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a  b  s  t  r  a  c  t

Circadian  clocks  allow  plants  to  temporally  coordinate  many  aspects  of  their  biology  with  the  diurnal
cycle derived  from  the  rotation  of  Earth  on  its  axis.  Although  there  is  a rich  history  of  the  study  of  clocks
eywords:
ircadian clock
ircadian rhythms

in  many  plant  species,  in recent  years  much  progress  in elucidating  the  architecture  and  function  of
the  plant  clock  has  emerged  from  studies  of the  model  plant,  Arabidopsis  thaliana.  There  is  considerable
interest  in  extending  this  knowledge  of  the  circadian  clock  into  diverse  plant  species  in  order  to address
its role  in  topics  as varied  as  agricultural  productivity  and  the  responses  of  individual  species  and  plant
communities  to  global  climate  change  and  environmental  degradation.  The  analysis  of  circadian  clocks  in
the  green  lineage  provides  insight  into  evolutionary  processes  in plants  and  throughout  the  eukaryotes.
© 2013 Elsevier Ltd. All rights reserved.
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. Introduction: the plant circadian clock

The rotation of the earth on its axis confers dramatic daily
hanges in the environment with multiple consequences for orga-
isms that must contend with the transitions from day to night and
ack again. Circadian clocks that temporally organize many aspects
f biology are found in organisms across the three domains of life:
rchaea, Bacteria, and Eucarya [1–3]. The first recorded observa-

ion of a diurnal rhythm was from Androsthenes, who described
he sleep movements of plant (probably the tamarind tree) leaves
uring the expeditions of Alexander the Great in the fourth cen-
ury BC [4]. Two millennia elapsed before the scientific study of
locks began with de Mairan, who showed that the sleep move-
ents of Mimosa leaves persisted in constant darkness [5]. For

early 200 years plant leaf movement remained the premier sys-
em for the scientific study of circadian rhythms, which expanded to

and metabolism [10–18], as well as interaction with the abiotic and
biotic environment [9,19–23].

The molecular biological study of the plant circadian clock began
with the seminal observation that the accumulation of three light-
inducible transcripts, encoding a chlorophyll a/b binding protein,
the small subunit of Rubisco, and an early light-induced protein
(ELIP) oscillated in abundance in peas (Pisum sativum) grown in
light dark (LD) cycles and that these oscillations persisted in plants
transferred into continuous light (LL) [24]. Observations of cir-
cadian regulation of transcript abundance were soon made in
multiple angiosperm species, including wheat [25], tomato [26],
tobacco [27], maize [28] and Arabidopsis [29].

The initial molecular biological description of circadian rhythms
in plants coincided with the emergence of Arabidopsis as the
model plant for molecular genetic analyses [30–32]. The enabling
attributes of Arabidopsis as a model system facilitated rapid
ncompass many plant species [e.g., 6]. However, plants are richly
hythmic [7–9] and the breadth of properties under circadian con-
rol has expanded dramatically to include many aspects of growth

∗ Tel.: +1 603 646 3940; fax: +1 603 646 1347.
E-mail address: c.robertson.mcclung@dartmouth.edu

084-9521/$ – see front matter ©  2013 Elsevier Ltd. All rights reserved.
ttp://dx.doi.org/10.1016/j.semcdb.2013.02.007
progress on many aspects of plant biology, including the circadian
clock, which now has been described in considerable architec-
tural and mechanistic detail [22,33–36]. The value of a model plant
such as Arabidopsis emerges from the generalization of knowledge

acquired in the model. As early as 1988 Gerry Fink predicted [37]
“The day is not far off when scientists will say, Is it like Arabidop-
sis?” Now, a quarter of a century later, it should be instructive to

dx.doi.org/10.1016/j.semcdb.2013.02.007
http://www.sciencedirect.com/science/journal/10849521
http://www.elsevier.com/locate/semcdb
mailto:c.robertson.mcclung@dartmouth.edu
dx.doi.org/10.1016/j.semcdb.2013.02.007
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onsider the extent to which the model of the circadian clock devel-
ped in Arabidopsis applies to other plant species, especially to
hose of agricultural significance.

. Angiosperm clocks

Within the angiosperms, including both monocots and dicots,
he evidence is quite strong that there has been considerable
volutionary conservation of clock components, architecture, and
unction [38]. Initial observations in a number of species focused on
enes shown to play central roles in the feedback loops at the heart
f the plant clock including those encoding the myb  domain tran-
cription factors (TFs) CIRCADIAN CLOCK ASSOCIATED1 (CCA1) and
ATE ELONGATED HYPOCOTYL (LHY) and the PSEUDO RESPONSE
EGULATOR (PRR) family, including TIMING OF CAB EXPRESSION1
TOC1) [22,33–35]. Homologues to these clock genes were identi-
ed in many species as diverse as bean (Phaseolus vulgaris) [39],
hestnut (Castanea sativa)  [40,41], pea (Pisum sativum) [42,43], the
ce plant (Mesembrianthemum cristallinum) [44], soybean (Glycine

ax) [45,46], Brassica rapa [47,48], tomato (Solanum lycopersicum)
49], and the cactus pear (Opuntia ficus-indica) [50]. LHY, PRRs
ncluding TOC1, as well as GI and ELF3 have been identified in
he monocots Lemna gibba and L. paucicostata [51]. In many cases,
hese clock genes have been shown to cycle in phase with their
rabidopsis counterparts, consistent with the conservation of clock
rchitecture among plants.

More recently, the availability of multiple plant genomes has
ermitted a more systematic and comprehensive taxonomic survey
f clock genes, and additional evidence has accumulated sup-
orting conserved clock architecture. For example, CCA1/LHY and
RR homologues have been characterized in poplar (Populus spp.)
52,53], papaya (Carica papaya)  [54], grape (Vitis vinifera) [55], and
n B. rapa [48]. However, few of these studies provide functional
ssessment of the roles of these components in clock function,
hich remains an important experimental validation of clock con-

ervation. One important exception is provided by rice, for which
everal PRR genes have been shown to functionally rescue Ara-
idopsis mutants deficient in the homologous PRRs [56–58]. A
econd notable exception is the monocot L. gibba, whose genetic
dvantages have permitted functional assessment (knockdown and
verexpression) of LHY, ELF3, and GI indicating functional conser-
ation of the Lemna circadian system with Arabidopsis and rice [59].

A second line of evidence involves conservation of clock-
ontrolled transcriptional programs. It has become clear that a
ubstantial portion of the transcriptome is under clock control.
nitial estimates, based on microarray analyses in Arabidopsis,
uggested that ∼5–6% of the transcripts cycled in abundance in
ontinuous light (LL) [60]. Such estimates were necessarily conser-
ative, given the experimental challenges of assessing rhythmicity
ased on only two cycles of rather noisy data and the limita-
ions of assessing rhythmicity based on curve fitting to smooth
nd symmetric sine waves. An enhancer trap study suggested that

 larger portion, perhaps up to one-third, of the transcriptome
as under circadian control [61]. Subsequent microarray studies

ielded increased estimates of the scale of the cycling transcrip-
ome [11,62–64] and meta-analysis of multiple datasets [62,63] are
onsistent with one-third of the transcriptome cycling in constant
ight and temperature [65].

More recent investigations suggested that the portion of the
ranscriptome that is rhythmically expressed is considerably larger
han the already substantial one-third suggested by Covington et al.

65]. Broadening the assessment criteria to include waveforms
ther than the symmetric sine wave expanded the set of trans-
ripts considered to cycle [64]. Biologically, of course, plants in the
atural world never encounter continuous conditions of constant
mental Biology 24 (2013) 430– 436 431

light and temperature. Thus, when the cycling transcriptome was
assessed in plants exposed to multiple photo- and thermo-cycles,
and combinations of those photo-and thermo-cycles [62–64,66,67],
the surprising summative conclusion was that up to 89% of the Ara-
bidopsis transcriptome cycled under one or more conditions of free
run (continuous conditions) or imposed cycles [64].

These transcriptomic studies have revealed an intricate tempo-
ral coordination of multiple pathways of metabolism and growth
in Arabidopsis,  as detailed elsewhere [7–23,35]. To the point of this
article, it is important to note that other studies that have consid-
ered the cycling transcriptomes of a number of other angiosperm
species, including rice [64,68–70], maize [71,72], papaya [73],
tomato [49], and poplar [64,68] come to the consistent conclu-
sion that there is widespread clock control of the transcriptome,
encompassing multiple pathways associated with metabolism (e.g.,
photosynthesis, carbohydrate metabolism, cell wall biogenesis),
growth (often associated with phytohormone biosynthesis, trans-
port, and signaling), and development. It is also becoming clear
that the circadian clock also modulates the response to the biotic
[74–76] and abiotic [77–81] environments. Moreover, there has
been considerable conservation demonstrated among the cis-
acting modules that mediate this time-of-day-specific regulation
of gene expression among multiple species, including Arabidopsis,
rice, poplar, and papaya [64,68,73].

A complementary approach to the assessment of clock func-
tion in non-model systems is the study of natural variation.
Quantitative Trait Loci (QTL) for circadian clock function have
been identified in Arabidopsis [62,82–85]. This approach has
now been applied in crops, including Brassica oleracea [86]
and B. rapa [87,88]. In B. rapa, there is an interesting colo-
calization of QTL for circadian clock function with QTL for
water use efficiency (WUE) [88,89]. The circadian clock regu-
lates a number of physiological traits that contribute to WUE,
including photosynthetic carbon assimilation [10,90,91], stomatal
aperture and conductance [90,92–94], and hydraulic conduc-
tivity [95–97]. In both Arabidopsis and poplar the circadian
clock gates the transcriptomic response to drought [78,79].
Detailed elucidation of the mechanistic basis for clock con-
tribution to WUE  may  offer strategies towards breeding for
enhanced WUE.

3. Bryophyte clocks

The first experimental demonstration of circadian rhythms in
bryophytes was of the transcription of a PpLhcb2 (encoding a
major light-harvesting chlorophyll a/b-binding protein)-luciferase
gene fusion in the moss Physcomitrella patens [98]. P. patens has
two  CCA1/LHY and four PRR homologues, as well as ELF3, LUX,
and possibly ELF4 homologues [99,100]. Circadian oscillations in
mRNA abundance and transcription have been demonstrated for
CCA1 and PRR homologues [99,100]. Mutants in which both CCA1
homologues were disrupted exhibited a short period suggest-
ing considerable functional similarity to the angiosperm clock
[99]. Expression of PpPRR2 in Arabidopsis shortened circadian
period, consistent with this gene playing a conserved role in
the P. patens clock [101]. However, neither TOC1 nor GI,  two
members of the evening loop of the Arabidopsis clock, is repre-
sented in the P. patens genome [99,100]. Similarly absent from
the P. patens genome are F-box proteins with blue light pho-
tosensing LOV domains and protein–protein interaction KELCH
domains, which, in Arabidopsis, play important roles targeting

clock components for ubiquitylation and proteasomal degrada-
tion [102–105]. These data suggest that the P. patens clock might
have a considerably simpler architecture than the angiosperm clock
[100].
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. Green algal clocks

Rhythms in phototaxis were described in the green algae
uglena gracilis [106] and Chlamydomonas reinhardtii and the
hythm in C. reinhardtii has been shown to persist in the micro-
ravity environment of space flight [107]. Natural variants as
ell as induced mutants with altered period length of photo-

axis have been identified in C. reinhardtii [108]. Subsequently,
ircadian rhythmicity has been established as widespread, con-
rolling many properties including chemotaxis, nutrient uptake,
tarch metabolism, substrate adhesion, UV sensitivity, and cell divi-
ion [109,110]. Consistent with this widespread rhythmicity, there
s considerable (∼2.6%) circadian control of transcript abundance
111], although this is less than in Arabidopsis (see above). Clock-
ontrolled transcripts include, as in angiosperms, genes encoding
he chlorophyll a/b binding protein [112] and the chloroplast gene
ufA encoding elongation factor Tu [113].

The C. reinhardtii tufA promoter, when fused to the firefly
uciferase gene (tufA:lucCP+), recapitulated a robust rhythm in vivo
hat formed the basis of a systematic forward genetic analysis that
dentified ∼30 loci, termed RHYTHM OF CHLOROPLAST (ROC), con-
rolling clock function [114]. This screen represented a significant
tep towards understanding the construction of the C. reinhardtii
lock. Moreover, the outcome of the screen was both surprising
nd intriguing. As described above, angiosperm clocks appear to
e quite similar to one another, and the bryophyte P. patens clock
lso seems to be composed of homologous genes and proteins. In
triking contrast, this conservation of gene and protein sequences
oes not seem to extend to C. reinhardtii [110,114]. Four of the ROC

oci encode TFs with DNA-binding domains (DBDs) related to those
f plant clock TFs. For example, the DBDs of ROC15 and ROC75 are
imilar to the GARP domain of Arabidopsis LUX ARRHYTHMO (LUX,
lso called PHYTOCLOCK1 [PCL1]) [115,116]. ROC40 has a single
yb  DBD similar to those of Arabidopsis CIRCADIAN CLOCK ASSO-

IATED1 [117] and LATE ELONGATED HYPOCOTYL [118]. However,
equence similarity does not extend beyond the DBD and the C. rein-
ardtii sequences are much longer [110,114]. In functional terms,
rabidopsis LUX (PCL1) and CCA1/LHY are expressed in antiphase
hereas ROC15 and ROC40 are in phase, with the admitted caveat

hat these phase measurements are based on transcript rather
han protein abundance [114]. Nonetheless, these altered phase
elationships suggest that regulatory relationships are unlikely to
e conserved. Collectively, these observations raise doubts that
OC15/ROC75/LUX (PCL1) and ROC40/CCA1/LHY are true homo-

ogues [110]. Other C. reinhardtii clock loci, including ROC55 and
OC114, lack sequence similarity to any known plant or animal
lock genes [114]. RNA-binding proteins play important roles in
lant and animal circadian systems [119–121]. In C. reinhardtii,
HLAMY1 was identified on the basis of its clock-regulated binding
o the 3′ untranslated regions of a number of transcripts [109] and
HLAMY1 misexpression disrupts rhythmicity [122]. However, nei-
her the C1 and C3 subunits of CHLAMY1 have sequence similarity
o known clock proteins [123]. Instead, the C3 subunit resembles
he rat CUG-binding protein in both sequence and immunologi-
al properties [109]. It seems that the C. reinhardtii clock differs
onsiderably from the angiosperm clock.

A second alga, the marine picoeukaryote Ostreococcus tauri, has a
inimal cellular organization including a single mitochondrion and

hloroplast and has been described as the smallest living eukaryote
124]. O. tauri has a compact genome of 12.56 Mb,  approximately
ne-tenth the size of the Arabidopsis or C. reinhardtii genomes. Con-
istent with this small genome, the circadian system of O. tauri

eems to be considerably reduced, and includes homologues to
CA1 and TOC1, but not to other higher plant clock genes such as
LF3, ELF4, GI,  and ZTL [125]. O. tauri CCA1 and TOC1 both show cir-
adian regulation of transcription and protein accumulation, and
mental Biology 24 (2013) 430– 436

the two genes cycle out of phase with one another. As in Arabidop-
sis, in O. tauri CCA1 binding to an evening element (EE) in the TOC1
promoter is necessary for circadian transcription of TOC1. Disrup-
tion of CCA1 and TOC1 expression via overexpression perturbs clock
function and confers arrhythmia, indicating both genes are critical
for rhythmicity [125]. The O. tauri clock has been modeled as a
robust and flexible circadian clock consisting only of a simple feed-
back loop of CCA1 and TOC1 [126,127]. However, this may  be an
over-simplification. First, at least one additional clock component,
a LOV-histidine kinase (LOV-HK) protein with an N-terminal blue-
light photoreceptor LOV (light, oxygen, voltage) domain linked to
a C-terminal histidine kinase domain, is important for clock func-
tion in O. tauri. LOV-HK gene expression is itself under clock control
and altered LOV-HK expression (either overexpression or antisense
knockdown) perturbs clock function [128]. This suggests an intrigu-
ing link to cyanobacterial clock function, where HKs function in
both input and output pathways to the clock [129,130]. O. tauri
also has a family of five cryptochrome/photolyase (CPF) genes. CPF1
transcription is under circadian control and antisense knockdown
of CPF1 lengthens period, indicating a role in the circadian system
[131]. In addition, there is an O. tauri gene with a GARP domain sim-
ilar to that of Arabidopsis LUX [125]. Thus, as in C. reinhardtii,  other
genes either unrelated or only distantly related to higher plant clock
genes may  contribute to O. tauri clock function. Consistent with
this hypothesis, although knockdown of O. tauri TOC1 expression
through antisense resulted in arrhythmia, knockdown of CCA1 did
not dramatically compromise clock function [125]. This suggests
either inefficiency of the antisense knockdown or that CCA1 func-
tions redundantly with an as yet unidentified gene. As discussed
with respect to the C. reinhardtii circadian system, the sequence
similarity of O. tauri CCA1 to angiosperm CCA1 is limited to the
myb  domain and the similarity of TOC1 is limited to the PRR and
CCT domains. Thus, whether they are true homologues is not unam-
biguously established. Clearly further study on clock architecture
and function in O. tauri is needed.

5. Evolution of circadian clocks within the green lineage

Both the O. tauri and P. patens clocks have been suggested
to have simplified clock architecture because they have apparent
homologues to the genes forming the core CCA1/LHY/PRR loop but
lack obvious homologues to numerous angiosperm clock genes
that comprise the additional interlocked loops [100,125]. How-
ever, this analysis of the P. patens and O. tauri clocks to date has
relied on sequence analysis and on reverse genetics to perturb
expression of clock loci identified on the basis of sequence simi-
larity with other angiosperm clock genes. In C. reinhardtii,  forward
genetic analysis has revealed multiple novel loci clearly involved
in the clock but not obviously homologous to angiosperm clock
genes [110]. Thus, the hypothesized simple architecture of the P.
patens and O. tauri clocks may  reflect an incomplete identifica-
tion of clock components and a forward genetic analysis may  be
warranted.

The recruitment of novel loci to the C. reinhardtii circadian clock
raises interesting evolutionary questions. It has been suggested
that circadian rhythms evolved in response to the association of
DNA damage from light, with clocks evolving to gate DNA replica-
tion to the dark, the so-called “flight from light” hypothesis [132].
Parsimony would suggest that clocks arose once in evolution, yet
the dramatic difference between the post-translational rhythms
arising from the Kai oscillator in cyanobacteria [133–135] and the

transcription-based oscillators in plants, fungi, and animals argues
in favour of at least two independent clock origins [136]. Should
this argument be extended? Does the lack of homology among clock
components in plants and animals argue in favour of multiple clock
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rigins within the eukaryotic lineage? And does the recruitment of
ovel loci to the C. reinhardtii circadian clock argue for independent
rigins of clocks within the green lineage?

Multiple independent clock origins within eukaryotes seems
mplausible, given the evidence (the existence of circadian clocks

ithin Bacteria and Archaea) that natural selection has favoured
ircadian clocks since well before the origin of eukaryotes. There-
ore, if clocks originated prior to divergence among eukaryote
ineages, how might one reconcile the different consortia of compo-
ents comprising C. reinhardtii,  angiosperm, and animal clocks? The
ircadian system can be characterized as consisting of three units:
nput pathways by which environmental information is provided
o the oscillator, a central oscillator that generates an oscillation
ith circadian period, and a set of output pathways that orchestrate

vert metabolic, physiological, and behavioral rhythms. Natural
election will act on the output pathways that control rhythms, but
ot on the oscillator circuits that generate the oscillation. Thus, it is
ossible to evolve transcriptional circuits in which the components
ary but the logic is retained.

For example, mating type is regulated transcriptionally in
scomycete fungi, but one group of mating genes is regulated
y a transcriptional activator in ancestral yeast and in the mod-
rn Candida albicans but by a repressor in modern baker’s yeast
Saccharomyces cerevisiae).  Evidently, the regulatory controls on

ating genes were reconfigured within the S. cerevisiae lineage
137,138]. A second example from the ascomycetes is the inser-
ion of a novel TF into the circuit by which diploids repress
xpression of core haploid-specific genes (hsgs) [139]. In the
ncestral S. cerevisiae and C. albicans lineages, the Mata1–Mat�2
eterodimer is a direct repressor of the hsgs (Mata1–Mat�2 –| hsgs),
ut in the derived Kluyveromyces lactis lineage, an intermediate
egulator, Rme1 has been interpolated such that Mata1–Mat�2  het-
rodimer represses the core haploid genes indirectly through Rme1
Mata1–Mat�2 –| Rme1 → hsgs). The logic of the circuit is retained
the Mata1–Mat�2 heterodimer represses hsgs), but the insertion
f this novel regulator introduces a new input to the circuit, because
me1 is responsive to nutritional inputs [139].

Sequential rewiring events could replace one set of circuit
omponents with another non-homologous set, which could
xplain how plant and animal clocks maintain the common
ogic of interlocked feedback loops yet utilize non-homologous
omponents. Recruitment of novel TFs to the circadian oscil-
ator circuit would likely require extensive gains and losses
f cis-acting regulatory sequences, as the newly recruited TF
ould need to acquire a novel time-of-day-specific expression
attern. Similarly, genes targeted by the newly recruited TF,
oth within the circadian oscillator and among output path-
ays, would need to reconfigure their cis-acting TF binding

lements to allow them to respond to the new TF and to
ose responsiveness to their previous TF regulators. Gain or loss
f cis-acting TF-binding elements can occur over quite short
volutionary time scales (<5–20 million years) [140,141]. An
xample of this type of network reconfiguration can be seen in
he newly evolved network for biofilm formation in C. albicans
142]. Six master TFs have been characterized in this circuit,
hree of which (Tec1, Efg1, and Ndt80) have well characterized
omologues in S. cerevisiae,  where they play roles in pathways
ther than biofilm formation. Despite the strong conservation
f DNA-binding specificity for each of these three TFs between
. albicans and S. cerevisiae,  the sets of target genes controlled
y each differ significantly between C. albicans and S. cere-
isiae [142]. Regulatory neofunctionalization, the acquisition of
 new expression pattern, is facilitated by the redundancy cre-
ted by gene duplication [141]. The pattern of repeated whole
enome duplication encountered in the evolution of the plant
ineage [143] is consistent with considerable opportunity for
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redeployment of TFs into new networks, including the circadian
clock.

To conclude, despite the common regulatory logic of inter-
locked feedback loops, plant and animal clocks have recruited
largely distinct genes to generate their circadian clocks. The lack of
homologous components suggests independent evolutionary ori-
gins, which is inconsistent with the “flight from light” hypothesis
arguing for an early origin of circadian rhythmicity in eukary-
otes [132]. The reconfiguration of a circadian clock in the common
ancestor of plants and animals required the replacement of effec-
tively all of the common ancestral components in one or both
lineages. Nonetheless, the examples cited above suggest that this
is indeed plausible. The apparent differences in the components of
the clock in early plant lineages, the green algae and bryophytes,
versus the angiosperms, argues that this evolutionary reconfigura-
tion of the circadian clock has persisted throughout evolution of
the green lineage. The existence of mechanisms to replace compo-
nents in regulatory networks with non-homologous components
places a significant constraint on the interpretation of the com-
plexity of ancient plant clocks based solely on the conservation of
angiosperm clock components. As forward genetic analysis of the
C. reinhardtii circadian clock [110] exemplifies, functional analysis
will be essential to ground such comparative analyses.

The speculation about the evolution of clocks within the eukary-
otic lineage ignores another salient question about the evolution
of clocks. The “flight from light” hypothesis posits an early evo-
lutionary origin for clocks [132]. Consistent with this is the
characterization of a cyanobacterial clock as well as the descrip-
tion of a circadian rhythm in the redox status of peroxiredoxin
in bacteria and Archaea as well as in eukaryotes [3,144,145]. This
latter rhythm is associated with the cellular response to reactive
oxygen species and likely represents a response to the evolution of
oxygenic photosynthesis and the accumulation of molecular oxy-
gen, the Great Oxidation Event [3]. Strikingly, this peroxiredoxin
rhythm persists in the absence of transcription in O. tauri and in
human erythrocytes [144,145], as does the cyanobacterial rhythm
in phosphorylation state of KaiC [133–135]. One hypothesis is that
these post-transcriptional rhythms evolved very early and later
the transcription-translation based rhythms found in eukaryotes
were superimposed [3,136]. It seems reasonable that these under-
lying post-translational rhythms might have sustained circadian
rhythmicity during the postulated reconfiguration of transcrip-
tional circuitry in eukaryotic clocks discussed above.

This is an exciting time in the study of plant clocks. Genomic
analyses enhance the ability to compare clocks among taxa, yet a
purely comparative approach is limited. We  need to identify “non-
model” model species, such as P. patens,  C. reinhardtii,  Brassica, and
certainly some monocots (possibly Lemna spp., or Brachypodium
distachyon [146]) in which functional genomic approaches can tran-
scend the limitations of purely sequence-based genomic analyses.
Forward genetics remains an extraordinarily powerful approach in
which the organism tells the investigator which genes are impor-
tant to a process, and there is no question that forward, reverse,
and quantitative genetics shall continue to guide us in the analysis
of circadian clocks in the green lineage.
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