
OR-Benchmark: An Open and Reconfigurable
Digital Watermarking Benchmarking Framework

Hui Wang1[0000−0001−6620−3319], Anthony T.S. Ho2,3,4[0000−0001−9208−1255], and
Shujun Li5[0000−0001−5628−7328]

1 Hangzhou Dianzi University, China
h.wang@hdu.edu.cn

2 Tianjin University of Science and Technology, China
3 Wuhan University of Technology, China

4 University of Surrey, UK
a.ho@surrey.ac.uk

5 University of Kent, UK
S.J.Li@kent.ac.uk

Abstract. Benchmarking digital watermarking algorithms is not an easy
task because different applications of digital watermarking often have
very different sets of requirements and trade-offs between conflicting re-
quirements. While there have been some general-purpose digital water-
marking benchmarking systems available, they normally do not support
complicated benchmarking tasks and cannot be easily reconfigured to
work with different watermarking algorithms and testing conditions. In
this paper, we propose OR-Benchmark, an open and highly reconfig-
urable general-purpose digital watermarking benchmarking framework,
which has the following two key features: 1) all the interfaces are public
and general enough to support all watermarking applications and bench-
marking tasks we can think of; 2) end users can easily extend the func-
tionalities and freely configure what watermarking algorithms are tested,
what system components are used, how the benchmarking process runs,
and what results should be produced. We implemented a prototype of
this framework as a MATLAB software package and demonstrate how
it can be used in three typical use cases. The first two use cases show
how easily we can define benchmarking profiles for some robust image
watermarking algorithms. The third use case shows how OR-Benchmark
can be configured to benchmark some image watermarking algorithms
for content authentication and self-restoration, which cannot be easily
supported by other digital watermarking benchmarking systems.

Keywords: Digital Watermarking · Benchmarking · Performance Eval-
uation · Reconfiguration · Content Authentication · Self-restoration

1 Introduction

Digital watermarking, a branch of information hiding, involves research on the
process of embedding digital information (watermark) within a cover signal to



2 H. Wang et al.

achieve different (often security-related) functionalities related to the cover signal
and/or its consumption by end users [1]. Since the late 1980s a large number of
digital watermarking algorithms have been proposed for many applications with
different system requirements mostly for protecting different types of multimedia
data such as still images, audio, video, 3-D models [5,11,24,27,31]. In copyright
protection applications, robust watermarking schemes [11, 13, 32] are desired to
embed copyright information as a watermark in the digital media that can be
hard to remove. In some multimedia content authentication applications, frag-
ile watermarking schemes [3, 4] and semi-fragile watermarking schemes [16, 18]
are desired because of the need to capture the content changes. Besides, other
applications of digital watermarking include transaction tracking, usage control,
self-restoration, broadcast monitoring, etc.

There are a number of properties associated with a digital watermarking
algorithm depending on different application requirements. It is well accepted
that imperceptibility and robustness are the two most important but normally
conflicting requirements. Besides, embedding capacity/efficiency, security (i.e.,
the ability to resist malicious attacks) and computational complexity are also
important properties for most digital watermarking systems. However, the im-
portance of each property is different in different applications. Some properties
also overlap with each other.

As in many other multimedia systems, a general-purpose, flexible and fair
benchmarking environment with appropriate test criteria is of particular im-
portance for performance evaluation and comparison of digital watermarking
algorithms.With a properly-designed benchmarking system, end users and re-
searchers can conduct performance evaluation of a given algorithm and compare
performance of multiple algorithms more easily and fairly to know more about
pros and cons of different algorithms and to draw more insights about how to
further improve existing algorithms. Since the 1990s, a number of digital water-
marking benchmarking systems have been proposed [15,19,22,23,25,28].

Generally speaking, benchmarking performance of digital watermarking al-
gorithms is not an easy task because different digital watermarking applications
often have very different sets of requirements and trade-offs among conflicting
requirements. When multiple digital watermarking algorithms with changeable
parameters have to be evaluated against each other, the benchmarking task
becomes more complicated. Furthermore, for systems involving more than one
type of watermarks, e.g., content authentication watermarking with the capa-
bility of self-restoration, the complexity of the benchmarking task becomes even
higher. While there have been some general-purpose digital watermarking bench-
marking systems available, most of them can be applied to only certain digital
watermarking systems for a limited range of applications. In addition, exist-
ing benchmarking systems normally do not support complicated benchmarking
tasks and cannot be easily reconfigured to work with different algorithms and
testing conditions. It is thus still a challenge to design an efficient and general-
purpose benchmarking system that can be used to benchmark different digital
watermarking algorithms.



OR-Benchmark: A Digital Watermarking Benchmarking Framework 3

In this paper, we propose OR-Benchmark, an open and highly reconfigurable
general-purpose framework for benchmarking digital watermarking algorithms,
which is designed to meet the needs of different digital watermarking algorithms
and various benchmarking tasks. Its main features include:

– The framework has open interfaces for (re)configuring different parts of the
benchmarking system and addition of new modules. The framework itself is
implementation-independent, but we implemented a prototype in MATLAB
(to be released once the paper is published).

– The framework defines a unified procedure of benchmarking different dig-
ital watermarking algorithms against different attacks and using different
performance indicators to make the comparison more systematic.

– The framework is designed to be independent of the media type, so it can
be applied to digital watermarking algorithms for different media types al-
though in this paper we will only demonstrate it for image watermarking.

The rest of the paper is organized as follows. In Section 2, related work
on digital watermarking benchmarking is introduced. Section 3 gives a detailed
description of our proposed benchmarking framework, including our abstract
modelling of digital watermarking systems, important evaluation criteria, the
proposed OR-Benchmark framework, and comparison with other existing digital
watermarking benchmarking systems. Next, in Section 4, we describe how we
implemented a first prototype of OR-Benchmark in MATLAB with three use
cases for different application scenarios. The paper is concluded by Section 5
with future work.

2 Related Work

While there have been a substantial number of digital watermarking algorithms
proposed for different applications and usage scenarios, there are relatively less
research on digital watermarking benchmarking especially general-purpose frame-
works capable of handling multiple applications with different sets of require-
ments. Most existing digital watermarking benchmarking systems focus on some
well-defined sub-areas among which image watermarking received the most at-
tention. In this section, we briefly overview some representative work.

2.1 StirMark

StirMark, one of the earliest and the most well-known digital watermarking
benchmarking systems, was firstly proposed by Petitcolas et al. in 1998 [23] as
a generic tool for benchmarking digital image watermarking algorithms against
various attacks, which was later contributed by more researchers in 2001 [20] to
become a more general framework for benchmarking digital watermarking algo-
rithms. Subsequently, several enhanced versions of StirMark were developed to
include more attacks and cover audio watermarking [9,26]. The main aim of Stir-
Mark is to develop a fully automated evaluation service, which could encapsulate



4 H. Wang et al.

different performance evaluation indicators and allow continuous development of
new attacks to be integrated into the whole system. Since StirMark is among
the most widely-used benchmarking systems by the digital watermarking com-
munity, we discuss it in greater detail below.

Interfaces To use StirMark for benchmarking a digital watermarking algorithm,
the user is required to supply three functions, Embed and Extract functions,
and one GetSchemeInfo function which provides meta-information about the
algorithm such as the name, version, author(s), the maximum byte-length of the
embedded message, the maximum bite-length of the stego-key, etc.

Evaluation Criteria The main performance indicators of a digital watermark-
ing algorithm StirMark can evaluate include imperceptibility, capacity, robust-
ness to attacks, false alarm rate and execution speed.

Benchmarking Framework StirMark as a framework contains six main com-
ponents including the marking scheme library, test library, evaluation profile
library, quality metrics library, multimedia database and results database. Ac-
cording to different application requirements, there are different evaluation pro-
files, each of which is composed by a list of tests or attacks to be applied and a
list of multimedia signals required for the test. The end user is required to add
the watermarking algorithm under testing (in the form of three C++ functions
including GetSchemeInfo, Embed and Extract) to the marking scheme library.
The end users also selects evaluation profiles written as INI files with limited
static structure. And it is not available to extend the structure of the evaluation
profiles without StirMark source code changing. According to the information
provided by the end user, StirMark runs the defined benchmarking process au-
tomatically by using its multimedia database, the tests (attacks) library and the
quality metrics library. The results are stored in a database (an SQL server as
stated in [20] and simple files as in actual implementations).

Implementation StirMark was originally developed by Kuhn in 1997 [7] as a
generic software tool for simple robustness testing of image watermarking algo-
rithms. It simulates many common attacks to image watermarking algorithms
including random bilinear geometric distortions to de-synchronize watermarking
algorithms. Subsequently, StirMark was extended by Petitcolas and other re-
searchers to support more tests and attacks [8,23]. Later on some more develop-
ment work took place, including a set of tests for audio watermarking developed
by Steinebach et al. [26] and by Lang and Dittmann [9]. There were also efforts
of making StirMark a public automated web-based evaluation service made by
Petitcolas et al. [20] which led to the 4.0 version of Stirmark [21].

Limitations Although StirMark has been widely used as a tool for robustness
and security evaluation of digital watermarking algorithms, we feel it has the
following limitations.



OR-Benchmark: A Digital Watermarking Benchmarking Framework 5

The modelling and interface do not cover all digital watermarking algorithms.
For instance, there are only two types of output for watermark detection (i.e.,
the Extract function): the extracted watermark and a certainty to show the
probability whether the watermark is detected correctly. This is insufficient for
watermarking algorithms for tamper localization and/or image restoration.

StirMark is reconfigurable but the level is limited. Reconfiguring StirMark for
a digital watermarking algorithm can be done by defining the input and output
arguments according to one of the six pre-defined types of algorithms, but adding
new parameters and extending existing parameter settings will require changing
the source code of the StirMark implementation (in C++). For example, the
strength parameter in StirMark is set to be a single floating-point number with
many hard constraints (e.g., minimum and maximum values are linked to specific
PSNR values), but for digital watermarking algorithms the strength could be a
more complicated parameter.

Although StirMark allows adding new tests, attacks and PQA metrics, the
unclear boundaries among components make it hard to do so without making
changes to the source code of the StirMark implementation. Adding some new
test, attack and quality metric may require a re-design of the framework, e.g.,
if a non-PSNR PQA metric is introduced the strength parameter will need re-
defining and many existing components need adapting to the new PQA metric.

The StirMark framework defined in [20] does not follow a clear data flow,
e.g., the test library does not really flow into the evaluation profile but reads
data from the latter and the multimedia database.

In [20] StirMark is described to work with an SQL server to store all the
evaluation results which can then be converted into web pages for reporting.
However, the SQL-based web service has not been actually implemented. Instead,
the latest C++ implementation of StirMark [21] produces a plain data sheet to
store the evaluation results which cannot be easily converted into other formats
or used to do further analysis.

2.2 Other Benchmarking Systems

Checkmark was developed by Pereira et al. [19] and downloadable from http://

cvml.unige.ch/ResearchProjects/Watermarking/Checkmark/ (now discontin-
ued). Checkmark was based on StirMark with the following main changes. First
of all, a number of new attacks, which take statistical properties of images and
watermarks into account, are incorporated into Checkmark.Secondly, weighted
PSNR and Watson’s metric are used as new metrics for evaluating image qual-
ity instead of just PSNR. Thirdly, evaluation results are represented in a flexible
XML format and can be automatically converted into HTML web pages.Despite
the changes to StirMark, the reconfigurability of Checkmark remains relatively
low so normally users have to make changes to Checkmark’s source code.

Optimark [25] is a benchmarking software package for image watermarking
algorithms downloadable at http://poseidon.csd.auth.gr/optimark/, pro-
viding a graphical user interface (GUI) developed using C/C++. To use Opti-
mark for benchmarking a digital watermarking algorithm, the user can choose



6 H. Wang et al.

a set of test images, define different watermark embedding keys and watermark
messages for multiple trials of the watermarking detector and decoder, and select
a set of attacks among 14 types of attacks and attack combinations. It allows
evaluation of several statistical characteristics of an image watermarking algo-
rithm, including Receiver Operating Characteristic (ROC) curves as watermark
detection performance metrics.

Certimark is the outcome of an EU-funded research project (http://www.
certimark.org/, lasting from 2000 to 2002). The objectives of Certimark are
to design a benchmarking suite which permits users to assess the appropriate-
ness and to set application scenarios for their needs, and to set up a standard
certification process, for watermarking technologies [28].Although the reconfig-
urability level of Certimark is higher than earlier systems, Certimark seems to
have been discontinued and there is no source code publicly available.

Watermark Evaluation Testbed (WET) [2, 6] is a web-based system devel-
oped by researchers from the Purdue University to evaluate the performance
of image watermarking algorithms. WET consists of three major components:
front end, algorithm modules, and image database. To achieve the goal of exten-
sibility, the GNU Image Processing Program (GIMP) is used because it support
plug-ins and extensions. Some watermarking algorithms, StirMark 4.0 and some
evaluation metrics were implemented as GIMP plug-ins to be part of WET’s
algorithm modules. The end users can select some images, one or more water-
marking algorithms, attacks, and specify needed parameters via a web interface
of the front end. The evaluation results can be shown as ROC curves. Similar to
other systems, WET has a limited reconfigurability. In addition, its source code
is not publicly available.

OpenWatermark [14,17] is a web-based system for benchmarking digital wa-
termarking algorithms. It is composed of three parts: 1) a web server and a
remote method invocation (RMI) client for users to submit their benchmark-
ing requests with specifications of the benchmarked algorithms, 2) a cluster of
RMI benchmark servers automating the benchmarking process, and 3) a SQL
database sorting all data used in the benchmarking process and results produced
by the benchmark servers.OpenWatermark allows benchmarked algorithms to be
submitted as Windows/Linux executables or MATLAB/Python scripts and all
its components were developed in Java, so it has some reconfigurability. However,
to support more features such as benchmarking profiles and other media types its
source code has to be modified.OpenWatermark implementation was available
to registered members at its website http://www.openwatermark.org/ which
is currently unaccessible.

Mesh Benchmark [30] was proposed for 3D mesh watermarking. It contains
three different components: a data set, a software tool and two evaluation pro-
tocols.As a benchmarking system focusing on 3D mesh watermarking only, it
considers only the payload, distortion and robustness for performance evalua-
tion. Besides, the evaluation protocols are defined with fixed steps and thresholds
so the reconfigurability of the mesh benchmark is low.



OR-Benchmark: A Digital Watermarking Benchmarking Framework 7

3 Proposed OR-Benchmark Framework

In this section, our proposed framework OR-Benchmark will be introduced in de-
tails. Firstly, we discuss general modelling of digital watermarking systems used
in Sec. 3.1. Then the evaluation criteria considered are discussed in Sec. 3.2.After
that, the architecture of the OR-benchmark framework and the open interfaces
for end users are explained in details in Secs. 3.3 and 3.4, respectively.

3.1 Modelling of Watermarking Systems

Following the community’s common understanding, OR-benchmark models a
digital watermarking system as two separate processes: the Sender which em-
beds one or more watermarks into a given cover work to generate a watermarked
work; the Receiver which extracts and/or detects one or more watermarks that
may have been embedded in a received test work. Compared with Stirmark, the
modelling of watermarking systems in OR-benchmark aims to be suitable for
any kinds of watermarking schemes in different application scenarios including
some unsupported by Stirmark such as self-restoration watermarking. We define
the sender and the receiver to take at least one input (the cover and test work,
respectively) and to produce one or more outputs. There are more optional in-
puts and outputs (some are system parameters and some are user-defined ones).
Therefore, the users can easily reconfigure the sender/receiver’s input/output
setting according to the watermarking application scenario benchmarked.

The general models of the watermark embedding and extraction/detection
processes are shown in Fig. 1. As shown in Fig. 1(a), the Sender will always have
the cover work as the input and the watermarked work as the output. There are
three groups of optional inputs including the watermark(s) to be embedded, the
embedding key, and other optional parameters controlling the embedding pro-
cess. Note that the watermark(s) in the embedding process can be either an
input (if supplied by the user) or an output (if generated by the Sender auto-
matically), which can be further used for performance evaluation purposes. As
shown in Fig. 1(b), the Receiver takes at least one input (a test work) and possi-
bly some other inputs and parameters to produce one or more outputs including
one or more extracted watermarks, one or more binary decisions (if some given
watermark(s) is/are detected), a restored work (if the watermarking algorithm
supports self-restoration), and other outputs, e.g., the confidence level and error
rates. We model the inputs and outputs of the Sender and the Receiver this way
to cover the full range of digital watermarking algorithms and applications.

3.2 Performance Evaluation Criteria

In OR-benchmark performance evaluation criteria (i.e., indicators) are organized
into two categories: 1) built-in indicators that can be selected by users directly;
2) user-defined indicators that are supported indirectly by generating a com-
prehensive set of raw results for users to further processing. In this section, the
commonly required performance indicators are further discussed.



8 H. Wang et al.

Watermark
Embedder

Cover
Work

Key

Optional
Parameters

Watermark(s)

Watermarked
Work

(a) Sender

Watermark Ex-
tractor/Detector

Test Work

Watermark(s)

Key

Optional
Parameters

Binary De-
cision(s)

Restored
Work

Other Out-
put(s)

(b) Receiver

Fig. 1: Modelling of the Sender and the Receiver in OR-Benchmark. Dashed
lines denote optional input/output.

Similar to StirMark, properties that designers and users of digital water-
marking algorithms may wish to evaluate include imperceptibility or perceptual
quality of the watermarked work (which is one aspect of security), embedding ca-
pacity, robustness to benign processing and attacks, resistance to malicious pro-
cessing and attacks (which is another aspect of security), false positive/negative
rates, and the speed of execution of both the sender and the receiver. Since
these common criteria have been well studied in related work, here we focus on
two other important properties for content authentication and self-restoration
watermarking algorithms.

Authentication Accuracy For content authentication watermarking, there
are two basic metrics to measure the authentication accuracy of the detection
process: the false positive (FP) rate indicating the level of errors for areas re-
ported as “tampered”, and the false negative (FN) rate indicating the level of
errors for areas reported as “untampered”. Many other performance metrics can
be derived from the FP and FN rates, e.g., the average authentication rate and
the area under the ROC curve. OR-Benchmark supports the two main metrics
and also provides needed raw data in the benchmarking results to allow users to
define more metrics that cannot be derived directly from the FP and FN rates.

Perceptual Quality of Recovered Work For self-restoration watermarking
algorithms (which require the use of content authentication watermarks as a pre-



OR-Benchmark: A Digital Watermarking Benchmarking Framework 9

Fig. 2: The architecture of the OR-Benchmark framework.

requisite), a key performance indicator is the perceptual quality of the recovered
work. In OR-Benchmark, some commonly used image quality assessment (IQA)
metrics such as PSNR and SSIM are incorporated but users can add their own
metrics (for any media formats not limited to digital images) easily via the open
interface discussed in Sec. 3.4.

3.3 Our Benchmarking Framework

In this subsection, we introduce the overall architecture of OR-Benchmark in
details. Figure 2 gives a schematic overview of the framework, which can be split
into two parts: an Online Benchmarker takes input from the user and auto-
mates the benchmarking process to generate results for further analysis, and an
Offline Analyzer allowing the user to conduct user-specific tasks (e.g., statistics
and visualization) based on the (raw) results produced by the Online Bench-
marker. The Offline Analyzer can be equipped by one or more Report Engines
to produce more user-friendly reports of benchmarking tasks. The Report En-
gines may also access the results from the Online Benchmarker without passing
the Offline Analyzer (in that case the Offline Analyzer can be seen as a simple
data forwarder).

The Online Benchmarker contains three groups of components: 1) the user-
provided components – the Sender and the Receiver provided by the user as the
subject of benchmarking, 2) a Multimedia Database holding the test media, an
Attacks Library and a PE (Performance Evaluation) library providing attacks
and performance evaluation algorithms, respectively, and 3) the core bench-
marker composed of a central Controller, a Channel Simulator enabling incor-
poration of different types of attacks and processing on a watermark work, and a
Performance Evaluator which produces results to sore in a Results Database as
the output of the whole benchmarking process. The central Controller interacts



10 H. Wang et al.

with the user to define the benchmarking profile, and with other components
of the online benchmarker to automatically execute the profile. A benchmark-
ing profile allows automatic testing of parameter(s) of the same digital water-
marking algorithm, multiple attacks, multiple PE algorithms and multiple per-
formance indicators. The Controller can also automatically determine default
settings based on information given by the user to reduce the burden of defining
the benchmarking profile.

3.4 Open Interfaces

OR-Benchmark is designed to have open interfaces so that users can easily
(re)configure and extend the framework and define different benchmarking tasks
easily. There are mainly the following interfaces as shown in Fig. 2.

The interfaces between the Sender/Receiver and the core benchmarker allow
users to define digital watermarking algorithms for benchmarking. Following the
general models of the Sender and the Receiver discussed in Sec. 3.1, the inter-
faces are materialized as the input and output interfaces of two functional units:
Sender : (Original Cover Work, [Watermark(s)], [Key], [...]) →
(Watermarked Work, [Watermark(s)]);

Receiver : (Test Work, [Watermark(s)], [Key], [...]) →
([Watermark(s)], [Decision], [Restored Work], [...]),
where arguments in the square brackets are optional and “...” denotes more
optional (user-defined) arguments. A proper mechanism is required to inform
the Controller about valid values each input argument can take and other meta
information (e.g., the display name of each argument), in order to create bench-
marking profiles for enumerating all values of interest for any input argument.
Such mechanisms can include a graphical user interface (GUI) and a machine-
readable textual specification (e.g., an XML schema) for defining a set of sample
values for any given argument.

The interface between the Multimedia Database and the core benchmarker
allows users to reconfigure and extend the Multimedia Database. This can be
achieved by an agreed structure of the Multimedia Database such as a hierarchy
structure of folders and files or using a human-readable configuration file (such
as XML) to allow the system and end users to find test multimedia works. Note
that OR-Benchmark can support any media types so the Multimedia Database
can be a mixture of different types of media files.

The interface between the Attacks Library and the core benchmarker al-
lows users to reconfigure and extend the Attacks Library used by the Channel
Simualtor. As discussed in Sec. 3.1, an attack in the Attacks Library is a simple
functional unit as follows: Attack : (Input Work, [...]) → (Output Work).
Again, a mechanism is needed to convey meta information about any optional
input arguments. Compared with Stirmark, where one attack test can only con-
tain a single one with relevant values of parameter setting, the configuration of
the combined attacks for once test with the values setting for more than one
arguments of the combined attacks’ functions is allowed by the interface of our
benchmarking system.



OR-Benchmark: A Digital Watermarking Benchmarking Framework 11

The interface between the PE Library and the core benchmarker allows users
to reconfigure and extend the PE Library used by the Performance Evaluator.
There are different types of PE algorithms depending on the performance indica-
tors used, so there are different input and output interfaces. An important class
of PE algorithms are perceptual quality assessment (PQA) algorithms which
can be defined as follows: PQA: (Work1, Work2, [...]) → (Metric), where
the output is a numeric rating of the perceptual quality. Again, optional input
arguments are used to define parameters of some PQA algorithms. While PQA
algorithms are generally objective ones based on automated computer programs,
OR-Benchmark’s interface allows a visual quality assessment (VQA) algorithm
to interact with human raters (e.g., those recruited from crowdsourcing websites)
to return subjective quality ratings since the user interface can be wrapped inside
the PQA function thus transparent to end users of OR-Benchmark.

System search paths can be set up for all the above interfaces so that the
Controller and other components of the core benchmarker can automatically
discover candidate algorithms and test multimedia works. Each path can be a
local file path or a URL representing a web address.

The interface between the core benchmarker and the Results Database allows
users to reconfigure and extend the format of the results used by the Offline An-
alyzer and Report Engines. This is achieved by a machine-readable configuration
file indicating the format of the results.

The interface between the user and the Controller allows creation of bench-
marking profiles. Core elements of a benchmarking profile include digital wa-
termarking algorithm(s) tested and candidate values of input parameters, test
multimedia works, selected attacks, selected PE algorithms, and format of the
results. This can be implemented as a graphical user interface (GUI) and/or a
human-readable configurable file.

The user interfaces of the Offline Analyzer and Report Engines allow users
to investigate the raw results recorded in the Results Database in an interactive
way and to produce more user-friendly reports. The interface for the Offline
Analyzer can be implemented as a GUI, but the Report Engines could be stand-
alone tools which can be invoked from the Offline Analyzer ’s GUI. The format
of the produced reports can be defined using a human-readable configurable file
and be represented in a more user-friendly way, e.g., as a web page.

4 Case Studies

In this section, we demonstrate how our implemented OR-Benchmark prototype
(in MATLAB) was used for three case studies. The first two cases are about two
main applications of robust watermarking. For the two cases we explain how
OR-Benchmark was used to benchmark for a given robust watermarking scheme
without giving experimental results since the configurations and expected results
are straightforward. The third case is about digital watermarking algorithms for
content authentication and self-restoration. Such algorithms are among the most
complicated ones with two types of watermarks per block of the cover work and



12 H. Wang et al.

are not supported by other benchmarking systems. For this case we will give
details on how we used OR-Benchmark to conduct a full benchmarking task
involving three different watermarking algorithms.

4.1 Case 1: Copyright Protection

In this case study, we report a benchmarking task on a blind robust digital
watermarking scheme used for copyright protection purposes, which needs a
given copyright declaration as the watermark for the Sender but not for the
Receiver. For this case the benchmarking task was set up in the OR-Benchmark
prototype as follows:

– Set system paths for the target digital watermarking algorithms, the Multi-
media Database, the Attacks Library, the PE Library and the Result Database.

– For the test images, we collected 100 8-bit gray-scale images of size 256×256,
384×256 and 512×512, which were added to a sub-folder of the folder holding
the Multimedia Database.

– The Sender and Receiver functions were implemented as MATLAB functions
with the following interface:
Sender : (Cover Work, Watermark, Key) → (Watermarked Work)

Receiver : (Test Work, Key) → (Watermark)

Both functions were added to the folder holding target digital watermarking
algorithms. The benchmarking profile was set to select a number of pre-
defined copyright claims and random keys as input parameters of Sender
(and the keys for Receiver as well).

– A list of attacks was defined for the Channel Simulator to create water-
marked images, including both malicious attacks for watermark removal and
some benign image processing operations. All the attacks were implemented
as separate MATLAB functions and were added to the folder holding the
Attacks Library.

– A list of PE algorithms was created, which includes the imperceptibility
property (i.e., visual quality of watermarked images) in terms of PSNR and
SSIM, the watermark detection accuracy in terms of correlation coefficient
(CC) and bit error rate (BER), and the run-time performance in term of the
processing times of the Sender and the Receiver functions. Each performance
indicator was implemented as one MATLAB function which was added to
the folder holding the PE Library.

After setting up the benchmarking profile and preparing all files needed,
the online benchmarker was run to execute the profile automatically. All the
benchmarking results were recorded in a MAT file and saved into the Result
Database. A simple Offline Analyzer was produced to visualise results.

4.2 Case 2: Content Integrity Verification

In this case study, we report a benchmarking task on an informed watermarking
scheme used to detect content integrity of digital images, which needs a given



OR-Benchmark: A Digital Watermarking Benchmarking Framework 13

watermark at both the Sender and Receiver sides. The benchmarking profile of
this case was configured and executed in a similar way as Case 1 but with the
following changes:

– The Receiver function was implemented as a MATLAB function with the
following interface:
Receiver : (Test Work, Watermark, Key) → (Decision)

– A hypothesis test is added as a new attack, which assign the Test Work to
the Watermarked Work or Original Cover Work according to the binary
hypothesis parameter.

– In the list of PE algorithms, the metric for watermark detection accuracy
was changed to false negative and false positive rates.

4.3 Case 3: Tamper Localization and Self-Restoration

In this case study we report a benchmarking task on three content authentication
and self-restoration watermarking algorithms used for detecting (localizing) and
restoring tampered regions in an image: Lin and Chang’s scheme [12] (M1), Li
et al.’s scheme [10] (M2) and Wang et al.’s scheme [29] (M3). All watermarking
algorithms use two different types of watermarks for each 8 × 8 block of the
cover image, one for tamper localization and the other for self-restoration. Such
algorithms are among the most complicated watermarking algorithms and are
not (well) supported by other benchmarking systems.

Benchmarking Profile We used the Controller ’s GUI to set up the bench-
marking task as follows (setup of system paths is omitted):

– The Multimedia Database was set up to include 100 test images representing
a broad range of image types, e.g., outdoor or indoor scenes images, portraits,
photos of natural or man-made objects, and texture images.

– The Sender and Receiver functions were implemented as MATLAB func-
tions with the following interface:
Sender : (Cover Work, Key) → (Watermarked Work)

Receiver : (Test Work, Key) → (Detected Tampered Regions,

Recovered Work)

Here, the Detected Tampered Regions is a matrix storing the binary decision
of tamper detection for each block.

– To ensure a fair comparison of the three watermarking schemes, we tuned
their parameters so that the average visual quality of the 100 watermarked
images is roughly aligned. This was achieved by conducting three separate
smaller benchmarking tasks where each watermarking scheme was bench-
marked with a number of parameters to produce a set of PSNR and SSIM
values, and then the parameters were determined so that all three schemes
have similar average PSNR and SSIM values.



14 H. Wang et al.

0 20 40 60 80 100
34

36

38

40

P
S
N

R

M1 M2 M3

0 20 40 60 80 100

0.8

0.9

1

1.1

S
S
IM

M1 M2 M3

Fig. 3: The quality comparison of watermarked images produced by the three
different watermarking schemes. The x-axis is the image index and the y-axis is
the PSNR/SSIM value.

– For attacks, we chose simple “copy and paste attack”, JPEG compression,
additive and multiplicative Gaussian white noises as four separate attacking
algorithms each of which is injected into the Channel Simulator to create
attacked watermarked images sent to the Receiver. In addition to the simple
“copy and paste attack” alone, we also considered combinations of the “copy
and paste attack” with one of other attacks.

– For performance indicators, we used the following: PSNR and SSIM for visual
quality of watermarked and recovered images, FP and FN rates for tamper
detection accuracy, and processing times of the Sender and the Receiver
functions for run-time performance.

The above benchmarking task was stored as a benchmarking profile which
was then executed by the Controller to generate the results. The machine run-
ning the benchmarking task is a PC with an Intel Core 2 Duo CPU (3.16GHz)
and 2GB RAM. The concurrency support of the dual-core CPU was disabled to
get a more accurate estimate of the processing times.

After the results were produced by the core benchmarker, the Offline An-
alyzer was used to generate some 2-D plots for a better understanding of the
performance of the three benchmarked image watermarking schemes. From the
benchmarking results produced by OR-Benchmark, we were able to conclude
that M3 has the best performance, followed by M1 and then M2. In the follow-
ing, we show some selected benchmarking results we obtained.

Visual Quality of Watermarked Image Figure 3 shows the PSNR and SSIM
values of all the 100 test images after going through each of the three digital
watermark embedding processes. As mentioned above, we selected parameters
of the three schemes properly so that they produce roughly equal PSNR and
SSIM values for all 100 images.

Tamper Detection Accuracy To evaluate tamper detection accuracy of an
image authentication watermarking scheme, attacks manipulating contents of



OR-Benchmark: A Digital Watermarking Benchmarking Framework 15

100 90 80 70 60 50
0

0.2

0.4

0.6

0.8

1

Quality Factor

F
a
ls

e
P

o
si

ti
v
e

R
a
te M1 M2 M3

(a) FP against JPEG compression

100 90 80 70 60 50
0

0.02

0.04

0.06

0.08

0.1

Quality Factor

F
a
ls

e
N

eg
a
ti

v
e

R
a
te M1 M2 M3

(b) FN against JPEG compression

Fig. 4: Average FP and FN rates of M1, M2 and M3 w.r.t. different parameter
values of JPEG compression.

watermarked images should be used at the Receiver. As mentioned above, we
used a simple “copy and paste attack” as an example attack to manipulate 10%
random-selected part of each test image after it is watermarked. The FP and
FN rates are then calculated per image based on how many non-manipulated
8 × 8 blocks are reported as “manipulated” (false positives) and how many
manipulated blocks are not detected (false negatives). The FP rates of M1 and
M3 are nearly 0, and that of M2 is 1.36%. The FN rate of M1 remains close to
0, but those of M2 and M3 are 3.02% and 1.59%, respectively. It is thus clear
that M1 is the best and M2 is the worst.

Visual Quality of Recovered Image Similar to the case of tamper detection
accuracy, for visual quality of recovered images we also focused on the condition
where the 10% “copy and paste attack” is applied without other attacks. The
mean PSNR values of 100 images recovered by M1, M2 and M3 are 27.8, 28.0
and 32.3 dB, respectively, and the mean SSIM values are 0.925, 0.927 and 0.951,
respectively. The results show that M3 is the best scheme with a significant
margin (more than 4.4dB in PSNR and 0.023 in SSIM).

Robustness For benchmarking robustness, we combined the 10% “copy and
paste attack” with one additional attack (JPEG compression, additive or mul-
tiplicative Gaussian white noises) to gauge the robustness of each digital water-
marking scheme against each additional attack. The results of combining with
JPEG compression are shown in Figs. 4 and 5.

Here we average the performance indicators cross all 100 images to get the
average values which are then shown against the QF as parameter value of each
compression to see how the strength of the attack influences the performance
of each digital watermarking scheme. We can observe that M3 outperforms M2
significantly with similar or lower FP and FN rates, and higher PSNR and SSIM



16 H. Wang et al.

6080100

10

20

30

Quality Factor

P
S
N

R

M1 M2 M3

(a) PSNR against JPEG compression

6080100
0

0.5

1

Quality Factor

S
S
IM

M1 M2 M3

(b) SSIM against JPEG compression

Fig. 5: Average perceptual quality of images recovered by M1, M2 and M3 w.r.t.
different parameter values of JPEG compression.

values of recovered images. Between M1 and M3, we can also observe that M3
performs significantly better in terms of PSNR although just slightly for SSIM.

Processing Time Except the embedding process of M1 which took around
2.6s in average, all other processes of the three digital watermarking schemes
consumed less than 1s. Considering MATLAB is much less effective than other
compiled programming languages, the results suggest that all the three schemes
are practical for real-world applications.

5 Conclusion and Future Work

In this paper, we present OR-Benchmark, an open and highly reconfigurable
general-purpose benchmarking framework, to meet the needs of benchmarking
different digital watermarking schemes. To the best of our knowledge, this is the
first and the only benchmarking framework supporting all known types of digital
watermarking schemes including complicated ones involving multiple types of
watermarks. We implemented the framework in MATLAB, and discussed three
use cases including one on authentication and self-recovery watermarking to
showcase the usefulness of OR-Benchmark as a convenient and flexible tool.

Although OR-Benchmark as a general framework can easily support any me-
dia type, attacks, test multimedia datasets, and PE algorithms, our current im-
plementation has mainly built-in functional units for digital images. The Offline
Analyzer is also tailored towards our own needs for benchmarking some special
types of digital watermarking schemes. In future we plan to add more functional
units to the prototype so that users can use it without adding too many user-
defined algorithms but focus on the digital watermarking schemes themselves.
We also plan to release our MATLAB prototype under an open source license
and call for contributions from the whole digital watermarking community to
further extend the current implementation and to create implementations based



OR-Benchmark: A Digital Watermarking Benchmarking Framework 17

on other languages. A dedicated website will be set up to host related documents
and source code of our MATLAB implementation.

References

1. Cox, I., Miller, M., Bloom, J., Fridrich, J., Kalker, T.: Digital Watermarking and
Steganography. Morgan Kaufmann Publishers (2007)

2. Guitart, O., Kim, H.C., III, E.J.D.: Watermark evaluation testbed. Journal of
Electronic Imaging p. 041106 (2006). https://doi.org/10.1117/1.2400067

3. He, H., Chen, F., Tai, H.M., Kalker, T., Zhang, J.: Performance analy-
sis of a block-neighborhoodbased self-recovery fragile watermarking scheme.
IEEE Transactions on Information Forensics and Security 7(1), 185–196 (2012).
https://doi.org/10.1109/TIFS.2011.2162950

4. Ho, A.T.S., Zhu, X., Shen, J., Marziliano, P.: Fragile watermarking based on encod-
ing of the zeroes of the z-transform. IEEE Transactions on Information Forensics
and Security 3(3), 567–569 (2008). https://doi.org/10.1109/TIFS.2008.926994

5. Houmansadr, A., Kiyavash, N., Borisov, N.: Non-blind watermarking of net-
work flows. IEEE/ACM Transactions on Networking 22(4), 1232–1244 (2014).
https://doi.org/10.1109/TNET.2013.2272740

6. Kim, H.C., Lin, E.T., Guitart, O., III, E.J.D.: Further progress in water-
mark evaluation testbed (WET). In: Security, Steganography, and Watermark-
ing of Multimedia Contents VII. Proc. SPIE, vol. 5681, pp. 241–251 (2005).
https://doi.org/10.1117/12.593803

7. Kuhn, M.: StirMark – image-watermarking robustness test, http://www.cl.cam.
ac.uk/~mgk25/stirmark.html

8. Kutter, M., Petitcolas, F.A.P.: A fair benchmark for image watermarking systems.
In: Security and Watermarking of Multimedia Contents. Proc. SPIE, vol. 3657, pp.
226–239 (1999). https://doi.org/10.1117/12.344672

9. Lang, A.: StirMark Benchmark for Audio - SMBA, http://omen.cs.

uni-magdeburg.de/alang/smba.php

10. Li, G., Pei, S., Chen, G., Cao, W., Wu, B.: A self-embedded watermarking scheme
based on relationship function of corresponding inter-blocks DCT coefficient. In:
Proc. CSCWD 2009. pp. 107–112. https://doi.org/10.1109/CSCWD.2009.4968043

11. Li, W., Xue, X., Lu, P.: Localized audio watermarking technique robust against
time-scale modification. IEEE Transactions on Multimedia 8(1), 60–69 (2006).
https://doi.org/10.1109/TMM.2005.861291

12. Lin, C.Y., Chang, S.F.: Semi-fragile watermarking for authenticating JPEG visual
content. In: Security and Watermarking of Multimedia Contents II. Processings of
SPIE, vol. 3971, pp. 140–151 (2000). https://doi.org/10.1117/12.384968

13. Lin, C.Y., Wu, M., Bloom, J.A., Cox, I.J., Miller, M.L., Lui, Y.M.: Rotation, scale,
and translation resilient watermarking for images. IEEE Transactions on Image
Processing 10(5), 767–782 (2001). https://doi.org/10.1109/83.918569

14. Lugan, S., Macq, B.: Thread-based benchmarking deployment. In: Security,
Steganography and Watermarking of Multimedia Contents VI. Proc. SPIE,
vol. 5306, pp. 248–255 (2004). https://doi.org/10.1117/12.538692

15. Macq, B., Dittmann, J., Delp, E.J.: Benchmarking of image watermarking algo-
rithms for digital rights management. In: Proceedings Of the IEEE. vol. 92, pp.
971–984 (2004). https://doi.org/10.1109/JPROC.2004.827361



18 H. Wang et al.

16. Maeno, K., Sun, Q., Chang, S.F., Suto, M.: New semi-fragile image
authentication watermarking techniques using random bias and nonuni-
form quantization. IEEE Transactions on Multimedia 8(1), 32–45 (2006).
https://doi.org/10.1109/TMM.2005.861293

17. Michiels, B., Macq, B.: Benchmarking image watermarking algorithms with Open-
watermark. In: Proc. EUSIPCO 2006

18. Ni, Z., Shi, Y.Q., Ansari, N., Su, W., Sun, Q., Lin, X.: Robust lossless im-
age data hiding designed for semi-fragile image authentication. IEEE Trans-
actions on Circuits and Systems for Video Technology 18(4), 497–509 (2008).
https://doi.org/10.1109/TCSVT.2008.918761

19. Pereira, S., Voloshynovskiy, S., Madueno, M., Marchand-Maillet, S., Pun, T.: Sec-
ond generation benchmarking and application oriented evaluation. In: Proc. IH
2001. LNCS, vol. 2137, pp. 340–353 (2001)

20. Petitcolas, F.A.P., Steinebach, M., Raynal, F., Dittmann, J., Fontaine, C., Fates,
N.: A public automated web-based evaluation service for watermarking schemes:
StirMark benchmark. In: Security and Watermarking of Multimedia Contents III.
Proc. SPIE, vol. 4314, pp. 575–584 (2001). https://doi.org/10.1117/12.435442

21. Petitcolas, F.: Stirmark benchmark 4.0, http://www.cl.cam.ac.uk/~fapp2/

watermarking/stirmark/
22. Petitcolas, F.A.P.: Watermarking scheme evaluation. IEEE Signal Processing Mag-

azine 17(5), 58–64 (2000). https://doi.org/10.1109/79.879339
23. Petitcolas, F.A.P., Anderson, R.J., Kuhn, M.G.: Attacks on copyright marking

systems. In: Proc. IH ’98. LNCS, vol. 1525, pp. 218–238. https://doi.org/10.1007/3-
540-49380-8 16

24. Podilchuk, C.I., Delp, E.J.: Digital watermarking: Algorithms and ap-
plications. IEEE Signal Processing Magazine 18(4), 33–46 (2001).
https://doi.org/10.1109/79.939835

25. Solachidis, V., Tefas, A., Nikolaidis, N., Tsekeridou, S., Nikolaidis, A., Pitas, I.:
A benchmarking protocol for watermarking methods. In: Proc. ICIP 2001. pp.
1023–1026. https://doi.org/10.1109/ICIP.2001.958300

26. Steinebach, M., Petitcolas, F.A.P., Raynal, F., Dittmann, J., Fontaine, C., Seibel,
S., Fates, N., Ferri, L.C.: StirMark benchmark: Audio watermarking attacks. In:
Proc. ITCC 2001. pp. 49–54. https://doi.org/10.1109/ITCC.2001.918764

27. Stütz, T., Autrusseau, F., Uhl, A.: Non-blind structure-preserving substitution
watermarking of H.264/CAVLC inter-frames. IEEE Transactions on Multimedia
16(5), 1337–1349 (2014). https://doi.org/10.1109/TMM.2014.2310595

28. Vorbrüggen, J.C., Cayre, F.: The Certimark benchmark: Architec-
ture and future perspectives. In: Proc. ICME 2002. pp. 485–488.
https://doi.org/10.1109/ICME.2002.1035651

29. Wang, H., Ho, A.T.S., Zhao, X.: A novel fast self-restoration semi-fragile
watermarking algorithm for image content authentication resistant to JPEG
compression. In: Proc. IWDW 2011. LNCS, vol. 7128, pp. 72–85 (2012).
https://doi.org/10.1007/978-3-642-32205-1 8

30. Wang, K., Lavoué, G., Denis, F., Baskurt, A., He, X.: A benchmark for 3D mesh
watermarking. In: Proc. SMI 2010. pp. 231–235 (2010)

31. Wang, K., Lavoué, G., Denis, F., Baskurt, A.: A comprehensive survey on three-
dimensional mesh watermarking. IEEE Transactions on Multimedia 10(8), 1513–
1527 (2008). https://doi.org/10.1109/TMM.2008.2007350

32. Zhu, X., Ding, J., Dong, H., Hu, K., Zhang, X.: Normalized correlation-based quan-
tization modulation for robust watermarking. IEEE Transactions on Multimedia
16(7), 1888–1904 (2014). https://doi.org/10.1109/TMM.2014.2340695


