scaling behavior in quenches involving either
the regular QCP A (hc = 1,γc = 1), which has equilibrium
critical exponents ν = z = 1 and belongs to the d = 2 Ising
universality class, or the MCP B (hc = 1,γc = 0), which has
ν = 1/2,z = 2 and belongs instead to the Lifshitz universality
class.23 In what follows, we shall refer to the critical mode kc as
the mode whose gap �k(h,γ ) vanishes in the thermodynamic
limit. For both the QCPs A and B of interest, we thus have
kc = 0 in the large-N limit.

B. Dynamical response indicators

If the system described by Eq. (2) is driven across a QCP by
making one (or both) of the control parameter(s) h, γ explicitly
time dependent, excitations are induced as a result of the
nonequilibrium dynamics. Since the gap vanishes at the QCP in
the thermodynamic limit, this happens no matter how slowly
the Hamiltonian changes with time. In Refs. 17 and 28, the
excess expectation value relative to the instantaneous ground
state was shown to successfully characterize dynamical scaling
behavior for a large class of physical observables in adiabatic
quenches originating from the ground state. That is, for an
extensive observable O, the following quantity quantifies the
underlying adiabaticity loss:

�O(t) ≡ 〈�(t)| O |�(t)〉 − 〈�̃(t)| O |�̃(t)〉, (9)

where |�(t)〉 and |�̃(t)〉 are the actual time-evolved state
and the adiabatically evolved state resulting from |�(t0)〉,
respectively. For a generic quench process, where in principle
both the time dependence in H (t) and the initial state ρ(t0) can
be arbitrary, it is desirable to characterize the response of the

system in such a way that no excitation is generated by purely
adiabatic dynamics,15 and zero-energy quenches are included
as a special case. This motivates extending the definition of
Eq. (9) to

�O(t) ≡ Tr[O(t)ρ(t)] − Tr[O(t)ρ̃(t)] , (10)

where now ρ(t) and ρ̃(t) are the actual time-evolved density
operator and the density operator resulting from adiabatic
evolution of ρ(t0), respectively, and we also allow, in general,
for the observable O to be explicitly time dependent. Let
H (t)|�i(t)〉 = Ei(t)|�i(t)〉 define snapshot eigenstates and
eigenvalues of H (t) along a given control path. Then the
adiabatically steered state ρ̃(t) = ∑

i,j ρi,j (t0)|�i(t)〉〈�j (t)|,
with ρi,j (t0) being the matrix elements of the initial state
ρ(t0) in the eigenstate basis |�i(t0)〉〈�j (t0)| of the initial
Hamiltonian H (t0).

With respect to the basis given in Eq. (8), a generic
uncorrelated state in momentum space may be expressed in the
form ρ(t) = ⊗

k∈K+ ρk(t), where ρk(t) is the four-dimensional
density operator for mode k. Relative to a snapshot eigenbasis

Bk(t) ≡ {∣∣ψj

k (t)
〉}

, j = 0, . . . ,3,

similar to the one given in Eq. (6), but constructed from time-
dependent quasiparticle operators such that γk(t)|0k(t)〉 = 0,
γ

†
k (t)|0k(t)〉 = |1k(t)〉, ρk(t) may be expressed as

ρk(t) =
∑

i,j=0,3

ρij,k(t)
∣∣ψi

k(t)
〉〈
ψ

j

k (t)
∣∣.

Suppose that the time-evolution operator for mode k is
Uk(t), that is, ρk(t) = Uk(t)ρk(t0)U †

k (t). Direct calculation
shows that |0k(t),1−k(t)〉 = c

†
−k|vac〉, and |1k(t),0−k(t)〉 =

c
†
k|vac〉 for all t , which indicates that the snapshot eigen-

states belonging to the Pk = −1 eigenvalues are frozen
in time, |0k(t),1−k(t)〉 = |0k(t0),1−k(t0)〉, |1k(t),0−k(t)〉 =
|1k(t0),0−k(t0)〉. As long as Pk is conserved under Hk(t), the
even and odd sectors for each k are decoupled. Thus upon
letting

U
†
k (t)|1k(t),1−k(t)〉
≡ a0,k(t)|0k(t0),0−k(t0)〉 + a1,k(t)|1k(t0),1−k(t0)〉,

we can evaluate the time-dependent excitation probability for
mode k as follows:

Pk(t) ≡ Tr[ρk(t)γ †
k (t)γk(t)]

= Tr[ρk(t)(|1k(t),1−k(t)〉〈1k(t),1−k(t)|]
+ Tr[ρk(t)|1k(t),0−k(t)〉〈1k(t),0−k(t)|]

= [ρ00,k(t0) − ρ11,k(t0)]|a0,k(t)|2 + ρ11,k(t0)

+ 2Re[ρ01,k(t0)a∗
0,k(t)a1,k(t)] + ρ33,k(t0), (11)

where the relationships |a0,k(t)|2 + |a1,k(t)|2 = 1 and ρ10,k =
ρ∗

01,k have been exploited. Notice that from the above definition
of a0,k(t), it follows that |a0,k(t)|2 is the time-dependent
probability that mode k is excited when it is in its ground
state at t = t0. Similarly, we may express the adiabatically
evolved density operator ρ̃(t) = ⊗

k∈K+ ρ̃k(t), with ρ̃k(t) =∑
i,j=0,3 ρij,k(t0)|ψi

k(t)〉〈ψj

k (t)|. Thus the time-dependent ex-
citation probability of mode k relative to the adiabatic path is
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simply

P̃k(t) = Tr[ρ̃k(t)γ †
k (t)γk(t)]

= ρ11,k(t0) + ρ33,k(t0) ≡ Pk(t0). (12)

Upon combining Eqs. (11) and (12), the relative excitation
probability of mode k is given by

�Pk(t) ≡ Pk(t) − Pk(t0)

= [ρ00,k(t0) − ρ11,k(t0)]|a0,k(t)|2
+ 2Re[ρ01,k(t0)a∗

0,k(t)a1,k(t)]. (13)

Physically, a nonzero contribution Pk(t0) may account for
initial excitations due to either a coherent preparation into an
excited state or to a finite temperature T . Clearly, if mode
k is initially in its ground state, Pk(t0) = 0, we consistently
recover the definitions in Ref. 28 for zero-energy quenches.
Two relevant limiting cases of Eq. (13) will play a special role
in what follows. First, if mode k is initially in a generic pure
state of the form

|ψk(t0)〉 ≡
∑
j=0,3

cj,k

∣∣ψj

k (t0)
〉
,

then ρ00,k(t0) = |c0,k|2, ρ01,k(t0) = c0,kc
∗
1,k , ρ11,k(t0) = |c1,k|2,

hence

�Pk(t) = (|c0,k|2 − |c1,k|2)|a0,k(t)|2
+ 2Re[c0,kc

∗
1,ka

∗
0,k(t) a1,k(t)]. (14)

Second, if the initial state ρ(t0) is a statistical mixture, then
ρ10,k(t0) = ρ01,k(t0) = 0, and we have

�Pk(t) = [ρ00,k(t0) − ρ11,k(t0)]|a0,k(t)|2. (15)

The time-dependent excess expectation value �O(t) in
Eq. (10) may be expressed directly in terms of the relative
excitation probability for observables that obey [O(t),H (t)] =
0 at all times. In this work, we shall primarily focus on the
following choices:

(1) O(t) = 1
N

∑
k∈K+[γ †

k (t)γk(t) + γ
†
−k(t)γ−k(t)], leading

to the relative total density of excitations:

�nex(t) = 2

N

∑
k∈K+

Tr{[ρk(t) − ρ̃k(t)]γ †
k (t)γk(t)}

= 2

N

∑
k∈K+

�Pk(t), (16)

which coincides with nex(t) when the initial state is the ground
state.

(2) O(t) = H (t), leading to the relative excitation energy
density:

�H (t) = 2

N

∑
k∈K+

Tr[(ρk(t) − ρ̃k(t))Hk(t)]

= 2

N

∑
k∈K+

εk(h(t),γ (t))�Pk(t). (17)

While �nex(t) is especially attractive from a theory
standpoint in view of its simplicity (possibly enabling an-
alytical calculations), a potential advantage of �H (t) is
that it may be more directly accessible in experiments.

As a representative example of an observable not com-
muting with the system’s Hamiltonian, we shall additionally
include results on the scaling behavior of the following:

(3) O ≡ XX = 1
N

∑N
i=1 σ i

xσ
i+1
x , corresponding to the

nearest-neighbor spin correlator per site along the x

direction.17 In the Ising limit (γ = 1), the operator N ≡
(1 − XX)/2 is a natural measure for the “density of kinks”
created by the quench, which directly relates to the number of
quasiparticles excited at h = 0.12,14,40 We have

�XX(t) = 2

N

∑
k∈K+

�( − 2 cos k c
†
kck)

+�[iγ (t) sin k (c†
kc

†
−k − H.c.)]. (18)

In principle, the sums in Eqs. (16)–(18) should include all
the modes in K+, as indicated. However, for the purpose of an-
alytically investigating dynamical scaling behavior, it is useful
to note that not all the allowed modes will necessarily change
their state along the adiabatic quench path, effectively making
no contribution to the relative expectation �O(t). In what
follows, we shall refer to the subset of modes KR ⊆ K+ whose
state changes in an adiabatic quench as the relevant modes.
Let a power-law adiabatic quench process be parametrized as
λ(t) − λc = |t/τ |αsgn(t), α = 1 corresponding to the standard
linear case also discussed in the Introduction. We may relate
the number of relevant modes, NR ≡ |KR|, to the system
size and the quench rate via NR(N,τ ) ∝ N |kmax(τ ) − kc|,
where kmax is the largest momentum in the relevant mode
set. Since adiabaticity breaks at a time scale t̂ ∼ τανz/(ανz+1),
and the typical gap, �̂ ∼ t̂−1, an accessible excited state
contributes to the excitation if and only if its minimum gap
along the path, �̃k , matches with this typical gap, �̃k ∼ �̂.
In general,23 �̃k scales as �̃k ∼ (k − kc)z2 , where z2 is a
genuinely nonstatic exponent. Accordingly, the scaling of kmax

can be determined by �̂ ∼ (kmax − kc)z2 , leading to

kmax − kc ∼ τ−ανz/[z2(ανz+1)]. (19)

III. QUENCHES FROM A PURE EXCITED STATE

A. Adiabatic quench dynamics from an excited energy
eigenstate

Adiabatic quenches from the ground state of the initial
Hamiltonian H (t0) have been extensively studied and are well
understood in this model.14–17,23 In order to explore the role
of initialization, a first natural step is to investigate dynamical
scaling behavior when the initial state is an excited eigenstate
of H (t0). Since, as remarked, the time evolution of excited
components along |0k,1−k〉 and |1k,0−k〉 is trivial, we shall
focus on excited energy eigenstates with support only on the
even sector of each mode k, that is, on states of the form given
in Eq. (7). Noting that there are only two possibilities for each
mode, either c0,k = 1 or c0,k = 0, Eq. (14) yields

�Pk(t) = (|c0,k|2 − |c1,k|2)|a0,k(t)|2 = ±|a0,k(t)|2, (20)

and, correspondingly,

�nex(tf ) = 2

N

∑
k∈KR

[±|a0,k(tf )|2]. (21)
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Thus the relative excitation density is the same, up to a
sign, in two limiting cases: (i) the many-body ground state,
corresponding to c0,k = 1 for all k and to an overall positive
sign in Eq. (21), and (ii) the state where all allowed pairs of
quasiparticles are excited, corresponding to c0,k = 0 for all k

and to an overall negative sign in Eq. (21). Since KZS is known
to hold for a linear quench process with initial condition (i),
and a global sign difference would not change the scaling
behavior, KZS is expected to persist for the maximally excited
initial eigenstate (ii) as well. This is to some extent surprising
both in view of the fact that such an initial state has zero
overlap with the BCS state |�(+)

0 〉, and because one would not
a priori expect highly energetic eigenstates to be sensitive to
the ground-state QPT.

Interestingly, critical properties of excited eigenstates in
the XY chain have recently attracted attention in the context
of static QPTs.53 Suppose that each excited eigenstate is
associated with an ordered binary strings of length |K| = N ,
where 0 (1) represents a mode in its ground (excited) state,
respectively. Then a compact description of the eigenstate may
be given in terms of the “discontinuities” of a (suitably regular-
ized as N → ∞) characteristic function of the corresponding
occupied mode set, where no discontinuity is present when all
modes are 0 or 1, and a discontinuity is counted every time

the occupation of a given mode changes along the string. Alba
et al.53 have analytically proved, in particular, that the block
entanglement entropy SL of an excited eigenstate of the critical
XY chain may still obey conformal scaling as in the ground
state provided that the number of discontinuities remains finite
in the thermodynamic limit, that is, SL ∼ log L, where L � 1
is the block size. Conversely, SL exhibits noncritical scaling,
SL ∼ L, when the number of discontinuities becomes itself
an extensive quantity as N → ∞. Thus certain highly excited
states (including the fully excited state considered above) can
still display critical behavior, the number of discontinuities
in the full set of momentum modes being the essential factor
in determining the static scaling behavior. While, intuitively,
nonanalyticities in the characteristic mode occupation function
need not play a direct role for simple observables such as
the excitation density, these results still prompt the following
question: To what extent does a distinction between “critical”
(leading to KZS) and “noncritical” excited eigenstates exist
for dynamical QPTs?

A key difference with respect to the static situation is
that only the relevant modes matter in a dynamical QPT,
k ∈ KR ≡ [kc,kmax], with kmax given in Eq. (19). In Fig. 3, we
present exact numerical results, obtained by direct numerical
integration of the time-dependent Schrödinger equation, for
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FIG. 3. (Color online) Scaling behavior of the final relative excitation density in a linear quench of the magnetic field h around the QCP A
in the Ising chain, starting with different excited eigenstates of H (hc). (a) Only kc = π/N is excited initially. The linear fit for N = 3200 yields
−0.535 ± 0.002. (b) The five lowest-energy modes are initially excited. A linear fitting slope of −0.549 ± 0.003 is now reached at N = 12 800.
(c) Five modes (k = kc, 5π/N , 9π/N , 13π/N , and 17π/N ) are initially excited. The linear fit for N = 12 800 yields −0.546 ± 0.002.
(d) The five lowest-energy modes are initially excited for N = 12 800 as in (b), but as the system size is increased linearly, the number of
excited modes is increased accordingly. In all cases, the relevant τ range τmin < 20 � τ � 250 < τmax (see text and Fig. 4).
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FIG. 4. (Color online) Scaling behavior of the final relative
excitation density in a linear magnetic-field quench around the QCP
A in the Ising chain, starting with an eigenstate of H (tc) where
the 5, 10, and 20 lowest-energy modes are initially excited for
N = 12 800,N = 25 600,N = 51 200, respectively [the same as in
Fig. 3(d)]. The relevant τ range is now τ̃min ∼ τmin = 5 � τ � τ̃max =
20 � τmax. A linear fitting slope of −0.5019 ± 0.002 is now reached
for all these cases, in agreement with the KZS prediction.

the relative excitation density in a linear adiabatic quench of
the magnetic field h around the QCP A of the critical Ising
chain (γ = 1). Different initial eigenstates are compared over
a common range of τ , which is chosen to be well within the
appropriate τ range28 for ground-state quenches (see the next
paragraph and Fig. 4 for further discussion of this point). In
Fig. 3(a), the system is initialized in the first excited state,
where only the critical mode is initially excited (thus only one
discontinuity is present), whereas in Fig. 3(b), the five lowest-
energy modes are initially excited (leading to one discontinuity
as well). In case (a), while no scaling is visible for a system with
size N = 400, progressively better scaling behavior emerges
as N is increased, with the value at N = 3200 approaching the
asymptotic KZS value (and better agreement being achievable
by optimizing the τ range, see below). In contrast, for the data
in panel (b), a system size as large as N = 12 800 is required
for a scaling of comparable quality to be established. Since the
only difference between cases (a) and (b) is a different (fixed)
number of initially excited modes in NR , the fact that upon
increasing N (thereby increasing NR accordingly) a better KZS
is comparatively obtained in (a) suggests that the ratio between
the number of initially excited (or nonexcited) modes and NR

is crucial for dynamical scaling behavior—not (as intuitively
expected) the discontinuity properties which characterize the
initial mode occupation per se. More explicitly, let NE denote
the number of modes in KR that are excited at time t0, with
NR − NE correspondingly denoting the number of nonexcited
modes in KR , and let

MR ≡ min{NE,NR − NE}.
Motivated by the above observations and also recalling

the symmetric role played by initially nonexcited vs excited
modes in determining the time-dependent relative probability
of excitation [Eq. (20)], we conjecture that KZS emerges

in the thermodynamic limit provided that the initial excited
eigenstate satisfies

MR

NR

= ε � 1. (22)

Clearly, the case of ground-state initialization corresponds
to NE = MR = 0, and the fully excited state coincides with
NE = NR,MR = 0. For a generic initial excited eigenstate,
Eq. (22) allows in principle MR to be an extensive quantity in
the thermodynamic limit. Two additional results are included
in Fig. 3 to illustrate the above possibility. In panel (c), we still
have five excited modes in NR as in (b), but five discontinuities
as opposed to just one. For the same system size (thus also the
same ε), the scaling is not worse than in panel (b), further
supporting the conclusion that the number of discontinuities
does not play a role toward the emergence of dynamical
scaling. In panel (d), a fixed value of ε, equal to the one in (b)
at N = 12 800, is explored for different values of N , by also
proportionally increasing NE . As the data show, the resulting
�nex is the same, indicating that MR may indeed be allowed
to be an extensive quantity as long as Eq. (22) is obeyed.

It is important to address how the choice of a range
of τ values affects the above scaling conclusions. Let
τmin � τ � τmax and τ̃min � τ � τ̃max denote the valid range
for ground-state initialization,28 and for excited-state initial-
ization, respectively. Since τmin is determined from the re-
quirement that an adiabatic regime exists away from criticality,
whereas τmax follows from ensuring that adiabaticity can be
broken in a finite-size system, both τmin and τmax are related
to the scaling of the many-body gap between the ground state
and first (available) excited state. Thus τ̃min (τ̃max) could in
general be substantially different from τmin (τmax), respectively.
In our case, however, the Hamiltonian in Eq. (2) can be exactly
decoupled into two-level systems for each mode k. Therefore
the relevant gap is always �kc

≡ εkc
(h,γ ), irrespective of

the initial condition. For this reason, the relation τmin � τ̃min

and τ̃max � τmax must hold, as any finite-energy initial state
might imply more restrictive constraints as compared to the
zero-energy case. In particular, according to Eq. (22), not all
the excited eigenstates can lead to KZS, and the better Eq. (22)
is satisfied, the closer KZS will be approached. This explains
why, for instance, the fitting slope −0.549 from Fig. 3(b) is not
as close to the KZ value as the one obtained for a ground-state
quench with the same range of τ . In the setting of Fig. 3(b),
the majority of the relevant modes stay in their ground state.
In order to reduce the contribution to �nex from the five
lowest-energy modes, we can decrease τ such that NR will
be increased in Eq. (22). Numerical support for this strategy is
shown in Fig. 4, where an optimal range of τ is identified for the
same initial states as in Fig. 3(d), and very good agreement with
KZS is recovered. Thus we can conjecture that if the majority
of modes that enter MR are low-energy modes, we can reduce
their contribution to �nex by decreasing the upper bound to
τ . That is, we choose τmin � τ � τ̃max, where τ̃max < τmax.
Conversely, if the majority of modes that enter MR are from
high-energy modes, then we reduce the contribution from these
modes by increasing the lower bound to τ . That is, we let
τ̃min � τ � τmax, with τ̃min > τmin.

Additional theoretical understanding of the criterion given
in Eq. (22) may be sought by invoking the perturbative
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adiabatic renormalization (AR) approach,54 which was suc-
cessfully applied to explain the scaling results for adiabatic
quenches starting from the ground state.15,28 Can first-order
AR still capture dynamical scaling for initial excited eigen-
states? Let us focus on linear quenches (α = 1), and let the
time-dependent Hamiltonian be parametrized as H (t) = Hc +
[λ(t) − λc]H1 = Hc + (t/τ )H1, with Hc quantum critical in
the thermodynamic limit, so that the relevant QCP is crossed
at tc ≡ 0. If the system is prepared in the �th eigenstate of
H (t0), with t0 → tc as in the examples previously considered,
the time-evolved state from first-order AR may be expressed
in the form

|�(1)(t)〉 = e−i��(t)|��(t)〉 −
∑
m�=�

c(1)
m (t)|�m(t)〉,

where ��(t) includes in general both the Berry phase and
the dynamical phase, and c(1)

m (t) gives the time-dependent
amplitude along the mth snapshot eigenstate. Following a
derivation similar to the one given in Refs. 54 and 28, and
letting �m(t) ≡ Em(t) − E�(t), we find

c(1)
m (t) = e−i�m(t)

τ

∫ t

t0

dt ′
〈�m(t ′)|H1|��(t ′)〉

Em(t ′) − E�(t ′)
e
i
∫ t ′
t0

ds�m(s)
.

Thus to first order in the quench rate 1/τ the adiabaticity
loss can be quantified by �O(t) = 〈�(1)(t)|O(t)|�(1)(t)〉 −
〈��(t)|O(t)|��(t)〉. In particular, this yields

�nex(t) = 2

N

∑
m�=�

∣∣c(1)
m (t)

∣∣2

(
〈�m(t)|

∑
k∈K+

γ
†
k (t)γk(t)|�m(t)〉

− 〈��(t)|
∑
k∈K+

γ
†
k (t)γk(t)|��(t)〉

)
.

Since H1 is a one-body operator in our case,
the only nonzero matrix elements 〈�m(t)|H1|��(t)〉
include many-body eigenstates |�m(t)〉 which
differ from |��(t)〉 in the occupation of precisely
one mode. Thus 〈�m(t)| ∑k γ

†
k (t)γk(t)|�m(t)〉 −

〈��(t)| ∑k γ
†
k (t)γk(t)|��(t)〉 = ±1, which implies

�nex(tf ) = 1

N

∑
m�=�

[ ± ∣∣c(1)
m (tf )

∣∣2]
. (23)

Except for a possible sign difference for each m, the above
expression is formally identical to the one holding for
ground-state initialization (� = 0), in analogy with the exact
Eq. (21). Numerical calculations of the relative excitation
density according to Eq. (23) [for instance, with the same
initial condition as in Fig. 3(a), data not shown] confirm that
the condition for initial excited eigenstates to support KZS is
the same in first-order AR as the one conjectured based on
exact numerical results.

B. Sudden quench dynamics from an excited energy eigenstate

As mentioned in the Introduction, scaling results for sudden
quenches of the control parameter λ around its critical value
λc have been recently obtained by De Grandi et al.35 under the
assumptions that the system is in the ground state of the initial
Hamiltonian and the quench has a small amplitude, leading to

a final excitation density

nex(tf ) ∼ |λ − λc|dν ≡ δλdν, (24)

with δλ � 1 in suitable units. Before addressing, in analogy
to the case of adiabatic dynamics, the extent to which the
expected scaling behavior may be robust against initialization
in a finite-energy eigenstate, it is useful to explore more
quantitatively the connection between ground-state adiabatic
vs sudden quenches implied by Eq. (24).

Suppose, specifically, that the amplitude of a sudden
magnetic-field quench near the QCP A of the Ising chain is
directly related to the rate τ of a corresponding linear adiabatic
sweep across the same QCP via hf = hc ± ĥ, where ĥ ∝ t̂/τ

and t̂ is the KZ freeze-out time scale, i.e., t̂ ∼ τ νz/(νz+1).
Equation (24) then yields

nex(tf ) ∼ |hf − hc|dν ∼ τ−dν/(νz+1). (25)

In other words, the scaling behavior resulting from Eq. (24)
is essentially equivalent to KZS. While this could be quan-
titatively demonstrated by direct calculation of nex(t) in a
sudden quench, it can also be nicely illustrated by examining
combined sudden-adiabatic quenches, which have not been
explicitly addressed, to our knowledge,55 and will also be
relevant in Sec. III C. Two possible “control loops” starting
from h(t0) = hc are depicted in Fig. 5: we can either (i)
suddenly change the magnetic-field amplitude hc �→ hf , and
then adiabatically change it back to hc (top panel); or we
can (ii) slowly ramp up hc to hf , and then suddenly quench
hf �→ hc (bottom panel). As is clear from the numerical
data, the total excitation density created from the combined
sudden-adiabatic quench shows KZS throughout the entire
process in both cases, provided that τ is within the appropriate
scaling range τmin � τ � τmax. Notice that the quench process
depicted in Fig. 5 is similar to the repeated linear quench across
QCP A studied in Ref. 19, in the sense that the initial and
final value of the control parameter coincide. While KZS was
found to hold in such a repeated linear quench, the difference
is now that half of the linear adiabatic sweep is replaced by a
sudden quench. Since, however, the interval [hc − ĥ,hc + ĥ]
corresponds to the impulse region in the KZ scenario for a pure
linear quench, the scaling results of the combined quenches
under consideration may be understood as a consequence of the
fact that the sudden quench component can only further enforce
the impulse mechanism by which excitation is generated in
the KZS argument. Interestingly, as long as the scaling exists,
we can also observe that (i) and (ii) lead to almost the same
final excitation density, even if the intermediate values of the
excitation density after the sole sudden [in (i)] or linear [in
(ii)] quench are different. In summary, the existence of KZS in
ground-state sudden and combined sudden-adiabatic quenches
with small amplitude is essentially a reflection of the fact that
the system goes through an impulse region around the QCP no
matter how slow or fast the quench is effected.

While sudden quenches of arbitrary amplitude will be
further considered in the next section, we now return to
the question of whether dynamical scaling also holds in
small-amplitude sudden quenches when the system is initially
prepared in an excited eigenstate of H (t0) = Hc. Exact numer-
ical results are presented in Fig. 6, where in order to ease the
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FIG. 5. (Color online): Scaling behavior of the final excitation
density in combined magnetic-field ground-state quenches across
QCP A in the Ising chain. Top: Sudden quench hc �→ hf (see text)
followed by a linear quench back to hc, with the system finally kept
at hc. Bottom: Linear quench from hc followed by a sudden quench
hf �→ hc, with the system finally kept at hc. In both cases, N = 400.

comparison with a linear quench, we have again explicitly
related the sudden-quench amplitude to τ as hf − hc ∝ τ−1/2.
The data for N = 3200 indicate that the scaling exponent is
slightly closer to the KZS prediction than the one obtained in a
pure linear quench with the same initial condition and τ range
[cf. Fig. 3(a)]. Since a sudden quench effectively strengthens
the impulse mechanism in the KZS argument, the number
of relevant modes NR is larger than the one involved in an
adiabatic linear quench. Thus for the same initial condition
(the same MR), the ratio ε in Eq. (22) is smaller in a sudden
quench than in a linear quench, comparatively leading to a
scaling exponent closer to KZS. Therefore our conclusions
for excited-state sudden quenches are consistent with the ones
reached for excited-state adiabatic quenches, and reaffirm
how small-amplitude sudden quench dynamics and adiabatic
dynamics near a QCP are essentially equivalent over a wide
range of initializations.

C. Adiabatic dynamics following a sudden quench from the
ground state

In addition to eigenstates of the initial Hamiltonian, another
physically relevant class of initial preparations is provided by
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FIG. 6. (Color online) Scaling behavior of the final relative
excitation density in a sudden magnetic-field quench across QCP A in
the Ising chain, starting with the first excited state of H (hc). The linear
fitting slope for N = 3200 is −0.5244 ± 0.0004 for 20 � τ � 250.
Closer agreement with the KZS may be reached by optimizing over
τ as in Fig. 4.

pure states that are reachable from the many-body ground
state via a sudden parameter quench of arbitrary amplitude.
For concreteness, let us focus on adiabatic dynamics following
a sudden quench of the magnetic field h to its critical value hc

in the Ising chain. Thus the initial state for the adiabatic quench
is a superposition of different eigenstates of the Hamiltonian
H (hc) after the (instantaneous) sudden quench. Since for each
mode k the parity quantum number Pk is conserved, and the
ground state of Hk lies in the even sector Pk = 1, the expansion
coefficients c2,k = c3,k = 0, whereas c0,k and c1,k are obtained
from expanding the ground state before the sudden quench in
the eigenstate basis {|ψj

k (t+0 )〉} of the quenched Hamiltonian
H (hc).

We can picture the resulting dynamics in terms of a
combined sudden-adiabatic quench process (see Fig. 7, inset),
except that unlike in Sec. III B we only focus on the scaling
behavior of the relative excitation density �nex(t) created after
the sudden quench. Exact numerical results are plotted in
the main panel of Fig. 7, showing that for a large range of
sudden-quench initializations, the final excitation density still
obeys the same KZS,

�nex(tf ) ∼ τ−dν/(νz+1) ∼ τ−1/2,

as in adiabatic dynamics starting from the ground state. The
above scaling result can be derived analytically in two limiting
cases, starting from Eq. (14). Upon integrating over all the
relevant modes, we find

�nex(t) = 1

π

∫ kmax

0
�Pk(t)dk =

∫ kmax

0
{(2|c0,k|2 − 1)|a0,k(t)|2

+ 2Re[c0,kc
∗
1,ka

∗
0,k(t) a1,k(t)]}dk

π
. (26)

There are two contributions in �Pk(t). If the initial state of
mode k is close to either a nonexcited or to a fully excited state
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(|c0,k|2 ≈ 1 or |c0,k|2 ≈ 0 for all k ∈ KR , respectively), the first
term is the dominant one. In this case, KZS clearly holds. In the
opposite limit where each mode k ∈ KR is initially half excited
(|c0,k|2 ≈ 1/2), the second term is the dominant one. Since, for
a sudden quench to hc, the latter is the center of the impulse
region (recall Fig. 1, top) and at most half of the impulse region
can be crossed, all the relevant modes can at most be close
to half excitation, making this second limiting case directly
relevant to the sudden-quench state preparation for suitable
h0. Assuming that |c0,k|2 ≈ 1/2 and ignoring relative phases
thus yields

�Pk(t) ∼ |a0,k(t)a1,k(t)| ∼ |a0,k(t)|
√

1 − |a0,k(t)|2.

By invoking the Landau-Zener formula,16 the asymptotic
(tf → ∞) excitation probability for modes near kc scales like
e−2πk2τ when t0 → −∞. Starting from QCP A (the center of
the impulse region) will not, however, affect the exponential
behavior.56 Therefore |a0,k(t)|2 ∼ e−2πk2τ as long as tf is deep
in the adiabatic region, and 1 − |a0,k(t)|2 ∼ k2τ . Integrating
over the relevant modes then gives the anticipated KZS result:

∫ kmax

0
dk|a0,k(t)|

√
[1 − |a0,k(t)|2] ∼

∫ τ−1/2

0
dk k τ 1/2 ∼ τ−1/2,

where we used the fact that kmax ∼ τ−1/2 [Eq. (19)] in the
upper integration limit.

While the above argument suffices to explain the emergence
of KZS starting from special sudden-quench initializations, for
generic quenches the dominant term in Eq. (26) need not be
the same for different modes. In order to gain further insight,
it is necessary to inspect the distribution of the excitation
probability for each relevant mode after a sudden quench
from a generic value h0 �→ hc. Numerical results for the
low-lying modes are presented in Fig. 8 for a wide range
of initial magnetic-field strength h0. For each mode k, we
can identify two boundary values, hmin

0,k and hmax
0,k , such that

when hmin
0,k � h0 � hmax

0,k , mode k is close to its ground state
after the sudden quench (|c0,k|2 ≈ 1), whereas if h0 � hmin

0,k

or h0 � hmax
0,k , mode k is close to half excitation (|c0,k|2 ≈

1/2). Since hmin
0,k and hmax

0,k are approximately symmetric with
respect to the critical value hc = 1, let us for simplicity take
hm

0,k ≡ hmax
0,k , with hmin

0,k ≈ 2hc − hm
0,k . Qualitatively, hm

0,k can
be determined by the condition �(h0,k) ≈ �(hc,k), which
yields approximately |c0,k|2 ≈ 1. If, conversely, �(h0,k) �
�(hc,k) (|h0 − hc| � |hm

0,k − hc|), we can consider |c0,k|2 ≈
1/2. Altogether, the results in Figs. 7 and 8 indicate that the
limiting analytical condition of requiring the same dominant
term in Eq. (26) for all the relevant modes is too strong for
�nex(t) to show KZS. For instance, when h0 = 0.95, not all
the relevant modes are staying in their ground state (kc is not),
yet KZS holds. In general, however, the variation of |c0,k|2
with k does affect the scaling result. For instance, when h0

is around 0.75, agreement with the KZS prediction for the
same system size is relatively poor, motivating one to roughly
identify the range 0.6 � h0 � 0.9 with a crossover region.
Based on these observations, we conjecture that a necessary
(and sufficient) condition for the relative excitation density
�nex(t) to approach KZS in the thermodynamic limit is that
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FIG. 7. (Color online) Scaling of the final relative excitation
density in an adiabatic magnetic-field quench across QCP A in the
Ising chain, starting from an excited state prepared by suddenly
quenching h0 �→ hc for different initial values of h0. The combined
control path is illustrated in the inset. The linear fitting slope for h0 =
−1,0.2,0.75,0.85,0.95 is −0.50283 ± 5.0 × 10−5, −0.506 97 ±
6.0 × 10−5, −0.5237 ± 1.0 × 10−4, −0.528 00 ± 5.0 × 10−5, and
−0.5037 ± 8.0 × 10−4, respectively. In all cases, the system size
N = 400.

the dominant term in Eq. (26) is the same for the majority of
the relevant modes.

An alternative physical interpretation of the above con-
jecture may be obtained by observing that for a generic
value of h0, there exist modes ke,kg ∈ K+ such that if
kc � k � ke, �(h0,k) � �(hc,k), while if kg � k � π ,
�(h0,k) ≈ �(hc,k), and we also assume ke < kg for
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FIG. 8. (Color online) Dependence of the excitation coefficient
2|c0,k|2 − 1 upon the initial magnetic-field strength h0 in a state
prepared by a sudden quench h0 �→ hc in the Ising chain (γ =
1). The values c0,k are obtained by expanding the ground state
of H (h0) in terms of the eigenbasis of H (hc = 1) at QCP A.
The five lowest-energy modes are considered, for system size
N = 400.
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concreteness. Since, in an adiabatic sweep with speed τ , the set
of relevant modes KR = [kc,kmax] is determined according to
Eq. (19), we can distinguish three different regimes depending
on how kmax is positioned relative to the interval [ke,kg]:

(i) kmax � ke. In this case, all the relevant modes are half
excited, recovering one of the limiting situations (analytically)
leading to KZS, as already discussed ( e.g., h0 = −1 in Fig. 7);

(ii) ke < kmax < kg . In this case, by a reasoning similar
to the one leading to Eq. (22), KZS is predicted to emerge
provided that (kmax − ke) = εkmax, ε � 1, in such a way that
the majority of the relevant modes are half excited (e.g., h0 =
0.2 in Fig. 7);

(iii) kg � kmax. In this case, KZS is predicted to emerge
provided that kg = εkmax, ε � 1, in such a way that the
majority of the relevant modes stay in their ground state (e.g.,
h0 = 0.95 in Fig. 7).

Thus for both h0 = 0.75 and h0 = 0.85, the initial state
prepared by the sudden quench may be interpreted to lie in
the crossover region between cases (ii) and (iii), explaining
why the resulting scaling deviates appreciably from the KZ
prediction.

Similarly to the excited-eigenstate initialization, sudden-
quench initialization will also add more constraints on the
appropriate τ range for KZS to hold. If the initial state is
prepared via a sudden quench that guarantees one of the above
conditions (i)–(iii) to be fulfilled for any τ ∈ [τmin,τmax], then
the latter range is also appropriate for KZS to emerge under
excited-eigenstate initialization. If not, the situation is more
involved, and the range of τ may need to be adjusted such that
either (ii) or (iii) is enforced. If condition (ii) is more likely
to be obeyed (e.g., if h0 ≈ 0.6), we can choose τ̃min > τmin

in such a way that the number of modes between ke and kg

is decreased, and the majority of relevant modes is thus half
excited. If instead condition (iii) is more likely to be obeyed
(e.g., if h0 ≈ 0.9), we can choose τ̃max < τmax in such a way
that the number of relevant modes staying in their ground state
is increased. While the strategy for adjusting the τ range in a
sudden-quench initialization is similar to the one advocated in
excited-eigenstate initialization, conditions (i)–(iii) are in fact
easier to fulfill than Eq. (22). For instance, for N = 400, the
worst scaling in Fig. 7 is still relatively close to KZS, whereas
the latter is completely lost when initially only kc is excited
in Fig. 3(a). This difference is due to the fact that the initial
occupation of modes in the relevant set changes less abruptly
in a sudden-quench initialization than in excited-eigenstate
initialization.

We conclude our discussion of quench processes originat-
ing from a (pure) excited state by commenting on the fact that
the analysis developed for �nex(t) can be extended to different
observables without requiring major conceptual modifications.
While an explicit example involving the spin correlator defined
in Eq. (18) will be included in the next section, the basic idea
is to proceed in analogy with ground-state quenches,28 by
taking into consideration the appropriate scaling exponent as
determined by the physical dimension of the observable O.
Consider, for instance, the relative excitation energy �H (t)
defined in Eq. (17), which, as remarked, can be experimentally
more accessible than the relative excitation density. In all
the situations where KZS holds for the latter, �nex(tf ) ∼
τ−dν/(νz+1) ∼ τ−1/2 (in particular, in the case of excited-state

initialization via a sudden quench just discussed), we also find
for our model that

�H (tf ) ∼ τ−(d+z)ν/(νz+1) ∼ τ−1,

consistent with the corresponding ground-state scaling behav-
ior explored in Refs. 28 and 23.

IV. QUENCHES FROM A THERMAL STATE

A. Adiabatic quench dynamics

While we have only focused thus far on initialization
mechanisms resulting in a pure excited state, another large
class of initial states with a finite excitation energy may
be obtained through dissipative means, in particular because
the system may find itself (or be placed) in contact with
a thermal bath. After a time sufficient for equilibration to
occur, the system would then relax to a canonical ensemble
at temperature T . In equilibrium, it is well known that
the influence of a ground-state QCP can cross over to a
finite range of temperatures, the so-called “quantum critical
regime,” which is often broader than naively expected.1,57,58

In a dynamical scenario, how robust is dynamical scaling (in
particular, KZS) to initialization at a finite temperature? If
scaling persists, how do the relevant nonequibrium exponents
depend upon the initial temperature? Motivated by these
questions, scaling behavior in a system initially prepared in
a thermal equilibrium state at criticality and then adiabatically
quenched away from the QCP has been analyzed in Ref. 35.
In particular, it is shown that for fermionic quasiparticles, the
excess excitation due to a quench across a standard QCP obeys

�nex(tf ) ∼ 1

T
τ−(d+z)ν/(νz+1), (27)

provided that the initial temperature is high enough [T �
εk(t0), for all k ∈ KR]. Our goal here is to both present
quantitative evidence for the above scaling law and, most
importantly, to extend the analysis to multicritical QCPs.

Let T denote the initial thermal equilibrium temperature,
so that the initial density operator has the form ρ(t0) =⊗

k∈K+ ρk(t0), with ρk(t0) given by

ρ00,k(t0) = 1

Z e+εk (h,γ )/T , ρ11,k(t0) = 1

Z e−εk (h,γ )/T ,

(28)

ρ22,k(t0) = ρ33,k(t0) = 1

Z ,

in units where h̄ = kB = 1 and with

Z ≡ 2 + e+εk (h,γ )/T + e−εk (h,γ )/T .

For clarity, we focus on linear adiabatic dynamics first. We
shall study both the standard Ising QCP A under a magnetic-
field quench of the form h(t) = 1 − t/τ [h = hc = 1,γ = 1
in Eq. (28)], and the MCP B under a simultaneous quench
of the magnetic field and the anisotropic parameter, h(t) =
1 − γ (t) = 1 − t/τ [h = hc = 1,γ = γc = 1 in Eq. (28)].
At T = 0, the scaling of the excitation density can be in
both cases described by nex(tf ) ∼ τ−dνz/[z2(νz+1)], where z2

is determined from the scaling of the minimal gap along the
path with respect to k [cf. Eq. (4) in Ref. 23, with α = 1 and
d2 = 0]. Thus z2 = z in the quench across QCP A, leading
to KZS, whereas z2 = 3 �= z in the quench across MCP B,
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leading to anomalous scaling nex(tf ) ∼ τ−1/6. Given the above
thermal initial condition, starting from Eq. (15) for the relative
excitation probability, one finds

�Pk(t) = tanh

(
εk(hc,γc)

2T

)
|a0,k(t)|2, (29)

where for both paths we simply write εk(hc,γc) to mean
that critical parameter values are assumed at t = t0. When
T � εk(hc,γc), tanh( εk(hc,γc)

2T
) ≈ 1 and �Pk(t) is the same as

starting from the ground state of mode k. Thus in order
for the same ground-state scaling (either KZS or τ−1/6)
to emerge in the low-temperature limit, the condition T �
εk(hc,γc) needs to be satisfied for all the relevant modes.
Since εkc

(hc,γc) = 0, this means that in the thermodynamic
limit, the only allowed initial temperature is T = 0 if a
thermal state of H (hc,γc) is considered. In the opposite limit
of high temperature, where T � εk(hc,γc), tanh( εk(hc,γc)

2T
) ≈

εk(hc,γc)/(2T ) ∼ (k − kc)z/T for modes k near kc. Upon
integrating over the relevant modes and recalling Eq. (19),
the relative excitation density is then

�nex(tf ) = 1

π

∫ kmax

0
�Pk(tf )ddk ∼ 1

T

∫ τ−νz/[z2(νz+1)]

0
kzddk

= 1

T
τ−(d+z)νz/[z2(νz+1)]. (30)

For the standard QCP A, this yields �nex(tf ) ∼ τ−1/T ,
recovering the result of Eq. (27), while �nex(tf ) ∼ τ−1/2/T in
the multicritical quench across QCP B. In Ref. 23, we argued
that the time-dependent excitation process in ground-state
quenches need not be dominated by the critical mode kc

for certain paths across MCPs and Pk = �Pk ∼ kd2 , with d2

playing the role of an “effective dimensionality exponent.”
For a thermal quench, it is interesting to note that, formally,
one may interpret d2 = z �= 0 in the above equation, also
implying that the dominant contribution does not originate
from modes around kc. In the high-temperature limit, ρk(t0)
is, indeed, almost fully mixed for modes near kc, causing the
contribution of ρ00,k and ρ11,k to Eq. (15) to be nearly canceled,
and consistently leading to �Pk(t) ≈ 0 for those modes.

The scaling prediction in Eq. (30) can be further generalized
to a nonlinear thermal quench, whereby, for instance, h(t) =
1 − γ (t) = 1 − (t/τ )α in the case of a quench away from the
MCP B. When T = 0, Eq. (4) in Ref. 23 yields59 nex(tf ) ∼
τ−dανz/[z2(ανz+1)]. Correspondingly, in the high-temperature
limit,

�nex(tf ) ∼ 1

T
τ−(d+z)ανz/[z2(ανz+1)]. (31)

Exact numerical results for a quadratic quench (α = 2) are
reported in Fig. 9, the inset corresponding to the ground-state
T = 0 case. Within numerical accuracy, the observed behavior
is in excellent agreement with the predicted scaling, τ−2/9 for
T = 0 and τ−2/3 for high-T , respectively.

We further examine how dynamical scaling is detected by
other observables and how it is influenced by temperature away
from the limiting regimes discussed above by considering
the behavior of the spin correlator, �XX(t), defined in
Eq. (18). Since XX does not commute with the Hamiltonian
in Eq. (2), no analytical treatment is possible. Exact numerical
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FIG. 9. (Color online) Exact scaling behavior of �nex(tf ) in a
quadratic adiabatic quench h(t) = 1 − γ (t) = 1 − (t/τ )2, starting
from a thermal state at MCP B (t0 = tc = 0) toward the FM phase. The
initial temperature T = 1000, yielding a linear fitting slope −0.663 ±
0.002, in good agreement with the value 2/3 predicted by Eq. (31).
For comparison, the case of a ground-state quench is reproduced in
the inset, with a linear fitting slope of −0.2190 ± 0.0006, which is
also in good agreement with the predicted 2/9 exponent (Ref. 23).
The data for different sizes (N = 800 and N = 1600) coincide up
to 10−13.

results are presented in Fig. 10 for both the regular and the
multicritical QCPs A and B (inset vs main panel, respectively),
starting from the same thermal initial condition at criticality as
considered above. As the data show, similar features emerge
in both cases: The scaling exponent of �XX(t), which is
expected to be the same as for �nex, deviates from its
zero-temperature value (−1/2 or −1/6, respectively) as soon
as the temperature is nonzero, and as the latter is gradually
increased, it continuously changes until for sufficiently high
temperature (T � εk(hc,γc), for all k ∈ KR), it stabilizes at
the value predicted by Eq. (31) (−1 or −1/2, respectively).
All these observations are consistent with the predictions in
the previous paragraph.

In summary, ground-state dynamical scaling (and KZS in
particular) is fragile with respect to temperature fluctuations if
the initial state is a thermal equilibrium state at criticality.
In this case, the two situations where scaling exists are
the zero-temperature and the high-temperature limit, with
Eq. (31) holding in the latter regime. This requires all the
relevant modes to either stay in their ground state or be highly
mixed at the initial time, which is a stronger condition in
comparison to the ones identified in the previous sections for
coherently prepared (pure) excited states. From a practical
standpoint, the high-temperature regime could potentially be
relevant to liquid-state NMR simulators.50 In order for tests of
dynamical scaling or KZS in the low-temperature regime to be
experimentally viable, however, the initial thermal state needs
to be (or be prepared) sufficiently far away from criticality
(e.g., |h0 − hc| � 1 for QCP A), in such a way that the
condition T � �(k,h0) for all k ∈ KR can still be fulfilled
with a nonzero temperature.
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FIG. 10. (Color online) Main panel: Scaling exponent �XX(tf )
as a function of temperature T in a linear quench h(t) = 1 − γ (t) =
1 − t/τ away from the MCP B, starting with a thermal equilibrium
state of H (hc,γc). Inset: Scaling exponent of �XX(tf ) as a function of
temperature in a linear quench h(t) = 1 + t/τ away from the regular
QCP A, starting with a thermal equilibrium state of H (hc = 1). In
both cases, the system size N = 800.

B. Sudden quench dynamics and thermalization

Sudden quenches have recently attracted considerable inter-
est as a setting for probing the long-time dynamics of isolated
many-body systems and the approach to equilibrium.36,38–42

Since the quadratic Hamiltonian in Eq. (2) describes a simple
(noninteracting) integrable model, it is well known that no
thermalization can occur in a proper sense, that is, the behavior
of generic observables is not governed by a conventional
statistical equilibrium ensemble.37,43 The above investigations
have nevertheless shown that information about the asymptotic
behavior of an appropriate subset of observables may still be
encoded in a finite effective temperature Teff , independent on
the fine details of the initial state and the dynamics but only
determined by the total energy of the process. Let ρ(t0) ≡ ρ0

and Hf denote, respectively, the density operator describing
the initial state of the system, and the final Hamiltonian after
the (instantaneous) quench. Following Rossini et al.,38 the
effective temperature is defined by the requirement that the
average energy of the initial state relative to the quenched
Hamiltonian equals the one corresponding to a fictitious
thermal state at temperature Teff in the canonical ensemble,
that is,

Tr[ρ0Hf ] = Tr[ρTeff Hf ]. (32)

Under the assumption that T = 0 initially [that is, ground-
state initialization in Eq. (32)], the emergence of effective
thermal behavior has been related to the locality properties
of different physical observables relative to the quasiparticle
language that diagonalizes the model.39,40 For a generic quench
in an Ising chain, only nonlocal observables (such as the two-
point correlation functions of the order parameter) have been
found to thermalize, with both their asymptotic average value
and the finite-time transient being determined by equilibrium
statistical mechanics at Teff . Remarkably, however, thermal

behavior has also been established for certain local observables
(the transverse magnetization per site, 1/N

∑
j σ

j
z , and the

kink density, N ) in quenches toward criticality, the long-time
value being still univocally determined by Teff .

Physically, it is clear that the concept of an effective
temperature has a restricted validity and, for the model under
investigation, it does not imply that an actual thermal ensemble
emerges as a result of a sudden quench followed by free
evolution under the quenched Hamiltonian. With that in mind,
we further explore in what follows the emergence of effective
thermal behavior in critical quenches, by focusing on a
different local observable and by extending the analysis in
two directions: first, initialization in a thermal state at finite
T > 0 and, second, sudden quenches to a multicritical QCP.

Let us first consider a sudden quench of the magnetic field
h0 �→ hf in the Ising chain (γ = 1), starting from an initial
state of the form given in Eq. (28), and focus on the long-time
behavior of the number of quasiparticle excitations with mo-
mentum k. Since the corresponding observable commutes with
the time-dependent Hamiltonian, the long-time expectation
value 〈γ †

k γk〉 coincides with the one right after the quench. In
order for the latter to be consistent with the equilibrium value
at Teff , the following identity must hold:

(ρ00,k(t0) − ρ11,k(t0))|a0,k|2 + ρ11,k(t0) + ρ33,k(t0)

= (1 + e+εk (hf ,γ=1)/Teff )−1, (33)

where |a0,k|2 is the excitation probability of mode k due to
the quench and Eq. (11) has been used in the left hand-side.
The right-hand side is the fermionic thermal equilibrium
prediction Tr[ρk

Teff
γ

†
k γk]. Exact numerical results are presented

in Fig. 11. Altogether, these data indicate that similar to
the behavior of other local observables in a ground-state
quench,39,40 no effective thermalization is observed outside
criticality [Figs. 11(c)–11(f)], as expected. Even for a quench
toward QCP A, however, the initial temperature T must
be sufficiently high in order for our chosen observable to
thermalize [Figs. 11(a) vs 11(b)].

In order to gain physical insight into what distinguishes a
critical vs noncritical quench in our case, and understand why
effective thermal behavior fails to emerge outside criticality
even for high initial temperature, it is useful to take a closer
look at Fig. 11(d): Clearly, the main difference between the
equilibrium and the actual quasiparticle distribution arises
from momentum modes close to kc. On the one hand, since
�(kc,hf ) is the smallest gap at hf , the maximum quasiparticle
excitation is expected to occur at kc from the equilibrium
prediction [right-hand side of Eq. (33)]. On the other hand,
the peak of the observed distribution is located at modes close
to kc, but not exactly at kc. Because the system is far from hc,
note that the difference of ρ00,k , ρ11,k , and ρ33,k for modes
close to kc is negligible. Thus the main difference is due
to |a0,k|2, which, as remarked, is the excitation probability
of mode k at T = 0 after a sudden quench to hc. Upon
re-interpreting |a0,k|2 ↔ 1 − |c0,k|2, it is possible to make
contact with the results shown in Fig. 8: clearly, the excitation
probability of mode kc changes dramatically for h0 close to
hc, which suggests that kc does not contribute appreciably
unless hf = hc. Instead, other modes close to kc can be excited
for values hf ≈ hc at which kc is not yet excited. Since the
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FIG. 11. (Color online) Comparison between the long-time average quasiparticle excitation following a sudden quench h0 �→ hf starting
from a thermal initial state at temperature T (dashed red) and the equilibrium value predicted by a fictitious thermal canonical ensemble at Teff

(solid blue). Panels (a), (c), (e): Sudden quenches to hf = hc = 1, hf = 1.01, hf = 1.5, respectively, with initial temperature T = 1.0. The
behavior for a ground-state quench (T = 0, data not shown) is qualitatively similar, with deviations from the thermal prediction being further
pronounced. Panels (b), (d), (f): Sudden quenches to hf = hc = 1, hf = 1.01, hf = 1.5, respectively, with initial temperature T = 10.0. In all
cases, N = 800, and the value of Teff obtained from is Eq. (32) is also given.

excitation contribution from such “quasicritical modes” would
then be larger than the one from kc, Eq. (33) would not hold.
Accordingly, the only way to enforce the validity of Eq. (33)
is through a sudden quench toward hc, as observed.

Having clarified why criticality is essential, we turn to
assess whether the requirement of a sufficiently high initial
T may be related to the finite system size or will persist in
the thermodynamic limit. We focus on a sudden quench h0 =
3.0 �→ hc at T = 1.0, and analyze how the long-time average
of the total quasiparticle density 1/N

∑
k γ

†
k γk deviates from

the thermal equilibrium prediction at Teff as N is increased.
While we find that the observed deviations are practically
constant over the range of N explored (data not shown),
the difference between 〈γ †

kc
γkc

〉 and its corresponding thermal
prediction at Teff does decrease with increasing N : As seen
in Fig. 12, such a difference �γ

†
kc
γkc

∼ N−0.999 92 at T = 1.0,
implying a vanishing difference and effective thermal behavior
also at low temperature for the critical mode as N → ∞.
This property, however, stems from the fact that the gap of kc

closes in the thermodynamic limit, which is not true for the
gap of other modes. For either the number of quasiparticles
in a generic mode or for the total quasiparticle density, we
thus conjecture that even in the thermodynamic limit, thermal
behavior will be observed following sudden quenches to the
QCP A only if T � �k(hc,γ = 1) for all the relevant modes.

In view of the peculiar features that distinguish a multi-
critical QCP, as reflected in particular in anomalous scaling
behavior,23 it is not obvious whether the above condition
would still suffice for the same observables to thermalize
in a sudden quench toward MCP B. Exact results for two

sudden multicritical quenches of the form (h0 = 1 + γ0 �→
hf = 1 + γf ,γ0 �→ γf ) are given in Fig. 13, starting from
a thermal state at high temperature: Specifically, MCP B is
both reached via a sudden quench from the PM phase (left
panel) and via a sudden quench from the FM phase (right
panel). Contrary to the high-temperature scenario for the
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FIG. 12. (Color online) Difference between the long-time quasi-
particle excitation of the critical mode kc from its thermal equilibrium
prediction as a function of system size for a sudden magnetic-
field quench to hc in the Ising chain. An initial thermal state
with temperature T = 1.0 is considered. The linear fitting slope is
−0.999 92 ± 3 × 10−5.
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γf = γc = 0 toward the MCP B (blue solid line) and the equilibrium value predicted by a fictitious thermal ensemble at Teff (red dashed line).
The system is initially in a thermal state with temperature T = 10. Left: Initial state is the thermal state at h0 = 2.0,γ0 = 1.0 (inside the PM
phase). Right: Initial state is the thermal state at h0 = 0.0,γ0 = −1.0 (inside the FM phase). Notice that due to the fact that the excitation
probability of low-energy modes exceeds 1/2, Teff is much higher than in any other situation with the same initial T , cf. Figs. 11(b), 11(d),
11(f), and Fig. 13(a).

regular QCP A [Fig. 11(b)], no thermal behavior emerges, the
observed expectation value 〈γ †

k γk〉 for modes close to kc being
significantly smaller or larger than the thermal equilibrium
prediction, respectively.

This anomalous long-time behavior can be traced back to
the asymmetry of the impulse region along the control path, as
sketched in Fig. 1 (bottom). Following Ref. 23, the location of
the minimum gap for each mode k along the path h = 1 + γ

is determined by requiring ∂�k(γ,1 + γ )/∂γ = 0, that is,

γ̃ (k) = (cos k − 1)/(1 + sin k2) < 0,

which indicates that the center of the impulse region is largely
shifted into the FM phase for each k. As a result, after a
sudden quench to the MCP B from the FM phase, the excitation
probability of low-energy modes tends to be enhanced above
1/2, whereas for a sudden quench to MCP B from the PM
phase, the excitation probability of low-energy modes tends
to be suppressed below 1/2. Since the thermal equilibrium
value is close to 1/2 in the high-temperature limit for low-
energy modes, thermal behavior is not realized in either quench
process.

Based on the above results, we conjecture that quenching
toward the center of the impulse region is a necessary
requirement for γ

†
k γk or 1/N

∑
k γ

†
k γk to thermalize following

a sudden quench. While typically this is the case in a quench
to a regular QCP (for instance, a sudden quench of h to QCP A
at fixed γ = 1), for a sudden quench to MCP B along the path
h = 1 + γ , the location of the minimum gap (hence the center
of the impulse region) is different for each mode k, preventing
thermalization to be possible along this path irrespective of
the final values hf ,γf . More generally, we expect the above
requirement to be necessary for local observables other than
those examined here. While this goes beyond our current
scope, it would be interesting to verify, for instance, whether
the transverse magnetization or the density of kinks would still
effectively thermalize in a multicritical quench to QCP B from
the ground state.

We also remark that in a recent work,41 general conclusions
have been reached for the equilibrium distribution after a
sudden quench, predicting, in particular, effective thermal
behavior for generic observables when the quench is performed
around a noncritical point, and poor equilibration otherwise.
While at first these results seem to contradict both our
present conclusions for critical quenches toward QCP A in
the appropriate temperature regime as well as earlier results
for zero temperature,39,40 a crucial assumption in Ref. 41 is
a small quench amplitude, causing only a small number of
excited states to effectively contribute around a QCP. The
opposite condition is implied throughout our discussion, the
sudden quench amplitude being in fact large enough for
the number of excited states involved in a critical quench to
outweigh those involved in a noncritical one (cf. Fig. 8). In
light of that, we also conjecture that having a sufficiently large
number of states involved in the excitation process is a general
necessary condition for effective thermalization after a sudden
quench.

V. CONCLUSIONS

In summary, we have addressed how different aspects of
many-body nonequilibrium dynamics depend upon initial-
ization in a state other than the ground state for a class
of one-dimensional exactly solvable XY models. Our main
findings may be itemized as follows:

Dynamical scaling: Initial pure excited states. Provided that
the nonequilibrium response of the system is characterized
in terms of suitable relative indicators (such as the relative
excitation density), adiabatic quench dynamics can still encode
the ground-state equilibrium critical exponents for a large class
of initial energy eigenstates as well as for pure excited states
prepared by a sudden parameter quench. A crucial role is
played by how the initial excitation is distributed over the
set of relevant quasiparticle modes that effectively evolve in
an adiabatic quench. In particular, a unifying criterion that
ensures the emergence of KZS in both of the above scenarios
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in the thermodynamic limit is obtained by requiring that
the majority of the relevant modes share a common initial
excitation pattern, as expressed by Eq. (22).

Our results recover ground-state scaling when no excitation
is initially present, but they also allow for the critical exponents
of the ground-state QPT to be encoded in the scaling behavior
for highly energetic initial configurations, where most of the
relevant modes are fully or half excited. While this makes
contact with similar conclusions on critical entanglement
scaling in excited energy eigenstates recently obtained for
static QPTs,53 it confirms that only the set of relevant modes is
important in dynamical scenarios, as opposed to the full static
mode set. Besides being supported by exact numerical methods
and analytical derivations in limiting regimes, a justification
of the proposed criterion has also been obtained for the
case of excited-eigenstate initialization by suitably extending
the perturbative (first-order) AR approach we previously
employed for ground-state continuous QPTs.

Dynamical scaling: Initial mixed states. In general, more
restrictive conditions on the distribution of the initial excitation
over relevant modes must be obeyed for universal dynamical
scaling to emerge in adiabatic quench dynamics that originates
from a statistical (incoherent) mixture as compared to a
(coherently prepared) pure state. In particular, two distinct
scaling regimes have been identified for an initial thermal
ensemble at a finite temperature T , depending on whether
the latter is very low or very high relative to the relevant
quasiparticle energy scale, and leading to KZS τ−1/2 vs τ−1

for a standard QCP, respectively. Since in both cases all the
relevant modes must share a common excitation pattern if the
initial thermal state is prepared at criticality, this implies that
KZS is fragile against thermal fluctuations in this case, the
scaling exponent deviating from the KZ prediction as soon as
T �= 0. From a practical standpoint, it is, however, important
to note that a finite range of temperatures can still support KZS
if the system is initially at thermal equilibrium sufficiently far
from criticality. General predictions for scaling behavior in
adiabatic thermal quenches involving a MCP have also been
obtained [cf. Eq. (31)], and verified to be consistent with exact
numerical results.

Effective thermalization. Effective thermal behavior may
emerge in the relaxation dynamics of the quasiparticle density
following a sudden quench from a thermal state under

appropriate conditions. Specifically, the long-time expectation
value of this observable is determined by a fictitious thermal
equilibrium ensemble at temperature Teff provided that (i) the
system is quenched toward the center of the impulse region, and
(ii) the initial temperature is sufficiently high with respect to
all the relevant gaps. For a standard QCP, the first requirement
is met by a sudden quench toward criticality, which has been
found sufficient for local observables such as the transverse
magnetization per site and the kink density to thermalize
starting from the ground state.39,40 Our results indicate that, in
general, condition (i) alone need not suffice for arbitrary local
observables. While requirement (ii) may be taken to be in line
with what expected for a free (integrable) theory,36,43 it remains
an interesting open question to precisely characterize what
subclass of local observables may exhibit effective thermal
behavior under the sole condition (i).60

Our results additionally show that for certain observables
(such as the quasiparticle density), effective thermalization
may fail to occur altogether (or possibly require yet more
stringent requirements) for sudden quenches to a multicritical
QCP. Physically, we have traced this behavior back to the
existence of quasicritical (path-dependent) energy states and
the corresponding shift of the impulse region, which also
underlies the emergence of anomalous scaling exponents.23

In this context, an interesting next step would be to examine
the thermalization behavior of other local observables as
considered in Refs. 40 and 39.

While the above analysis provides a more complete picture
of nonequilibrium dynamics in a paradigmatic class of spin
chains than available thus far, it remains a main open question
to understand how crucially our results rely on the XY chain
being an exactly solvable noninteracting model. From this
point of view, it would be worthwhile to explore, for instance,
whether dynamical critical scaling may still exist for finite-
energy initial states in nonintegrable models, or even in more
complex but still integrable systems such as a Bethe-ansatz
solvable one-dimensional Heisenberg XXZ chain53 or an
infinitely coordinated Lipkin-Meshkov-Glick model.30
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