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ABSTRACT

We introduce a model-based analysis technique for extracting and characterizing rhythmic
expression pro� les from genome-wide DNA microarray hybridization data. These patterns
are clues to discovering rhythmic genes implicated in cell-cycle, circadian, or other biological
processes. The algorithm, implemented in a program called RAGE (Rhythmic Analysis of
Gene Expression), decouples the problems of estimating a pattern’s wavelength and phase.
Our algorithm is linear-time in frequency and phase resolution, an improvement over pre-
vious quadratic-time approaches. Unlike previous approaches, RAGE uses a true distance
metric for measuring expression pro� le similarity, based on the Hausdorff distance. This
results in better clustering of expression pro� les for rhythmic analysis. The con� dence of
each frequency estimate is computed using Z-scores. We demonstrate that RAGE is superior
to other techniques on synthetic and actual DNA microarray hybridization data. We also
show how to replace the discretized phase search in our method with an exact (combinato-
rially precise) phase search, resulting in a faster algorithm with no complexity dependence
on phase resolution.

Key words: functional genomics, DNA microarray analysis, mRNA expression time-series,
rhythmic genes, circadian genes, Hausdorff distance, autocorrelation, cell-cycle, expression pro� le
similarity, computational genomics.

1. INTRODUCTION

The expression patterns of many genes associated with circannual (yearly), circadian (daily), cell-
cycle and other periodic biological processes are known to be rhythmic. Conversely, the expression

pro� les of genes associated with aperiodic biological processes (e.g., tissue repair) are not rhythmic. The
functional signi� cance of previously uncharacterized genes, therefore, may be inferred if they exhibit
rhythmic patterns of expression synchronized to some ongoing biological process.

DNA microarray experiments are an effective tool for identifying rhythmic genes when a time-series of
expression levels are collected. Unlike northern blots and real-time PCR, which study one gene at a time,
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DNA microarray hybridization time-series experiments can reveal the expression patterns of entire genomes.
Chronobiologists are therefore able to assign putative functional properties to large numbers of genes
based on the results of a single experiment. However, the large volume of data generated by hybridization
experiments makes manual inspection of individual expression pro� les impractical. Separating the subset
of genes whose expression pro� les are rhythmic from the thousands or tens of thousands that are not
requires computer assistance. Ideally, the algorithms for providing such assistance should be ef� cient and
have well-understood performance guarantees.

We have designed and implemented an algorithm to identify and characterize the properties of rhythmic
genes from DNA microarray hybridization time-series data. Our approach speci� cally addresses issues of
computational complexity, statistical signi� cance, and morphological similarity.

The identi� cation of rhythmic genes may be viewed as a pattern-recognition problem—the goal is to
identify sinusoidal RNA expression patterns in massively parallel gene expression data. Each expression
pro� le may be viewed as a scalar function of time. A stored set of “model” functions may be compared
with an unknown function (expression pro� le) that has been obtained by experiment. The model may be
either (a) an “ideal” synthetic sinusoid or (b) another gene expression pro� le. In (a), one tries to � t a
family of different ideal sinusoids to the data, to determine if the data is periodic, and if so, to determine
the best � t. The sinusoids may differ in frequency and phase and may be damped. In (b), the model may
be a known rhythmic gene, in which case one attempts to � nd genes with similar pro� les.

In either case, the difference between each model shape and unknown shape is computed, and the model
that is closest to the unknown shape is reported as the best match. Strong arguments from the machine
vision and pattern recognition literature argue that for such applications, the function used to measure the
difference between model and data should be a metric (Arkin et al., 1991; Mumford, 1987). This means
that for a class of expression pro� les the difference function d should obey the following properties, for
any three pro� les X, Y , and Z:

d.X; Y / ¸ 0 for all X and Y: (1)

d.X; Y / D 0
if and only if X D Y

(Identity): (2)

d.X; Y / D d.Y; X/

for all X and Y

(Symmetry): (3)

d.X; Y / C d.Y; Z/ ¸ d.X; Z/

for all X; Y and Z

(Triangle Inequality): (4)

As argued in Donald et al. (1992), the triangle inequality is of particular importance, because it guarantees
that if several model expression pro� les are similar to a given data expression pro� le, then these pro� les also
must be similar to one another. Thus, for example, it is not possible for two highly dissimilar model pro� les
to be similar to the data pro� le for the same gene. Current microarray analysis methods generally compare
pro� les using functions that are not metrics and thus may report that several dissimilar models match
the same data, which is highly counterintuitive. In addition to obeying metric properties, an expression
pro� le comparison method should also be easy to compute in order for it to be of practical use. The
method we describe can be computed ef� ciently both in theory and in practice. Previous algorithms that
use hierarchical clustering (e.g., Eisen et al., 1998) run in time O.n2l/, where n is the number of genes
represented in the microarray data and l is the number of time-series points. Other algorithms (e.g.,
Harmer et al., 2000) that estimate both the frequency and phase of gene expression pro� les using pattern
recognition run in time O.nmp l log l/, where m is the frequency resolution, and p is the phase resolution.
These methods can take up to a week of wall-clock CPU time to analyze data from a single gene chip
experiment and suffer from the use of nonmetric similarity measurements. We describe an algorithm that
runs in time O.n.m C p/f .l//, where f .l/ is the time to compute the Hausdorff distance (f .l/ D O.l2/

deterministic and O.l/ probabilistic time). Next, we replace our discretized phase search with an exact
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Table 1. CDC15, CDC28, Fibroblast and Drosophila Datasetsa

Experiment Organism 1t (minutes) # samples # periods # genes

CDC15b S. cerevisiae 10/20 24 3.2 6,178
CDC28c S. cerevisiae 10 17 1.8 6,220
Fibroblastd H. sapiens 15/30/60/120/240 12 1.5 9,712
Drosophilae D. melanogaster 240 6 0.83 14,010

aThe column labeled “1t” gives the time period between successive time points. If there is more than one 1t listed,
then the data was nonlinearly sampled using a combination of the speci� ed times. The column labeled “# periods”
indicates the number of cell-cycle periods that � t within the duration of the sample interval.

bSpellman et al., 1998.
cCho et al., 1998.
dIyer et al., 1999.
eMcDonald and Rosbash, 2001.

(combinatorially precise) phase search. This eliminates the factor of p entirely, resulting in an overall
complexity of O.nmf .l/ C nl3®.l/ log l/, where ® is the extremely slow-growing inverse of Ackerman’s
function. In all cases, l may be treated as a small constant, since in today’s technology, l is never more
than a small constant lmax ¿ n (for example, typically, l · 24, and n ¼ 6500—see Table 1). This
simpli� cation obtains a complexity bound of O.nmp/ for previous algorithms versus O.n.m C p// and
O.nm/ for ours. Our algorithm processes 32,000 12-sample mRNA time-series in two hours on a single
processor Pentium-class workstation.

Our chief contributions are as follows:

1. The use of autocorrelation to de� ne a phase-independent search over frequency- and phase-space. This
allows us to perform two linear-time searches, one in frequency- and one in phase-space, as opposed
to a quadratic-time search over frequency-phase space.

2. The use of the undirected Hausdorff (UH) distance to compare similarity of expression pro� les. UH
satis� es the axioms of a distance metric on the space of expression pro� les, unlike previous measures,
resulting in a robust and rigorous basis for clustering.

3. Testing our methods on publicly available gene expression data and a comparison of the results to
previous analyses.

4. The application of our methods to � nd circadian genes in a microarray data set that has previously been
searched only for cell-cycle genes.

1.1. Organization of paper

We begin, in Section 2, with a review of the relevant biology and a summary of three publicly available
DNA microarray hybridization time-series datasets. Section 3 categorizes existing techniques for extracting
rhythmic pro� les from microarray data, including a discussion of their limitations and computational
complexity. In Section 4, we detail our method and analyze its computational complexity. Section 5
presents the results of the application of RAGE to simulated and real biological data. Finally, Section 6
discusses these results.

2. BACKGROUND

There are many examples of DNA microarray time-series experiments in the literature (e.g., Cho et al.,
1998; Claridge-Chang et al., 2001; Grundschober et al., 2001; McDonald and Rosbash, 2001; Schaffer
et al., 2001; Harmer et al., 2000; Spellman et al., 1998; Iyer et al., 1999; Yagita et al., 2001). In many of
these experiments, the primarily goal was to identify genes whose expression patterns were periodic over
the length of the experiment. For example, cell-cycle regulated (e.g., Cho et al., 1998; Spellman et al.,
1998) and circadian (e.g., Harmer et al., 2000; Yagita et al., 2001) genes have been identi� ed from their
expression pro� les in hybridization experiments.
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Several research labs have made their raw data available to the public1 facilitating the development of
improved techniques. The Davis lab at Stanford has released the yeast data presented by Cho et al. (1998)
on the CDC28 mutant of yeast. The Botstein lab has released the data from their yeast experiment on the
CDC15 mutant of yeast presented by Spellman et al. (1998). The Brown lab at Stanford has released the
human � broblast data presented by Iyer et al. (1999). The Rosbash lab at Brandeis has recently released
the data from their circadian experiment on Drosophila presented by McDonald and Rosbash (2001). In
this section, we brie� y summarize the biological background relevant to these datasets.

2.1. Yeast, � broblast, and drosophila datasets

The CDC15 and CDC28 experiments were designed to identify cell-cycle-regulated genes in yeast
(Saccharomyces cerevisiae). The eukaryotic cell-cycle is the 4-stage process by which a single cell replicates
into two daughter cells. The four stages, named G1, S, G2, and M, have distinct roles. The chromosomes
are prepared for replication in G1. The DNA and centrioles are replicated in S. The cell is prepared for
separation in G2. Finally, the cell divides in M (mitosis), and the process begins again. This process takes
about 90 minutes in yeast and 16 hours in � broblasts. Thus, the authors of the CDC15, CDC28, and
� broblast experiments were looking for uncharacterized genes whose expression pro� les were periodic
with those frequencies.

The � broblast experiment was also designed to identify cell-cycle-regulatedgenes but in human � broblast
cells, instead of yeast. Unlike yeast, the cell-cycle for human � broblasts is approximately 16 hours.

The Drosophila data set was generated as part of an experiment to identify circadian and circadian-
regulated genes. Circadian rhythms are biological processes that are synchronized to the diurnal cycling
of light and dark. The goal of circadian microarray experiments is to � nd the genes associated with the
circadian clock. Table 1 details the content of the CDC15, CDC28, � broblast, and Drosophila datasets.

3. PRIOR WORK

A variety of techniques have been developed to extract the rhythmic genes from these datasets. The
various techniques fall into two categories: spectral and cluster-based analyses. In this section, we discuss
each type, citing speci� c examples.

3.1. Spectral techniques

The Fourier transform is a standard tool for detecting periodic � uctuations in discretized signals. Spell-
man et al. (1998) used the Fourier transform as one component of a hybrid technique for determining the
frequency and phase of gene expression pro� les in the CDC15 and CDC28 datasets. The limitations of
the Fourier transform are well understood. The range of detectable frequencies within a signal and the
resolution to which they can be resolved are particularly relevant to DNA microarray data. The frequency
resolution obtainable on short time series, such as those generated in typical microarray experiments, is
often not adequate for resolving wavelengths of interest. The interested reader is directed to Appendix A.1
for a longer discussion of these limitations.

The size limitations on the datasets are typically not biological but rather � nancial. For example, for
Arabidopsis studies, each Affymetrix chip costs $400. That cost will increase to $500 when the full genome
chip for Arabidopsis becomes available. There is also a $400 per chip processing fee. Thus, a 24-data-point
time-series with a replication factor of 3 costs $57,600. When these costs drop and the number of points
per experiment rises, the Fourier transform will become a more effective tool. Until that time, nonspectral
techniques will likely dominate. We discuss these techniques in the next section.

Skiena and coworkers (Filkov et al., 2001) give an algorithm for estimating frequencies of periodic
genes, using the correlation coef� cient and an unusual time-division strategy. While complexity bounds
are not given, the algorithm appears to be ef� cient. The phase search of Filkov et al. (2001) is unique: they
look for aggregate shifts. They � nd, for example, that the CDC15 dataset is phase-shifted relative to the
CDC28 set. Our method estimates the phase offset of individual genes relative to the start of the experiment.

1Stanford Microarray Database: http://genome-www4.stanford.edu/MicroArray/SMD/

http://genome-www4.stanford.edu/MicroArray/SMD/
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3.2. Cluster-based analysis

A clustering algorithm takes as input a set of items and a method for comparing the similarity between
pairs of items. The outputs of the algorithm are subsets/clusters of the input set where the average similarity
between pairs within a cluster is higher than the average similarity between items from different clusters.
The second class of time-series analysis techniques clusters gene expression pro� les to model pro� les.
Unknown genes are attributed the properties of the model to which they are most similar. The two most
important distinctions among clustering methods are 1) how the models are generated and 2) which
similarity measurements are used. The choice of models and similarity measurements affects both the
complexity and accuracy of the resulting algorithm.

3.2.1. Model generation. There are two primary means for generating models for a clustering al-
gorithm. In the � rst approach the models are generated from the data itself. The clustering technique
developed by Eisen et al. (1998), which was used for the original analysis of the CDC15, CDC28, and
� broblast datasets, is an example of a data-generated clustering technique. It is often the case that among
the microarray data there are a number of genes of known function. Such genes can be used as models.
Data-derived models have a potential advantage in that they implicitly include noise models. There are
nontrivial variations found among microarrays and in the steps leading up to hybridization. Consequently,
the actual expression pro� les of rhythmic genes sometimes deviate from an ideal model. When these vari-
ations are systematic across all genes, the use of data-derived models is especially useful. Whether or not
such noise is in fact systematic is a valid concern.

The disadvantage of data-derived methods is that one has no control over the models. This places a
particular burden on the similarity measurement used to compare pro� les. The similarity measurement
must be somewhat forgiving of small variations between otherwise similar shapes. Consider the following
example (Figs. 1A and 1B), comparing the shapes of two sinusoids differing in phase by 90 degrees using
the correlation coef� cient:

r D

nX

iD1

.xi ¡ x/.yi ¡ y/

vuut
Á

nX

iD1

.xi ¡ x/2

! Á
nX

iD1

.yi ¡ y/2

! (5)

where x and y are the signals being compared and x and y are the respective means of those signals.

FIG. 1. The sinusoid in A is 90 degrees out of phase with the sinusoid in B. The correlation coef� cient (Equation 5)
of A and B is 0, or no correlation. The signal in C is the autocorrelation of A. The signal in D is the autocorrelation
of B. Note they are nearly identical due to the phase-independent nature of the autocorrelation. Furthermore, unlike
the Fourier transform, the autocorrelation is not affected by nonlinearly sampled data. Therefore, it is more suitable
for a larger class of microarray experiments.
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The correlation coef� cient is used by quite a few clustering algorithms (e.g., Eisen et al., 1998; Filkov
et al., 2001). The correlation coef� cient of the two signals in Figs. 1A and 1B is 0, indicating that they are
not similar. Clearly, the two shapes have a lot in common. Furthermore, the correlation coef� cient violates
three of the four criteria for being a metric outlined in Section 1. Perhaps the most important violation is
that the correlation coef� cient does not satisfy the triangle inequality. A related statistical measurement,
the cross-correlation, computes correlation coef� cients over all relative shifts of the two input signals.
Consequently, the cross-correlation is also a nonmetric.

Another approach to model-based clustering is implemented in the program CorrCos (Harmer et al.,
2000). CorrCos clusters gene expression data to synthetic sinusoidal models using cross correlations. The
advantage of synthetic models is that the program has complete control over the models. CorrCos generates
one thousand sinusoidal models of differing frequencies. For each frequency model, 101 phase variations
are also generated. Each gene expression pro� le is then compared, using the cross-correlation, to each of
the 101,000 synthetic models. The frequency and phase of the model most closely matching the expression
pro� le are assigned to that gene.

The time complexity of CorrCos is O.nmp l log l/, where n is the number of genes, m is the number
of frequency models, p is the number of phase variants generated for each frequency model, and l is the
length of the time series. The time is O.l log l/ to compute a cross correlation. Hence, this brute-force
search over frequency and phase grows quadratically with the frequency and phase resolution (m and p)
of the search. In practice, CorrCos (compiled Fortran code) takes about one week to run on microarray
data of size 32,000 genes. In contrast, our method only takes about two hours (interpreted MATLAB code)
on the same data set.

In summary, there are a number of problems with the existing approaches for detecting and characterizing
rhythmic genes in microarray time-series data. Spectral methods are not appropriate because the typical
microarray experiment generates relatively short time-series. Consequently, cluster-based techniques are
required. Of the cluster-based approaches, data-derived models are problematic because they lack � exibility
and, when using a phase-sensitive similarity measurement such as the correlation coef� cient, can lead to
nonintuitive results. Synthetic model-based clustering addresses some of these problems at the expense
of computational complexity. Any generate-and-test-based technique using a phase-dependent similarity
measurement will have similar properties.

In contrast, we introduce the autocorrelation to render our search algorithm phase-independent (Sec-
tion 4.1). The (hypothetical) use of a nonmetric similarity measurement (such as the correlation coef� cient)
on an autocorrelated phase-independent representation would still suffer from the drawbacks presented in
Section 1. Therefore, we employ the Hausdorff distance (a true metric) on the autocorrelated signals in
order to obtain superior matching and clustering performance (Section 4.2). By attacking the problem of
time-series analysis using these new methods, we hope to strengthen the computational armamentarium of
the chronobiologist.

4. RAGE (RHYTHMIC ANALYSIS OF GENE EXPRESSION)

We have developed an algorithm named RAGE to addresses the problems above. Like CorrCos, RAGE
is a synthetic model-based clustering technique. However, RAGE is more ef� cient than CorrCos, running
in time O.n.m C p/f .l//, where f .l/ is the time to compute the undirected Hausdorff distance between
an l-point model function and an l-point gene expression pro� le (Section 4.2). Hence, the time complexity
of RAGE grows linearly with increased frequency (m) and phase (p) resolution. RAGE achieves the
better bound by using phase-independent transformations of the data and models. RAGE also utilizes
a true mathematical metric, the undirected Hausdorff distance metric, for computing expression pro� le
similarities. A summary of the RAGE algorithm is given in Fig. 2.

4.1. Phase-independence

The computational complexity of the CorrCos algorithm stems from a brute-force search over the
space of frequency and phase. We claim it is not necessary to search this entire space. It is possible to
decouple the phase and frequency searches by transforming both the raw data and the models into a phase-
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FIG. 2. RAGE algorithm. The function AutoCorr takes a set of gene expression pro� les as input and returns a set
of autocorrelated gene expression pro� les. GenerateModel takes a frequency (!) and phase (Á) as input and returns
a sinusoid of the speci� ed frequency and phase. The length of the model is assumed to be the same size as the
length of the expression pro� les in G. The set M is the set of autocorrelated (i.e., phase-independent) models, and
M! is the model of frequency !. ClusterFreq takes as an autocorrelated expression pro� le and a set of models and
returns the frequency of the model that has the lowest Hausdorff distance to the input expression pro� le. The set
Ä is the set of frequency assignments, as determined by ClusterFreq, and Äi is the frequency assigned for each
gene Gi in G. The set P is the set of phase-sensitive models, and PÁ is the model of phase Á and frequency Äi .
ClusterPhase takes as input a single gene expression pro� le, the frequency that has been assigned to that gene, and a
set of phase-sensitive models and returns the phase of the model that has the lowest Hausdorff distance to the input
expression pro� le. Note that P , the set of models for a given frequency (Äi ) can be cached for better performance.
The set 8 is the set of phase-assignments, as determined by ClusterPhase, for each of the genes in G, and 8i is the
phase for gene Gi . Z-Score takes as input an expression pro� le, the frequency assigned to that gene, and G. Z-score
randomly chooses a constant-sized set R of genes from G. The distribution of Hausdorff distances between Gi and
the expression pro� les in R is used to compute the Z-score of the Hausdorff distance between the model of frequency
Äi and Gi .

independent form. The autocorrelation 9x of a signal x is a frequency-sensitive but phase-independent
representation of x :

9x.l/ D
Z C1

¡1
x.t/x.t ¡ l/dt (6)

where x is the function, x.t/ is the function evaluated at t , and x.t ¡ l/ is a translated version the function.
Figures 1C and 1D show the autocorrelation of the two signals from Figs. 1A and 1B, respectively. Note
that the two autocorrelations are nearly identical. The interested reader is directed to Appendix A.2 for
more information on the autocorrelation. In our implementation, each signal is zero-meaned and normalized
prior to computing the autocorrelation.

RAGE estimates the frequency of expression pro� les using the autocorrelations of both the model and
gene data. After the frequency has been estimated, phase-variations of the winning frequency model are
generated, and a second clustering is performed using these phase models and the original, nonautocorre-
lated data. Note that the phase search is conducted over a single frequency, and not all frequencies (unlike
CorrCos).

4.2. Undirected Hausdorff distance

RAGE uses the undirected Hausdorff distance metric (UH) instead of the correlation coef� cient to cluster
expression pro� les. The undirected Hausdorff distance (H , Equation (7)) calls the directed Hausdorff
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distance (h, Equation (8)) as a subroutine (Donald et al., 1992; Huttenlocher and Kedem, 1990):

H.A; B/ D max
¡
h.A; B/; h.B; A/

¢
(7)

h.A; B/ D max
a2A

min
b2B

¡
½.a; b/

¢
; (8)

where A and B are two point sets in the plane and ½ is a distance metric. In our implementation, ½ is
the Euclidean distance in the plane between two points. In fact, ½ can be any metric. The UH distance
essentially measures the maximum outlier between two sets of points. It is commonly used in the computer
vision community for object recognition tasks. We treat the model and data expression pro� les as scalar
functions; the Hausdorff distance is used to compare the similarity of their graphs, treated as point sets,
in the plane. The deterministic time-complexity f .l/ for computing the Hausdorff distance is O.l2/. UH
distance can be computed on curves (such as our functions) in expected time O.l/ (Belogay et al., 1997).
One potential limitation of the UH is that it can be sensitive to outliers. However, this can be easily solved
using quantiles (Donald et al., 1992). The basic strategy is to compute the UH on a subset of the complete
set of distances measured using ½. For example, h might be computed using only the 75% quantile of
maximum distances. However, by using quantiles, some metric properties of the UH are lost. We did not
use quantiles in our implementation.

4.3. Statistical signi� cance

Any cluster-based approach computes the similarity between each gene and model. The gene is assigned
to the model with the highest similarity. In algorithms such as CorrCos and RAGE, all of the models
are rhythmic. Thus, aperiodic genes are initially clustered to rhythmic models. A postprocessing step is
required to � lter such genes from each cluster. There are number of ways to approach this problem. RAGE
employs a statistical approach.

The Z-score (z D x¡¹
¾ where x is a member of the distribution, ¹ is the mean of the distribution, and ¾

is the standard deviation) is a common statistical technique for estimating the signi� cance of a given score.
Given a normal distribution of similarity scores, the Z-score of any individual similarity measurement is
the number of standard deviations that score lies from the mean. The Z-score can in turn be transformed

into a probability (P .z/ D 1p
2¼

e¡ z2
2 ). Hence, the con� dence of a given estimate is 1 ¡ P .z/.

For each gene, RAGE precomputes a distribution of UH distances between the gene and a constant
number of randomly selected genes from the data set.2 The con� dence associated with the UH distance
of the winning frequency model is computed using this distribution. One-sided probabilities are used so
that only statistically small UH distances are considered. The biologist may then sort the genes by these
con� dence scores.

4.4. Algorithmic complexity

The complexity analysis of RAGE is as follows. The conversion of the raw gene data to its autocorrelated
form can be computed in time O.nl log l/ where n is the number of genes and l is the length of the time-
series for each gene. The generation of the set of models, M , is computed in time O.ml log l/ where
m is the number of models (determined by the desired frequency resolution, m). The clustering of each
gene to its nearest model is done by computing the Hausdorff distance between each of the n genes and
each of the m models. This can be done in time O.nmf .l//, where f .l/ is the time to compute the
Hausdorff distance (Section 4.2). The creation of the set P of phase models takes O.npl/ time where p

is the number of phase models (determined by the desired phase resolution, p). The clustering of each
(frequency assigned) gene to the nearest phase model takes O.npf .l//. Finally, computing the Z-scores
takes time O.cnf .l// where c is a constant corresponding to the number of genes randomly selected
to compute the distribution required for calculating Z-scores. Note that c is determined by the need for
statistical signi� cance. It does not grow as the size of n increases. This gives an overall complexity of
O.nl log lCml log lCnmf .l/CnplCnpf .l/Ccnf .l//. Since l is O.1/ in today’s experiments, the expression

2In our experiments, 500 other gene expression pro� les were randomly selected.
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reduces to O.n.mCp//, asymptotically faster than CorrCos’ complexity of O.nmp/. In the future, if gene-
chip experiments become cheaper, l will not be a constant, although we can still expect l ¿ n, and l ¿ m

is likely for the foreseeable future. Hence, our algorithm would run in time O.n.m C p/l2/ (deterministic)
or O.n.m C p/l/ (probabilistic) time, as opposed to O.nmp l log l/ for CorrCos.

4.5. Exact phase search and improved algorithm

We can improve on this algorithm as follows. For each of the n genes, the phase search as presented above
takes time O.pf .l// per gene. We can replace this discretized phase search with an exact (combinatorially
precise) phase search, with running time O.l3®.l/ log l/ per gene, where ® is the inverse of Ackerman’s
function. This eliminates the factor of p entirely, resulting in an overall complexity of O.nmf .l/ C
nl3®.l/ log l/. We achieve this as follows. Given two point sets A and B in the plane, Donald et al. (1992)
give an algorithm for computing

argmin
t

H .At ; B/; (9)

where At is a rigid translation of set A by vector t 2 R2. If A and B have p and q points, respectively,
the algorithm runs in time O.pq.p C q/®.pq/ log.pq//.

De� nition 1 (Voronoi Surface (Donald et al., 1992)). Given a set S of points in R2 and a metric
½ on R2, consider the function d.x/ D mins2S ½.x; s/. The Voronoi surface of S is the graph of d ,
f.x; d.x// j x 2 R2g ½ R3.

The Voronoi surface is a two-dimensional surface in a three-dimensional space. Intuitively, the Voronoi
surface looks like an “irregular egg carton.” Following Donald et al. (1992), to determine the translation t

that minimizes Equation (9), we must identify the value of t that minimizes the upper envelope U of all
the Voronoi surfaces de� ned by the sets Si D ai ª B and S 0

j D A ª bj , for all ai 2 A and all bj 2 B .
Here, ª denotes the Minkowski difference, so that Si D fai ¡ b j b 2 Bg and S 0

j D fa ¡ bj j a 2 Ag. The
Voronoi surface has O.pq.p C q/®.pq// local minima. Hence, Claim 2 follows.

Claim 2 (Donald et al., 1992). The minimum undirected Hausdorff distance under translation of two
sets of points in the plane (and the translation that achieves this minimum) can be computed in time
O.pq.p C q/®.pq/ log.pq//.

We use this algorithm as follows: B is the expression pro� le for a gene Gi , A D Äi is a frequency model,
and At is the frequency model translated by t . We restrict t to be a phase shift (pure one-dimensional
x-translation), as follows. The algorithm � nds the minimum of the upper envelope U . We are interested
only in a one-dimensional translation (the phase) along the x-axis. We can use the algorithm of Donald
et al. (1992), by intersecting the upper envelope U of the Voronoi Surfaces, with the plane ¼¡1

y .0/, where
¼y : R3 ¡! R1, ¼y.x; y; z/ D y, and then � nding minima in U \ ¼¡1

y .0/. It is also possible to construct
the Voronoi surface of a collection of one-dimensional distance functions directly, as a 1D surface in a
2D space.

5. RESULTS

RAGE has been applied to both synthetic and real microarray data. In Section 4, we demonstrated that
RAGE is computationally more ef� cient than CorrCos due to the use of a phase-independent search. Our
second claim is that the Hausdorff distance metric is superior to the correlation coef� cient as a distance
measure. To assess the bene� t of using the Hausdorff distance metric, we implemented two versions of
RAGE. The � rst one is as described in this paper. The second implementation (RAGE-CC) is exactly the
same as RAGE except that it uses the correlation coef� cient to compare function shapes instead of the
Hausdorff distance metric.
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Table 2. Synthetic Dataa

(A)
Models Number % noise

Random 5,000 N/A
10 § 2-hr periodic 500 5%
15 § 2-hr periodic 500 5%
24 § 2-hr periodic 500 5%

(B)
RAGE RAGE-CC

Number 1,498 2,199
Mean 1 frequency (hours) 2.1 8.5
Mean 1 phase (hours) 2.2 15.7
False-Positives 6% 33%
False-Negatives 7% 1%

a (A) Synthetic gene expression pro� les. A set of 6,500 signals were generated; 5,000 of these were random signals and the
remaining 1,500 were sinusoids. The sinusoids were grouped into three categories: 10-, 15-, and 24-hr periodic of 500 genes each.
The actual frequency of each sinusoid was randomly chosen at § 2 hrs from the category. All genes were assigned random phases.
(B) Simulation results. After running RAGE and RAGE-CC on the simulated gene data, the accuracy of the results were evaluated.
Given a sorted list of the con� dence scores assigned to each gene, the top 50% of the nonzero scorers were investigated. The number
of genes in that set is reported in the � rst row. Since the actual phase and frequency of the simulated genes were known, it is possible
to compare the estimated frequency and phases against their true values. The second and third rows give the mean deviation of the
estimated frequency and phase from their true values. False-positives indicates what percentage of the identi� ed genes were from the
set of random genes. False-negatives indicates the percentage of the 1,500 periodic genes missed. Smaller numbers for false positives
and negatives are better.

5.1. Simulated data

Our � rst comparison of RAGE versus RAGE-CC was on a set of 6,500 simulated gene pro� les. RAGE
outperforms RAGE-CC in accuracy of phase and frequency estimation. That is, the average difference
between the actual wavelength of the synthetic gene and the estimated frequency is smaller when using
the Hausdorff metric. The interested reader is directed to Appendix A.3 for more details on this experiment.

5.2. CDC15, CDC28, � broblast and drosophila data

RAGE’s performance was also examined on the microarray data described in Section 2.1. The results of
those analyses are in Tables 3A–3C. RAGE is more accurate than RAGE-CC at estimating the frequency
on the real microarray data. Figures 3A–3D show some selected clusters of genes from the four datasets
that RAGE estimated as highly periodic.

Table 3. Accuracya

(A)
CDC15 RAGE RAGE-CC

Mean 1! (minutes) 4.39 7.99
St. dev. 1! (minutes) 15.05 24.41

(B)
CDC28 RAGE RAGE-CC

Mean 1! (minutes) 8.57 11.62
St. dev. 1! (minutes) 15.8 35.05

(C)
Fibroblast RAGE RAGE-CC

Mean 1! (hours) 2.68 3.05
St. dev. 1! (hours) 2.89 3.12

aResults on actual microarray data. RAGE is more accurate than RAGE-CC at estimating the wavelengths of cell-cycle regulated
genes. Tables A and B compare RAGE and RAGE-CC’s accuracy at estimating the wavelengths of 104 known cell-cycle-regulated
yeast genes identi� ed by White et al. (1987), Chapman and Johnston (1989), Siede et al. (1989), Johnston et al. (1990), Araki
et al. (1991), Fitch et al. (1992), Wan et al. (1992), Igual et al. (1996), and Caro et al. (1998). The wavelengths of those genes is
assumed to be 90 minutes. The value 1! is the average difference (in minutes) between each program’s estimate and 90 minutes.
(C) Compares RAGE and RAGE-CC’s accuracy at estimating the wavelength of the 479 � broblast genes identi� ed by Iyer et al.
(1999). The wavelength of those genes is assumed to be 16 hours. The value 1! is the average difference (in hours) between the
program’s estimate and 16 hours.
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Table 4. Circadian Genesa

(A)
Gene Wavelength (hours)

Cry1 21
BMA 24
Per2 24

(B)
Gene Wavelength (hours)

Period 18
Timeless 20
Vrille 18
Clock 20
Cryptochrome 24
Takeout 24

a(A) Three of the seven genes identi� ed as circadian by Yagita et al. (2001) are present in the
� broblast cell-cycle dataset. RAGE correctly estimates the frequency of those genes. (B) RAGE correctly
estimates the frequency of six known circadian genes (period, timeless, vrille, clock, cryptochrome,
takeout) present in the Drosophila dataset (McDonald and Rosbash, 2001).

FIG. 3. Representative clusters from results on actual microarray data. (A) RAGE identi� ed 367 genes from the
CDC15 dataset as having 90 § 10 minute wavelengths. Nine of these (YDL055C, YDL003W, YDR113C, YGL163C,
YML021C, YBR010W, YNL031C, YBR009C, YDL155W) with similar frequencies and phases are shown. (B) RAGE
identi� ed 321 genes from the CDC28 dataset as having (90 § 10)-minute wavelengths. Fourteen of these (YDL127W,
YMR307W, YNL289W, YJL187C, YOR074C, YLR103C, YOL090W, YDR113C, YNL102W, YOR368W, YNL312W,
YJL173C, YKL042W, YKL096W) with similar frequencies and phases are shown. (C) RAGE identi� ed 535 genes
from the � broblast dataset as having (16 § 2)-hour wavelengths. Eleven of these (T62968, H16592, N75026, R87731,
H61274, H05133, AA057433, N52170, AA047641, AA025786, H62473) with similar frequencies and phases are
shown. (D) RAGE identi� ed 180 genes from the Drosophila dataset as having (18–20)-hour wavelengths. Seven of
these (CG11594, CG10616, Zw, CG15240, CG11425, CG8286, CG14279) with similar frequencies and phases are
shown. Note that the Drosophila dataset was recorded over 20 hours, not 24. Thus, the lowest frequency that can be
accurately detected in the data has a wavelength of 20 hours.
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The task of any DNA microarray analysis technique is to � nd a subset of the genes with a speci� ed
property (e.g., cell-cycle regulated, circadian, etc.). Of course, unlike the synthetic data sets described above
and in Appendix A.3, the notions of false positives and negatives are not well de� ned. In some biological
systems, there exist genes whose expression pro� le properties have been well characterized in the literature.
For example, there are 104 known cell cycle-regulated genes in yeast (White et al., 1987; Chapman and
Johnston, 1989; Siede et al., 1989; Johnston et al., 1990; Araki et al., 1991; Fitch et al., 1992; Wan et al.,
1992; Igual et al., 1996; Caro et al., 1998). Therefore, it is possible to evaluate a given method in terms of
false negatives when such information is available. However, due to experimental conditions, it is possible
for one or more of these known genes to have atypical expression pro� les. It is always necessary to go
back to the data and examine the pro� les of genes that one expected to � nd.

False positives are much more dif� cult to evaluate. One can examine the data and look for gross errors.
It is customary for biologists to use DNA microarrays as highly parallel screens. Genes with unknown
function that exhibit rhythmicity are subsequently studied using slower, more traditional assays.

Direct comparison of the accuracy of multiple techniques on real data is, therefore, best done in terms
of false negatives against known genes. Beyond the known genes, it is not possible to do quantitative
comparisons other than examining which genes the two methods both identify versus the genes that were
uniquely identi� ed by each method. Qualitative assessments, such the number of genes returned as a
fraction of the entire genome, can also be helpful.

RAGE identi� es a total of 367 genes as cell-cycle regulated in the CDC15 dataset, including 91, or 88%,
of the 104 known cell-cycle-regulated genes. In the CDC28 dataset, 321 genes are identi� ed including 81,
or 78%, of the 104 known cell-cycle-regulated genes. It is not uncommon to consider the results from
multiple datasets on the same organism when examining genetic data (e.g., Birnbaum et al., 2001). By
combining the RAGE results on the two yeast data sets, 100, or 96%, of the known genes are found. In
contrast, the analysis by Spellman et al. (1998) of the same two datasets yielded only 95, or 91%, of
the 104 known cell-cycle-regulated genes. RAGE � nds 396 rhythmic genes in both yeast datasets with
wavelengths consistent with the length of the cell-cycle in yeast. Spellman et al. (1998) found 800. It is in-
teresting that RAGE’s more conservative estimate actually � nds more of the 104 known cell-cycle-regulated
genes.

In the human � broblast dataset, RAGE identi� es 535 genes as cell-cycle regulated, including 444, or
93%, of the 479 known cell-cycle-regulated genes. As noted in Section 2.1, the human � broblast dataset
was collected over a 24-hour time period. While this is not a true circadian experiment, it is known that
the clock genes are expressed in peripheral tissues such as � broblasts (Balsalobre et al., 1998). Hence, it
should be possible to look for circadian genes in the same dataset. This had not been done before; we ran
RAGE to try it. Our results were compared to those of Yagita et al. (2001) who found circadian genes
in cultured rat � broblasts, using (different) microarray experiments and data. Three of the seven genes

FIG. 4. Circadian genes identi� ed by RAGE. (A) The expression pro� le of three genes (Cry1, Per2, and BMAL)
from the human � broblast dataset. These genes were identi� ed as circadian by RAGE. The genes Cry1, Per2, and
BMAL are close human homologs of rat circadian genes identi� ed by Yagita et al. (2001). (B) The expression pro� les
of six known circadian genes (period, timeless, vrille, clock, cryptochrome, takeout) from the Drosophila data set.
These genes were identi� ed as circadian by RAGE.
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identi� ed as circadian by Yagita et al. (2001) are present (as close human homologs) in the � broblast
cell-cycle dataset. RAGE correctly estimates the frequency of those genes: Cry1, Per2, and BMAL. In
Table 3A, RAGE’s estimate of wavelengths for Cry1, Per2, and BMAL is reported. RAGE successfully
estimates the wavelengths of these three genes as being circadian. Figure 4D shows the expression pro� les
for Cry1, Per2, and BMAL from the human � broblast dataset.

Finally, RAGE was used to analyze the Drosophila dataset. Of the 14,010 genes in the complete dataset,
RAGE identi� es 180 genes as circadian while McDonald and Rosbash (2001) identi� ed 134. Both RAGE
and McDonald and Rosbash (2001) identify 6 of the known circadian genes (period, timeless, vrille,
clock, cryptochrome, takeout). In all, 131 genes were identi� ed by both McDonald and Rosbash (2001)
and RAGE. Figure 3D shows some of the circadian pro� les discovered by RAGE. Figure 4B shows the
pro� les of period, timeless, vrille, clock, cryptochrome, and takeout.

6. CONCLUSION

Genome-wide mRNA expression time-series experiments are an important source of biological infor-
mation. The discovery of periodic gene expression pro� les is especially useful for the study of rhythmic
processes such as the cell-cycle and the circadian clock. The sheer volume of data generated by microarray
experiments prohibits manual inspection of all the data. Therefore, algorithms for identifying rhythmic
genes are needed.

Fourier-based techniques are not yet appropriate for microarray data because the number of time-points
in a typical experiment is too small to yield adequate frequency resolution. Model-based techniques are
therefore needed. Of the existing model-based techniques, those using synthetic models, such as CorrCos,
are very accurate, but are computationally inef� cient. We have presented a novel technique that is com-
putationally much more ef� cient. It gains its ef� ciency through the use of a phase-independent search of
frequency-space. Furthermore, RAGE uses a true mathematical metric to compute the similarity between
gene expression pro� les. The Hausdorff distance is a more accurate measurement and, therefore, RAGE
tends to give more accurate frequency and phase estimates on both simulated and actual microarray data.
The Hausdorff distance may prove useful in other microarray data applications, such as clustering. We are
presently exploring its performance in that application. Finally, the RAGE algorithm can be combined with
maximum entropy spectral analysis, resulting in even greater improvements in accuracy and ef� ciency. For
work in this direction, please see Langmead et al. (2002).

7. SOFTWARE

The RAGE software is available by contacting the authors.

APPENDICES

A.1. Fourier transform

The Nyquist frequency is the maximum frequency that can be detected within a sampled signal. It is
one half the sampling rate. The minimum frequency that can be detected in a sampled signal is determined
by the sampling interval. If the signal is collected over n time units, then the lowest detectable frequency
is 1 cycle per n time units. The resolution of a spectrum is determined by the number of points collected.
If there are m points in the signal, the resulting spectrum will have m equally spaced frequency intervals
from the lowest frequency to the Nyquist frequency.

An important assumption made by the Fourier transform is that the data is linearly sampled. The CDC15
dataset, for example, is nonlinearly sampled, making the Fourier transform inappropriate. Of course, it is
sometimes possible to discard data points in order to create a linearly sampled signal, but as noted above,
eliminating data points reduces the resolution of the resulting spectrum.
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For example, the CDC15 dataset was collected over 290 minutes. The sampling was nonlinear. It is
possible to create a linearly sampled dataset of 15 time points spaced 1 every 20 minutes. The Nyquist
frequency of this reduced set is one cycle per forty minutes, and the minimum frequency is one cycle per
290 minutes. Since there are 15 time points in the reduced set, the resolution of the spectrum is one cycle
per .290 ¡ 40/=.15 ¡ 1/ D 17:9 minutes. In other words, two periodic functions must differ by one cycle
per 17.9 minutes (or more) in order to be well resolved (distinguishable) by the Fourier transform.

Spellman et al. (1998) used a variant of the discrete Fourier transform (Equation (10)).

X.!/ D 1
N

N¡1X

nD0

x.n/e
¡2¼i!n

N (10)

Spellman et al. (1998) noted “the magnitude of the Fourier transform was unstable for small variations
of !” and were forced to average the results of multiple transforms in order to come to a � nal frequency
estimate. The issue was primarily one of resolution in the actual signal. Not surprisingly, the authors
resorted to a hybrid approach including nonspectral methods to estimate frequencies. The � nal frequency
and phase estimate was a combination of both spectral and nonspectral methods.

A.2. Autocorrelation

The autocorrelation is truly phase-independent for periodic signals of in� nite length. For � nite-length
signals, the numeric error associated with signals differing only in phase is proportional to the difference
in phase and inversely proportional to the number of periods in the signal. In our experiments on simulated
data modeled on the CDC15, CDC28, and � broblast datasets, that error represents approximately a 1%
error in frequency estimation. By contrast, the caculated frequency resolution of the real datasets used in
this paper represents between a 15% and 25% error (see Section A.1). The noise in the real datasets is
also likely to mask the error associated with the autocorrelation.

A.3. Simulated data results

A set of 6,500 simulated gene expression pro� les were generated. Of those, 1,500 were periodic and
the remaining ones were aperiodic random signals. The elements of that set are detailed in Table 2A. The
results of running RAGE and RAGE-CC on that dataset are reported in Table 2B. RAGE outperforms
RAGE-CC in accuracy of phase and frequency estimation. That is, the average difference between the
actual wavelength of the synthetic gene and the estimated frequency is smaller when using the Hausdorff
metric. RAGE also has a lower rate of false-positives. We conclude that the Hausdorff metric is superior
to the correlation coef� cient.
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