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Abstract

Quantum circuits consisting of single and two-qubit gates selected at random from a universal

gate set are examined. Specifically, the asymptotic rate for large numbers of qubits n and large circuit

depth k at which t-order statistical moments of the matrix elements of the resulting random unitary

transformation converge to their values with respect to the invariant Haar measure on U(2n) are

determined. The asymptotic convergence rate is obtained from the spectral gap of a superoperator

describing the action of the circuit on t-copies of the system Hilbert space. For a class of random

quantum circuits that are reversible and invariant under permutation of the qubit labels, the gap

and hence the asymptotic convergence rate is shown to scale as ∼ 1/n for sufficiently large n, with

a coefficient that may in general depend on t. Bounds are derived between the convergence rates

for a broader class of reversible random quantum circuits and the convergence rates of second order

moments of irreversible random quantum circuits are examined through a mapping to a Markov

chain.

Weak constraints are constructed for finite moments of matrix elements of local observables with

respect to the eigenvectors of general many-body Hamiltonians in the thermodynamic limit. This is

accomplished by means of an expansion in terms of polynomials which are orthogonal with respect

to the density of states. The way in which such constraints are satisfied is explored in connection to

non-integrability and is argued to provide a general framework for analyzing many-body quantum

chaos. Hamiltonians consisting of the XX-interaction between spin-1/2 particles (qubits) which are

nearest neighbors on a 3-regular random graph (non-integrable), and an open chain (integrable), are

diagonalized numerically to illustrate how the weak constraints can be satisfied. The entanglement

content of the eigenvectors of chaotic many-body Hamiltonians is discussed as well as the connection

between quantum chaos and thermalization in closed quantum systems.
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Chapter 1

Introduction: Motivations and

Overview

An important way in which quantum mechanics departs from classical mecganics is the fact that a

pure state can be described by a vector in a discrete Hilbert space of a potentially large dimension,

compared to the number of coordinates, rather than by a point in a phase space. For a many-

body system the dimension N of the state space grows exponentially as N = 2n with the number

n of constituent parts. This fact allows for some advantages of quantum computing over classical

computing models, but also makes exact calculations of many-body eigenstates and expectation

values a hopelessly complicated task. In particular, since quantum states are represented by vectors,

the notion of a random state of a quantum system is more subtle and involves more complexity than

classical randomness. Since, as in classical dynamics, quantum evolution is a transformation on the

state space, the fact that quantum states are Hilbert space vectors requires that random quantum

dynamical processes be understood in terms of random unitary transformations.

In classical information processing, the use of randomized algorithms and techniques has been

extensively explored. Recently, the quantum information community has asked the parallel question

for quantum computation, namely, what quantum information processing tasks can be performed or

improved if one has access to random quantum states and unitary transformations, and what does the
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assumption of random states and unitary transformations permit one to prove that may be difficult

or impossible otherwise. Several application have been developed, perhaps most notably, that the

strength of a noisy quantum channel can be estimated in an efficient and unbiased way by twirling

the channel with a random unitary transformation [1]. Other examples include, fast ”scrambling”

of information, efficient quantum tomography and randomized gate benchmarking [2, 3, 4].

It has been shown that parallel to a result from classical computation theory, random unitary

transformations are good encoders of quantum information. Specifically, a mapping from a logical

Hilbert space of k-qubits to a random subsystem of an n > k qubit system, has been shown to

saturate the quantum erasure channel. This result has been applied to the problem of the black hole

information paradox [5]. Strikingly, a pair of channels for which the the minimum output entropy is

not additive can be shown to occur with finite probability through a randomized construction [6].

Nevertheless, it can be shown that to generate an arbitrary unitary transformation on the state

space of an n-qubit system requires a number of single and two-qubit gates that grows exponentially

with n. But this need not be as severe a setback as it appears, since not all protocols which assume

access to random unitary transformations require a fully random unitary transformation with respect

to the Haar measure. It has been useful to classify protocols by the minimum required order moments

that are required to be equivalent to the Haar measure. A distribution which requires only moments

of up to order t is referred to as a unitary t-design [1]. Many algorithms, notably encoding and

twirling protocols require only a 2-design, which has been shown to require only O(n log n) gates [7].

Perhaps the simplest way to construct random unitary transformations is by selecting gates at

random from a universal gate set. So-called random quantum circuits were first introduced in [11]

and were suggested as a method for efficient twirling in [1]. The extent to which random quantum

circuits are efficient t-designs was raised in [7] and proved to be efficient in n for the case t = 1 and

t = 2. In the first part of this thesis I will examine the question of how quickly moments of arbitrary

order t of random quantum circuits converge to the Haar measure, as well as how some aspects of

random quantum circuit design influence the convergence rates.

In Chapter 1 mathematical tools will be presented for analyzing the convergence rate of ran-

dom quantum circuits to the Haar measure. It will be shown that the convergence rate for t-order

moments is determined by the properties of a superoperator describing the action of the random
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quantum circuit on t-copies of the system. In Chapter 3 random quantum circuits which are re-

versible, for which corresponding moment superoperator in Hermitian, will be examined. Bounds

will be constructed relating the gap between the largest and second largest eigenvalue of the mo-

ment superoperator corresponding to different design parameters for random quantum circuits. As

reported in [19], it will be shown for a class of random quantum circuits which is invariant under

permutations of the qubit labels, that for sufficiently large n, and for any t the gap and hence the

convergence rate scales as 1/n. The relationship between the gate complexity of typical unitary

transformations and the linear asymptotic scaling result for the convergence time of finite order mo-

ments will be discussed. In Chapter 4, irreversible random quantum circuits, for which the moment

superoperator is not Hermitian, will be discussed. It will be shown that the optimal convergence

rate for second order moments of any permutationally invariant random quantum is achieved using

an irreversible gate distribution suggested by an implementation of a random quantum circuit as a

measurement pattern on a cluster state. [20].

In the remainder of this thesis, so-called many-body quantum chaos is examined. It was first

suggested by Wigner [8] that the eigenvalues and eigenvectors of a complex quantum many-body

Hamiltonian ought to have the same statistical features as certain ensembles of random matrices.

It was later noticed that this property also holds for quantized versions of classically chaotic sys-

tems. That is, for strongly non-integrable quantum Hamiltonians the eigenvectors and eigenvalues

appear random with respect to an appropriately defined measure on the Hilbert space. Similar to

the occurrence of phase-space mixing and ergodicity in classical systems, the randomness of the

eigenvectors of a choatic quantum Hamiltonian suggests that the corresponding propagator acts as a

random unitary transformation, and thus randomizes initial states. However, since the Hamiltonian

is fixed and depends on only a small number of parameters compared to the dimension of the system

Hilbert space, the resulting dynamics is not characterized by true randomness but is pseudo-random.

I investigate the properties of chaotic many-body systems, such as interacting spin-1/2 (qubits) sys-

tems. I will generalize well known conjectures and results from semiclassical quantum chaos, which

pertains to the large energy limit of quantum systems for which a classically chaotic limit exists,

to the thermodynamic limit of quantum many-body systems. For such systems, the idea of chaos

can not be borrowed from a corresponding classical notion, but must be constructed solely out of
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inherently quantum aspects of the system’s static and dynamical properties. The implications of

quantum chaos research to the foundation for classical statistical mechanics is discussed.

Chapter 5 contains an introduction to quantum chaos in general, in particular it introduces

standard conjectures and results relating smoothly varying statistical properties of the eigenvec-

tors and eigenvalues to classical quantities. Some problems in relating classical concepts such as

integrability to many-body quantum systems is discussed. In Chapter 6, a method of formulating

weak constraints for the statistical properties of many body systems in the thermodynamic limit is

presented. The method builds on techniques introduced in [9] and [10] which employs orthogonal

polynomials with respect to the density of states of the system Hamiltonian to express smoothed

properties of the eigenvectors in the thermodynamic limit. In Chapter 7, a numerical study of the

spin-1/2 XX Hamiltonian on a 3-regular random graph is presented to illustrate and support the

results of Chapter 6. Conclusions follow in Chapter 8 along with a discussion of future research

directions.
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Chapter 2

Random Quantum Circuits:

Background

2.1 Convergence of Random Quantum Circuits

In this chapter the mathematical machinery for analyzing the convergence properties of random

quantum circuits, is introduced. Let a k-length random quantum circuit acting on n qubits be a

sequence of k randomly selected unitary transformations Uk . . . U1 , where each Ui is an element of

the unitary group U(N) forN = 2n. Each Ui is selected independently according to a measure µ(W ),

defined on all subsets W ⊆ U(N). If µ has support on a universal gate set, then it follows that the

measure µk generated by k-length random quantum circuits, U = Uk . . . U1, converges [12] as k → ∞

to the unique measure on U(N), referred to as the Haar measure and denoted µH which is invariant

under the group action of arbitrary elements of U(N) [13]. That is, µH(W ) = µH(W ′) for any two

subsets A and W ′ of U(N), such that W ′ is the image of W under some U ∈ U(N). The central

question addressed in the first part of this thesis is how large k must be for the distance ∥µk − µH∥

to be small in an appropriate sense. The answer will in general depend on the norm chosen. Some

standard norms and a family of norms motivated by applications to quantum information processing

will also be discussed.
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A natural distance between probability distributions is the so-called total variation distance,

which is given by the largest difference in probability between µk(W ) and µH(W ) for anyW ⊆ U(N),

that is,

∥µk − µH∥TV = supW⊆U(N)|µk(W )− µH(W )|.

Restricted to A consisting of the union of bounded regions of U(N), the total variation is the L1

norm on the probability densities

∥µk − µH∥TV =

∫
U∈U(N)

|dµk(U)− dµH(U)|.

Uniform convergence of the probability densities, on the other hand, is stronger and requires closeness

in the L∞ norm, namely,

∥µk − µH∥∞ = supU∈(U(N))

∣∣∣ ∫
U ′∈U(N)

dµk(U
′)δ(U ′ − U)−

∫
U ′∈U(N)

dµH(U ′)δ(U ′ − U)
∣∣∣.

Uniform convergence is too strong even for classical probability distributions, since the total variation

distance limits the distinguishability of distributions over classical states. In quantum information

processing application, a unitary transformation U describing the evolution of quantum states of

some system S cannot be accessed directly, but only indirectly through measurements made on

quantum states that are evolved by U . Specifically, in order to distinguish between two unitary

transformations, U and U ′, one needs to prepare an initial state ρ that acts on the tensor product

space of the state spaces of the system S and an ancilla system A, evolve ρ under U ⊗ IA, ρ
′ =

U ⊗ IAρU
† ⊗ IA, and then perform a measurement on ρ′. Given the ability to prepare arbitrary

initial states and perform arbitrary measurements on the output, it follows from Helstrom’s theorem

[14] that distinguishability of two unitary transformations U and U ′ is determined by

supρ∥(U ⊗ IA)ρ(U
† ⊗ IA)− (U ′ ⊗ IA)ρ(U

′† ⊗ IA)∥1,

where ∥X∥1 ≡ tr
(√
X†X

)
. Taking the supremum over all dimensions NA of the ancilla space

yields the diamond norm [15], the most general metric for distinguishability of quantum states. The
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diamond can be extended to unitary transformations and completely positive maps, by taking the

supremum over all states acted upon.

When distinguishing two distributions over the set of unitary transformations, an additional

consideration is important. Suppose there is a source that produces a sequence of random unitary

transformations selected independently according to µ. An experimenter may prepare any initial

state of system plus ancilla, evolve the state with U and perform any measurement. A complete

description of this process is provided by the quantum channel,

M1[µ](ρ) =

∫
U∈U(N)

dµ(U)UρU†, ∀ρ.

It is convenient to express M1 in Liouville representation, that is, as a linear operator acting on

the vector space of linear operators Hop on H of dimension N2. Borrowing notation from open-

system theory [16], “operator kets” in Hop are introduced denoted as |A⟩⟩ ≡ A and ⟨⟨A| = A†.

Accordingly, an N2-dimensional operator ket transforms according to (U ⊗U∗)|A⟩⟩ ≡ UAU†, under

U ∈ U(N). Then,

M1[µ] =

∫
U∈U(N)

dµ(U)U ⊗ U∗.

Once a basis of Hop is chosen, the matrix elements of U ⊗ U∗ consists of a complete set of (1,1)

monomials of the matrix elements of U , that is, monomials of the form uiju
∗
kl. Thus, the components

ofM1 are a complete set of (1,1) order moments of µ. SinceM1 only contains the first-order moments

of µ, any two distributions µ and µ′ which share the same first-order moments are not physically

distinguishable.

If the source is modified so that at each sampling of µ, the source produces t identical copies of

U , then additional information about µ can be obtained. This situation can be completely described

by the quantum channel

Mt[µ](ρ) =

∫
U∈U(N)

dµ(U)U⊗tρ⊗ U†⊗t,

whereby ∀|ρ⟩⟩

Mt[µ] =

∫
U∈U(N)

dµ(U)U⊗t ⊗ U∗⊗t ≡
∫
U∈U(N)

dµ(U)U⊗t,t. (2.1)
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Note that the object U⊗t,t contains all of the (t, t)-order monomials of the matrix elements of U ,

(e.g. ui1j1 . . . uitjtu
∗
k1l1

. . . u∗ktlt
), and the matrix elements of Mt provide a complete set of t-order

moments of µ(U). Thus, any two distributions µ and µ′ that differ for some moment of order up to

t can be distinguished. Equivalently, if a particular protocol involves selecting any finite number of

copies t of the same randomly sampled unitary transformations, then any distribution which shares

the same moments up to order t can be substituted without any observable difference. The notion

of a distribution µ which has the same distribution as the Haar measure up to moments of order

t was first introduced in [1], and is referred to as an exact unitary t-design. If the moments up to

order t are approximately the same as the Haar measure, such that

supρ∥Mt[µk]⊗ IA[ρ]−Mt[µH ]⊗ IA[ρ]∥1 < ϵ,

where the supremum is taken over density matrices ρ that act on H⊗t ⊗HA, then µ is referred to

as an ϵ-approximate unitary t-design [1].

2.2 Tools from Harmonic Analysis

The probability density dµk(U) of a k-length random quantum circuit where each gate is selected

independently according to dµ(U), is given by the k-fold convolution,

dµk(U) =

∫
Πk

i=1dµ(Ui)δ(U −Πk
i=1Ui)

of dµ(U). A powerful technique for examining how a distribution over a compact group behaves

under convolution is provided by harmonic analysis [17]. By the Peter-Weyl theorem, the Hilbert

space of square integrable functions on any compact group is spanned by the finite-dimensional

irreducible representations (irreps) of the group. Next, define {Ds(U)} as the set of such finite

dimensional irreps of U(N) and let ds be the dimension of each representation. Then, different

irreps are orthogonal with respect to the Haar measure on the group, in the sense that

∫
U(N)

dµH(U)[Ds
ij(U)]∗Ds′

kl(U) =
1

ds
δss′δikδjl.

8



So, any function f(U) may be expanded as a series

f(U) =
∞∑
s=0

ds∑
ij

fsijD
s
ij(U),

where the Fourier coefficient

fsij = ds

∫
dµH(U)f(U)[Ds

ij(U)]∗.

If, in addition, f(U) is continuous, then the sequence of partial sums converges uniformly, that is,

for any ϵ > 0, there exists an s′ such that

∣∣∣f(U)−
s′∑

s=0

∑
ij

fsijD
s
ij(U)

∣∣∣ < ϵ,

∀U ∈ U(N). Furthermore, the convolution of two functions, f(U) and g(U), is straightforward to

compute in terms of the corresponding Fourier expansions. Let (f ◦g)(U) =
∫
dµH(U ′)f(U)g(U ′†U),

be the convolution of f(U) and g(U). Then,

(f ◦ g)s =

∫
dµH(U)(f ◦ g)(U)[Ds]∗(U) (2.2)

=

∫ ∫
dµH(U)dµH(U ′)f(U)g(U ′†U)[Ds]∗(U),

Now let U ′†U → U ′ and UU ′† → U . Then,

(f ◦ g)s =

∫ ∫
dµH(U)dµH(U ′)f(U)g(U ′)[Ds]∗(UU ′) (2.3)

=

∫ ∫
dµH(U)dµH(U ′)f(U)g(U ′)[Ds]∗(U)[Ds]∗(U ′)

=

∫
dµH(U)f(U)[Ds]∗(U)

∫
dµH(U ′)g(U ′)[Ds]∗(U ′)

= fsgs.

Thus, under convolution, the matrix of Fourier coefficients corresponding to each irrep (f ◦ g)s is

given by the matrix product of the coefficient matrices fs and gs corresponding to the same irrep

9



of the functions to be convolved.

If µ is absolutely continuous, then its density dµ(U) = p(U)dµH(U) exists, and the convergence

of µk can be understood in terms of the Fourier components {ps}. Otherwise, the convergence of

the set of expectation values of all square integrable functions E[f(U)] can be used to define the

convergence of µk.

2.3 Convergence of Moments

Since U⊗t,t is also a representation of U(N), the convolution of the t-order moments is given by the

matrix product,

Mt[µk] =

∫
Πk

i=1dµ(Ui)Π
k
i=1U

⊗t,t
i (2.4)

= Πk
i=1

∫
dµ(Ui)U

t,t
i

= (Mt[µ])
k.

If the measure µ is invariant under Hermitian conjugation, that is µ(A) = µ(A′) where U ∈ A ⇐⇒

U† ∈ A′ for every A ⊆ U(N), then the moment superoperator obeys the property

Mt[µ] =

∫
dµ(U)U⊗t,t =

∫
dµ(U)U†⊗t,t =Mt[µ]

†.

A random quantum circuit selected according to any such distribution will be referred to as reversible.

I will present here the argument shown in [19], that the moments of µk converge to those of the

Haar measure µH as k → ∞ for any reversible random quantum circuit as long as µ is has support

on a universal subset of U(N). Let Vt be the subspace of fixed points of U⊗t,t, U ∈ U(N), with PVt

denoting the corresponding projector. It will be shown that

lim
k→∞

(
Mt[µ]

)k
= PVt =Mt[µH ], (2.5)

10



where PV is the projector onto V. Let |ϕ⟩⟩ be an eigenvector of Mt[µ], and |ϕU ⟩⟩ ≡ U⊗t,t|ϕ⟩⟩. From

the triangle inequality it follows that

∣∣⟨⟨ϕ|Mt[µ]|ϕ⟩⟩
∣∣=∣∣∣ ∫ dµ(U)⟨⟨ϕ|U⊗t,t|ϕ⟩⟩

∣∣∣≤∫
dµ(U)

∣∣⟨⟨ϕ|ϕU ⟩⟩∣∣.
Thus, λ ≤ 1 with equality holding if and only if U⊗t,t|ϕ⟩⟩ = |ϕ⟩⟩,∀ U ∈ U(N). Furthermore, if the

support of µ is universal, for any open ball in U(N) there is a U , such that U = Uk . . . U1 where

each Ui is in the support of µ. Therefore, if |ϕ⟩⟩ ∈ Vt then U |ϕ⟩⟩ = |ϕ⟩⟩ for all U ∈ U(N).

Since all other eigenvalues of Mt[µ] have magnitude less than 1, Mk
t [µ] converges to PVt . To

establish the second equality in Eq. (2.5), we invoke the invariance of the Haar measure under

U(N), µH(U) = µH(U ′U). For |ϕ⟩⟩, an eigenoperator of Mt[µH ] with eigenvalue λ, it follows that

Mt[µH ]|ϕ⟩⟩ =
∫
dµH(U)U⊗t,t|ϕ⟩⟩ = λ|ϕ⟩⟩. Thus,

U ′⊗t,tλ|ϕ⟩⟩ =

∫
dµH(U)(U ′U)⊗t,t|ϕ⟩⟩

=

∫
dµH(U ′†U)U⊗t,t|ϕ⟩⟩

=

∫
dµH(U)U⊗t,t|ϕ⟩⟩

= λ|ϕ⟩⟩.

If λ ̸= 0, it follows that |ϕ⟩⟩ ∈ Vt, otherwise λ = 0, which establishes the desired result. The above

result also holds with λ replaced by |λ| for irreversible circuits that are diagonalizable, since only

the absence of Jordan blocks of dimension more than one was assumed. A general proof of Eq. (2.5)

is contained in Lemma 3.2 in [7].

2.3.1 Convergence Rate and Convergence Time

Having shown that the moment superoperator Mk
t [µ] converges to Mt[µH ], for reversible random

quantum circuits, one may determine the rate at which convergence occurs in terms of circuit depth

k. Since Mt[µH ] projects onto the eigenspace of Mt[µ] of eigenvalue 1, the distance ∥Mk
t [µ] −

Mt[µH ]∥ with respect to any norm depends only on the remaining eigenvalues {λi} of Mt[µ] and

the corresponding eigenprojectors {Πi}. Specifically, if k is sufficiently large, ∥Mk
t [µ] −Mt[µH ]∥ =

11



∥∥∥∑λi ̸=1 λ
k
iΠi

∥∥∥ ≈ |λ1|k∥Π1∥, where λ1 ≡ 1 − ∆t is the subdominant eigenvalue of Mt[µ]. Thus,

the asymptotic convergence rate, Γ = − ln(1−∆), is entirely determined by the spectral gap ∆t of

Mt[µ].

In order to determine the convergence time, an upper-bound of the circuit length is required to

achieve a specified accuracy, ϵ. Let the convergence time, with respect to a given norm, be defined by

the minimum length kc for which ∥Mkc
t [µ]−Mt[µH ]∥ ≤ ϵ. For the case where there is no ancilla, the

diamond norm becomes the 1-norm on the space of t∗n qubit density matrices. One may bound the

1-norm starting from the 2-norm [7]. For any density matrix ρ, ∥(Mk
t [µ]−Mt[µH ])(ρ)∥2 ≤ λk1 . This

follows from normalization of ρ and the fact thatMt[µH ] projects onto the eigenspace of eigenvalue 1

ofMt[µ]. In conjunction with the Cauchy-Schwartz inequality, this implies ∥(Mk
t [µ]−Mt[µH ])(ρ)∥1 ≤

2ntλk1 . Requiring that 2ntλkc
1 ≤ ϵ finally yields

kc ≤ ∆−1
t (log(1/ϵ) + nt log(2)). (2.6)

12



Chapter 3

Reversible Random Quantum

Circuits

If the measure µ is invariant under Hermitian conjugation, as noted in Chapter 2, then the mo-

ment superoperator is Hermitian, and the corresponding random quantum cicruit is reversible. In

this chapter, I will review the main results in [19]. Specifically, I will analyze a class of reversible

random quantum circuits with the following form: at each time step, a gate will be selected inde-

pendently form a distribution µ̃ which has support on a universal subset of U(4) and is invariant

under Hermitian conjugation.

The gate is subsequently applied to a pair (i, j) of qubits selected according to a probability

distribution pij . Since each gate in the random quantum circuit only acts on a fixed pair of qubits,

it is convenient to construct an alternative tensor product decomposition of the state space, HMt

upon which the moment operator Mt acts. Recall that HMt = H⊗2t where H = H⊗n
q is the Hilbert

space upon which the random quantum circuit acts and consists of the tensor product space of n

two-dimensional Hilbert spaces Hq. One may instead define a local moment space, Hlt = H⊗2t
q ,

consisting of the 2t factor spaces associated with a single qubit on each of the 2t copies of H, and

now write HMt = H⊗n
lt

as in Fig. 3.1. Since for each application of a random gate U to a fixed

pair of qubits, U⊗t,t acts non-trivially only on the associated bi-local moment space Hlt ⊗Hlt , the

13
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Figure 3.1: It is convenient to visualize the moment space HMt
as an array of 2nd qubits, with each

tn qubits forming a bra and tn qubits forming a ket. The two columns, one in the bra and the other
in the ket, which correspond to a single qubit determine the local moment spaces Hlt . The action
of a two-qubit gate U is shown only to affect bi-local moment spaces Hlt ⊗Hlt corresponding to the
relevant qubit pair.

moment operator may be written as

Mt[µ] =

n∑
i<j

pijm
ij
t [µ̃], (3.1)

where the restriction of mij
t to the corresponding bi-local moment space Hlt ⊗Hlt is

mt[µ̃] =

∫
U∈U(4)

dµ̃(U)U⊗t,t.

Thus, for any reversible random quantum circuit consisting of independently chosen single- and two-

qubit gates, the corresponding t-order moment operator has the form of a many-body Hamiltonian.

The rate at which the moments of order t converge to their Haar measure is given by the gap

∆ = 1− λ1 between the largest eigenvalue of 1 and the subdominant eigenvalue λ1.

3.1 Extremal State Subspace

Several properties of the extremal eigenspace Vt of the fixed points of Mt[µ] will be demonstrated.

Recall from Eq.(2.5) that Vt consists of operators in HMt
that commute with all t-fold tensor power

unitaries U⊗t. By Schur-Weyl duality [7, 21], every such operator is a linear combination of elements

of the symmetric group, St, of permutations of the t-copies of H in H⊗t. One may write any such

permutation as

|σ(n)⟩⟩ =
N∑

i1...it=1

|i1 . . . it⟩⟨iσ(1) . . . iσ(t)|,

14



where σ ∈ St. Furthermore, each such permutation may be viewed as a product state relative to the

factorization HMt = H⊗n
lt

. Explicitly, |σ(n)⟩⟩ =
(
|σ⟩⟩

)⊗n
, where

|σ⟩⟩ =
∑

i1...it=0,1

|i1 . . . it⟩⟨iσ(1) . . . iσ(t)| ∈ Hlt .

The extremal eigenspace, Vt, is thus exactly spanned by product states. One consequence of this

highly atypical property is that Mt is frustration free [22], that is, if |ϕ⟩⟩ maximizes the expectation

value ofMt, then it also maximizes the expectation value of every termmij
t . Physically, factorization

of the ground eigenspace can occur in certain spin systems in the presence of a factorizing field [23].

An extensive survey of spin-1/2 Hamiltonians in factorizing fields is performed in [24, 25]. The

relationship between the gap of a many-body system and the extent of entanglement of the ground

state is an area of active research [26, 27].

The extremal eigenspace Vt in addition to being factorizable, is also identical for all Mt[µ] with

universal µ. Consequently, inequalities can be derived between the gaps of Mt[µ] for different gate

distributions, µ. Consider the moment operators, Mt[µ1] and Mt[µ2], for two gate distributions, µ1

and µ2, that both have support on universal subsets of U(N). Now let µ = pµ1 + (1 − p)µ2 where

0 ≤ p ≤ 1. From the triangle inequality it follows that

∥Mt[µ]−Mt[µH ]∥sp ≤ p∥Mt[µ1]−Mt[µH ]∥sp + (1− p)∥Mt[µ2]−Mt[µH ]∥sp,

where ∥ ∥sp is the spectral norm, that is since ∥Mt[µ]−Mt[µH ]∥sp = λ1 and ∆ = 1− λ1 it follows

that,

∆ ≥ p∆1 + (1− p)∆2. (3.2)

Thus, the gap of the moment superoperator of a random quantum circuit which can be expressed

as a weighted average of simpler, though still universal, random quantum circuits is lower bounded

by the average of the gaps corresponding to the constituent random quantum circuits.

As an application of Eq. (3.2), consider a random quantum circuit with coupling probabilities pij

that satisfy only the requirement that there is a connected path from each i to each j such that pij

is nonzero for every step. Let θ ∈ Sn be a permutation of the n qubit labels. I claim that θMtθ
† has

15



the same eigenvalues as Mt. To see this, now consider the convex sum Mt = (n!)−1
∑

θ∈Sn
θMtθ

†.

Because the sum is invariant under permutations, it follows that Mt = 2
n(n−1)

∑
i<j m

ij
t . From

Eq. (3.2) it now follows that for any µ̃ on U(4), the distribution pij with the largest gap is given by

the uniform distribution pij =
2

n(n−1) ∀i, j.

Now let α be any nonintersecting 1D loop connecting all n-qubits. Let C be a set of coupling

probabilities, pij such that pij =
∑

α qαp
α
ij where

∑
α qα = 1 and qα ≥ 0 and pαij = 1/n for all

nearest neighbors on α. The gap, ∆1, for each random quantum circuit with coupling probabilities

pijα , is the same, thus by Eq. (3.2) the gap, ∆C, for the random quantum circuit corresponding to the

set of coupling probabilities, C, is at least as large as ∆1. This class includes not only the completely

symmetric graph, but also any graph of nearest neighbors on the surface of a (d + 1)-dimensional

sphere. Let the gap for the corresponding random quantum circuit be labeled ∆d. It follows from

Eq. (3.2) that ∆∞ ≥ ∆d ≥ ∆1, where ∆∞ is the gap of the permutation invariant random quantum

circuit. Thus the gap of the 1D closed chain lower bounds the gap of all d-dimensional uniform

random quantum circuits. Furthermore, the gap of a 1D open chain lower bounds the gap of the

closed 1D chain, since one may average over all translations of open 1D chains to construct the

closed chain.

In the previous example, the gate distribution µ̃ on U(4) is held fixed, while the distribution

pij is varied. It is also possible to construct inequalities between the gaps when pij is fixed but

µ̃ is permitted to vary. Let |ϕ⟩⟩ ∈ HM . Let ρij = trl ̸=i,j(|ϕ⟩⟩⟨⟨ϕ|). It follows that ⟨⟨ϕ|Mt|ϕ⟩⟩ =∑
i<j pijtr(ρ

ijmt). If one lets ρ̃ =
∑

i<j pijρ
ij , then ⟨⟨ϕ|Mt|ϕ⟩⟩ = tr(ρ̃mt). If µ̃ is the Haar measure

on U(4), then mt is the projector onto the invariant eigenspace V2. Given a set of coupling proba-

bilities, {pij}, there exists an operator ket |A1⟩⟩ such that the projection into V2 of ρ̃ is a maximum.

This must be satisfied by the first excited state of Mt. Let the eigenvalues of mt[µ̃] be {ei}. For µ̃H ,

e0 = 1 and ei = 0 ∀i > 0. For µ̃ ̸= µ̃H , the eigenspace |0⟩⟩ is Vt the same as for µH(U), since it is

the same for every universal gate distribution, but the remaining eigenvalues are no longer non-zero,

but must satisfy 1 < ei < −1 because µ is universal. Let ρ̃ =
∑

i pi|i⟩⟩⟨⟨i|. Then tr(ρ̃mt) =
∑

i eipi.

The largest possible value of this sum for ⟨⟨A|σ⟩⟩ ∀σ is given by p0e0 +(1− p0)e1, where emin is the

smallest eigenvalue of mt. This yields bounds on the gap ofMt of ∆H(1−e1) ≤ ∆µ ≤ ∆H(1−emin).

Since the eigenvalues of mt do not depend on n, although they depend on t, for any set of coupling
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probabilities, the gate distribution µ̃ on U(4) does not affect the scaling of the gap with n.

Furthermore, since the eigenvalues of Mt =
∑

i<j pijm
ij
t are invariant under local unitary trans-

formations (say what this means), it follows that the largest gap for any reversible gate set is obtained

by averaging over all local unitary transformations, that is, given any µ̃ the distribution obtained

by averaging over local unitaries has a gap at least as large.

3.2 Permutationally Invariant Random Quantum Circuits

This section follows closely the arguments presented in [19]. If pairs of qubits are selected uniformly

at random, the corresponding many-body Hamiltonian is invariant under permutations on the qubit

labels, and the gap can be determined using a well-established (but not rigorously proven) mean-

field technique, which for sufficiently large n yields an exact value for the gap. Such circuits will

be generally referred to as permutationally invariant random quantum circuits. The corresponding

moment operator may be written as follows:

Mt[µ] =
2

n(n− 1)

n∑
i<j=1

mij
t [µ̃]. (3.3)

Since Mt[µ] is invariant under the symmetric group Sn of permutations of the n local moment

spaces, one may represent Mt[µ] in terms of completely symmetric generators of U(d). Explicitly, if

{biαβ = |α⟩⟩⟨⟨β|} denotes an outer-product basis for operators acting on any Hlt , we may expand

mij
t =

d∑
αβγδ=1

⟨⟨αγ|mt|βδ⟩⟩biαβb
j
γδ ≡

d∑
αβγδ=1

cαβγδb
i
αβb

j
γδ,

and rewrite Mt[µ] as a quadratic function of the collective operators Bαβ =
∑n

i=1 b
i
αβ , that is,

Mt[µ] =
1

n(n− 1)

d∑
αβγδ=1

cαβγδ(BαβBγδ − δβγBαδ).

Since the operators Bαβ obey U(d) commutation rules, namely,

[Bαβ , Bγδ] = Bαδδβγ −Bβγ,δαβ ,
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HMt carries the (reducible) collective n-fold tensor product representation of U(d). Thanks to the

invariance under Sn, each of the eigenoperators of Mt[µ] belongs to an irrep of SU(d).

For the completely symmetric irrep, one may realize the U(d) algebra in terms of d canonical

Schwinger boson operators {aα, a†β} [28]. That is, we let Bαβ = a†αaβ and rewrite

Mt[µ] =
1

n(n− 1)

d∑
αβγδ=1

cαβγδa
†
αa

†
γaβaδ. (3.4)

Since the totally symmetric irrep of HMt contains exactly n Schwinger bosons, it is possible to

eliminate one boson mode by regarding it as “frozen” in the vacuum for a generalized Holstein-

Primakoff transformation [28]. Specifically, let the local basis be chosen so that the frozen mode

corresponds to |σ⟩⟩, and let

θ(n) ≡ (n−
∑
α̸=σ

a†αaα)
1/2,

with a†σ → θ(n), aσ → θ(n). Now expanding the square root in a Taylor series yields:

Mt[µ] = 1− 1

n

d∑
αβ=1

Eαβa
†
αaβ + O(1/n2), (3.5)

where

Eαβ = 2(δαβ − ⟨⟨σα|mt|σβ⟩⟩ − ⟨⟨σα|mt|βσ⟩⟩). (3.6)

Note that, there are no terms containing a†σ, a
†
σaα etc. that couple any boson mode α with the state

|σ⟩⊗n since it is an exact eigenstate of Mt.

Thus, for any reversible permutationally invariant random quantum circuit, and for any fixed

t > 0, the spectral gap may be expanded as

∆t =
∞∑
p=1

ap(t)n
−p + O

(
e−c(t)n

)
=
a1(t)

n
+ O

(a2(t)
n2

)
+ O

(
e−c(t)n

)
. (3.7)

where the exponential term arises from tunneling between degenerate ”wells” associated with each

product ground state, |σ⟩⟩⊗n.
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3.2.1 Leading order coefficient

I will now show that a1 > 0 as long as µ̃(U) is universal. This is equivalent to showing that

⟨⟨σα|mt|σα⟩⟩+ ⟨⟨σα|mt|ασ⟩⟩ < 1, for any operator |α⟩⟩ such that ⟨⟨α|σ⟩⟩ = 0. Let

|ψ⟩⟩ = 1√
2
(|σα⟩⟩+ |ασ⟩⟩).

Upon taking the expectation value with respect to mt, we have

⟨⟨ψ|mt|ψ⟩⟩ =
1

2

(
⟨⟨σα|mt|σα⟩⟩+ ⟨⟨σα|mt|ασ⟩⟩+ ⟨⟨ασ|mt|σα⟩⟩+ ⟨⟨ασ|mt|αα⟩⟩

)
.

SinceMt (and hencemt) is invariant under interchange of any two qubits, ⟨⟨ασ|mt|σα⟩⟩ = ⟨⟨σα|mt|ασ⟩⟩

and ⟨⟨ασ|mt|ασ⟩⟩ = ⟨⟨σα|mt|σα⟩⟩, yielding

⟨⟨ψ|mt|ψ⟩⟩ = ⟨⟨σα|mt|σα⟩⟩+ ⟨⟨σα|mt|ασ⟩⟩.

Following from the properties of the invariant subspace Vt established previously, ⟨⟨ψ|mt|ψ⟩⟩ = 1 if

and only if the operator |ψ⟩⟩ is invariant under arbitrary unitary transformations of the form U⊗t

with U ∈ U(4), given that the corresponding two-qubit gate distribution µ̃(U) is universal on U(4).

Thus, we must show that there exists a unitary transformation U ∈ U(4) such that

U⊗t(σ ⊗ α+ α⊗ σ)U†⊗t ̸= σ ⊗ α+ α⊗ σ.

(Recall that |α⟩⟩ ≡ α). In fact, we may take the permutation |σ⟩⟩ to be the identity |I⟩⟩ without

loss of generality. This follows upon noting that

⟨⟨ψ|mt|ψ⟩⟩ =
∫
dµ̃(U)tr[ψ†U⊗tψU †⊗t].

Since σU⊗t = U⊗tσ for all U ∈ U(4), ψ†σU⊗tσ†ψU†⊗t = ψ†U⊗tψU †⊗t. Thus, σ ⊗ α + α ⊗ σ has

the same expectation value as I ⊗ α̃+ α̃⊗ I, where α̃ = σ†α.

Any operator |α̃⟩⟩ orthogonal to the identity may be expanded α̃ =
∑

ν cνσ
1
ν1
. . . σt

νt
, where
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ν = (ν1, . . . , νt), and νi ∈ {0, 1, 2, 3}, with σ0 = I, σ1 = σx, σ2 = σy, σ3 = σz, and the sum ranges

over all possible strings ν except the one where νi = 0 ∀i. Thus, α̃⊗ I =
∑

ν cνσ
1
ν1

⊗ I1 . . . σt
νt
⊗ It.

Now, under U = exp(π4 iσ3 ⊗ σ3), the following transformations hold for Pauli operators:

σ1 ⊗ I 7→ −σ2 ⊗ σ3,

σ2 ⊗ I 7→ σ1 ⊗ σ3,

σ3 ⊗ I 7→ σ3 ⊗ I,

I ⊗ σ1 7→ −σ3 ⊗ σ2,

I ⊗ σ2 7→ σ3 ⊗ σ1,

I ⊗ σ3 7→ I ⊗ σ3.

Thus, for any |α̃⟩⟩ with support on a Pauli string such that νi = 1 or 2 for some i, there are terms

in the expansion of U⊗t(I ⊗ α̃ + α̃ ⊗ I)U†⊗t which contain factors of the form σ2 ⊗ σ3, σ3 ⊗ σ2,

σ1 ⊗ σ3, and σ3 ⊗ σ1. Since there are no such term in the expansion of I ⊗ α̃+ α̃⊗ I, it follows that

I ⊗ α̃+ α̃⊗ I is not invariant under (exp(π4 iσ3 ⊗ σ3))
⊗t. Similarly, if |α̃⟩⟩ has support on any Pauli

string such that νi = 3 or 2 for some i, then I⊗ α̃+ α̃⊗ I is not invariant under (exp(π4 iσ1⊗σ1))
⊗t.

Since |α̃⟩⟩ must belong to one of these two cases, the proof is complete. �

3.2.2 Additional invariant subspaces

The diagonalization procedure described in Sec. 3.2 determines both the extremal and neighboring

eigenvalues ofMt belonging to the totally symmetric irrep of SU(d). Although expressed in terms of

bosonic operators, the procedure is equivalent to a variational Ansatz whereby the trial wavefunction

of the extremal state is of the form

|ϕ⟩⟩⊗n = |ϕ . . . ϕ⟩⟩,

and the first excited state, corresponding to a single bosonic excitation, is of the form

|nϕ = n− 1, nα=1⟩⟩ ≡
1√
n
(|ϕ . . . ϕα⟩⟩+ . . .+ |αϕ . . . ϕ⟩⟩).

20



In principle, it is possible that the subdominant eigenvalue may lie instead in the SU(d) irrep

which carries exactly one anti-symmetric pair of indexes. This can be accommodated by using a

different variational Ansatz for the excited state to be minimized. If we choose a local basis in

Hℓt that includes the fixed extremal permutation |σ⟩⟩, with the remaining local basis operators

|α⟩⟩ ̸= |σ⟩⟩ treated as excitation modes, the relevant single-excitation band is spanned by kets of

the following form:

|nσ = n− 1, nα=1⟩⟩ ≡
1√
2

(
|σ . . . σ⟩⟩|σα⟩⟩ − |ασ⟩⟩

)
,

with nonzero matrix elements:

⟨⟨nα = 1|Mt|nβ = 1⟩⟩ = δαβ − Ẽαβ/n+ O(1/n2),

Ẽαβ = 2(1− ⟨⟨σα|mt|σβ⟩⟩).

Note that unlike in Eq. (3.6) the “exchange term” ⟨⟨σα|mt|βσ⟩⟩ is no longer present. Upon diag-

onalization of Ẽαβ , the subdominant eigenvalue a1 is determined, with an identical 1/n scaling as

found for the symmetric irrep. The possibility that the subdominant eigenvalue lies in this irrep may

be removed a priori by imposing a natural additional restriction on the random quantum circuit,

namely by requiring that the two-qubit gate distribution be invariant under the transformation S

that swaps the two-qubits, that is, µ̃(SU) = µ̃(US) = µ̃(U).

3.3 Locally Invariant Random Quantum Circuits

As reported in [19], a stronger result for the asymptotic convergence rate may be obtained for a sub-

class of permutationally invariant random quantum circuits which are, in addition, locally invariant,

that is, µ̃(U) is invariant under the subgroup U(2) × U(2) ⊂ U(4) of local unitary transformations

on the two target qubits. Specifically, I will now show that for locally invariant random quantum

circuits the leading order coefficient a1 of the 1/n expansion does not depend on t.

Recall that a1 is determined by the maximum value of ⟨⟨σω|mt|σω⟩⟩ + ⟨⟨σω|mt|ωσ⟩⟩, where

σ ∈ St and |ω⟩⟩ is a U(2) invariant which is orthogonal to |σ⟩⟩. As shown previously, we may take

|σ⟩⟩ to be the identity without loss of generality. Now, any operator orthogonal to the identity may
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be expanded as ω =
∑

ν cνσ
1
ν1
. . . σt

νt
where, as before, ν = (ν1, . . . , νt), and νi ∈ {0, 1, 2, 3}, with

σ0 = I, σ1 = σx, σ2 = σy, σ3 = σz, and the sum ranges over all possible strings ν except the one

where νi = 0 ∀i.

The first step is to show that the expectation value ⟨⟨Iω|U⊗t,t|Iω⟩⟩ for any U ∈ U(4) may be

written as a symmetric polynomial of the form

⟨⟨Iω|U⊗t,t|Iω⟩⟩ =
∑

2≤p1+p2+p3≤t

wp⃗ x
p1yp2zp3 , (3.8)

where x, y, z are real numbers in [−1, 1] which depend only on U , and wp⃗ are positive coefficients

which depend only on |ω⟩⟩, with p⃗ = (p1, p2, p3) and pi being non-negative integers subject to

2 ≤ p1 + p2 + p3 ≤ t.

To establish Eq. (3.8) above, we exploit the fact that an arbitrary element of U(4) may be written

in the canonical decomposition form U = U1 ⊗U2 U(q, r, s)U ′
1 ⊗U ′

2, where U1, U
′
1, U2, U

′
2 act locally

on either of two qubits and U(q, r, s) = exp{i(qσ1 ⊗ σ1 + rσ2 ⊗ σ2 + sσ3 ⊗ σ3)} [29]. Since |ω⟩⟩ is

a U(2) invariant, it then suffices to consider the action of U(q, r, s). Direct calculation shows that

under U(q, r, s), the following transformations are obeyed by Pauli operators:

I ⊗ σ1 7→ r1s1 I ⊗ σ1 + r2s1 σ2 ⊗ σ3

− r1s2 σ3 ⊗ σ2 + r2s2 σ1 ⊗ I, (3.9)

I ⊗ σ2 7→ s1q1 I ⊗ σ2 + s2q1 σ3 ⊗ σ1

− s1q2 σ1 ⊗ σ3 + s2q2 σ2 ⊗ I, (3.10)

I ⊗ σ3 7→ q1r1 I ⊗ σ3 + q2r1 σ1 ⊗ σ2

− q1r2 σ2 ⊗ σ1 + q2r2 σ3 ⊗ I, (3.11)

where q1 = cos(2q), q2 = sin(2q), and similar expressions hold for r1, r2, and s1, s2, respectively.
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The idea is now to evaluate U⊗t,t|Iω⟩⟩ term by term in the expansion for |ω⟩⟩, that is, we evaluate

U⊗t(I ⊗ ω)U†⊗t =
∑
ν

cνU
⊗t (I1 ⊗ σ1

ν1
. . . It ⊗ σt

νt
)U†⊗t

=
∑
ν

cν

t⊗
i=1

U(Ii ⊗ σi
νi
)U†,

where now the transformation rules in Eq. (3.9)-(3.11) may be applied to each of the t factors

independently. Computing the matrix element ⟨⟨Iω|U⊗t,t|Iω⟩⟩, there is a contribution of the form

|cν |2xp1yp2zp3 , arising from each of the terms cνI
1 ⊗ σ1

ν1
. . . It ⊗ σt

νt
, where x = r1s1, y = s1q1,

z = q1r1, and p1, p2, p3 are the number of instances where νi = 1, 2, 3, respectively. Summing over

all terms in the expansion for |ω⟩⟩ finally results in a polynomial of the form stipulated in Eq. (3.8),

with wp⃗ =
∑

ν |cν |2 determined by the sum over all strings ν that share the same p⃗-vector. That

the polynomial is symmetric under the interchange of x, y, and z follows from the invariance of |ω⟩⟩

under U(2). Note that by construction, x, y, and z are bounded between [−1, 1].

Let the degree of a Pauli string be the number of instances where νi ̸= 0. Since, under U⊗t

with U ∈ U(2), a Pauli string can only be mapped to a Pauli string of equal degree, it follows that

any U(2) invariant whose expansion contains terms of differing degree can be written as a linear

combination of U(2) invariants each containing only terms of equal degree. For t = 1, the only U(2)

invariant is the identity. For t = 2, there is exactly one U(2) invariant orthogonal to the identity,

namely, ω = 1√
3
(σ1

1σ
2
1 + σ1

2σ
2
2 + σ1

3σ
2
3). Consequently, no U(2) invariant contains a term of degree

1, and the only degree-2 terms a U(2) invariant may contain are linear combinations of the form

σi
1σ

j
1 + σi

2σ
j
2 + σi

3σ
j
3. Thus, for a monomial occurring in

∑
p⃗ wp⃗x

p1yp2zp3 , 2 ≤ p1 + p2 + p2 ≤ t, and

if p1 + p2 + p3 = 2, then exactly one of p1, p2, or p3 = 2.

The next step to establish the claimed result is to show that
∑

p⃗ wp⃗x
p1yp2zp3 ≤ 1

3 (x
2 + y2 + z2),

where the right hand side is the polynomial corresponding to ⟨⟨Iω2|U⊗t,t|Iω2⟩⟩, where |ω2⟩⟩ is any

degree-2 U(2) invariant. To show this we first show that the average over each set of monomials

xp1yp2zp3 defined by a set of integers p ≥ p′ ≥ p′′ distributed in every distinct way to p1, p2, and

p3, is less than or equal to 1
3 (x

2 + y2 + z2). There are two cases to consider:

(i) If p ≥ 2, then from |x|, |y|, |z| ≤ 1, it follows that xp 1
2 (y

p′
zp

′′
+ yp

′′
zp

′
) ≤ x2, yp 1

2 (z
p′
xp

′′
+
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zp
′′
xp

′
) ≤ y2, and zp 1

2 (x
p′
yp

′′
+ xp

′′
yp

′
) ≤ z2. Thus, the average of the left hand side of each

inequality, which is the average over the desired set of monomials, must be less than or equal to the

average of the right hand sides, which is 1
3 (x

2 + y2 + z2).

(ii) If p = p′ = p′′ = 1, then using x = r1s1, y = s1q1 and z = q1r1, xyz ≤ 1
3 (x

2 + y2 + z2) can

be written q21r
2
1s

2
1 ≤ 1

3 (r
2
1s

2
1 + s21q

2
1 + q21r

2
1), which follows from q21r

2
1s

2
1 ≤ r21s

2
1, s

2
1q

2
1 , q

2
1r

2
1.

Since
∑

p⃗ wp⃗x
p1yp2zp3 is a weighted average of the above monomial averages, each of which is less

than or equal to 1
3 (x

2 + y2 + z2), it follows that
∑

p⃗ wp⃗x
p1yp2zp3 ≤ 1

3 (x
2 + y2 + z2).

Finally, the steps described above can be applied to the exchange term ⟨⟨Iω|U⊗t,t|ωI⟩⟩, resulting

in ⟨⟨Iω|U⊗t,t|ωI⟩⟩ ≤ 1
3 (x

2 + y2 + z2), where x = b2c2, y = a2c2, z = a2b2 for any U ∈ U(4). Since

these inequalities hold for every U ∈ U(4), it follows that

⟨⟨Iω|mt|Iω⟩⟩ + ⟨⟨Iω|mt|ωI⟩⟩

≤ ⟨⟨Iω2|mt|Iω2⟩⟩+ ⟨⟨Iω2|mt|ω2I⟩⟩,

where |ω2⟩⟩ is any degree-2 U(2) invariant. Since ⟨⟨Iω2|U⊗t,t|Iω2⟩⟩ = 1
3 (x

2 + y2 + z2) (and the

equivalent expression for ⟨⟨Iω2|U⊗t,t|ω2I⟩⟩) holds for every degree-2 U(2) invariant, and the expres-

sion does not depend on t, it follows that the maximum of ⟨⟨Iω|mt|Iω⟩⟩+ ⟨⟨Iω|mt|ωI⟩⟩ over all |ω⟩⟩

such that ⟨⟨ω|I⟩⟩ = 0 is given by ⟨⟨Iω2|m2|Iω2⟩⟩+ ⟨⟨Iω2|m2|ω2I⟩⟩. This concludes the proof. �

3.3.1 Example: Haar measure on U(4)

As an example the case of t = 2 with µ̃(U) as the Haar measure on U(4). The invariant eigenspace

V2 of M2 is spanned by the identity,

|I(n)⟩⟩ =
(
|I⟩⟩

)⊗n
,

and the permutation

|S(n)⟩⟩ =
(
|S⟩⟩

)⊗n

that swaps the t = 2 copies of H = H⊗n
q . Since µ̃(U) is the Haar measure, m2 coincides with the

projector onto the subspace V2 for n = 2 qubits. To find the excitation energies, we choose one of
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Figure 3.2: Inverse spectral gap ∆−1
t of Mt[µH ] with t = 2, 3 for a random circuit consisting of two-

qubit gates selected according to the Haar measure on U(4). The line with slope 5/6 corresponds
to the asymptotic result. From [19].

the extremal local kets, |I⟩⟩, and minimize

Emin = 2min(1− ⟨⟨Iα|m2|Iα⟩⟩ − ⟨⟨Iα|m2|αI⟩⟩),

over all local operators |α⟩⟩ ∈ Hlt orthogonal to |I⟩⟩. This yields

|α⟩⟩ = |S⟩⟩ − ⟨⟨S|I⟩⟩|I⟩⟩ = σ1
1σ

2
1 + σ1

2σ
2
2 + σ1

3σ
2
3 ,

and ∆t = 6/5n+O(1/n2). To determine how quickly the large-n scaling sets in, the fully symmetric

sector of Mt[µ] under Sn was numerically diagonalized. Since µH(U) is invariant under U(2) ×

U(2) transformations, Hl2 may be restricted to the subspace of SU(2) invariants. From angular

momentum theory [21], the number of such invariants is

∑
J

m2
J =

(2t)!

(t+ 1)!t!
= Ct,

where mJ is the multiplicity of the SU(2)-irrep with angular momentum J . Thus the dimension of

the completely symmetric irrep of Mt[µ] may be taken to be
(
Ct+n−1

n

)
≪

(
4t+n−1

n

)
, which makes
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numerical comparisons tractable for small t. Exact results for t=2 and 3 (see Fig. 3.2) indicate that

the scaling prediction for ∆t becomes very accurate for n & 14.

3.4 Convergence of Random Quantum Circuits vs. Typical

Gate Complexity

In this section I will examine some issues relating the quantum gate complexity of typical n-qubit

unitary transformations to the scaling of the gap ∆t of the t-order moment matrix. A reasonable

conjecture based on the results for permutation invariant random quantum circuits is that ∆t ≥ at

n .

The question that I would like to address is whether or not this scaling conjecture is consistent

with the fact that given a U ∈ U(2n) and an ϵ > 0, in order to perform a unitary transformation

U ′ = Uk . . . U1 which is decomposable in to k-single and two-qubit gates such that ∥U − U ′∥ < ϵ

requires k = O(n24nlogc(n24n/ϵ)) [30].

Since for every irrep of U(N) labeled s, there is a moment superoperator Mt[µ] such that s

is one of the irreps that Mt can be decomposed into, it follows that a condition on each of the

gaps ∆t is a condition on each of the irreps of U(N). That is, if ∆t <
at

n then ∥fs∥ < as

n , where

dµk(U) =
∑∞

s=0(f
s)kDs(U) is the Peter-Weyl expansion of the density dµ(U) corresponding to µ.

Since the expansion for the Haar measure density dµH(U) is given by fo = 1 and fs = 0 ∀s > 0,

then for any density dµk(U), the l2 norm of the difference between dµH(U) and dµk(U) is given by

∥dµH(U)− dµk(U)∥2 =

∫
(dµH(U)− dµk(U))2 =

∞∑
s=1

tr((fs)2).

If for the largest eigenvalue of (fs)2, λs <
as

n , then it follows that

∥dµH(U)− dµk(U)∥2 <
1

n

∞∑
s=1

aks .

Now if as does not depend on s, then ∥dµH(U)−dµk(U)∥2 can be made small for circuit length k =

O(n). If in addition dµk(U) is continuous, then since ∥dµH(U)− dµk(U)∥1 > ∥dµH(U)− dµk(U)∥2,

it follows that ∥µH − µk∥TV = ∥dµH(U) − dµk(U)∥1 can be made small for k = O(n). This would
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force a contradiction, because this would imply that circuits of polynomial length in n are dense in

U(2n).

There are two possibilities for avoiding this contradiction. Either as must depend on s in such

a way that
∑∞

s=1 a
k
s remains large, or dµk(U) is not continuous. Interestingly, even if the two-

qubit gate distribution µ̃ is continuous, dµk(U) cannot be continuous for k < 4n since there are

insufficient parameters in circuit of that length in order to parameterize all of U(2n), since U(2n) is

a topological space with 4n dimensions. A circuit with k < kd at best describes a surface in U(N)

with lower dimension and hence of measure zero in U(N). Thus, for continuous µ̃ one possibility

is that the as do not depend on s, but since dµk(U) is not continuous until k is very large, the

total variation distance remains near its maximum of 1 until k = O(n24nlogc(n24n/ϵ)), at which

point rapid convergence to the Haar measure occurs. Thus random quantum circuits may exhibit

the so-called cut-off phenomenon [31].
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Chapter 4

Irreversible Random Quantum

Circuits

In this chapter the condition of invariance of the measure µ under Hermitian conjugation is relaxed,

resulting is a moment superoperator Mt[µ] that is not Hermitian. For such operatorsMt[µ], the gap

defined by the spectral norm Γsp ≡ ∥Mt[µ]−Mt[µH ]∥sp is no longer a tight bound on the convergence

rate. This possibility allows for random quantum circuits which may have faster convergence than

the optimal reversible random quantum circuits discussed in Ch.3. The analysis will be limited to

convergence of second order moments. Following [32, 33], under certain conditions on the distribution

µ̃ the evolution of the second order moments as a function of circuit depth can be mapped to a

classical Markov chain. To obtain the mapping, the transformation Aα → UAαU
† induced by

U ∈ U(N), on an orthonormal basis of Hermitian observables {Aα} on H. The transformation may

be expressed as

A′
α =

∑
β

xαβAβ ,

where xαβ(U) ∈ R and
∑

β xαβ(U)xγβ(U) = δαγ . One may obtain the transformation of second

order moments from the tensor

M2[µ]αβγδ =

∫
dµ(U)xαβ(U)xγδ(U).
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Whenever µ is such that,

M2[µ]αβγδ = 0, for α ̸= γ, β ̸= δ, (4.1)

it follows from orthonormality, that
∑

β M2[µ]αβαβ = 1 and
∑

αM2[µ]αβαβ = 1, with eachM2[µ]αβαβ ≥

0. Thus, the set of matrix elements Mαβ [µ] ≡M2[µ]αβαβ is bistochastic, and hence defines the tran-

sition matrix M for a Markov chain on the state space labeled by α. If µ is reversible then in

addition M is Hermitian. For the random quantum circuits that will be considered subsequently,

the generalized Pauli basis will be used, and the state space of the corresponding Markov chain

consists of strings from J = {I,X, Y, Z}n. The Markov matrix M [µ] will not be ergodic since there

are 2 invariant vectors of the moment superoperator M2[µ]. But since one of the invariant vectors is

given by the state In, the chainM [µ]−In is ergodic if µ is universal. If the random quantum circuit

is irreversible, the asymptotic convergence of M [µ] to the remaining invariant vector can be upper

bounded by CkJ−1(λ∗)
k−J+1, where C is a constant depending on the initial state of the chain, J is

the size of the largest Jordan block of M [µ], λ∗ is the maximum square modulus of the eigenvalues

of M [µ] [34]. Only if J = 1, implying that the random quantum circuit is diagonalizable, is the

asymptotic decay a pure exponential.

4.1 Markov Chain Reduction

The full Markov chain M on the state space I = {I,X, Y, Z}n may sometimes be reduced to a

simpler chain M ′, by partition the state space, I, into subsets, Ja ⊂ I. A necessary and sufficient

condition for reducing the chain is that the sum of the transition probabilities from an element of

a subset, a ∈ Ja, to all elements of any subset, b ∈ Jb, is the same for each element of a, that is,∑
u,v∈Jb

Muv =Mab must be the same for all u ∈ Ja and all subsets Jb. There are two cases in which

this arises. The first is when the reduction removes a set of vectors that have eigenvalue 0 under M .

In a Markov chain, this is equivalent to a complete loss of memory over some subsets of the state

space. The second occurs when the Markov chain posses a conserved quantity. In this case the chain,

though irreducible, can be block diagonalized, (under a transformation which is not a permutation)

so that at least one block, e.g. zero momentum for translational symmetry, is the desired reduced

chain. Here, nontrivial eigenvalues that occur in M are absent in M ′, and an additional argument
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is needed to show that the subdominant eigenvalue does not occur in the remaining blocks.

If the random quantum circuit is locally invariant, then one may average over those Pauli strings

that are equivalent under interchange of X, Y , or Z. The local reduced state is given by Pi =

Xi + Yi + Zi, and the reduced state space consists of strings {I, P}n. It will also be desirable to

form reduced chains that average over only X and Y local Pauli operators by defining the new local

variables Ξ±
i = Xi ± Yi so that chain states now consist of the set {I, Z,Ξ}n.

A Markov chain can admit a reduced chain of the second type by forming equivalence classes

of Pauli operators under permutation symmetry. In the case of full permutation symmetry, since

equivalence classes may be labeled by how many X, Y , and Z’s are in each Pauli operator, or

the appropriate symbols for locally reduced chains, the size of the reduced state space grows only

polynomially in the number of qubits n, allowing scaling behavior of Markov matrix properties with

circuit size to be determined numerically. Note that while the reduced representation formed due to

local invariance contains every non-zero eigenvalue in the full Markov chain, reduced representations

induced by qubit permutations discard eigenvalues associated with asymmetry with respect to the

permutations.

4.2 Parallel Random Quantum Circuits and Cluster States

The first irreversible random quantum circuit to be considered is the circuit proposed in [11] which

consists of independent Haar random single qubit gates on each qubit, followed by performing

controlled-phase gates, CZ = |0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗ Z, between nearest neighbors on an open chain.

Although the single qubit gates are selected independently from a reversible distribution, the sub-

sequent CZ gates break reversibility. Furthermore, since this circuit involves parallel operations, it

may be naturally implemented as a measurement pattern on a cluster state.

Cluster states are highly entangled states which serve as the basic resource for measurement-based

quantum computation [35]. They may be generated by applying CZ gates between qubits initially

in the |+⟩ state. Computation is executed by measuring qubits along desired axes in the x-y plane.

The choice of measurement axis determines the operation that is implemented, and may depend

on the outcome of a previous measurement. A 2D qubit lattice with CZ gates applied between
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all nearest neighbors suffices for universal quantum computation. Measurements are performed by

column from left to right, until a last column is left unmeasured – determining the statistics over

the computation outcomes.

l l l l l l l
l l l l l l lα1 β1 γ1

α2 β2 γ2

δ1 ϵ1 ζ1

δ2 ϵ2 ζ2
...

...
...

...
...

...
...

Figure 4.1: Schematics of cluster-state PR architectures. Pairs of qubits subjected to CZ gates
are connected by solid lines and each qubit is identified by the angle in the x-y plane that defines
its measurement basis. Dashed lines represent additional CZ gates for the enhanced version of the
algorithm from [11].

A cluster state architecture that implements the equivalent of 2 iterations of the PR algorithm

of [11] is depicted in Fig. 4.1. Using Euler-angle representation, measurement of 3 qubits in a row

simulates a single-qubit gate HZ(αi + πmαi)X(βi + πmβi)Z(γi + πmγi), where H is the Hadamard

gate, Z(α) (X(α)) is a z- (x-) rotation by an angle α, (αi, βi, γi) are the angles along which each qubit

is measured in the x-y plane, and mi = 0, 1 labels additional measurement-dependent π rotations.

Arbitrary single-qubit gates are effected by properly choosing the Euler angles. Because the Haar

measure on SU(2) is invariant under the extra π rotations, the latter may be ignored. CZ gates

performed between rows of the cluster state (vertical lines) serve as CZ gates acting between qubits

in the circuit-based algorithm. In general, to simulate ℓ iterations of an n-qubit PR circuit, a lattice

of n × 3ℓ + 1 qubits is needed (where the extra 1 comes from the final, unmeasured column). The

first column contains the initial state |ψ0⟩ on which the algorithm operates.

Given the measurement pattern of Fig. 4.1, a natural question arises: Can the convergence rate of

the cluster-state PR algorithm be enhanced by filling in additional vertical lines (that is, by effecting

additional CZ gates represented by dashed lines)? In this case, the computation proceeds as before

but measurement angles will be chosen randomly in the x-y plane. Fig. 4.2 illustrates the resulting

improvement by comparing the decay rate with respect to two measures of convergence

1. The l2 distance between the distribution of squared moduli of the components of the final

state,P (y), and the Porter-Thomas distribution PPT (y) = exp(−y) where y = Nν andN = 2n,

which describes the distribution of Haar random states.
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Figure 4.2: Distance of the (normalized) distribution of squared moduli state-vector components
from PPT (y) for random states as a function of run time. �: Standard (6 rows and connections
every third column), vs ⃝: Enhanced (connections at every column) PR patterns. The run time
equals the number of columns in the cluster state. Inset: Difference of global entanglement, Q, from
the expected random-state value, QR, vs run time. For both test functions, the enhanced version of
the algorithm converges to the Haar average with a rate about 6 times faster.

2. The difference between the Meyer-Wallach entanglement [82]

Q = 1− 1

n

n∑
i=1

∑
α=x,y,x

⟨ψ|σi
α|ψ⟩2,

from its expectation for Haar random states.

For 6 row cluster states, both test functions converge approximately 6 times faster for the completely

filled cluster state. Thus, the enhanced version of the PR cluster-state algorithm uses a factor of 6

fewer qubits and horizontal connections, and half the number of vertical connections to achieve a

comparable distance from random-state behavior.

Because the cluster model is computationally equivalent to the circuit model [35], the improved

measurement pattern for the enhanced cluster-state PR algorithm must have a circuit model analog.

The single-qubit rotation equivalent to measuring a cluster qubit in a random basis in the x-y plane

is an HZ(α) gate. Thus, once translated into the circuit model, the completely filled measurement

pattern identifies a restricted family of random single-qubit gates which map the z-axis to the

transverse plane. In the circuit model, the decay rate of the enhanced algorithm is only about 2

times faster, since a time step counts as a complete iteration. Still, depending on implementation, it
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may be easier to perform anHZ(α) gate than an arbitrary single-qubit gate. This raises the following

general question: Given a fixed two-qubit gate, what is the optimal single-qubit gate distribution to

employ?

Since the z-axis is fixed by the CZ gates only gate distributions which are invariant under

rotations about the z-axis will be considered. Thus, the Markov chain corresponding to the single-

qubit gate distribution will consist of I, Z,Ξ with Ξ = X+Y . All such single, qubit gate distribution,

for which a Markov chain representation exists may be fully parameterized as follows

R(c) =


1 0 0

0 c 1−c
2

0 1− c 1+c
2

 .

If a single-qubit gate is selected independently for each qubit, and applied in parallel, then the

corresponding local part of the Markov chain L(c) = R(c)⊗n. The subsequent CZ gates act as a

permutation on the state space I, Z,Ξ⊗n corresponding to the full n-qubit circuit. This permutation

acting on L(c), yields the transition matrix M(c). Numerically we find that M(c) though non-

Hermitian is diagonalizable, that is each Jordan block is of dimension one, thus the convergence is

asymptotically exponential, with a rate Γ(c) determined by the gap between the largest eigenvalue

of 1 and absolute value of the second largest eigenvalue, ∆(c) = 1− |λ1|, via Γ(c) = − ln(1−∆(c)).

Thus, the larger the gap the faster the convergence. Here, we are interested in the gap between 1

and the next largest eigenvalue whose eigenvector has a non-zero component along |ψ0⟩⟨ψ0|.

As seen in Fig. 4.3, the maximum gap for n = 6 qubits, equal to 0.4135, occurs at c ≈ 0.03.

The gap for HZ(α) gates, ∆(0) ≈ 0.4071, is significantly larger than the gap for random rotations,

∆(1/3) ≃ 0.2292, yielding Γ(0)/Γ(1/3) ≈ 2.008. For n = 10, the maximum gap is attained at c = 0.

Remarkably, as n increases, ∆ decreases for unrestricted local gates, but increases for HZ(α) gates,

see inset of Fig. 4.3. Thus, the larger n, the faster the Markov chain converges.
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Figure 4.3: Gap, ∆(c), between the largest eigenvalue of 1 and the absolute value of the largest
non-unit eigenvalue of M(c) vs c, for n = 6 (solid line) and n = 10 (dashed line). The gap at c = 0
(HZ(α) gates) is significantly larger than the gap at c = 1/3 (arbitrary random single-qubit gates),
identifying the optimal gate set. Inset: Gap for c = 1/3 (circles) and c = 0 (squares) vs n.

4.3 Permutationally Invariant Random Quantum Circuits

Since the single qubit gate distribution parameterized by HZ(α) where α ∈ [0, 2π] generates a faster

convergence rate than Haar random single qubit gates in the above random quantum circuit design,

is interesting to see if this enhancement is occurs for other random quantum circuit formats. A

thorough exploration of different random quantum circuit design parameters is given in [36], and

the specific case of permutation invariant random quantum circuits will be discussed here.

The second order moments of permutationally invariant reversible random quantum circuits that

can be expressed in terms of an appropriate reduced Markov chain, before generalizing to irreversible

permutation invariant random quantum circuits.

Given a two-qubit gate distribution µ̃ that satisfies Eq.(4.1), there is a 16×16 bistochastic matrix

M [µ] describing the evolution of the non-vanishing second order moments of µ̃ corresponding Pauli

strings of length 2. If µ̃ is locally invariant, then only a 4× 4 transformation matrix is required to

indicate transitions within the state space {I, P}2. For the Haar measure on U(4), every 2 qubit

Pauli operator is equally likely to be mapped to any other 2 qubit Pauli operator. Since there are 3
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Pauli operators in the reduced class PI and IP and 9 in PP this yields,

m[µ̃H ] =



1 0 0 0

0 1/5 1/5 1/5

0 1/5 1/5 1/5

0 3/5 3/5 3/5


.

As described above, because of permutation symmetry the chain may be reduced further, so that

the state space is labeled only by the number of Pauli operators, nP , in each Pauli string. When the

bi-local gate distribution is the Haar measure, the transitions between the first three states nP =1,2,

and 3 are given below:

M [µ̃H ] =


1− 2/5n 9/4n2 0

2/5n 1− 4/5n− 9/4n2 11/4n2

0 4/5n 1− 8/5n− 11/4n2

 .

As n → ∞, the off-diagonal elements on the upper right go to zero compared to the spacings

between the respective diagonal matrix elements, thus M [µ̃H ] becomes approximately a lower trian-

gular matrix, suggesting that as n→ ∞ the eigenvalues are given by the diagonal matrix elements.

Now consider the eigenvalue equation,


1− 2/5n 9/4n2 0

2/5n 1− 4/5n− 9/4n2 11/4n2

0 4/5n 1− 8/5n− 11/4n2




x1

x2

x3

 = λ


x1

x2

x3

 .

Assuming that λ = 1 −
∑∞

l=1
al

nl and xi = 1 +
∑∞

l=1
bil
nl , the eigenvalue equation can be solved

to each order in n. To order 1/n, each eigenvalue is given by the a diagonal matrix elements. This

method is equivalent to the mean-field Ansatz of bosonic excitations discussed in Ch.3. Although it

is not obvious in this form, the eigenvalues that approach 1 as n→ ∞ are nearly 2-fold degenerate,

with a splitting that decreases exponentially with n as described in Eq.(3.7).

Setting c = 0 in Eq.(4.2) yields the Markov matrix R(0) corresponding to the single qubit gate

distribution HZ(α) with α selected uniformly from [0, 2π]. Taking R(0) ⊗ R(0) and appropriately
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permuting the elements of {I, Z,Ξ}2 under the action of CZ, yields the following bi-local Markov

matrix:

m[µ̃HZ ] =



1 0 0 0 0 0 0 0 0

0 0 1/2 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1/4

0 0 0 0 0 0 1/2 0 0

0 0 0 0 0 0 0 0 1/4

0 1 1/2 0 0 0 0 1/2 0

0 0 0 0 0 0 0 0 1/4

0 0 0 1 0 1/2 1/2 0 0

0 0 0 0 1 1/2 0 1/2 0


Because of permutation symmetry, a further reduction can be performed resulting in a Markov chain

on a state space labeled with only the number (nz, nξ) of Z or Ξ symbols occurring in any Pauli

string. The gap is controlled by the transitions between the states with the first three lowest values

of nz + nξ, (1,0), (0,1), and (1,1) shown below:

M [µ̃HZ ] =


1− 2/n 1/n 0

0 1− 2/n 4/3n2

2/n 1/n 1− 4/n− 4/3n2

 .

An expansion similar to that used to diagonalize the previous chain can be used to diagonalize

M [µ̃HZ ]. The eigenvalues that are 1 to leading order are similarly given by the diagonal matrix

elements, however, the transition of order 1/n between (1,0) and (0,1) introduces corrections on

higher order term of 1/(n
√
n) rather than 1/n2 as in the case of the previous circuit. This chain

may be diagonalized numerically for large enough n to confirm the validity of the above Ansatz.

Note that for random quantum circuits consisting of independently selected single and two-qubit

gates, as considered here, the asymptotic decay rate to the Haar measure is limited by the transitions

from Pauli strings containing only one Pauli operator to those containing two. For reversible random

quantum circuits, there is always a probability that even if the qubit corresponding to the single

Pauli operator is chosen, the Pauli operator will be left unchanged. Since the probability of choosing
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any given qubit with a two qubit gate is 2/n, the convergence rate of 1 − 2/n is optimal for such

random quantum circuits and can be achieved by the above irreversible random quantum circuit.
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Chapter 5

Quantum Chaos: Background

One way of loosely defining the concept of chaos is how apparently random dynamics can result

from simple dynamical laws. In the case of classical systems this may be said to arise through the

properties of the classical dynamical flow which can be expressed in terms of the Liouville equation,

∂ρ

∂t
= −∂H

∂q

∂ρ

∂p
+
∂H

∂p

∂ρ

∂q
≡ −{H, ρ}PB ,

and ρ(q, p, t) is a phase space density and H is the system Hamiltonian. A flow is considered

chaotic if it satisfies the following properties: the phase space trajectories display sensitivity to

initial conditions, topological mixing occurs, and the periodic orbits are dense. By sensitivity to

initial conditions, if there are two points in phase space that are arbitrarily close, then they separate

at short time scales as eλt, where λ is the largest Lyaponov exponent. Topological mixing occurs

when any two open subsets A and B of the phase space (q, p) eventually overlap [38, 39].

A classical dynamical system is said to be integrable if there exists a set of as many well-behaved

functions Ij(p, q) such that {H, I}PB = 0 and {Ij , Ik}PB = δjk, and any two integrals of motion

Ij and Ik are functionally independent, as there are degrees of freedom. The functions Ij(p, q) are

independent if and only if the differential elements dIi =
∑

j
∂Ii
∂qj

dqj +
∂Ii
∂pj

dpj are linearly indepen-

dent for all values in phase space (q, p). Since {H, Ij}PB = 0, each integral Ij is constant of the

motion. Since the integrals of motion are functionally independent, the surface formed by specifying
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a constant value for any Ii = ci, determines a family of tori, to which the dynamics is limited. There

can be no sensitivity to initial conditions and no ergodicity since each trajectory is strictly limited

to the torus on which it begins.

In quantummechanics the dynamical flow on a complete set of phase space variables is replaced by

a unitary transformation, U = exp(−iHt), generated by the quantum HamiltonianH operator acting

on a Hilbert space H. If the classical phase space is bounded then the Hilbert space if countably

infinite, and the Hamiltonian has a discrete set of eigenvalues {Eα}. Since quantum position and

momentum operators do not commute, one can not specify both with complete accuracy, and thus

there is no direct quantum analog of the phase space trajectory. The most that can be known are

the probabilities for a complete set of measurement outcomes, which can be expressed as a density

operator ρ̂, and is analogous to the classical phase space density.

Because of the correspondence principle, the question arose whether the behavior of quantum

systems whose classical limits are chaotic is in any way different from the behavior of quantum

systems whose classical limits are integrable. Due to the nature of unitary quantum evolution,

it was doubtful that quantum systems could produce the standard dynamical criteria that define

classical chaos, for example there can be no sensitivity to small changes in the initial wavefunction.

This itself does not mean that quantum systems cannot exhibit chaos, since by Koopman’s theorem

[40], the overlap of any two classical phase space densities is also preserved under classical dynamics.

Attempts have been made to find unifying criteria that are satisfied by both quantum and classical

chaos. Sensitivity of the Hamiltonian to perturbations was put forth in [37, 41, 42]. Although this

approach is valid in the classical limit, for systems such that a classical limit it not approached

chaoticity can enhance stability [44, 45].

Nevertheless, for quantum systems, apparent stochastic time evolution can arise through statisti-

cal properties of the eigenvectors and eigenvalues of the quantum Hamiltonian [46, 47]. Specifically,

there is considerable numerical evidence that the eigenvectors and eigenvalues of strongly non-

integrable quantum Hamiltonians appear random within certain system specific constrains, where

the fluctuations are of a universal form which is equivalent to those of ensembles of random matrices

[48, 38, 49, 8, 18]. This mathematical phenomenon appears to be a property of typical diagonaliza-

tion problems of Hermitian linear operators [52, 50], and thus arises in the normal modes of both
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classical and quantum wave phenomena, scattering matrices, adjacency matrices of graphs, Markov

chains, and even financial models [53]. Beyond linear diagonalization problems, it arises in other

contexts, such as in connection to the zeros of the Riemann ζ-function and hence to the distribution

of prime numbers [51] and other problems in number theory [52].

Despite the different origin, quantum (mode) chaos and classical (ray) chaos are non-trivially

connected by the correspondence principle, since in the limit of small wavelengths, the quantum

wave dynamics can be approximated by rays describing the classical trajectories. This semi-classical

connection has been studied extensively, with particular emphasis on dynamical billiards [38]. Thus,

mode chaos appears to be the analog of classical chaos in quantum systems, and will be what the term

quantum chaos shall refer to herein. Since quantum chaos is a ubiquitous property of complicated

linear diagonalization problems, it arises generally in quantum Hamiltonians, even in the absence

of a natural classical limit, in particular, for many-body systems of interacting fermions, bosons, or

localized spins. This section of the thesis will focus on quantum chaos in such many-body systems.

Specifically, I will be interested in obtaining a description of the system specific constraints for

quantum many-body systems, and a characterization of the fluctuations around these constraints. I

will use these results to examine some properties of the many-body eigenvectors, and some properties

of the time evolution. Before turning to quantum many-body systems I will briefly review the main

results and conjectures for quantum systems that possess a classical limit which is chaotic.

5.1 Eigenvalue Statistics

Let H(q, p) be a classical Hamiltonian with no explicit time dependence where q and p represent

d generalized coordinates and momenta. One may quantize H by introducing Hermitian operators

q̂ and p̂, that act on a Hilbert space H with commutation relations corresponding to the classical

Poison brackets between the generalized coordinates and properly symmetrizing products of q̂ and

p̂ so that H(q̂, p̂) is Hermitian. If the classical phase space is compact then H has a discrete basis,

and H(q̂, p̂) has a discrete spectrum {Eα}. If H(q, p) is an increasing function of the momenta, p,

then as E → ∞ the de Broglie wavelength becomes sufficiently small so that the wave dynamics can

be replaced by rays, which describe the classical trajectories.
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Let s(E) =
∑

α δ(E − Eα) be the density of states of H(q̂, p̂). When s(E) is smoothed by

averaging over an energy window containing a large number of levels, the density of states is governed

by system specific details of the classical Hamiltonian H(p, q). Specifically, in the high energy limit

the smoothed quantum mechanical density of states is proportional to the corresponding volume of

classical phase space [38, 48, 54],

lim
ϵ→0

lim
E→∞

1

ϵ

∫ E+ϵ

E

dE s(E) =
1

(2π~)d

∫
dpdq δ(E −H(p, q)). (5.1)

This result was first proved by Weyl [55] for the normal modes of the Laplacian on an irregular

bounded domain, and the formula is referred to as Weyl’s law, or the Thomas Thomas-Fermi density.

5.1.1 Bohigas-Gianonni-Schmidt conjecture

Weyl’s law (5.1) for the smoothed density of states holds for both integrable and chaotic systems,

however the level to level fluctuations of the density of states on energy scales much less than those at

which the smoothed density varies depends on whether the classical system is chaotic or integrable.

To characterize the short range fluctuations in the density of states, the spectrum must be rescaled

{Eα} → {Ẽα} so that the smoothed density of states is everywhere equal to 1. The limit Ẽ → ∞ can

then be used to define a family of joint probability densities, Pk(s1, . . . , sk) ds1 . . . dsk of finding the

spacing s1 . . . sk between sets of k + 1 consecutive eigenvalues. Bohigas, Gianonni and Schmidt [49]

conjectured that if the classical Hamiltonian H(q, p) is chaotic, then within the smoothly varying

density the sequence of eigenvalues is pseudo-random with fluctuations between nearby eigenvalues

equivalent to those of an ensemble of random Hermitian matrices that depends only on the symmetry

class of the Hamiltonian. There are three such symmetry classes.

• Gaussian Unitary Ensemble (GUE) : In the absence of any global symmetry, the appro-

priate ensemble of Hermitian matrices is invariant under arbitrary unitary transformations. This is

satisfied by the ensemble of N × N Hermitian matrices with each off-diagonal matrix elements an

independent random complex numbers a∗ji = aij = xij + iyij such that each xij and yij with i < j

are independent Gaussian random variables with variance v. Each diagonal matrix element aii is an

independent Gaussian random variable with variance 2v.
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• Gaussian Orthogonal Ensemble (GOE) : If the Hamiltonian is invariant under an anti-

unitary transformation T , such that, T 2 = 1, then a basis may be constructed so that H has purely

real matrix elements, without first obtaining detailed information about the eigenvectors of H. The

most general basis transformations that preserve the realness of the matrix elements of H is the

set of orthogonal transformations. An ensemble of Hermitian matrices invariant under arbitrary

orthogonal transformation can be generated by selecting real matrix elements independently at

random from a Gaussian distribution, such that the variance of the diagonal matrix elements is

twice that of the off-diagonal matrix elements.

• Gaussian Symplectic Ensemble (GSE) : If the Hamiltonian is invariant under an anti-

unitary transformation T such that T 2 = −1, and H has no other symmetries, then a basis may be

constructed consisting of pairs, |m⟩ ̸= T |m⟩ = |m′⟩. Consider the 2 × 2 block of corresponding to

two such pairs,  ⟨l|H|m⟩ ⟨l|H|Tm⟩

⟨T l|H|m⟩ ⟨T l|H|Tm⟩

 .

Invariance under T implies that each such block can be parameterized with real quaternions. The

subgroup of U(N) that preserves this parametrization is a representation of the symplectic group,

and the corresponding Hermitian matrix ensemble consists of independent Gaussian random real

quaternions [48].

Typically, the nearest neighbor level spacing distribution P1(s)ds is employed in numerical stud-

ies, however alternative measures such as the rigidity [38] or the variance of the number of rescaled

energy levels in a given window are also used.

For each matrix ensemble the unfolded nearest neighbor level spacing distribution is distinct:

GOE : p(s)ds =
πs

2
e

−πs2

4 (5.2)

GUE : p(s)ds =
32s2

π2
e

−s24
π (5.3)

GSU : p(s)ds =
218s4

36π3
e

−64s2

9π (5.4)

Random matrix predictions are only expected to hold on an energy scale that is much smaller
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than the scale at which the smoothed density of states varies. If one lets ~ → 0, then the density

of states in any energy window becomes infinite, and arbitrarily large rescaled energy widths are

expected to conform to random matrix distributions.

5.2 Eigenvector Statistics

There are similar conjectures for the matrix elements ⟨α|A(p, q)|β⟩ of a well-behaved observable A

with respect to the the eigenvectors {|α⟩} of H(p̂, q̂). The first is that the average diagonal matrix

element ⟨α|A|α⟩ over any finite energy window converges to the classical microcanonical average of

the corresponding observable in the semiclassical limit, that is,

lim
ϵ→0

lim
E→∞

[ 1

N(E, ϵ)

∑
α:E<Eα<E+ϵ

⟨α|A|α⟩
]
=

∫
dpdq A(p, q)δ(E −H(p, q))

~dsCL(E)
,

where N(E, ϵ) =
∫ E+ϵ

E
dE s(E), where s(E) denotes as before the density of states, and sCL(E) =∫

dpdq δ(E − H(p, q)) is the classical density of states. This conjecture is referred to as the local

Weyl law [56, 57].

It was conjectured by Feingold and Peres [58] that the “empirical” variance of off-diagonal matrix

elements ⟨α|A|β⟩ is determined by the frequency component of the classical auto-correlation function

corresponding to the energy difference, ω = (Eα−Eβ)/~. The empirical variance may be defined as

follows:

v(E,ω; ϵ1, ϵ2) ≡
[ 1

N(E, ϵ1)N(E + ~ω, ϵ2)
∑

E<Eα<E+ϵ1
~ω<Eα−Eβ<~ω+ϵ2

|⟨α|A|β⟩|2
]
. (5.5)

In the high energy limit this is given by the Fourier transform of the classical auto-correlation

function, that is,

lim
ϵ1,ϵ2→0

lim
E→∞

v(E,ω; ϵ1, ϵ2) =
C̃A(ω)

~dsCL(E)
,

where

C̃A(ω) =

∫ ∞

−∞
CA(τ)e

iωτdτ
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and

CA(τ) = lim
T→∞

1

T

∫ T

0

A(q(t), p(t))A(q(t+ τ), p(t+ τ))dt

for any classical ergodic trajectory (q(t), p(t)). Feingold and Peres furthermore conjectured that the

empirical variance of diagonal matrix elements,

vD(E) =
1

N(E, ϵ)

∑
E<Eα<E+ϵ

(
⟨α|A|α⟩ − ⟨α|A|α⟩

)2

,

is proportional to the off-diagonal variance as the energy difference goes to zero by a factor c

depending on the symmetry class of the Hamiltonian,

vD(E) = c
C̃A(0)

~dsCL(E)
.

There is significant numerical support for the above conjectures [59]. It has been proved in [60],

that for chaotic quantum billiards, the diagonal variance for well-behaved observables, goes to zero

in the high energy limit, for all but a subsequence of eigenstates of measure zero. This result is

known as the quantum ergodicity theorem.

Beyond the constraints on the averages of the diagonal matrix elements, and empirical variances

of off-diagonal matrix elements, it is also conjectured [58] that the distribution of matrix elements is

Gaussian in the high energy limit. This is related to the conjecture by Berry [61] that the eigenstates

for chaotic billiards may be described by “random plane waves” of fixed wavevector, and is equivalent

to the idea presented in [63] that the high energy eigenstates of systems with a chaotic classical limit

ought to be as random as possible subject to prior constraints.

5.3 Integrability and Chaos in Quantum Many-Body Sys-

tems

It is not possible to directly borrow the notion of classical integrability and apply it to quantum

systems with a finite dimensional Hilbert space. One may be tempted to define integrability for

such systems as the existence of as many independent integrals of motion Ii that commute with
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each other [Ii, Ij ] = 0 and with the Hamiltonian [H, Ii] = 0, as degrees of freedom. The first

problem with this definition is that for a quantum system with a finite dimensional Hilbert space,

the number of degrees of freedom can be ambiguous, nor is it immediately clear in what sense

the integrals of motion ought to be independent. One reasonable definition for independence of

commuting obervables is that specifying the eigenvalue of one observable does not constrain the

allowed eigenvalues for a observable that is independent of it. This notion is equivalent to algebraic

independence. A set {Ii} of commuting observables are algebraically independent if and only if

there does not exist a function f such that f(I1, . . . , In) = 0 [64]. This definition implies that

each observable Ii is degenerate, and that the degenerate eigenspaces of any two observables do

not coincide. Furthermore, if the number of distinct sets of joint eigenvalues of the {Ii} is equal

to the dimension of the Hilbert space, then the set {Ii} can be used to define a basis of H and

form a complete set of commuting observables. If each Ii has exactly d degenerate eigenspaces,

and each of the eigenvalues is completely unconstrained by the eigenvalues of the others, then

it follows that dim(H) = dn, and one may define a tensor product factorization, H = H⊗n
I so

that each Ii acts on a separate factor space and may naturally be considered a degree of freedom

equivalent to a subsystem [65]. The problem lies in the fact that for a fixed finite dimensional

Hilbert space such observables always exist, unlike the case for classical systems, making a definition

of quantum integrability that relies solely of the existence of such integrals of motions vacuous.

The intuition regarding such integrals of motion still applies, if they may be determined without

performing a full diagonalization of the Hamiltonian first. The existence of an efficient procedure,

for specifying any particular eigenvector and eigenvalue, or the mathematical structure underlying

such a procedure, plays roughly the same role for quantum many-body systems as the existence

of a set of integrals of motion does in classical dynamics. Some examples of quantum integrable

systems include those many-body Hamiltonians diagonalizable by Jordan-Wigner transformation

[66, 67], generalized mean-field Hamiltonians efficiently diagonalizable by algebraic techniques, as

well as those models diagonalizable by Bethe Ansatz or inverse scattering methods more generally.

Though awaiting a fully rigorous definition, from an operational standpoint the existence of such

simplifying mappings is the basic idea of quantum integrability.

As is the case for classical systems, no such simplifying structure is believes to exist for most
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physically relevant quantum many-body Hamiltonians. For such non-integrable Hamiltonians, a

complete description of a generic eigenvector and the corresponding eigenvalue requires an exponen-

tially growing number of computational steps in terms of the the number of subsystems, although

the extremal eigenvalues and eigenvectors may still be efficiently computable [68]. There is signif-

icant numerical and experimental evidence that the eigenvalues and eigenvectors of non-integrable

many-body systems tend to display generic properties of random matrices and the use of random

matrix methods has been applied extensively in nuclear physics [69, 70]. In the next chapters, a

statistical description of high energy eigenvectors of non-integrable many-body systems will be con-

structed, and used to examine both properties of the eigenvectors such as entanglement content, and

to understand some aspects of the dynamics generated by the Hamiltonian.
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Chapter 6

Constraints on the Statistical

Properties of Quantum Chaotic

Many-Body Hamiltonians

In this chapter I shall focus on analyzing the statistical properties of the eigenvectors and eigenval-

ues of non-integrable many-body quantum Hamiltonians in the thermodynamic limit, whereby the

number of subsystems n→ ∞. A method for determining the thermodynamic limit of the smoothed

density of states, as well as the smoothed microcanonical expectation values and dynamical corre-

lation functions for observables local to a fixed subsystem in the thermodynamic limit is presented.

Building on earlier works [9, 71, 72, 73], the method employs an expansion in terms of a complete

set of polynomials that are orthogonal with respect to the exact density of states. Notably, the limit-

ing thermodynamic behavior of the above smoothed quantities is general for Hamiltonians consisting

of two-body interactions between finite dimensional subsystems (qudits), irrespective of whether the

Hamiltonian is integrable or not. The way in which the constraints are satisfied, however, will de-

pend on whether the system is integrable. Specifically, strongly non-integrable Hamiltonians will

tend to satisfy these constraints uniformly with respect to the appropriate measure and should be

considered chaotic, whereas integrable Hamiltonians will not satisfy the constraints uniformly, in a

47



sense to be made more precise later.

6.1 Constrains from the Thermodynamic Limit

Let H =
∑

<i,j>G h
ij be a Hamiltonian consisting of equivalent bi-local interaction terms hij = h

that act on pairs of n-elementary qudit subsystems, Sd, corresponding to neighboring vertices on

an r-regular graph G. A graph is r-regular if each vertex has r edges, resulting in np = nr
2 pairs

of vertices connected by edges. The Hamiltonian acts on the Hilbert space H = ⊗nHd which is

the tensor product of the local Hilbert spaces Hd associated to each elementary subsystem. The

dimension H is N = dn, where d is the dimension of Hd.

6.1.1 Density of states

The first property of H we wish to be consider is the density of states in the thermodynamic limit.

Let {Eα} be the spectrum of H and let sn(E) = 1
N

∑N
α=1 δ(E − Eα) be the corresponding density

of states, normalized to be a probability distribution.

Theorem. As n→ ∞, the density of states sn(E) converges weakly to a Gaussian distribution with

variance σ2
n =

nptr(h2)2

2 . By weak convergence it is meant that for any interval [E/σn, E/σn+ ϵ/σn],

the integral N(E, ϵ) ≡
∫ E+ϵ

E
sn(E) converges to a Gaussian,

lim
ϵ→0

lim
n→∞

N(E/σn, ϵ/σn) =
ϵ/σn√
2πσn

e
− E2

2σ2
n . (6.1)

Proof I will proceed by showing that as n→ ∞ each moment mk of sn(E) converges to the corre-

sponding moment of a Gaussian distribution. Each moment is given by the trace of the corresponding

power of the Hamiltonian, that is,

mk ≡
∫
Eksn(E)dE =

N∑
α=1

Ek
α =

1

N
tr(Hk).

The trace of Hk may be evaluated by expanding Hk in products of the bi-local terms hij and

taking the trace of each product. Let νi indicate an edge in G and let ν⃗ be a k-length string of edges.

Since each term, hij , in H corresponds to an edge in G, it follows that tr(Hk) =
∑

ν⃗ tr(h
ν1 . . . hνk),
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where the sum is over all k-length strings of the np edges in G. Each string, ν⃗, may be partitioned into

substrings (νi1 . . . νil), . . . , (νj1 . . . νjp) such that the edges in each substring form disjoint connected

subgraphs of G. Since operators acting on different subsystems are algebraically independent, the

trace of the operators labeled by a string factorizes into a product of traces of the operators labeled

by the substrings, thus

tr(hν1 . . . hνk) = tr(hνi1 . . . hνil ) . . . tr(hνj1 . . . hνjp ).

There may be many distinct strings ν⃗ which can be partitioned into the same sets of equivalent

substrings. Two substrings are taken to be equivalent if there is a graph translation that maps one

substring to another.

Let the even and odd moments be considered separately. For even k, the partitioning that results

from the largest number of distinct strings consists of k/2 substrings each containing exactly two

copies of the same edge, with no two edges in different substrings sharing a vertex. For sufficiently

large np, the number of sets of k/2 non-overlapping edges can be expressed as a polynomial in np

whose leading order term is
nk/2
p

k/2 . Since each edge occurs exactly twice in each string, there are k!
2k/2

distinct strings for each such set of edges. The trace for the product of terms labeled by each such

string is N
(
tr(h2)

2

)k/2

. This yields a total contribution to tr(Hk) from this partitioning of

N
(nptr(h2)

2

)k/2 k!

2k/2(k/2)!
+ O(nk/2−1

p ).

Since all other partitionings of k-length strings are of lower order in np, and since the number of

distinct partitionings is fixed for sufficiently large np, the above contribution dominates as n→ ∞.

For odd k, the partitioning with the largest leading order in np consists of k−3
2 substrings containing

exactly two copies of the same edge and one substring containing three edges. To leading order in

np, there are n
k/2−1
p strings that result in this partitioning.

Thus, the kth moment, mk, of the density of states, sn(E), is given by

mk =
1

N
tr(Hk) =

 σk
n

k!
2k/2(k/2)! + O(n

k/2−1
p ), k even

0 + O(n
(k−3)/2
p ), k odd
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where σ2
n =

nptr(h2)
2 . To leading order in n these are precisely the moments of a Gaussian distribution

with standard deviation σn. This is sufficient to prove weak convergence �.

6.1.2 Microcanonical expectation values

Let A be an observable local to a subsystem S consisting of a fixed number m of elementary sub-

systems in the thermodynamic limit. Let the function An({Eα}) ≡ ⟨α|A|α⟩ map the spectrum

{Eα} to the diagonal matrix elements with respect to the corresponding eigenstates {|α⟩} of H. In

the following, I provide a method for determining the smoothed function A(E) to which An({Eα})

converges weakly in the thermodynamic limit. That is, I determine

lim
ϵ→0

lim
n→∞

∑
Ẽ<Eα/σ2

n<Ẽ+ϵ

⟨α|A|α⟩ = A(Ẽ), (6.2)

where Ẽ ≡ E/σ2
n ∼ E/n is a rescaled intensive energy variable proportional to the average energy

per subsystem. The goal is to construct a power series expansion,

A(Ẽ) =
∞∑
k=0

dkẼ
k, (6.3)

in terms of Ẽ. The method proceeds by constructing a 1/n expansion for each dk,

dk =

∞∑
p=0

dk,p
np

,

and by retaining only the leading order term in the thermodynamic limit.

H is assumed at this point to be non-degenerate so that the set of powers Hk for k = 0 to N − 1

are linearly independent, and span the associative algebra of linear operators that commute with H,

denoted here HC . Let

AD ≡
N∑

α=1

⟨α|A|α⟩|α⟩⟨α|
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be the projection of A onto HC . It follows that one may expand

AD =
N−1∑
k=0

dkH̃
k, (6.4)

where H̃ = H/σ2
n. If for each k, dk converges as n → ∞, then it follows that An({Ẽα}) converges

weakly to A(Ẽ) in the thermodynamic limit. In order to determine the coefficients, {dk}, an or-

thonormal basis of operators spanning HC is required. Such a basis may be obtained by starting

with the linearly independent set, (H0,H . . . ,HN−1), and performing Gram-Schmidt orthogonal-

ization to obtain a new set of operators, {Gk}, such that tr(GkGk′) = δkk′ . The resulting operators

may be expressed in terms of the moments, mk, of H
k as the following Vandermonde determinant:

Gk = det



m0 m1 · · · mk

m1 m2 · · · mk+1

...
...

...
...

1 H · · · Hk


.

It follows that tr(Hk′
Gk) = 0 if k′ < k since two of the rows in the determinant will then be the

same. Since Gk′ has components only along H0 to Hk′
it follows that tr(GkGk′) = 0 if k ̸= k′.

The operators Gk may be considered orthogonal polynomials in the continuous parameter E with

respect to the density of states, sn(E), that is,

tr(GkGk′) =

∫
dE Gk(E)Gk′(E)sn(E) = δkk′ .

In terms of the Gk, AD may now be expanded as

AD =
N−1∑
k=0

ckGk, (6.5)

where ck = tr(GkA). The goal now is to obtain the coefficients {dk} entering Eq.(6.3) in terms of

the {ck}.

We begin with an examination of the coefficients ck = tr(GkA) for an observable A local to a

subsystem S, as n → ∞. The first thing to note is that since, since sn(E) converges to a Gaussian
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with variance ∼ √
np, as n → ∞, each polynomial {Gk} converges to the corresponding Hermite

polynomial. That is, each Gk may be expressed, Gk =
∑k

l=0(a
k
l +O(np)

−1) E
(
√
np)

k/2
where {akl } are

the exact coefficients describing Hermite polynomials. The goal now is to show that to leading order

in np, ck = c1k/n
k/2
p + O(n

k/2−1
p ). Then when substituted into Eq. 6.5, the only term that does not

go to zero as n → ∞ with Ẽ ∼ E/np held fixed is highest order therm (of power Ek) in each Gk.

And from the combinatorial and normalization properties of Hermite polynomials it follows that,

AD =

∞∑
k=1

c1k
k!
Ẽk. (6.6)

The method of expanding smoothed expectation values for non-integrable many-body systems

in terms of such orthogonal polynomials was developed by French and co-authors in [9, 71, 72]. This

method has been applied extensively to nuclear shell model calculations for strength functions (off-

diagonal variances here), and to ensemble averages of embedded random matrix ensembles (EGOE),

which consist of randomly selected two-body interactions between fermions. To our knowledge, how-

ever, this method has not been applied to determining the thermodynamic limit for a Hamiltonian

with a fixed lattice and interaction form.

6.1.3 Correlation functions

Next, I will show how weak constraints on correlations between off-diagonal matrix elements of local

observables can be constructed analogous to those for the diagonal matrix elements by means of

an appropriate expansion of dynamical correlation functions between arbitrary local observables in

frequency space. The method begins by expanding At ≡ eiHtAe−iHt using the Baker-Hausdorff

Lemma,

At =
∑∞

l=0
(it)l

l! [H,A]l, [A,B]l ≡ [A, [A, [...[A,B]...]]].

Now let Aω =
∫∞
0
Ate

−iwtdt. Then, it follows that,

dl

dtl
At =

∫ ∞

−∞
(−iω)lAωe

−iωtdω.
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In conjunction with Eq.(6.7) this yields,

[H,A]l =
[ dl
dtl

At

]
t=0

=

∫ ∞

−∞
ωlAωdω.

For two observables A and B local to a subsystem S, let the correlation function at energy Ẽ be

defined as

CAB(Ẽ, ϵ, t) ≡
1

N(Ẽ, ϵ)
tr
(
Π(Ẽ, ϵ)BAt

)
,

where Π(Ẽ, ϵ) is the projector onto the subspace W (Ẽ, ϵ) spanned by energy eigenstates, |α⟩, such

that Ẽ < Eα/σ
2
n < Ẽ + ϵ. By a generalization of the Wiener-Khinchin theorem [74] to cross-

correlations, the corresponding power spectrum is given by the Fourier transform of the correlation

function,

C̃AB(Ẽ, ϵ, ω) =

∫ ∞

0

CAB(Ẽ, t, ϵ)e
iωtdt =

1

N(Ẽ, ϵ)
tr(Π(Ẽ, ϵ)BAω). (6.7)

Thus, the l-th moment Ωl
AB(Ẽ, ϵ) of C̃AB(Ẽ, ϵ, ω) is given by

Ωl
AB(Ẽ, ϵ) ≡

∫ ∞

−∞
ωlC̃AB(Ẽ, ϵ, ω)dω =

1

N(Ẽ, ϵ)
tr(Π(Ẽ, ϵ)B[H,A]l). (6.8)

Since B[H,A]l is a local operator, its projection onto the commutant HC may be expanded in the

thermodynamic limit as

B[H,A]l =
∞∑
k=1

clkGk.

In conjunction with Eq. (6.8), this results in the following expansion for each moment:

Ωl
AB(Ẽ) =

∑
k

dlk
k!
Ẽk. (6.9)

The set of all moments Ωl
AB(Ẽ) are a weak constraint on the function C̃AB(Ẽ, ϵ, ω).

The set of all spectral correlation functions CAB(Ẽ, ϵ, t) for operators local to a subsystem S

is equivalent to the evolution operator ΛS(ρ, t) = trS(UtρU
†
t ) reduced to S. Thus, the weak con-

straints on the set {C̃AB(Ẽ, ϵ, ω)} in the thermodynamic limit induce a smoothing on ΛS(ρ, ω) =∫∞
0
dt ΛS(ρ, t)e

−iwt. Consider the family {ΛSi
(ρ, ω)} of smoothed propagators for a sequence of sub-
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systems Si such that Si ⊂ Si+1. Then, if there exists a set of eigenvalues of ΛSi and corresponding

eigenvectors that converge as i→ ∞, this defines a quantum many-body Frobenius-Perron operator

with each eigenvalue labeling a “Ruelle-Pollicott” resonance, as introduced in [75] for many-body

systems without a classical analogue. The gap ∆ between the largest such eigenvalue with magni-

tude less than 1 and the unit eigenvalue corresponding to the equilibrium density matrix yields the

asymptotic (long-time) relaxation rate of the system to equilibrium. The corresponding relaxation

time, referred to as the Thouless time [76], is given by tTh = 1
ln(1−∆) .

The constraints on the correlation functions may also be expressed in terms of empirical covari-

ances of the corresponding matrix elements. Since the following relations hold,

CAB(Ẽ, ϵ, t) =
1

N(Ẽ, ϵ)

∑
Eα∈W (Ẽ,ϵ), Eβ

⟨α|A|β⟩⟨β|B|α⟩e−i(Eα−Eβ)t, (6.10)

C̃AB(Ẽ, ϵ, ω) = lim
δω→0

lim
n→∞

1

N(Ẽ, ϵ)

∑
Eα∈W (Ẽ,ϵ)

ω<Eα−Eβ<ω+δω

⟨α|A|β⟩⟨β|B|α⟩, (6.11)

this implies a weak constraint on the empirical covariance above for matrix elements of A and B in

the eigenbasis of H. It is useful to analyze the constraints on the auto-correlation function (where

A = B) through an empirical variance, vn(E, ϵ, ω, δω), defined as follows (cf Eq.5.5):

vn(E, ϵ, ω, δω) ≡
[ 1

N(E, ϵ)N(E + ω, δω)

∑
E<Eα<E+ϵ

ω<Eα−Eβ<ω+δω

|⟨α|A|β⟩ − δαβA(E)|2
]
. (6.12)

The sum of the squared moduli of the off-diagonal matrix elements between an energy eigenstate

|α⟩ and all other energy eigenstates is given by the corresponding diagonal matrix element of A2,

(A2)αα = A2
αα +

∑
β ̸=α

|Aαβ |2.

Since A is local to a fixed subsystem S, the energy width over which the off-diagonal matrix elements

are non-zero is constant in the thermodynamic limit, reflecting the fact that a local observable may
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only alter the energy contribution from the projection of H onto S. Since in the thermodynamic

limit, A(Ẽ) and A2(Ẽ) converge with respect to Ẽ ∼ E/n, it follows that if the empirical variance

converges, then it is given by a representation of the delta function nf(Ẽ, (Ẽ′ − Ẽ)n) along the

diagonal, that is,

vn(Ẽ, ω) →
nf(Ẽ, ω)

s(Ẽ + ω/σ2
n)

[A2(Ẽ)−A(Ẽ)2]. (6.13)

where ω = E−E′. If the decay of the autocorrelation function CAA(Ẽ, t) ∼ e−Γt is exponential, the

corresponding envelope function f(Ẽ, ω) is characterized by a Lorentzian peak with linewidth Γ.

6.1.4 Concentration of measure and quantum ergodicity

As shown above, the thermodynamic limit imposes weak constraints on the eigenvectors and eigen-

values of arbitrary many-body Hamiltonians. That is, the constraints are required to hold only for

averages over finite energy windows. Remarkably, these constraints do not depend on whether H

is integrable, rather we will argue that the way in which the constraints are satisfied distinguishes

whether the system is integrable, partially integrable, or fully chaotic. There are three possibilities

for how the constraints on the diagonal matrix elements may be satisfied.

6.1.4.1 Weak convergence only

For an example where only weak convergence occurs, consider the Ising Hamiltonian,H =
∑

<i,j>G σ
i
zσ

j
z

for nearest neighbors on a regular lattice G. This Hamiltonian is trivially integrable since each of the

interaction terms commute. The eigenbasis is given by the computational basis. The expectation

values for any interaction term with respect the energy eigenstates can take on only two values,

⟨α|σi
zσ

j
z|α⟩ = ±1, yet the weak constraint is given by σi

zσ
j
z(Ẽ) = Ẽ. Thus, it is obvious that the

diagonal matrix elements only converge in a weak sense.
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6.1.4.2 Strong convergence only

The convergence will be said to be strong, if for all local observables, A, and all ϵ′ there exists a δω

such that

lim
n→∞

sup
1

N(Ẽ, ϵ)

∑
Eα,Eβ∈W (Ẽ,ϵ)

|Eα−Eβ−ω|<δω

|⟨α|A|β⟩|2 < ϵ′. (6.14)

That is, the diagonal and off-diagonal matrix elements converge strongly if the fluctuations around

the mean of zero for off-diagonal matrix elements and A(Ẽ) for diagonal matrix elements vanish in

the thermodynamic limit. Strong convergence has the important consequence of weak dynamical

mixing [56]. That is, since the diagonal matrix elements converge strongly in the thermodynamic

limit, then for any initial state the time average is given by the microcanonical average A(Ẽ) [46], and

since the off-diagonal matrix elements go to zero, the fluctuations around the microcanonical value

must also, vanish. It is important to note that a system may be integrable yet still have strongly

converging matrix elements, though as shown in Ch.7 for integrable systems the convergence tends

to be slow and the fluctuations may be specific to the system Hamiltonian.

6.1.4.3 Strong convergence with universal fluctuations

The strongest form of convergence for matrix elements in the thermodynamic limit is given by

universal scaling laws that are related to random matrix ensembles. This case may be summarized

by the statement that the eigenvectors are as random as possible subject to all prior constraints.

This intuition, applied in [61, 63, 77], underlies the application of random matrix theory to quantum

chaos. If the matrix elements are uniformly distributed subject to the constraints on their mean

and variance, then the empirical distribution will be approximately Gaussian in the thermodynamic

limit. The probability that any matrix element is much larger than the corresponding variance

falls exponentially. Thus almost every matrix element deviates from its mean value by no more

than 1/sn(Ẽ) ∼ 1/2n for many body systems. This is a manifestation of the phenomenon of

concentration of measure, whereby for vectors selected uniformly with respect to the Haar measure

from a large dimensional Hilbert space, the fluctuations from the mean can be tightly bounded

for well-behaved functions [78, 79]. When a Hamiltonian satisfies the thermodynamic constraints
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uniformly at random, well-behaved functionals of the eigenstates are satisfied with high probability

due to concentration of measure. Thus, even though arbitrary eigenstates of a many-body quantum

system are intractably complicated, requiring an exponentially growing number of parameters in n

in order to specify, all of the stable information about the structure of the eigenstates is contained in

either the thermodynamic constraints, which in the neighborhood of Ẽ = 0 are analytically tractable,

or in the fluctuations around those constraints, which if uniform become highly predictable the larger

the dimension of the system Hilbert space. In the following chapter, a numerical example will be

used to demonstrate the above conjectures and results.
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Chapter 7

XX Model on Random Graphs

7.1 Model Hamiltonian

In this chapter a simple model many-body Hamiltonian is investigated numerically to illustrate the

analytical results and conjectures presented in Ch.6. The model system consists of nearest neighbor

interactions between n two-state subsystems (qubits) each located at the vertex of an n-vertex graph

G. Let H =
∑

<i,j>G h
ij , where hij = σi

xσ
j
x + σi

yσ
j
y is the so-called hopping (or flip-flop) operator,

and let G be a 3-regular random graph. A natural basis for the n-qubit Hilbert space H is given

by the joint eigenstates of a complete set of independent local operators {σi
z}. This basis can be

labeled by strings of 1’s and 0’s, indicating the eigenvalue for each σi
z operator by, σi

z|0⟩ = |0⟩ and

σi
z|1⟩ = −|1⟩ and will be referred to as the computational basis. In the computational basis, the

hopping operator acts as follows:

h|01⟩ = |10⟩, h|10⟩ = |01⟩, h|00⟩ = 0, h|11⟩ = 0. (7.1)

The 3-regular random graph G is constructed by selecting edges uniformly at random until each

vertex has exactly 3 edges, yielding 3n/2 edges total. Because 3 is odd, 3-regular graphs can only

be constructed for even numbers of vertices. An example of a 3-regular random graph for n = 14

qubits is shown in Fig. 7.1.
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Figure 7.1: Schematic representation of a 3-regular random graph for n = 14.

7.1.1 Symmetries

Since the action of the hopping term h does not change the number of 1’s and 0’s in a computational

basis state, it follows that H commutes with the operator Sz =
∑n

i σ
i
z. Additionally, H is invariant

under the discrete symmetry, σ⊗n
x , which maps |0⟩ → |1⟩ and |1⟩ → |0⟩ for each qubit. However,

since this mapping connects states belonging to different Sz eigenspaces, it does not introduce new

invariant subspaces, except in the central subspace labeled by Sz = 0 when n is even. One may

project the Hamiltonian into each invariant subspace of Sz, and construct weak constraints for the

density of states and matrix elements for each projection. Although the average over all of the

weak constraints for each of the projected Hamiltonians is equivalent to the weak constraints on the

full Hamiltonian, the constraints for any particular subspace may differ substantially. However, for

subspaces that are asymptotically half full, that is, Sz/n→ 0 as n→ ∞, the subspace constraints do

not differ from the constraints for the full Hamiltonian in the thermodynamic limit, since half filling

is indistinguishable from having no constraint on the number of 1’s or 0’s for any fixed subsystem S

in the thermodynamic limit.

Because the lattice is random, H is not invariant under any symmetries arising from lattice

geometry, whereas for example a Bravais lattice can be invariant under multiple independent lattice
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transformations which define crystal momentum under closed boundary conditions and parity under

open boundary conditions. A randomly generated lattice is unlikely to possess any such symmetries.

Since in the standard basis described, the matrix elements of H are real, it follows that H belongs to

the GOE universality class, since this basis can be defined without reference to the detailed structure

of the eigenvectors of H. The subspace with Sz = 1 will be chosen for detailed examination in what

follows.
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Figure 7.2: Smoothed density of states sn(E) for n = 10, 12, 14, 16 for the subspace with Sz = 1.
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Figure 7.3: Empirical energy level spacing distribution P1(s)δs for the interval −2 < Eα < 2 for
n = 10(top left), n = 12(top right), n = 14(bottom left) and n = 16 (bottom right).

7.2 Eigenvalue Properties

In Fig. 7.2 the density of states sn(E) = 1
N

∑N
α=1 δ(E−Eα) for n = 10, 12, 14, 16 has been smoothed

by counting how many eigenvalues fall into a set of intervals. Significant convergence to the predicted

Gaussian is apparent for this range of n. In Fig.7.3 the nearest neighbor level spacing distribution,

P1(s)ds, is shown for the eigenvalues in an interval −2 < Eα < 2. Convergence to the Wigner-Dyson

distribution, P1(s)ds =
πs
2 e

−πs2

4 is equally fast. However, for segments of the energy spectrum that

are far from the center, P1(s)ds deviates increasingly from random matrix theory, becoming approx-

imately Poissonian at the extremes. It is an interesting question whether in the thermodynamic

limit the border between chaos in the energy spectrum is sharp or soft.
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7.3 Eigenvector Properties
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Figure 7.4: Diagonal matrix elements ⟨α|h12|α⟩ for the interaction term between neighboring vertices
1 and 2 in G as a function of rescaled energy eigenvalues {Eα/n} with for n = 10, 12, 14, and 16.

Consider the interaction term h12 between the neighboring vertices 1 and 2 in G. Since a regular

random graph is homogenous in the thermodynamic limit, in the sense of no point in the lattice

being favored over another, and since
∑

<i,j>∈G⟨α|hij |α⟩ = Eα, it follows that in the thermodynamic

limit the expression for ⟨α|h12|α⟩ ≡ h12(Ẽ) is given by h12(Ẽ) = E
σ2
n

= Ẽ. The diagonal matrix

elements ⟨α|h12|α⟩ are plotted in Fig. 7.4 for n = 10, 12, 14, 16. Note that concentration around the

thermodynamic constraint occurs for relatively small size system.

To quantify the rate at which concentration of the matrix element occurs, the fluctuations are

averaged from −2 < Eα < 2 for each n, in which region the diagonal variance, vD(Ẽ), remains
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Figure 7.5: Diagonal variance vD(0) at Ẽ = 0 for an interaction term h12 where 1 and 2 are
neighboring vertices in G as a function of n. The inverse density of states 1/sn(0) evaluated at
Ẽ = 0 is also given for comparison.

approximately constant with Ẽ. The scaling of the fluctuations with respect to n around the

smoothed energy dependence is shown in Fig. 7.3. Note that the empirical variance of diagonal

matrix elements scales inversely with the density of states, sn(Ẽ), in agreement with the case of

strong convergence with universal fluctuations described in Ch. 6.
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Figure 7.6: Diagonal matrix elements ⟨α|σ1
zσ

2
z |α⟩ where 1 and 2 are neighboring vertices in G as a

function of rescaled energy eigenvalues {Eα/n} with n = 16.

Next we consider are expectation values of a correlation term ⟨α|σ1
zσ

2
z |α⟩ between two neighbor-

ing vertices on G. Since tr(Hσ1
zσ

2
z) = 0, but tr(H2σ1

zσ
2
z) ̸= 0 for sufficiently small Ẽ and large n,

σ1
zσ

2
z(Ẽ) ∼ Ẽ2. The quadratic behavior is accurately predicted by the coefficient in the thermody-
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namic limit as shown in Fig. 7.6.
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Figure 7.7: Diagonal matrix elements ⟨α|σ1
z |α⟩ of a single-qubit σz operator on vertex 1 of G as a

function of rescaled energy eigenvalues {Eα/n} with n = 14.

For sufficiently large n, tr(Hkσi
z) = 0 ∀k. Thus, the thermodynamic expression is given by

σ1
z(Ẽ) = 0. One expects ⟨α|σ1

z |α⟩ to be dominated by random fluctuations, as can be seen in

Fig. 7.7. Since σ2
z = I, it follows that σ2

z(Ẽ) = 1, and thus the strength of the fluctuations as a

function of Ẽ is determined solely by the density of states.
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Figure 7.8: Left: Diagonal matrix elements for the interaction term h67 of the integrable 1D hopping
Hamiltonian where n = 14, Right: Diagonal variance vD(0) for E = 0 for n = 10, 12, 14, 18.

For comparison the HamiltonianH =
∑n−1

i=1 h
ii+1 is integrable by Jordan-Wigner transformation.

The diagonal matrix elements for the interaction term h67 for n = 14 are shown in Fig. 7.8. Note
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Figure 7.9: Envelope function f(Ẽ, ω) evaluated at Ẽ = 0 for the empirical variance of off-diagonal
matrix elements ⟨α|h12|β⟩ of the interaction term h12 between a pair of neighboring vertices on G

with n = 14.
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Figure 7.10: Envelope function f(Ẽ, ω) evaluated at Ẽ = 0 for the empirical variance of off-diagonal
matrix elements ⟨α|σ1

z |β⟩ single-qubit σz operator on site 1 with n = 14.

that compared to the non-integrable hopping Hamiltonian on a random graph the diagonal matrix

elements are far less concentrated. As indicated in the right panel of Fig. 7.8 the diagonal variance

decreases with n indicating strong convergence although the rate is slow.

The envelope function describing the empirical variance off-diagonal elements of σ1
z , and h

12 are

shown for n = 14 in Fig. 7.10 and Fig. 7.9 respectively. For h12 the shape of the envelope function

is approximately Lorentzian, with a cut-off at the tails of the distribution. The envelope function

for σ1
z has two approximate Lorentzian peaks each at an offset from Ẽ − Ẽ′ = 0.
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7.4 Entanglement of Chaotic Eigenstates
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Figure 7.11: Local purity P1 of the eigenstates of H as a function of energy eigenvalue with n=14.

−15 −10 −5 0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

E

P
2

−15 −10 −5 0 5 10 15
0

0.2

0.4

0.6

0.8

1

E

P
3

Figure 7.12: Bi-local P2 and 3-local P3 of the eigenstates of H as a function of energy eigenvalue
with n=14.

We next examine the entanglement content of the eigenvectors of H. Entanglement is a purely

quantum mechanical property and its role in quantum chaos and thermalization in an open area of

investigation. Numerical results examining entanglement content of the eigenvectors of a many-body

system with Heisenberg interactions across transitions from integrability to chaos are examined in

[80, 81]. Here insight from orthogonal polynomial expansions for local observables with be employed

to understand some general features of the entanglement of the eigenstates of chaotic Hamiltonians.

One simple approach to defining how entangled a quantum pure state is, is to ask how little

information is available to local measurements, since entanglement should be understood as the

information content of the state that is hidden on non-local correlations. Arguably, the simplest
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entanglement measure for pure states of a many-body system is provided by the local purity [82, 83],

P1(|ψ⟩) =
1

n

n∑
i=1

∑
α=x,y,x

⟨ψ|σi
α|ψ⟩2.

This measure quantifies how much information is obtainable about the state |ψ⟩ through knowl-

edge of expectation values observables local to n single-qubit subsystems. Because H commutes with

the z-component of the total spin Sz, it follows that, ⟨α|σi
x|α⟩ = ⟨α|σi

y|α⟩ = 0 for all i. However,

⟨α|σi
z|α⟩ is not required to be zero, but since tr(Gkσ

i
z) = 0 for all k polynomial in n, it follows that

the smooth energy dependence on σz is a constant determined by the Sz subspace. Thus, the local

purity depends only on the size of the fluctuations around the smoothly varying energy dependence

of ⟨α|σi
z|α⟩.

One may define an entanglement measure that is sensitive to how much information can be

obtained by a courser decomposition of the system into subsystems, in this case subsystems consisting

of neighboring pairs of qubits on G. I shall refer to this measure as bi-local purity, defined as follows,

P2(|ψ⟩) =
c2
np

∑
<i,j>

∑
α,β=x,y,z

⟨ψ|σi
ασ

j
β |ψ⟩

2.

where c2 is a normalization constant to insure that the maximum possible value of P2 is 1. Since

the bi-local purity contains the expectation values of the energy interaction terms, it shows a strong

dependence on energy. The form of the dependence is quadratic to first order since hij(E) = E
np

is a linear dependence. One may continue in this way defining entanglement measures that probe

information available to measurements on increasingly larger subsystems. Let the 3-local purity be

defined as,

P3(|ψ⟩) =
c3
np

∑
<i,j,k>

∑
α,β,γ=x,y,z

⟨ψ|σi
ασ

j
βσ

k
γ |ψ⟩2.

where < i, j, k > are sets of three consecutive vertices on G. The lowest order in H for which

tr(Hkσj
βσ

k
γ) ̸= 0 is k = 2, which generates an interaction term hik and a density correlation σi

zσ
k
z

where vertices i and k are distance 2 away. Thus, to lowest order, P3 is given by a quartic polynomial

in the thermodynamic limit. At the center of the spectrum, any traceless observable A, A(0) = 0,
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and so the average purity and the corresponding entanglement is completely determined by the

fluctuations around the smoothed microcanonical expectation value. If the fluctuations are universal,

then the the average entanglement of such eigenstates will be equal to those of random states with

respect to the Haar measure.

7.5 Dynamics

The time evolution for some initial states is calculated for expectation values of ⟨ψ1|hij(t)|ψ1⟩ and

⟨ψ2|σi
z(t)|ψ2⟩ for a pairs (i, j) of neighboring vertices with n = 14 for both a 3-regular random graph

which is chaotic for energies near the center of the spectrum, and a 2-regular open chain, which is

integrable via Jordan-Wigner transformation. The time evolution is plotted in Fig. time.
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Figure 7.13: Top: Time evolution for an interaction term ⟨h(t)⟩ for a random 3-regular graph and
an 1D open chain with n = 14. Bottom: Time evolution for ⟨σz(t)⟩.

Let |ψ1⟩ be a product of a Bell state 1√
2
(|01⟩ + |10⟩) with a computational basis state and let
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|ψ2⟩ be a computational basis state.

For all cases there is an initial decay from a maximum value of the operator governed by the

envelope function f(Ẽ, ω). For the σz operators there is an oscillation consistent with the double

peaked form of f(Ẽ, ω). For the chaotic systems the decay reaches a pronounced steady state which

is close to the microcanonical value. For h12 the predicted equilibrium value is 1/21=0.0476, since

for the initial state ⟨ψ1|h12|ψ1⟩ = 1 and ⟨ψ1|hij |ψ1⟩ = 0 for all other neighboring vertices i and j.

The average value of ⟨ψ1|hij(t)|ψ1⟩ for t = 10 to 20 is 0.0497. For σ1
z the predicted equilibrium value

is 2/14 ≈ 0.143, since the Sz subspace considered has 8 spins up and 6 spins down. The average

value of ⟨ψ2|hij(t)|ψ2⟩ for t = 10 to 20 is 0.152. For the integrable system the fluctuations around

the long time average remains large even though the initial decays are of a similar form, consistent

with the larger variance of diagonal matrix elements.

An interesting point to be made, is that for a chaotic system, since the frequency width of the en-

velope function does not depend on n, the convergence time to random state behavior, depends only

on how many effective single and two qubit gates occur in a time interval. For a fixed Hamiltonian,

the number of effective gates per time interval scales with the size of the system n. This corresponds

precisely to the generic 1/n scaling per single and two qubit gates for convergence of moments of

random quantum circuits. This, opens the question of whether a fixed chaotic Hamiltonian can be

considered as approximating a ”pseudo” t-design at a rate corresponding to the so-called Thouless

time [76].
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Chapter 8

Conclusions

We have shown that the convergence rate for t-order moments of reversible permutation invariant

random quantum circuits scales as Γ = at/n for sufficiently large n, where at may depend on t.

Under the additional restriction of invariance under local gates, at = a2 for all t > 2. We have

additionally presented a random quantum circuit construction consisting of independently chosen

single- and two-qubit gates that for t = 2 achieves the optimal asymptotic rate of 2/n. Despite the

fact that the asymptotic, large n rate does not depend on t, the border of the asymptotic region

with respect to n is allowed to depend on t. Furthermore, the border to the asymptotic large n

scaling must depend on t since polynomial length quantum circuits would otherwise be required to

be dense in U(N), which they are not. It is an important open problem to fully understand the

simultaneous scaling of the convergence rate for moments of a random quantum circuit with respect

to both t and n. Lastly, we have not considered the issue of robustness of random quantum circuits

to noise, which is a necessary consideration for practical implementation of randomized algorithms.

One interesting question is to determine the optimal circuit length for a random quantum circuit

for a given error model, since each additional gate brings the circuit slightly closer to a random

unitary transformation yet at the same time exposes the circuit to potential errors. Also, because

a distribution is the target of a randomized circuit rather than a particular state of transformation,

it is possible that a protocol employing a random quantum circuit is more robust against certain

errors.

70



Quantum chaos is an interesting problem with several open areas of investigation. I have gener-

alized the notion of Weyl laws that impose weak constraints on the statistics of eigenvectors of the

Hamiltonian in the semi-classical limit of quantized versions of chaotic classical systems, to the case

of non-integrable quantum many-body systems. The next logical step is to approach the fluctuations

analytically, with discrete hops between states directly coupled by the Hamiltonian playing a similar

role to periodic orbits in systems with a classical limit [38]. If the universal fluctuations can be

rigorously shown to hold, or deviations from universality properly understood, then the approach

to thermal equilibrium in quantum many-body systems can be put on a rigorous footing. Another

line of investigation involves what distinctive dynamics chaotic quantum many-body systems may

have, other than simply approaching equilibrium. Recent numerical result suggest that there is a

rich phenology of dynamical regimes [86]. Furthermore, some effectively closed many-body quantum

systems are potentially accessible to experimental investigation. Nuclear spin systems are particu-

larly attractive since the long lattice relaxation times allow the system to be effectively closed on the

time scale at which thermalization occurs. Some experimental results on long time relaxation are

presented in [84]. Experiments have recently been performed in ultra-cold gases in optical lattices

that suggest that thermal behavior in closed non-integrable quantum systems can be richer than its

classical counterpart.

Lastly, we have presented evidence of the connection between the Thouless time of a chaotic

many-body system and the rate at which a random quantum circuit approximates a 2-design. It

may be fruitful to push the analogy further, continuing the formulation of a stochastic picture of

many-body quantum chaos as begun in [85]. Specifically that the long time dynamics of a chaotic

many-body systems may be described in terms of a random walk over the unitary group. This

suggests a natural connection between appropriately defined ensembles of random quantum circuits

and pseudo-random time evolution induced by non-integrability that may be fruitful to explore.
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Appendix A

Convergence Rates for Arbitrary

Statistical Moments of Random

Quantum Circuits

This appendix includes the following paper:

W. Brown, and L. Viola, “Convergence Rates for Arbitrary Statistical Moments of Random Quantum

Circuits,” Physical Review Letters 104, 250501 (2010).



Appendix B

Parameters of Pseudorandom

Quantum Circuits

This appendix includes the following paper:

Y. Weinstein, W. Brown, and L. Viola, “Parameters of Pseudorandom Quantum Circuits,” Physical

Review A 78, 052332 (2008).



Appendix C

Qauntum Pseudorandomness from

Cluster-State Quantum

Computation

This appendix includes the following paper:

W. Brown, Y. Weinstein, and L. Viola, “Quantum Pseudorandomness from Cluster-State Quantum

Computation,” Physical Review A 77, 040303(R) (2008).



Appendix D

Chaos, Delocalization, and

Entanglement in Disordered

Heisenberg Models

This appendix includes the following paper:

W. Brown, L. Santos, D. Starling, and L. Viola “Quantum Chaos, Delocalization, and Entanglement

in Disordered Heisenberg Models,” Physical Review E 77, 021106 (2008).



Appendix E

Generalized Entanglement as a

Framework for Complex Quantum

Systems: Purity Versus

Delocalization Measures

This appendix includes the following paper:

L. Viola and W. Brown, ”Generalized Entanglement as a Framework for Complex Quantum Systems:

Purity Versus Delocalization Measures,” Journal of Physics A: Mathematical and Theoretical 40,

8109 (2007).
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