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GIGANTEA (GI) was originally identified by a late-flowering mu-
tant in Arabidopsis, but subsequently has been shown to act in
circadian period determination, light inhibition of hypocotyl elon-
gation, and responses to multiple abiotic stresses, including toler-
ance to high salt and cold (freezing) temperature. Genetic mapping
and analysis of families of heterogeneous inbred lines showed
that natural variation in GI is responsible for a major quantitative
trait locus in circadian period in Brassica rapa. We confirmed this
conclusion by transgenic rescue of an Arabidopsis gi-201 loss of
function mutant. The two B. rapa GI alleles each fully rescued the
delayed flowering of Arabidopsis gi-201 but showed differential
rescue of perturbations in red light inhibition of hypocotyl elon-
gation and altered cold and salt tolerance. The B. rapa R500 GI
allele, which failed to rescue the hypocotyl and abiotic stress phe-
notypes, disrupted circadian period determination in Arabidopsis.
Analysis of chimeric B. rapa GI alleles identified the causal nucleo-
tide polymorphism, which results in an amino acid substitution
(S264A) between the two GI proteins. This polymorphism underlies
variation in circadian period, cold and salt tolerance, and red light
inhibition of hypocotyl elongation. Loss-of-function mutations of
B. rapa GI confer delayed flowering, perturbed circadian rhythms
in leaf movement, and increased freezing and increased salt toler-
ance, consistent with effects of similar mutations in Arabidopsis.
Collectively, these data suggest that allelic variation of GI—and
possibly of clock genes in general—offers an attractive target for
molecular breeding for enhanced stress tolerance and potentially
for improved crop yield.
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The last half-century has seen dramatic increases in agricul-
tural productivity. Despite the approximate doubling in

world population since 1964, the proportion with insufficient
food has dropped by ∼75%, although ∼1 billion remain un-
derfed, and twice that many suffer from micronutrient defi-
ciencies (1). Predicted growth in population and in per capita
consumption will require an estimated doubling of crop pro-
duction by 2050 (2). However, yield trends for maize, rice, wheat,
and soybean—four major crops that currently produce nearly
two-thirds of global agricultural calories—are insufficient to
achieve this doubling (3). Therefore, there is a pressing need not
simply to sustain, but actually to accelerate yield improvement.
One strategy to increase yield is to identify genetic variation in

plant regulatory networks that limit yield to define targets for
programs of marker-assisted (molecular) breeding. The circadian
clock has been implicated as a target for increasing yield (4–6).
Plant circadian clocks comprise multiple interlocked feedback
loops (7–9). There is natural variation in clock function in both
weedy and cultivated species (10–15), although few of the genes
responsible for these quantitative trait loci (QTL) have been

identified. We identified QTL for circadian period in a pop-
ulation of Recombinant Inbred Lines (RIL) of Brassica rapa
(14). Here we identify GIGANTEA (GI) as a major QTL re-
sponsible for natural variation in circadian period and identify
the causal nucleotide polymorphism. We further show that this
same nucleotide polymorphism underlies variation in cold and
salt tolerance. We suggest that allelic variation of GI—and
possibly of clock genes in general—offers a tractable route for
molecular breeding for enhanced stress tolerance and potentially
for improved crop yield.

Results
B. rapa QTL for circadian period length were identified in a RIL
population developed from a cross between the oilseed R500
and the rapid cycling IMB211 (14). We exploited the reference
genomic sequence of B. rapa (16) to develop additional DNA
markers to refine the map position of a period QTL, PERIODA9a
(PERA9a), detected on chromosome A9 (Fig. 1 A and B) to a
position between two genes, Bra024534 and Bra024560 (Fig. 1C),
and spanned by BAC B020D15 (17). Among the 27 genes in that
chromosomal region, GI (Bra024536) was a particularly strong
candidate to explain PERA9a (Fig. 1C) because GI affects circa-
dian clock function in Arabidopsis (18–21).
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PERA9a was detected both at 12° and at 25 °C and at each
temperature explained ∼10% of the variation in period length
(14). To confirm the presence of PERA9a by genetic means, we
took advantage of residual heterozygosity in the GI region of
chromosome A9 in RIL256 (Fig. S1). We allowed RIL256 to
self-fertilize and identified lines homozygous for IMB211
(RIL256_IMB211) or for R500 (RIL256_R500) in the GI region
of A9 in an otherwise uniform genetic background. An addi-
tional recombination during the development of RIL256_R500
reduced the region of R500 DNA to ∼10 cM covering the
PERA9a QTL (Fig. S1A). The period of RIL256_R500 was
significantly shorter than that of RIL256_IMB211 (Fig. 1D and
Table S1), which is consistent with the effects of the QTL (14).
If GI were indeed the gene responsible for the PERA9a QTL,

it should be polymorphic in either sequence or expression level
between the RIL parents. We detected many single nucleotide
polymorphisms (SNPs) in the transcribed portions of the two
parental GI alleles (Fig. 2A). Most SNPs were predicted to be
functionally silent, either falling in introns or failing to change
the predicted amino acid sequence. However, three SNPs at
nucleotide positions 1,274; 2,268; and 2,475 (numbered relative
to the A of the initiator AUG in a multiple sequence alignment)
were predicted to result in the amino acid polymorphisms
S264A, I541T, and D610V, respectively, where the amino acid
found in IMB211 is listed before and that found in R500 is listed
after the amino acid number. To test the functionality of the two
alleles, we performed transgenic rescue experiments in the
Arabidopsis gi-201 loss-of-function background, introducing full
genomic copies of each B. rapa GI allele driven by their en-
dogenous promoters. In our hands at 22 °C, gi-201 does not

affect circadian period (Fig. 2B, Fig. S2, and Table S1), con-
sistent with earlier observations with gi-2, another strong loss-
of-function allele (22). gi-201 mutants are late flowering (Fig.
3A and Fig. S3A) and exhibit a long hypocotyl in red and blue
light (Fig. 3B and Fig. S3B). Both the IMB211 (BrGIIMB211) and
R500 (BrGIR500) GI alleles fully rescued the late flowering de-
fect of Arabidopsis gi-201 (Fig. 3A and Fig. S3A), indicating that
both alleles are expressed and functional, at least for flowering
time. In contrast, BrGIIMB211, but not BrGIR500, fully rescued the
long hypocotyl in red light (Fig. 3B), indicating that BrGIR500 is
defective in this trait. Both BrGIIMB211 and BrGIR500 rescued the
long hypocotyl in blue light (Fig. S3B), although the rescue
by BrGIR500 was only partial, suggesting that it is partially but
not fully functional for this trait. BrGIIMB211 had no effect on cir-
cadian period of gi-201 but, strikingly, introduction of BrGIR500

resulted in a significant period shortening (Fig. 2B, Fig. S2A, and
Table S1), consistent with the shorter period of R500 relative to
IMB211. Both BrGI alleles show similar expression patterns in
the B. rapa RIL parents (Fig. S4A) and in Arabidopsis gi-201 (Fig.
S4B), indicating that the differential effect on circadian period
does not result from differential expression of the two alleles.
As noted above, three SNPs were predicted to change the

amino acid sequence of the GI protein. To determine whether
one or more of those changes was responsible for the functional
differences between the two alleles, we constructed chimeric
alleles, BrGIIMB211(R500) and BrGIR500(IMB211), in which a SacI–
NdeI restriction fragment containing four SNPs at nucleo-
tides 1,210; 1,213; 1,274; and 1,295 (Fig. 2A) was exchanged.

Fig. 1. Fine mapping and genetic definition of the PERA9a circadian period
QTL. (A) Circadian period QTL on chromosome 9 (PERA9a), redefined by
composite interval mapping using the data of Lou et al. (14). (B) Fine map-
ping of the PERA9a QTL using new molecular markers flanking the QTL.
(C) Three overlapping BAC clones (17) spanning the PERA9a QTL with molec-
ular markers used for fine mapping. (D) Period analysis of HIL RIL256_R500
homozygous for R500 and RIL256_IMB211 homozygous for IMB211 in the
region of the PERA9a QTL. Box plots show median with the bottom and top
of the box indicating 25% and 75%, respectively; whiskers indicate the
maximum and minimum values.

Fig. 2. Transgenic complementation confirms GI as the gene underlying the
PERA9a QTL. (A) Cartoon of the Arabidopsis and B. rapa GI genes with exons
represented by boxes (coding regions in black). Known gi mutations are
indicated. The numbers 264, 541, and 610 indicate amino acid poly-
morphisms detailed in Lower. Lower indicates the nucleotide and amino acid
polymorphisms between the R500, IMB211, and chimeric GI alleles. (B) Cir-
cadian period of Arabidopsis Col-0 and gi-201 lines and of gi-201 lines car-
rying the indicated B. rapa GI alleles. Box plots show median, with the
bottom and top of the box indicating 25% and 75%, respectively; whiskers
indicate maximum and minimum values. Different letters indicate values
that are statistically different as determined by ANOVA followed by Tukey’s
test (Table S1).
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When tested in transgenic plants, BrGIR500 shortened period,
but BrGIR500(IMB211) did not (Fig. 2B, Fig. S2 A and B, and Table
S1). Conversely, although BrGIIMB211 did not shorten period,
BrGIIMB211(R500) shortened period to the same extent as BrGIR500

(Fig. 2B, Fig. S2 A and B, and Table S1). Thus, we conclude that
the differential effects of these two alleles on period length are
conferred by the polymorphisms in this SacI–NdeI restriction
fragment. Of the four SNPs in this region, only the one at nucleo-
tide 1,274 was predicted to change the amino acid sequence.
We therefore used site-directed mutagenesis to make two new
GI alleles, BrGIIMB211(S264A) in which nucleotide 1,274 of
BrGIIMB211 was changed from T to G, changing amino acid 264
from S to A, and BrGIR500(A264S) in which nucleotide 1,274 of
BrGIR500 was changed from G to T, changing amino acid 264
from A to S. These alleles were introduced into Arabidopsis
gi-201. Although BrGIR500 shortened period, BrGIR500(A264S) did
not (Fig. 2B, Fig. S2 A and C and Table S1). Conversely, although
BrGIIMB211 did not shorten period, BrGIIMB211(S264A) shortened
period to the same extent as BrGIR500 (Fig. 2B, Fig. S2 A and C,
and Table S1). All of the BrGI alleles were similarly expressed in
Arabidopsis gi-201 seedlings (Fig. S4 B and C), indicating that the
different effects on circadian period do not result from differ-
ential expression of the transgenes. Thus, we conclude that the
polymorphism at nucleotide 1,274 (T1274G, encoding S264A,
with the IMB211 allele listed first) is responsible for the differ-
ential effects of these two alleles on period length and that it is
the presence of R500 information at nucleotide 1,274, encoding
an A residue, that shortens period.
We also tested the phenotypic consequences of introduction of

these chimeric and point mutant BrGI alleles on flowering time
and hypocotyl length. All six BrGI alleles rescued the late flow-
ering time of Arabidopsis gi-201 equally (Fig. 3A and Fig. S3A).
As indicated above, BrGIIMB211, but not BrGIR500, rescued the
long hypocotyl in red light (Fig. 3B). Both BrGIR500(IMB211) and
BrGIR500(A264S), but neither BrGIIMB211(R500) nor BrGI IMB211(S26S4A),
rescued the long hypocotyl in red light (Fig. 3B). In blue light, a
similar pattern was observed, although in this case BrGIR500,
BrGIIMB211(R500), and BrGI IMB211(S26S4A) retained partial function
and partially but not fully rescued the long hypocotyl phenotype
of gi-201 (Fig. S3B). Thus, we conclude that the polymorphism at
nucleotide 1,274 is responsible for the differential effects of these
alleles on hypocotyl length, and the presence of IMB211 infor-
mation at nucleotide 1,274 is necessary to fully rescue the long
hypocotyl in blue and red light phenotypes of gi-201.
Our transgenic rescue experiments established the importance

of BrGI in circadian period and flowering time determination in
Arabidopsis. To test whether GI functions similarly in B. rapa, we
identified a set of TILLING mutations in B. rapa R-o-18, which
is closely related to R500 (23). Two putative null alleles, gi-1 and
gi-3, were predicted to be strong loss-of-function alleles due to
missense mutations (gi-1, G1223A; W258Stop and gi-3, G1737A;
W375Stop) and were analyzed after two back-crosses to the R-o-18
parent. B. rapa lines homozygous for either gi-1 or -3 flower
late (Fig. 4 A and B), consistent with loss of GI function. Cir-
cadian period was unaffected at 18 °C (Fig. 4 C–E), but at 22 °C,
most seedlings were arrhythmic, and those that showed circadian
rhythms in leaf movement (31% of B. rapa gi-1 and 42% of gi-3
mutant seedlings) showed long period and increased relative
amplitude error (RAE), a measure of the strength of a circadian
rhythm (Fig. 4E and Table S1). Thus, mutational disruption of
GI weakens rhythms in B. rapa leaf movement at high temper-
ature. This finding is consistent with Arabidopsis, where GI plays
a critical role in maintaining rhythmicity in leaf movement at
higher temperatures (24). However, the role of GI in rhythmicity
may not be limited to high temperature. In Arabidopsis, GI is
important for maintenance of rhythmicity of CAB2:LUC ex-
pression at both high and low temperatures (24).

Fig. 3. Transgenic complementation analysis of the role of GI in flowering
time, photomorphogenesis, cold tolerance, and salt tolerance. Arabidopsis
Col-0 and gi-201 and gi-201 lines carrying the indicated B. rapa GI alleles were
measured for flowering time, as measured by days to flowering (A); photo-
morphogenesis, as indicated by hypocotyl length in continuous red light
(cRL) (B); freezing tolerance, expressed as EL50, the temperature at which 50%
of leaf electrolytes are lost (C); and salt tolerance, measured as fresh weight
of total aerial tissues after growth on 1/2 strength MS medium containing
15 mM NaCl relative to growth without NaCl (D). All data are presented as
mean ± SEM. Different letters indicate values that are statistically different
as determined by ANOVA followed by Tukey’s test (Table S1).
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Recently, GI has been implicated in cold (25), oxidative (26),
drought (27), and salt (28) stress tolerance. Accordingly, we
tested our panel of Arabidopsis gi-201 mutants carrying the
B. rapa GI alleles for freezing tolerance, as measured by elec-
trolyte leakage after exposure to freezing temperatures. gi-201
showed significantly greater freezing tolerance than Col-0 (Fig.
3C). Transformation of gi-201 with BrGIR500 or with either of the
two BrGIIMB211 alleles carrying R500 information at nucleotide
1,274 (BrGIIMB211(R500) or BrGI IMB211(S264A)) had no effect on

freezing tolerance (Fig. 3C). However, transformation of gi-201
with BrGIIMB211 or with either of the two BrGIR500 alleles car-
rying IMB211 information at nucleotide 1,274 (BrGIR500(IMB211)

or BrGIR500(A264S)) significantly reduced freezing tolerance, res-
cuing the gi-201 phenotype of increased freezing tolerance (Fig.
3C). Thus, we conclude that B. rapa GI plays a role in freezing
tolerance and that the BrGIIMB211 allele is functional in this role,
whereas the BrGIR500 allele has at least partially lost this func-
tion, as has the Arabidopsis gi-201 allele. To confirm that GI also
serves as a determinant of freezing tolerance in B. rapa, we tested
B. rapa gi-1 and -3 mutants and found that loss of GI function
enhanced freezing tolerance, compared with the cognate wild
type, R-o-18 (Fig. 4F).
Our data also suggest a role for GI in nitrogen accumulation.

gi-201 accumulates less N than does Col-0 (Fig. S3C). BrGIIMB211

and BrGIR500(IMB211) rescue the N content of gi-201, but BrGIR500

and BrGIIMB211(R500) do not. This finding suggests that IMB211
information at nucleotide 1,274 is necessary for this rescue. How-
ever, both point mutants (BrGI IMB211(S264A) and BrGIR500(A264S))
rescue the N content of gi-201, which is inconsistent with the dif-
ference between the two alleles being solely attributable to that
single position. Thus, regulation of leaf N content by allelic state at
GI is not strongly supported by our data; further investigation will
be required to resolve the discrepancy among rescue lines.
In contrast, we found no difference among our panel of Ara-

bidopsis gi-201 mutants carrying the B. rapa GI alleles for delta C
13 (Fig. S3D) and rosette size (Fig. S3E). Thus, these alleles of
GI do not affect water use efficiency or plant size.
In Arabidopsis, GI has been shown to function as a negative

regulator of resistance to salt stress, and gi loss-of-function
mutants show increased salt resistance (28). Accordingly, we
tested our panel of Arabidopsis gi-201 mutants carrying the
B. rapa GI alleles for salt tolerance as measured by fresh weight
of aerial tissues following growth in the presence or absence of
NaCl. Growth of wild-type Col-0 seedlings or of glabrous-1 (gl-1)
was reduced by ∼1/3 at 15 mM NaCl, but gi-201 was unaffected.
Transformation of gi-201 with BrGIR500 or with BrGIIMB211(R500)

had no effect on the increased salt tolerance of gi-201 (Fig. 3D
and Fig. S5). However, transformation of gi-201 with BrGIIMB211

or with BrGIR500(IMB211) significantly reduced salt tolerance,
rescuing the gi-201 phenotype of increased salt tolerance (Fig.
3D and Fig. S5). Thus, we conclude that B. rapaGI plays a role in
salt tolerance and that the BrGIIMB211 allele is fully functional in
this role, whereas the BrGIR500 allele is impaired in this function,
as is the Arabidopsis gi-201 allele. To confirm that GI also serves
as a determinant of resistance to salt stress in B. rapa, we tested
B. rapa gi-1 and -3 mutants and found that loss of GI function
enhanced salt stress resistance compared with the cognate wild
type, R-o-18 (Fig. 4G).

Discussion
GI was first identified as a supervital mutant of Arabidopsis (29),
with a prolonged phase of vegetative growth that increased re-
productive capacity (30, 31). GI, in addition to this role in pho-
toperiodic flowering, also is required for phytochrome signaling
(20, 32, 33) and for proper clock function (18, 19), although the
roles of GI in photoperiodic flowering, photomorphogenesis, and
the clock can be dissociated (20, 33, 34).
Our results with the B. rapa GI alleles extend conclu-

sions drawn from Arabidopsis to Brassica. Both BrGIR500 and
BrGIIMB211 fully rescue the photoperiodic flowering defect of
Arabidopsis gi-201 mutants. gi-201 is a strong loss-of-function
allele, and full rescue of the gi-201 late-flowering phenotype
demonstrates that both Brassica alleles are equally functional in
terms of flowering time in Arabidopsis. However, the two B. rapa
GI alleles are not equally functional in terms of hypocotyl
elongation, freezing tolerance, and salt tolerance. In each case,
BrGIIMB211 fully rescued the gi-201 phenotype, whereas BrGIR500

Fig. 4. Characterization of B. rapa loss-of-function gi alleles. Putative loss-
of-function gi alleles were identified by TILLING in B. rapa R-o-18 (23), which
is closely related to R500. (A) Images of gi-1 and -3 relative to wild-type R-o-
18 taken as R-o-18 seeds are drying. (B) Quantification of flowering time in
gi-1 and -3 relative to wild-type R-o-18 expressed as days to first flower.
(C and D) Circadian pattern of cotyledon movement in B. rapa R-o-18, gi-1,
and gi-3 at 22 °C (C) and 18 °C (D). (E) Quantification of circadian period of
R-o-18, gi-1, and gi-3 (mean ± SEM; n = 12–35) plotted vs. relative amplitude
error (RAE), a measure of the strength of a circadian rhythm. An ideal cosine
wave is defined as RAE = 0, and RAE = 1 defines the statistically detectable
limit of rhythmicity (53). (F) Effect of loss-of-function GI mutations on
freezing tolerance, expressed as EL50 (the temperature at which 50% of leaf
electrolytes are lost) compared with isogenic wild-type B. rapa R-o-18.
(G) Effect of loss-of-function GI mutations on salt tolerance compared with
isogenic wild-type B. rapa R-o-18. Data are presented as the mean ± SEM of
shoot fresh weight of seedlings (n > 35) grown with 200 mM NaCl/average
shoot fresh weight of seedlings grown without NaCl. (B, F, and G) Different
letters indicate values that are statistically different as determined by
ANOVA followed by Tukey’s test (Table S1).
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failed to rescue. Thus, the flowering timing function is distinct
from the hypocotyl elongation, freezing tolerance, and salt tol-
erance functions. Amino acid 264 (A in R500 vs. S in IMB211) is
therefore important for these latter three functions. Amino acid
264 is also important for circadian period determination, be-
cause introduction of BrGIR500 (and BrGIIMB211 alleles carrying
R500 information at amino acid 264), but not BrGIIMB211 (and
BrGIR500 alleles carrying IMB211 information at amino acid
264), shortens circadian period.
GI functions typically involve protein–protein interactions. For

example, in flowering timing, GI interacts with the F-box protein
FLAVIN BINDING KELCH REPEAT F-BOX PROTEIN1
(FKF1), and in the afternoon this GI–FKF1 complex degrades
CYCLING DOF FACTORS (CDFs) bound at the CONSTANS
(CO) promoter, relieving transcriptional repression and al-
lowing the accumulation of CO mRNA in the light (35, 36). CO
protein is stabilized in the light, accumulates, and induces ex-
pression of FT, which induces floral identity genes. GI also binds
to the FT promoter and interacts directly with the FT repressors,
SHORT VEGETATIVE PHASE (SVP), TEMPRANILLO 1
(TEM1), and TEM2, to directly induce FT (37). Relevant to the
nuclear roles of GI in the regulation of CO and FT expression
is a protein–protein interaction with ELF4 that confers sub-
nuclear localization and restricts chromatin access of GI (38).
Finally, GI protein stability is controlled by interaction with
EARLY FLOWERING3 (ELF3) and the E3 ubiquitin ligase
CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1) (39).
At least some of these functions are retained in B. rapa, because
B. rapa gi loss-of-function mutants are late flowering. Both BrGI
alleles fully rescue the flowering delay of Arabidopsis gi-201, sug-
gesting that both BrGI proteins retain all these interactions.
In its role in circadian period determination, in the light GI

binds to and stabilizes ZEITLUPE (ZTL), an F-box protein
closely related to FKF1. The conformational shift in ZTL that
follows the cessation of blue light signaling after dusk releases
GI, freeing ZTL to interact with and thereby target critical clock
transcriptional repressors, TOC1 and PRR5, for ubiquitylation
and proteasomal degradation (40, 41). Because ZTL is a cyto-
plasmic protein, the ZTL–GI interaction also retains GI in the
cytosol, thereby limiting the nuclear accumulation of GI and
antagonizing its roles in flowering timing and regulation of hy-
pocotyl length (42).
The effects on circadian period of BrGIR500 and BrGIIMB211

and their derivatives when transformed into Arabidopsis gi-201
demonstrate an important role for amino acid 264 in circadian
period definition. First, we note that BrGIR500 shortens circadian
period length and acts as a gain-of-function mutant relative to
BrGIIMB211. The amino acid change of S264 in BrGIIMB211 to A
in BrGIR500 is similar to that observed in the Arabidopsis gi-200
short period allele (S932A) (20), although the two mutations lie
in different regions of the coding sequence. Moreover, the
Arabidopsis Col-0 amino acid at the position corresponding to
B. rapa GI 264 is A, and this residue is conserved in four Ara-
bidopsis accessions, barley and wheat (12). This finding suggests
that the phenotypic consequences of differing information at
amino acid 264 cannot be determined solely by the amino acid at
that residue but, rather, must be considered in the context of the
entire protein sequence.
One possible molecular explanation of the effect of the

BrGIR500 phenotype of short period could be an increased affinity of
BrGIR500 for ZTL, which would stabilize ZTL, increase ZTL
accumulation, and thereby shorten period (43). This explana-
tion would be consistent with the observed effects on red light
inhibition of hypocotyl elongation, because the increased affinity
of BrGIR500 for ZTL would limit nuclear accumulation and
thereby antagonize the ability of BrGIR500 to rescue red light
inhibition of hypocotyl elongation. However, both B. rapa GI
alleles fully rescue the flowering timing phenotype of gi-201.

Therefore, if differential affinities for ZTL explain the period
differences of the B. rapa GI alleles, these effects must not limit
nuclear accumulation of GI to the point where flowering timing
is compromised.
The role of GI in red and blue light suppression of hypocotyl

elongation is incompletely defined. GI has been suggested to
regulate CRY-mediated blue light signaling (44). The long hy-
pocotyl in red light phenotype of gi-2 is suppressed in spindly-4
(spy-4) gi-2 double mutants, and, consistent with this genetically
defined interaction, SPY and GI proteins interact (22).
More recently, GI has emerged as a key player in a number of

stress responses, notably to drought, cold, and salinity (25, 27,
28). Loss of GI function in Arabidopsis results in increased tol-
erance to both freezing and salt stress in Arabidopsis, and our
analysis of B. rapa GI loss-of-function mutants shows a similar
enhancement of freezing and salt resistance in B. rapa, suggest-
ing that the roles of GI in resistance to these two stresses is
conserved between species. Among these stresses, the role of GI
in salt tolerance is best understood. In Arabidopsis, GI sequesters
SALT OVERLY SENSITIVE2 (SOS2), a protein kinase that
serves as a positive regulator of salt tolerance (28). Release of
SOS2 from GI in response to elevated salt permits formation of
the SOS2/SOS3 protein kinase complex that associates with and
phosphorylates SOS1, activating its Na+/H+ antiport activity and
enhancing salt tolerance (45). Differential rescue of the salt
tolerance phenotype of Arabidopsis gi-201 by BrGIIMB211 and
BrGIR500allows the prediction of the Arabidopsis model is that
BrGIIMB211 has greater affinity for SOS2 than does BrGIR500.
It is important to note that most of our experiments tested the

function of BrGI alleles in Arabidopsis. Extrapolating the com-
plex network of GI functions elucidated in Arabidopsis into
B. rapa and determining the mechanistic basis of the functional
differences observed between the two BrGI alleles will likely be
complicated by the triplication of the B. rapa genome since its
separation from Arabidopsis (46). In the B. rapa reference Chiifu
genome, subsequent gene loss has eliminated two of the dupli-
cated GI copies, leaving a single GI locus (47). Similarly, there
are single copies of SOS2 and of TEM2 (47). However, other
potential GI interactors are present in two (CDF1, CDF2, CDF3,
COP1, ELF3, FT, SPY, SVP, and TEM1) or three (ELF4) copies
(47), and some or all of these copies have likely diverged from
their Arabidopsis homologs as well as from each other through
subfunctionalization. Of interest in the context of circadian pe-
riod determination, B. rapa has lost all copies of both ZTL and
FKF1 (48). In B. rapa, the functions of ZTL and FKF1 are pre-
sumably carried out by a third family member, LOV KELCH
PROTEIN2 (LKP2), which exhibits partial functional redundancy
with ZTL and FKF1 in Arabidopsis (49). In B. rapa, LKP2 is
present in three linked copies resulting from a complex tandem
gene triplication (48). It will be of interest to determine whether
subfunctionalization among these three copies of LKP2 has re-
sulted in the specialization of one or more copies for flowering
timing or circadian functions.

Materials and Methods
Plant Materials. All constructs were transformed by floral dip into the Ara-
bidopsis gi-201 mutant (20) carrying the proCCA1:LUC transgene (50). Seeds
were sterilized in 20% (vol/vol) bleach and placed on half-strength Murashige
and Skoog (MS) medium with 0.8% agar and 2% (wt/vol) sucrose, then
stratified for 3 d at 4 °C in the dark.

Fine Mapping the GI QTL. To confirm the circadian period QTL on chromosome
9, simple sequence repeat (SSR) markers were developed based on se-
quenced BAC clones (17). In total, 13 SSR markers were used to fine-map the
A9 QTL region (Table S2). Heterogeneous inbred lines (HILs) were generated
from an F4 RIL, RIL256, heterozygous in the A9 QTL region. We then geno-
typed 144 plants of the F5 generation of RIL256 using our SSR markers to
identify HILs of RIL256 homozygous for either IMB211 (RIL256_IMB211) or
R500 (RIL256_R500) in the QTL region.
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Constructs. PCR products of full-length BrGIR500 and BrGIIMB211 genomic DNA,
including promoters and 3′ UTR, were amplified from genomic DNA with
primer pairs Br_GI_locus_F1 and Br_GI_locus_R1 by using Phusion High-Fidelity
DNA Polymerase (New England Biolabs) and cloned into pENTR. SacI and
NdeI were used to make chimeric genes, BrGIIMB211(R500) and BrGIR500(IMB211),
in which the fragments that included the first different amino acid (S264A)
were switched between BrGIIMB211 and BrGIR500, respectively. Three primers,
I-S1F2, RI-S1R2, and R-S1F2, were used to make site-specific mutation con-
structs, BrGIIMB211(S264A) and BrGIR500(A264S). All pENTR_GI constructs were
recombined into binary vector pH2GW7Δ (51).

Phenotypic Analysis. For circadian period determination, seedlings were
entrained in 12-h light/12-h dark LD cycles under white light (70 μmol·m2·s−1)
at 22 °C before release into continuous light and temperature for LUC ac-

tivity measurement with a TopCount luminometer (Perkin-Elmer Life Sci-
ences). Circadian period estimation in B. rapa lines was by cotyledon
movement as described (52). Data analysis was with BRASS (Version 2.1.4),
which employs fast Fourier transform nonlinear least squares (53). Details of
other phenotypic analyses are provided in SI Materials and Methods. Sta-
tistical significance for circadian period and other phenotypic analyses was
with ANOVA followed by Tukey’s test, which performs all pairwise com-
parisons and corrects for multiple comparisons.
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Expression Analysis by Quantitative RT-PCR. Seedlings were en-
trained for 10 d in photocycles [12-h/12-h light/dark (12/12 LD)
cycles]. Samples were collected every 2 h for one diurnal cycle.
RNA was extracted by using the Qiagen RNeasy Plant Mini Kit.
First-strand cDNA synthesis used 2 μg of total RNA with the
SuperScript III first-strand synthesis system (Invitrogen). The
cDNA was diluted 10× with water, and 1 μL was used for PCR
amplification using a SYBR Premix Ex Taq II (Takara Bio) with
gene-specific primers (Table S2). mRNA abundances were cal-
culated by using the comparative CT method, with TUB3 (Ara-
bidopsis At5g62700 or B. rapa Bra018184) as the normalization
control. Data are presented as mean ± SEM of three technical
replicates from one representative experiment. The experiment
was repeated with essentially identical results.

Flowering Time Determination. Days to flowering (defined as the
opening of the first flower) and rosette leaf number at flowering
were determined with soil-grown plants at 22 °C in 16/8 LD cycles
at 100 μmol·m−2·s−1 white light at 22 °C in a controlled envi-
ronment growth room.

Hypocotyl Length. Seeds were cold-treated at 4° C for 3 d, sown on
1/2× MS (no sucrose) 0.8% agar plates, and then exposed to
continuous white light for 12 h to induce uniform germination.
The plates were transferred to continuous blue (470 nm,
4 μmol·m−2·s−1) or red (670 nm, 40 μmol·m−2·s−1) light at 22 °C,
and hypocotyl length was measured after 7 d.

Freezing Tolerance.Freezing tolerance was measured by electrolyte
leakage as described (1). Seedlings were grown in soil at 22 °C in
12/12 LD cycles for 3 wk and then acclimated to cold (4 °C) for
1 wk. For each temperature and genotype, three replicates each
consisting of three or four leaves (Arabidopsis) or one leaf
(B. rapa) from three plants were transferred to a programmable
cooling bath set to −2 °C. Samples were cooled at a rate of 2 °C
per h, taken from the water bath at 2 °C intervals from −4 to
−14 °C, and incubated at 4 °C overnight before adding 4 mL of

distilled water to each tube. Electrolyte leakage was determined
as the ratio of conductivity before and after boiling the samples.
EL50, the value at which 50% of the electrolytes had leaked, was
calculated with fitted sigmoidal curves (MATLAB; Version
8.0.0.783, MathWorks).

Salt Tolerance. For Arabidopsis, seeds sterilized with 70% ethanol/
2% bleach and washed three times with distilled water were
spotted directly on rock wool in distilled water for 1 wk. After
germination, nutrient medium with and without NaCl (15 mM)
was provided. Fresh weight of aerial tissues was measured after
2–3 wk of growth. sos-1 is a hypersensitive control and was
compared with its isogenic wild-type gl1 (2). For B. rapa, seeds
sterilized with 70% ethanol/10% bleach and washed three times
with distilled water were plated in Magenta boxes on 1/2 strength
MS medium with or without 200 mM NaCl. After stratification
for 4 d at 4 °C in the dark, plants were grown at 22 °C in 12-h
light/12-h dark cycles for 7 d, and shoot fresh weight was
determined.

Water Use Efficiency. Seed of the six transgenic rescue genotypes as
well as wild-type and gi-201 mutant were planted on moist
Sunshine Sungro LP-5 soil (Sungro Horticulture) and cold-
stratified (+4 °C) for 4 d. The pots were then moved to growth
chambers (PGC-9/2 with Percival Advanced Intellus Environ-
mental Controller; Percival Scientific; 10/14 LD at 24 °C) for
7 wk. Plants were measured for rosette size, and fully expanded
leaves were collected, dried at 65 °C for 4 d, and homogenized
for isotope and N analyses. Stable isotope analyses (delta 13 C,
%N) were performed by using an elemental analyzer (ECS 4010;
Costech Analytical Technologies) coupled to a continuous-flow
inlet isotope ratio mass spectrometer (CF-IRMS; Delta-plus XP;
Thermo Scientific) at the University of Wyoming Stable Isotope
Facility. Delta 13 C values were reported in parts per million
relative to Vienna Peedee Belemnite. The precision of repeated
measurements of laboratory standards was >>0.11‰. Replicate
number per genotype varied from 13 to 21. N content is reported
as a percentage of leaf mass.

1. Rohde P, Hincha DK, Heyer AG (2004) Heterosis in the freezing tolerance of crosses
between two Arabidopsis thaliana accessions (Columbia-0 and C24) that show differ-
ences in non-acclimated and acclimated freezing tolerance. Plant J 38(5):790–799.

2. Wu S-J, Ding L, Zhu J-K (1996) SOS1, a genetic locus essential for salt tolerance and
potassium acquisition. Plant Cell 8(4):617–627.
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Fig. S1. HILs for genetic confirmation of the PERA9 QTL. Genetic map of chromosome 9 of RIL256, as well as of two HILs in which the heterozygous (Het;
shown in red) region surrounding the PERA9a QTL has resolved as R500 (yellow in HIL256_R500) or IMB211 (blue in HIL256_IMB211). Molecular markers for
genotyping HIL are at left. Purple line indicates the PERA9a QTL region, and boxed region indicates where the two HIL differ genetically.

Xie et al. www.pnas.org/cgi/content/short/1421803112 2 of 9

www.pnas.org/cgi/content/short/1421803112


Fig. S2. Effects of B. rapa GI alleles on CCA1:LUC Expression in Arabidopsis. (A) CCA1:LUC in Col-0 (open circles), gi-201 (filled circles), and in gi-201 carrying
B. rapa GIIMB211 (red triangles) and in GIR500 (open triangles). (B) CCA1:LUC in Col-0 (open circles), gi-201 (filled circles), and in gi-201 carrying B. rapa GIIMB211(R500)

(blue squares) and in GIR500(IMB211) (red squares). (C) CCA1:LUC in Col-0 (open circles), gi-201 (filled circles), and in gi-201 carrying B. rapa GIIMB211(S264A) (cyan
diamonds) and in GIR500(A264S) (dark red diamonds). Seedlings were entrained to photocycles (12/12 LD) at 24 °C for 6 d before release into continuous light (LL) at
T = 0. Average traces (mean ± SEM, n = 22–24) are shown for luciferase (LUC) activity of CCA1:LUC, normalized to the average activity over the duration of the
experiment. White and gray bars indicate subjective day and night, respectively.
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Fig. S3. Transgenic complementation analysis of the role of GI in flowering time, photomorphogenesis, water use efficiency, leaf nitrogen content (%N), and
rosette size. Arabidopsis Col-0 and gi-201 and gi-201 lines carrying the indicated B. rapa GI alleles were measured for flowering time, as measured by number of
rosette leaves at flowering (A); photomorphogenesis, as indicated by hypocotyl length in continuous blue light (cBL) (B); leaf nitrogen content (%N) (C); water
use efficiency (delta 13C) (D); and rosette diameter (E). All data are presented as mean ± SEM. Different letters indicate values that are statistically different as
determined by ANOVA followed by Tukey’s test (Table S1).
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Fig. S4. Expression of the B. rapa GI alleles in the B. rapa RIL parents and driven from their endogenous promoters in transgenic Arabidopsis. GI transcript
abundance in B. rapa IMB211 (red circles) and in R500 (blue squares) (A), in Arabidopsis gi-201 carrying BrGIIMB211 (red circles) or BrGIR500 (blue squares) (B), and
in Arabidopsis gi-201 carrying BrGIIMB211(R500) (red circles), BrGIR500(IMB211) (blue squares), BrGIIMB211(S264A) (orange triangles), or BrGIR500(A264S) (green triangles) (C).
Total RNA was isolated from seedlings grown in photocycles (LD; 12-h light/12-h dark) at 24 °C and sampled every 2 h over a complete day. Transcript levels
were determined by quantitative RT-PCR (qPCR) and normalized to TUBULIN3c (Tub3c). White and black bars indicate light and dark.
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Fig. S5. Effects of B. rapa GI alleles on salt tolerance of transgenic Arabidopsis. Growth of Arabidopsis Col-0, gi-201, and of gi-201 lines carrying the indicated
B. rapa GI alleles. Seedlings were grown on ½-strength MS medium solidified with 1% agar for 1 wk, and then the medium was amended to 0 or 15 mM NaCl
for 1 wk. Arabidopsis sos1-1 is overly sensitive to salt, as indicated by comparison with its isogenic parent, Arabidopsis gl-1 (1), and is shown as a control.

1. Wu S-J, Ding L, Zhu J-K (1996) SOS1, a genetic locus essential for salt tolerance and potassium acquisition. Plant Cell 8(4):617–627.
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Table S1. Summary of phenotypic characterization of GI mutants and transgenic complementation

Mean SEM n P

Circadian period of HILs (Fig. 1D)
RIL256-R500 25.15 0.01 56 —

RIL256-IMB211 25.72 0.043 25 0.004
Circadian period of Arabidopsis gi-201 transformed with BrGI alleles (Fig. 2B)

Col-0 24.31 0.08 23 0.999*
BrGIIMB211 23.82 0.10 24 0.013*
BrGIR500 20.51 0.08 24 <0.0001*
BrGIIMB211(R500) 20.48 0.11 24 <0.0001*
BrGIR500(IMB211) 24.14 0.15 22 0.911*
BrGIIMB211(S264A) 20.50 0.13 24 <0.0001*
BrGIR500(A264S) 25.13 0.10 24 <0.0001*
gi-201 24.27 0.07 24 —

Flowering time of Arabidopsis gi-201 transformed with BrGI alleles: Day of the first flower opening (Fig. 3A)
Col-0 27.38 0.21 58 <0.0001*
BrGIIMB211 27.31 0.29 29 <0.0001*
BrGIR500 27.18 0.26 51 <0.0001*
BrGIIMB211(R500) 27.41 0.31 29 <0.0001*
BrGIR500(IMB211) 27.43 0.28 28 <0.0001*
BrGIIMB211(S264A) 27.68 0.37 38 <0.0001*
BrGIR500(A264S) 26.95 0.26 42 <0.0001*
gi-201 51.21 0.52 39 —

Flowering time of Arabidopsis gi-201 transformed with BrGI alleles: No. of rosette leaves at time of first flower opening
(Fig. S3A)
Col-0 9.86 0.14 50 <0.0001*
BrGIIMB211 9.36 0.12 47 <0.0001*
BrGIR500 9.89 0.10 47 <0.0001*
BrGIIMB211(R500) 9.65 0.12 49 <0.0001*
BrGIR500(IMB211) 9.69 0.11 49 <0.0001*
BrGIIMB211(S264A) 9.63 0.13 41 <0.0001*
BrGIR500(A264S) 9.35 0.14 34 <0.0001*
gi-201 39.80 0.35 59 —

Hypocotyl length in red light (cRL) of Arabidopsis gi-201 transformed with BrGI alleles (Fig. 3B)
Col-0 0.33 0.01 21 < 0.0001*
BrGIIMB211 0.31 0.01 20 < 0.0001*
BrGIR500 0.44 0.02 24 0.247*
BrGIIMB211(R500) 0.44 0.02 22 0.377*
BrGIR500(IMB211) 0.30 0.01 20 < 0.0001*
BrGIIMB211(S264A) 0.43 0.01 22 0.240*
BrGIR500(A264S) 0.32 0.01 18 < 0.0001*
gi-201 0.48 0.02 21 —

Hypocotyl length in blue light (cBL) of Arabidopsis gi-201 transformed with BrGI alleles (Fig. S3B)
Col-0 0.18 0.01 18 <0.0001*
BrGIIMB211 0.19 0.00 30 <0.0001*
BrGIR500 0.21 0.01 37 <0.0001*
BrGIIMB211(R500) 0.21 0.01 28 <0.0001*
BrGIR500(IMB211) 0.18 0.00 31 <0.0001*
BrGIIMB211(S264A) 0.21 0.01 28 <0.0001*
BrGIR500(A264S) 0.19 0.01 28 <0.0001*
gi-201 0.24 0.00 29 —

Freezing tolerance (EL50, °C) of Arabidopsis gi-201 transformed with BrGI alleles (Fig. 3C)
Col-0 −7.63 0.29 4 0.150*
BrGIIMB211 −6.87 0.20 4 0.003*
BrGIR500 −8.51 0.17 4 0.991*
BrGIIMB211(R500) −8.63 0.37 4 0.999*
BrGIR500(IMB211) −7.13 0.38 4 0.013*
BrGIIMB211(S264A) −8.06 0.39 4 0.617*
BrGIR500(A264S) −6.95 0.25 4 0.005*
gi-201 −8.86 0.37 4 —

Salt tolerance of Arabidopsis gi-201 transformed with BrGI alleles (ratio of seedling fresh weight ± 0.15 mM NaCl) (Fig. 3D)
Col-0 0.47 0.07 10 0.017*
BrGIIMB211 0.53 0.05 5 0.108*
BrGIR500 0.82 0.14 13 0.823*
BrGIIMB211(R500) 0.89 0.17 15 0.799*
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Table S1. Cont.

Mean SEM n P

BrGIR500(IMB211) 0.55 0.06 16 0.018*
gi-201 0.83 0.08 15 —

gl1 0.54 0.07 9 0.059*
sos1-1 0.18 0.03 11 <0.0001*

%N/leaf dry mass (g/g) of Arabidopsis gi-201 transformed with BrGI alleles (Fig. S3C)
Col-0 4.93 0.2 15 0.015*
BrGIIMB211 5.08 0.18 21 0.002*
BrGIR500 4.56 0.21 17 0.231*
BrGIIMB211(R500) 4.68 0.18 17 0.102*
BrGIR500(IMB211) 5.20 0.21 21 0.003*
BrGIIMB211(S264A) 5.41 0.12 20 0.0001*
BrGIR500(A264S) 4.96 0.18 13 0.014*
gi-201 4.23 0.19 15 —

Water use efficiency (delta 13C) of Arabidopsis gi-201 transformed with BrGI alleles (Fig. S3D)
Col-0 −30.3 0.10 15 0.608*
BrGIIMB211 −30.38 0.12 21 0.212*
BrGIR500 −30.09 0.10 17 0.999*
BrGIIMB211(R500) −30.11 0.12 18 0.996*
BrGIR500(IMB211) −30.39 0.08 21 0.186*
BrGIIMB211(S264A) −30.59 0.11 20 0.006*
BrGIR500(A264S) −30.28 0.14 13 0.737*
gi-201 −29.99 0.12 15 —

Rosette diameter (cm) of Arabidopsis gi-201 transformed with BrGI alleles (Fig. S3E)
Col-0 6.88 1.32 15 0.996*
BrGIIMB211 7.05 1.12 21 0.924*
BrGIR500 6.87 1.10 17 0.997*
BrGIIMB211(R500) 6.90 1.20 18 0.993*
BrGIR500(IMB211) 6.19 0.91 21 0.952*
BrGIIMB211(S264A) 6.31 0.86 20 0.994*
BrGIR500(A264S) 6.56 1.32 13 >0.999*
gi-201 6.60 0.85 15 —

Flowering time of B. rapa gi mutants (Fig. 4B)
R-o-18 27.84 2.27 25 —

gi-1 81.20 5.19 15 <0.0001†

gi-3 77.88 19.18 16 <0.0001†

Circadian period of B. rapa gi mutants (Fig. 4E)
R-o-18/18 °C 24.00 0.70 21 —

gi-1/18 °C 23.47 0.72 20 0.051†

gi-3/18 °C 23.60 0.84 12 0.2418†

R-o-18/22 °C 25.61 1.16 35 —

gi-1/22 °C 27.87 3.65 10 (22 arrhythmic) 0.012†

gi-3/22 °C 28.30 2.86 14 (19 arrhythmic) 0.001†

Freezing tolerance (EL50, °C) of B. rapa gi mutants (Fig. 4F)
R-o-18 −5.56 0.49 3 —

gi-1 −7.75 0.11 3 0.003†

gi-3 −7.04 0.66 3 0.022†

Salt tolerance (ratio of growth + 200mMol NaCl/growth without NaCl) of B. rapa gi mutants (Fig. 4G)
R-o-18 0.48 0.18 44 —

gi-1 0.66 0.24 37 0.0003†

gi-3 0.65 0.29 35 0.001†

Summary of phenotypic characterization of B. rapa HILs, BrGI-transformed Arabidopsis lines, and B. rapa gi mutants. Circadian period
(mean, SEM) calculated by fast Fourier transform-nonlinear least squares (1). P is the probability the given value differs from the
indicated genotype as determined by Student’s t test (less than three comparisons) or by ANOVA followed by Tukey’s test (three or
more comparisons).
*vs. gi-201.
†vs. R-o-18.

1. Plautz JD, et al. (1997) Quantitative analysis of Drosophila period gene transcription in living animals. J Biol Rhythms 12(3):204–217.
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Table S2. Oligonucleotide primers (shown 5′ to 3′) used in this
study

Primer

For constructs
Br_GI_locus_F1 CTCCACGTATGGTTTAGAGCCCATC

Br_GI_locus_R1 GAATATGATTGCGTTAGTCACTCATC

I-S1F2 TCTCGGTACGAGACTGCTACGTTAACAG

RI-S1R2 AACTTCATCATCACAAACACTCAGTATGAC

R-S1F2 GCTCGGTACGAGACTGCTACGCTAACAG

For genotyping
Br_TillingF AGAGCTCAAGCCACCTACCA

Br_TillingR TAGAAGTCTCTGGCGGGAAA

Br_Seq1F GTGTGGGCCTTATGTGTAGTCTTG

Br_Seq1R CAAGACTACACATAAGGCCCACAC

Br_Seq2F GCCTCTCACACCCAAGTGCACACG

Br_Seq2R CGTGTGCACTTGGGTGTGAGAGGC

Br_Seq3F GATGGCCATGGGGACATGGAG

Br_Seq3R CTCCATGTCCCCATGGCCATC

Br_Seq4F CAGCAAAAGCAGCTGCAGCCGTTG

Br_Seq4R CAACGGCTGCAGCTGCTTTTGCTG

Br_Seq5F GTATCTACAGGAAGGAGC

Br_Seq5R GCTCCTTCCTGTAGATAC

Br_Seq6F CAGCAGCAGGGTTTGGTAC

Br_Seq6R GTACCAAACCCTGCTGCTG

Br_Seq7R GTAGTATATCACTGATCCATG

Br_Seq8F GTTGCTGTCCCTGCACTTCTC

Br_Seq9F GCTAAGCCAAGCTGAGGGAG

Br_Seq9R CTCCCTCAGCTTGGCTTAGC

Br_Seq10F GGAGTCCTTCCGAAGCATGC

Br_Seq10R GCATGCTTCGGAAGGACTCC

For fine mapping
KBrB044E18_F ATGGCGGGTGTAAAACTCTG

KBrB044E18_R CACCTACTTGTTTCCATCCAA

KBrB049N17_F GATGGAGAGTGGGTTGTGCT

KBrB049N17_R CCCAATGAAAGCCATTATCG

KBrS002B15_F CATCTCCATCCATCACATGC

KBrS002B15_R CAAACAGGCACGACAATCAT

KBrB020D15_F GTTGTCAATGTTCGTTCAAA

KBrB020D15_R AATTAAACAACCACAATAACCA

KBrB048C04_F CATGGTCGGCTCAAGAATTT

KBrB048C04_R ACAGCTAAGCGGGGATAAGC

KBrH013B21_F GTTGTGTGAAATCGCTCAAAT

KBrH013B21_R GAGTACCACCCAAACCGAAC

KBrH015M19_F TACCCACGTTGGCAGATGTA

KBrH015M19_R TCAATTTGGTTTCGGTTAAGTTT

KBrB089L03_F CCTCCATCAAGCTTCTCTGC

KBrB089L03_R TCTAACGCCTCCGATTTCAC

KBrH143H14_F CTCCACGCAAAACCAAAACT

KBrH143H14_R CGATTCATGGAATTGGAAGG

KBrS010I09_F CAGATGGGGCCAAGTTACAT

KBrS010I09_R ACACCGATTTGAAGGCAAAC

KBrB016K20_F GATTGGGCTGGCTTGTAAGA

KBrB016K20_R GTTATTTTTGCATTAGATTGAATTTG

KBrB034P04_F CTCTTGGCTGCAAGGTAAGG

KBrB034P04_R TCCCTCAGTTAACTTTCTCCACA

KBrB063M04_F GAGAAATGCCCGTCTGGTAA

KBrB063M04_R AATGCCTCCATTGTCCTCTG

For qRT-PCR
Br_RT_Seq7F CATGGATCAGTGATATACTAC

Br_RT_Seq8R GAGAAGTGCAGGGACAGCAAC

TUB3-F TGGTGGAGCCTTACAACGCTACTT

TUB3-R TTCACAGCAAGCTTACGGAGGTCA
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